JP4454505B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP4454505B2
JP4454505B2 JP2005002877A JP2005002877A JP4454505B2 JP 4454505 B2 JP4454505 B2 JP 4454505B2 JP 2005002877 A JP2005002877 A JP 2005002877A JP 2005002877 A JP2005002877 A JP 2005002877A JP 4454505 B2 JP4454505 B2 JP 4454505B2
Authority
JP
Japan
Prior art keywords
conductive layer
power supply
supply terminal
support member
wafer support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005002877A
Other languages
Japanese (ja)
Other versions
JP2006190898A (en
Inventor
陽平 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005002877A priority Critical patent/JP4454505B2/en
Publication of JP2006190898A publication Critical patent/JP2006190898A/en
Application granted granted Critical
Publication of JP4454505B2 publication Critical patent/JP4454505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体や液晶基盤などの製造工程において、半導体ウェハや液晶用ガラス基板などのウェハを保持し、かつ高周波を印加してプラズマを発生させる機能を有するセラミック製静電チャック、セラミック製ヒーター等の如きウェハ支持部材に関するものである。   The present invention relates to a ceramic electrostatic chuck and a ceramic heater having a function of holding a wafer such as a semiconductor wafer or a glass substrate for liquid crystal and generating a plasma by applying a high frequency in a manufacturing process of a semiconductor or a liquid crystal substrate. And the like.

従来、半導体や液晶基盤などの製造工程のうち、半導体ウェハや液晶用ガラス基板などのウェハ上へ薄膜を形成するCVD等の成膜工程や、上記ウェハに微細加工を施すドライエッチング工程ではプラズマ発生機構を備えた装置が用いられており、プラズマを発生させる電極のうち、一方の電極を板状セラミック体中に埋設し、板状セラミック体の表面をウェハを載せる載置面としたウェハ支持部材が用いられている。   Conventionally, plasma is generated in a film forming process such as CVD for forming a thin film on a wafer such as a semiconductor wafer or a glass substrate for liquid crystal, or in a dry etching process for performing fine processing on the wafer, among manufacturing processes for semiconductors and liquid crystal substrates. An apparatus having a mechanism is used, and among the electrodes for generating plasma, one electrode is embedded in a plate-shaped ceramic body, and the surface of the plate-shaped ceramic body is used as a mounting surface on which a wafer is placed Is used.

図4は従来のウェハ支持部材32を示す断面図である。   FIG. 4 is a sectional view showing a conventional wafer support member 32.

板状セラミック体34の内部には静電吸着用電極42が埋設されている。上記静電吸着用電極42にはタンタル、タングステン、モリブデン、白金及びこれらの合金等が用いられていた。   An electrostatic adsorption electrode 42 is embedded in the plate-shaped ceramic body 34. Tantalum, tungsten, molybdenum, platinum, and alloys thereof were used for the electrostatic adsorption electrode 42.

また、主面のウェハ載置面34aには絶縁層34bが形成されている。上記板状セラミック体34及び上記絶縁層34bを構成するセラミックとしては、耐熱衝撃性に優れた窒化珪素や耐食性に優れた窒化アルミニウムなど窒化物系セラミックが用いられている。また、他にも炭化珪素及びアルミナ−炭化珪素複合材料も用いられていた。   In addition, an insulating layer 34b is formed on the main wafer mounting surface 34a. As the ceramic constituting the plate-like ceramic body 34 and the insulating layer 34b, nitride ceramics such as silicon nitride having excellent thermal shock resistance and aluminum nitride having excellent corrosion resistance are used. In addition, silicon carbide and alumina-silicon carbide composite materials have also been used.

そして、板状セラミック体34の他方の主面には給電端子40が埋設されており、上記給電端子40が静電吸着用電極42に接続されている。上記給電端子40の端面が、板状セラミック体34の他方の主面に露出している。   A power supply terminal 40 is embedded in the other main surface of the plate-like ceramic body 34, and the power supply terminal 40 is connected to the electrostatic chucking electrode 42. An end surface of the power supply terminal 40 is exposed on the other main surface of the plate-like ceramic body 34.

また、ロウ付け時の熱や使用時の熱サイクルによる板状セラミック体34の破損を防止するため、給電端子40には板状セラミック体34の熱膨張係数に近似したタングステンやモリブデンあるいはFe−Ni−Co合金が用いられていた。
特開平9−134951号公報 特開2003−188248号公報
Further, in order to prevent damage to the plate-like ceramic body 34 due to heat during brazing or thermal cycles during use, the power supply terminal 40 has tungsten, molybdenum, or Fe—Ni that approximates the thermal expansion coefficient of the plate-like ceramic body 34. A -Co alloy was used.
Japanese Patent Laid-Open No. 9-134951 JP 2003-188248 A

しかしながら、従来のウェハ支持部材32ではプラズマを発生させるためにウェハ支持部材32の給電端子40に高周波電力を印加すると、上記給電端子40が発熱するという問題があった。   However, the conventional wafer support member 32 has a problem that when the high frequency power is applied to the power supply terminal 40 of the wafer support member 32 in order to generate plasma, the power supply terminal 40 generates heat.

これは、高周波は給電端子40の表面を流れるのだが、板状セラミック体34との熱膨張差を近似させるために使用したタングステンやモリブデンあるいはFe−Ni−Co合金等で形成した給電端子40は高周波に対する抵抗が大きいために発熱し易いものであった。   This is because the high frequency flows on the surface of the power supply terminal 40, but the power supply terminal 40 made of tungsten, molybdenum, Fe—Ni—Co alloy or the like used to approximate the thermal expansion difference with the plate-like ceramic body 34 is used. It was easy to generate heat because of its high resistance to high frequency.

そして、給電端子40が発熱すると、給電端子40の上方に位置する載置面34aの温度が部分的に高くなり、載置面34a上に載せたウェハWの温度も載置面34aの温度分布に倣って部分的に高くなり、ウェハWの温度分布を均一にすることができず、成膜精度やエッチング精度が悪くなるといった問題があった。   When the power feeding terminal 40 generates heat, the temperature of the mounting surface 34a located above the power feeding terminal 40 partially increases, and the temperature of the wafer W placed on the mounting surface 34a is also distributed over the temperature of the mounting surface 34a. As a result, there is a problem that the temperature distribution of the wafer W cannot be made uniform, and the film forming accuracy and the etching accuracy are deteriorated.

そこで、本発明のウェハ支持部材は上記課題に鑑み、板状セラミック体の一方の主面をウェハを載せる載置面とし、その内部に電極を備え、上記載置面以外の板状セラミック体の表面に凹部を形成するとともに該凹部の内壁面に上記電極と電気的に接続する導電層を形成し、上記凹部に上記電極と上記導電層を介して気的に接続されるとともにプラズマを発生させるために高周波電力が印加される、タングステン,モリブデンおよびFe−Ni−Co合金のいずれかよりなる給電端子を一方側が上記凹部から露出するように装着してなるウェハ支持部材において、上記給電端子の上記凹部から露出した表面に溝を形成、該溝部を覆うとともに上記内壁面に形成した上記導電層と繋がった、上記給電端子より抵抗値が小さい導電層形成したことを特徴とするものであるTherefore, the wafer support member of the present invention has been made in view of the above problems, a plate-like the one main surface of the ceramic body and mounting surface mounting the wafer, e Bei electrodes therein, the plate other than the mounting surface shaped ceramic body inner wall surface to form a conductive layer connected to the electrode and the electrical plasma is connected electrical to through the electrode and the conductive layer on the recessed portion of the recess together to form a recess in the surface of the In the wafer support member in which a high-frequency power is applied to generate a power supply, and a power supply terminal made of any one of tungsten, molybdenum, and Fe—Ni—Co alloy is mounted so that one side is exposed from the recess. forming a groove in the surface exposed from the recess of the terminal, led the conductive layer formed on the inner wall surface to cover the groove portion, a conductive layer resistance value is smaller than the feeding terminal It is characterized in.

また、本発明のウェハ支持部材は、上記構成において、給電端子に形成する溝及び導電層側面にのみ形成されていることを特徴とする。 Further, the wafer support member of the present invention having the above structure, the groove and the conductive layer is formed to the power supply terminal is characterized in that it is formed only on the side surfaces.

さらに、本発明のウェハ支持部材は、上記各構成において、導電層の平均膜厚が、3〜100μmの範囲であることを特徴とする。 Furthermore, the wafer support member of the present invention is characterized in that, in each of the above-mentioned configurations, the average film thickness of the conductive layer is in the range of 3 to 100 μm.

また、本発明のウェハ支持部材は、上記各構成において、導電層の材質が金、銀、銅、アルミニウムの少なくともいずれか1つを主成分とすることを特徴とする。 Further, the wafer support member of the present invention, in the above-mentioned respective structures, the material of the conductive layer has a gold, silver, copper, the main component to Rukoto at least one of aluminum.

さらに、本発明のウェハ支持部材は、上記各構成において、給電端子の表面に上記導電層と異なる金属層を介して上記導電層が形成されていることを特徴とする。 Furthermore, the wafer support member of the present invention is characterized in that, in each of the above configurations, the conductive layer is formed on the surface of the power supply terminal via a metal layer different from the conductive layer.

また、本発明のウェハ支持部材は、上記各構成において、金属層がNiを主成分とすることを特徴とする。 The wafer support member of the present invention is characterized in that , in each of the above-described configurations, the metal layer contains Ni as a main component.

さらに、本発明のウェハ支持部材は、上記各構成において、給電端子の導電層あるいは金属層を形成した表面の算術平均粗さRaが0.1〜2であることを特徴とする。 Furthermore, the wafer support member of the present invention is characterized in that, in each of the above configurations, the arithmetic average roughness Ra of the surface on which the conductive layer or metal layer of the power feeding terminal is formed is 0.1 to 2.

本発明によれば、プラズマを発生させるためにウェハ支持部材の給電端子に高周波電力を印加する際給電端子が発熱することを抑え、ウェハ面内の温度差を均一にして、成膜速度やエッチング精度を向上させたウェハ支持部材を提供できる。   According to the present invention, when high frequency power is applied to the power supply terminal of the wafer support member in order to generate plasma, the power supply terminal is prevented from generating heat, the temperature difference in the wafer surface is made uniform, and the film formation rate and etching are reduced. A wafer support member with improved accuracy can be provided.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1(a)は、本発明の一例を示すウェハ支持部材2の平面図であり、(b)は、そのX−X線の断面図である。   Fig.1 (a) is a top view of the wafer support member 2 which shows an example of this invention, (b) is sectional drawing of the XX line.

板状セラミック体4は略円筒体に形成されたものであり、一方の主面にウェハ載置用の段差Qを有し、その段差Qの表面はウェハWを載せる載置面4aとしてあり、その内部には電極12として静電吸着用電極12を埋設してある。板状セラミック体4の載置面4aと静電吸着用電極12の間には絶縁部4bでもって絶縁が保たれている。また、板状セラミック体4の他方の主面には、柱状の凹部14が形成されるとともに、この凹部14に挿入され、静電吸着用電極12と電気的に接続する給電端子10が固定されているようになっている。この給電端子10は柱状、例えば、円柱状に形成されたものであり、後述するように後端部側から静電吸着用電極12に電力を印加可能に構成されている。   The plate-like ceramic body 4 is formed in a substantially cylindrical body, has a step Q for placing a wafer on one main surface, and the surface of the step Q is a placement surface 4a on which the wafer W is placed, Inside the electrode, an electrode 12 for electrostatic adsorption is embedded as an electrode 12. Insulation is maintained between the mounting surface 4a of the plate-like ceramic body 4 and the electrostatic adsorption electrode 12 by the insulating portion 4b. In addition, a columnar recess 14 is formed on the other main surface of the plate-like ceramic body 4, and the power supply terminal 10 that is inserted into the recess 14 and electrically connected to the electrostatic chucking electrode 12 is fixed. It seems to be. The power supply terminal 10 is formed in a columnar shape, for example, a columnar shape, and is configured to be able to apply electric power to the electrostatic chucking electrode 12 from the rear end side as will be described later.

そして、静電吸着用電極12に給電端子10を介して直流電圧を印加するとウェハWと載置面4aの間に静電吸着力を発現してウェハWを固定することができる。また、静電吸着用電極12に高周波を印加すればウェハWの上方にプラズマ等を発生させウェハWへ成膜等の加工処理を施すことができる。   When a DC voltage is applied to the electrostatic chucking electrode 12 via the power supply terminal 10, the wafer W can be fixed by developing an electrostatic chucking force between the wafer W and the mounting surface 4a. Further, if a high frequency is applied to the electrostatic attraction electrode 12, plasma or the like is generated above the wafer W, and processing such as film formation can be performed on the wafer W.

図2は本発明のウェハ支持部材2の給電端子10周辺を詳細に示す断面図である。本発明のウェハ支持部材2において、板状セラミック体4の他方の主面に形成する凹部14は静電吸着用電極12を貫通するように穿設されている。従って、この凹部14の内壁面16には静電吸着用電極12が露出されることになる。この内壁面16に導電層22であるロウ材層18を形成し、凹部14に給電端子10を挿入することでロウ材層18を介して静電吸着用電極12と給電端子10が電気的に接続される。なお、給電端子10は凹部14に挿入すると一方側が凹部14から露出するように装着される。 FIG. 2 is a sectional view showing in detail the periphery of the power supply terminal 10 of the wafer support member 2 of the present invention. In the wafer support member 2 of the present invention, the recess 14 formed in the other main surface of the plate-like ceramic body 4 is formed so as to penetrate the electrostatic chucking electrode 12. Accordingly, the electrostatic adsorption electrode 12 is exposed on the inner wall surface 16 of the recess 14. By forming the brazing material layer 18 as the conductive layer 22 on the inner wall surface 16 and inserting the feeding terminal 10 into the recess 14, the electrostatic chucking electrode 12 and the feeding terminal 10 are electrically connected via the brazing material layer 18. Connected. The power supply terminal 10 is mounted so that one side is exposed from the recess 14 when inserted into the recess 14.

そして、上記給電端子10の板状セラミックス体4から露出した表面には導電層22を形成してある。これは、上記給電端子10より抵抗値の小さい導電層22を形成することにより、表面層に流れ易い高周波をスムーズに流すためである。高周波をスムーズに流すことにより、上記給電端子10で異常発熱を抑えることができるのである。   A conductive layer 22 is formed on the surface of the power supply terminal 10 exposed from the plate-like ceramic body 4. This is because by forming the conductive layer 22 having a resistance value smaller than that of the power supply terminal 10, a high frequency that easily flows through the surface layer flows smoothly. By causing the high frequency to flow smoothly, abnormal heat generation can be suppressed at the power supply terminal 10.

更に、上記給電端子10には溝20が備えてある。溝20は給電端子10の表面のいずれの位置に形成してもよい。これは、給電端子10の表面に導電層22を均一に形成するためである。なお、この溝20が上記給電端子10に形成されていることで、導電層22を形成する際に、例えば、図3に示すように溝20にロウ材23を引っ掛け溶融させ導電層22を形成することができる。これにより、給電端子10の表面全体に膜厚を均一にした導電層22を形成することができる。溝20は給電端子10の側面に形成するのが好ましい。   Further, the power supply terminal 10 is provided with a groove 20. The groove 20 may be formed at any position on the surface of the power supply terminal 10. This is because the conductive layer 22 is uniformly formed on the surface of the power supply terminal 10. Since the groove 20 is formed in the power supply terminal 10, when forming the conductive layer 22, for example, as shown in FIG. 3, the brazing material 23 is hooked and melted in the groove 20 to form the conductive layer 22. can do. Thereby, the conductive layer 22 having a uniform film thickness can be formed on the entire surface of the power supply terminal 10. The groove 20 is preferably formed on the side surface of the power supply terminal 10.

なお、18aはロウ材層18からなる導電層22を形成するためのロウ材をペースト状にして塗布した層を示す。   Reference numeral 18a denotes a layer in which a brazing material for forming the conductive layer 22 composed of the brazing material layer 18 is applied in the form of a paste.

そして、上述した溝20を利用して導電層22の膜厚を均一に形成することにより、導電層22を備え上記給電端子10の表面の抵抗を小さくすることができる。そして、高周波電流を流しても上記給電端子10で異常発熱を抑えることができるのである。   And by forming the film thickness of the conductive layer 22 uniformly using the groove 20 described above, the resistance of the surface of the power supply terminal 10 provided with the conductive layer 22 can be reduced. Even when a high-frequency current is passed, abnormal heat generation can be suppressed at the power supply terminal 10.

従って、上記導電層22は、上記溝20の内表面10bから上記給電端子の外表面10aに連続して形成されていることが好ましい。導電層22となるロウ材23を溝20にセットして高温炉で加熱しロウ材23を溶融することで導電層22が溝内面10bとこれと連続して給電端子10の外表面10aに形成することができる。   Therefore, the conductive layer 22 is preferably formed continuously from the inner surface 10b of the groove 20 to the outer surface 10a of the power supply terminal. The brazing material 23 to be the conductive layer 22 is set in the groove 20 and heated in a high temperature furnace to melt the brazing material 23, so that the conductive layer 22 is formed on the groove inner surface 10 b and the outer surface 10 a of the power supply terminal 10 continuously. can do.

また、導電層22を均一に形成するには、板状セラミック体4側の溝20の内表面10bにおいて板状セラミック体4側の内表面10bが外表面10aと60〜110度の角度で交わる形状であると線状のロウ材23が内表面10bに固定されロウ材23を加熱し溶融した際にロウ材23が内表面10bに溜まりながら導電層22を形成すると考えられ、導電層22の厚みが均一になると考えられる。また溝20の断面形状としては線状のロウ材23を確実に固定する上で矩形状であることが好ましく、矩形状であればロウ材23を加熱しても位置ずれする虞が無く好ましい。また、給電端子10に容易に加工できるとの理由から四角形が上記観点から好ましい。   In order to form the conductive layer 22 uniformly, the inner surface 10b on the plate ceramic body 4 side intersects the outer surface 10a at an angle of 60 to 110 degrees on the inner surface 10b of the groove 20 on the plate ceramic body 4 side. When the shape is linear, it is considered that when the linear brazing material 23 is fixed to the inner surface 10 b and the brazing material 23 is heated and melted, the conductive layer 22 is formed while the brazing material 23 accumulates on the inner surface 10 b. It is considered that the thickness becomes uniform. Further, the cross-sectional shape of the groove 20 is preferably rectangular in order to securely fix the linear brazing material 23, and if it is rectangular, it is preferable that there is no possibility of displacement even when the brazing material 23 is heated. Also, a square is preferable from the above viewpoint because it can be easily processed into the power supply terminal 10.

特に溝20は給電端子10の外周に給電端子10の長手方向に垂直で給電端子10の周囲に環状に形成されていることが好ましい。また、上記導電層22の平均膜厚は3〜100μmの範囲であることが好ましい。これは、上記導電層22の平均膜厚が3μm未満だと給電端子10表面の導電層22による低抵抗効果が無くなり、上記給電端子10が発熱してしまうからである。また、上記導電層22の平均膜厚が100μmを超えると導電層22が剥がれ、上記給電端子10が発熱してしまうからである。よって、上記導電層22の平均膜厚は3〜100μmの範囲が良い。更に好ましくは、10〜50μmの範囲が良い。   In particular, the groove 20 is preferably formed on the outer periphery of the power supply terminal 10 in an annular shape around the power supply terminal 10 perpendicular to the longitudinal direction of the power supply terminal 10. Moreover, it is preferable that the average film thickness of the said conductive layer 22 is the range of 3-100 micrometers. This is because if the average film thickness of the conductive layer 22 is less than 3 μm, the low resistance effect by the conductive layer 22 on the surface of the power supply terminal 10 is lost, and the power supply terminal 10 generates heat. Further, when the average film thickness of the conductive layer 22 exceeds 100 μm, the conductive layer 22 is peeled off and the power supply terminal 10 generates heat. Therefore, the average film thickness of the conductive layer 22 is preferably in the range of 3 to 100 μm. More preferably, the range of 10-50 micrometers is good.

なお、導電層22の厚みは超音波探傷機(HIS3HF)を用いて測定できる。超音波探傷機は、対象物を水が入った浴槽に入れ超音波を当てその対象物から反射した超音波の位置情報より画像処理をし、平面図、断面図に展開して対象物の内部の形状を算出し表示することができる。本件の給電端子10の導電層22の厚みは、超音波が導電層22とその中の導電層22以外の給電端子10との界面で反射が起こることから超音波の反射の違いを画像処理して色付けし、色の違う導電層22の厚みを超音波計測し導電層22の厚みを求めた。   The thickness of the conductive layer 22 can be measured using an ultrasonic flaw detector (HIS3HF). The ultrasonic flaw detector puts an object in a bathtub filled with water, applies ultrasonic waves and performs image processing from the position information of the ultrasonic waves reflected from the object, and develops it into a plan view and a cross-sectional view to show the interior of the object. Can be calculated and displayed. The thickness of the conductive layer 22 of the power supply terminal 10 in this case is that the ultrasonic wave is reflected at the interface between the conductive layer 22 and the power supply terminal 10 other than the conductive layer 22 therein, and the difference in ultrasonic reflection is image-processed. The thickness of the conductive layer 22 was determined by ultrasonic measurement of the thickness of the conductive layer 22 having a different color.

また、導電層22は給電端子10の例えば柱状の長手方向の中心断面を研摩加工し、断面から直接金属顕微鏡や走査型電子顕微鏡で導電層の厚みを測定できる。なお、導電層22を検出し易くするために、研摩面をエッチング処理して観察することができる。   In addition, the conductive layer 22 can polish, for example, a columnar longitudinal central cross section of the power supply terminal 10, and the thickness of the conductive layer can be measured directly from the cross section with a metal microscope or a scanning electron microscope. In order to facilitate detection of the conductive layer 22, the polished surface can be observed by etching.

また、導電層22の材質としては金、銀、銅、アルミニウムの少なくともいずれか1つが主成分であることが好ましい。これは、金、銀、銅、アルミニウムの体積固有抵抗値がそれぞれ2.4×10−8Ω・m、1.6×10−8Ω・m、1.6×10−8Ω・m、2.7×10−8Ω・mと小さく、一般の給電端子10の材質としてよく用いられるタングステン、モリブデン、Fe−Ni−Co合金のそれぞれの体積固有抵抗値5.5×10−8Ω・m、5.8×10−8Ω・m、48×10−8Ω・mより小さいからである。即ち、給電端子10を形成する材質より抵抗値が小さい導電層22を高周波電流が流れるため、高周波電流をスムーズに流すことができ、給電端子10の発熱を抑えることができるのである。 The material of the conductive layer 22 is preferably at least one of gold, silver, copper, and aluminum as a main component. This is because the volume resistivity values of gold, silver, copper, and aluminum are 2.4 × 10 −8 Ω · m, 1.6 × 10 −8 Ω · m, 1.6 × 10 −8 Ω · m, Each volume resistivity value of 5.5 × 10 −8 Ω · m is small as 2.7 × 10 −8 Ω · m, and is commonly used as a material for the general power supply terminal 10. This is because it is smaller than m, 5.8 × 10 −8 Ω · m, and 48 × 10 −8 Ω · m. That is, since the high-frequency current flows through the conductive layer 22 having a resistance value smaller than that of the material forming the power supply terminal 10, the high-frequency current can flow smoothly and heat generation of the power supply terminal 10 can be suppressed.

また、上記導電層22は給電端子10の側面10a、10bにのみ形成されていることが好ましい。つまり、給電端子10の端面に導電層22形成してもよいが、端面に導電層22がないことが給電端子10の端部に給電ケーブル等を強固に接続することができることから好ましい。例えば、端面に雌ねじ10cを形成しこの部分の導電層22を除くことで、不図示の雄ねじで不図示の給電ケーブルを容易に固定することができるとともに給電ケーブルを強固に固定することができ、運転中に緩み等が発生する虞がなく好ましい。 The conductive layer 22 is preferably formed only on the side surfaces 10 a and 10 b of the power supply terminal 10. That may be a conductive layer 22 on the end surface of the power supply terminal 10, but preferable since it is possible that there is no conductive layer 22 on the end face firmly connect the power supply cable or the like to the end of the feed terminal 10. For example, by forming the female screw 10c on the end face and removing the conductive layer 22 in this portion, it is possible to easily fix the power supply cable (not shown) with the male screw (not shown) and firmly fix the power supply cable, This is preferable because there is no risk of loosening during operation.

また、給電端子10の表面に導電層22と異なる金属層を介して導電層22を形成していることが好ましい。これは、給電端子10に密着性の高い金属層を設けその上に、抵抗の小さい導電層22を形成することにより、熱サイクルが加わっても耐久性のある抵抗が小さい導電層22を上記給電端子10の表面に形成できるからである。上記金属層としては導電層22が銀・銅ロウ材である場合にNiであることが好ましい。これは、Niが上記給電端子10や導電層22の何れにも相互拡散して密着強度を増すからである。また、給電端子10の耐酸化性の観点からNiは上記導電層22の下地層として好ましい。   The conductive layer 22 is preferably formed on the surface of the power supply terminal 10 via a metal layer different from the conductive layer 22. This is because the metal layer having high adhesion is provided on the power supply terminal 10 and the conductive layer 22 having low resistance is formed thereon, so that the conductive layer 22 having low resistance even when subjected to a thermal cycle is supplied to the power supply terminal 10. This is because it can be formed on the surface of the terminal 10. The metal layer is preferably Ni when the conductive layer 22 is a silver / copper brazing material. This is because Ni interdiffuses in both the power supply terminal 10 and the conductive layer 22 to increase the adhesion strength. Further, from the viewpoint of oxidation resistance of the power supply terminal 10, Ni is preferable as the base layer of the conductive layer 22.

また、上記給電端子10の導電層22あるいは金属層形成した表面の算術平均粗さRaが0.1〜2の範囲であることが好ましい。これは、上記給電端子10の表面を荒らすことによりアンカー効果で導電層22の密着性が良くなり、厚みのバラツキを抑えられるからである。また、上記給電端子10の導電層22あるいは金属層形成した表面の算術平均粗さRaが0.1未満ならアンカー効果も小さく厚みのバラツキも抑えられない。更に、上記給電端子10の導電層22あるいは金属層形成した表面の算術平均粗さRaが2を超えるなら、上記給電端子10の表面の凹凸が大きいため高周波電流の流れに偏りができ上記給電端子10が発熱してしまう。よって、上記給電端子10の導電層22あるいは金属層形成した表面の算術平均粗さRaは0.1〜2の範囲であることが好ましい。更に好ましくは0.4〜1の範囲が良い。 Further, the arithmetic average roughness Ra of the surface on which the conductive layer 22 or the metal layer of the power supply terminal 10 is formed is preferably in the range of 0.1 to 2. This is because, by roughening the surface of the power supply terminal 10, the adhesion of the conductive layer 22 is improved by the anchor effect, and variations in thickness can be suppressed. If the arithmetic average roughness Ra of the surface of the power supply terminal 10 on which the conductive layer 22 or the metal layer is formed is less than 0.1, the anchor effect is small and the thickness variation cannot be suppressed. Furthermore, if the arithmetic average roughness Ra of the surface of the power supply terminal 10 on which the conductive layer 22 or the metal layer is formed exceeds 2, the surface of the power supply terminal 10 has a large unevenness, and the flow of high-frequency current can be biased. The terminal 10 generates heat. Therefore, the arithmetic average roughness Ra of the surface on which the conductive layer 22 or the metal layer of the power supply terminal 10 is formed is preferably in the range of 0.1-2. More preferably, the range of 0.4-1 is good.

なお、上記給電端子10の算術平均粗さRaは、ロウ付け前の給電端子10の表面を表面粗さ計で3箇所測定しその平均値として求めることができる。   The arithmetic average roughness Ra of the power supply terminal 10 can be obtained as an average value obtained by measuring the surface of the power supply terminal 10 before brazing at three locations with a surface roughness meter.

また、導電層22の形成手段としては、CVD法やPVD法等の薄膜形成手段、メッキ法、ロウ材18を塗布し、焼き付けしたものを用いることができ、できるだけ緻密なものを用いることが好ましい。   Further, as a means for forming the conductive layer 22, a thin film forming means such as a CVD method or a PVD method, a plating method, a method in which a brazing material 18 is applied and baked can be used, and a dense one is preferably used. .

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

ウェハ支持部材の静電吸着用電極に高周波電力を印加した時の給電端子の発熱具合について調べる実験を行った。   An experiment was conducted to investigate the heat generation of the power supply terminal when high frequency power was applied to the electrostatic chucking electrode of the wafer support member.

本実験で使用するウェハ支持部材には高純度の窒化アルミニウム粉末にバインダーと溶媒を添加混合して泥漿を製作し、ドクターブレード法により複数枚のグリーンシートを成形した。また、窒化アルミニウム粉末とタングステン粉末とを混ぜたタングステンペーストを作製した。そして、グリーンシートに静電吸着用電極となる金属ペースト膜を上記タングステンペーストを使い印刷した。そして、各金属ペースト膜を敷設したグリーンシートと残りのグリーンシートを積層して80℃、4.9MPaの圧力で熱圧着して積層体を形成した後、切削加工を施して円板状とし、該円板状の積層体を400℃の温度で真空脱脂したあと、2000℃の窒素雰囲気で焼結することにより、外径約200mm、肉厚約12mmの板状セラミック体を得た。   For the wafer support member used in this experiment, a high purity aluminum nitride powder was mixed with a binder and a solvent to produce a slurry, and a plurality of green sheets were formed by a doctor blade method. Further, a tungsten paste was prepared by mixing aluminum nitride powder and tungsten powder. And the metal paste film | membrane used as the electrode for electrostatic adsorption was printed on the green sheet using the said tungsten paste. And after laminating the green sheet in which each metal paste film was laid and the remaining green sheet and forming a laminate by thermocompression bonding at a pressure of 80 ° C. and 4.9 MPa, it was cut into a disk shape, The disk-shaped laminate was vacuum degreased at a temperature of 400 ° C. and then sintered in a nitrogen atmosphere at 2000 ° C. to obtain a plate-shaped ceramic body having an outer diameter of about 200 mm and a wall thickness of about 12 mm.

そして、板状セラミックス体の静電吸着用電極が埋設されている側の表面に研磨加工を施してウェハを載せる載置面を形成した。   And the mounting surface which mounts a wafer was given to the surface by which the electrode for electrostatic attraction of the plate-shaped ceramic body is embed | buried, and the wafer was mounted.

また、板状セラミック体のウェハ載置面と反対側の表面に、静電吸着用電極を貫通する凹部を穿設し、凹部内壁面にメタライズ層を形成した後、モリブデンからなる柱状の給電端子を挿入し、凹部内に露出した電極と電気的に接続するとともに、給電端子の一方側が凹部から露出するようにロウ付けにて固定したウェハ支持部材(試料No.1)を作製した。なお、この場合、給電端子の凹部から露出した部位は導電層を形成する以外は溝を形成しなかった。   In addition, a concave portion penetrating the electrode for electrostatic attraction is formed on the surface of the plate-shaped ceramic body opposite to the wafer mounting surface, and a metallized layer is formed on the inner wall surface of the concave portion. Was inserted and electrically connected to the electrode exposed in the recess, and a wafer support member (sample No. 1) fixed by brazing so that one side of the power supply terminal was exposed from the recess was produced. In this case, no groove was formed in the portion exposed from the concave portion of the power supply terminal except that the conductive layer was formed.

また、本発明のウェハ支持部材(試料No.2)においては、板状セラミック体の凹部に電極と電気的に接続される給電端子を一方側が上記凹部から露出するように装着した。   In addition, in the wafer support member (sample No. 2) of the present invention, a power supply terminal electrically connected to the electrode was attached to the recess of the plate-like ceramic body so that one side was exposed from the recess.

そして、直径4mmで長さ15mmの給電端子の上記凹部から露出した表面に切削加工により幅1mm深さ0.5mmの溝を形成するとともに、その溝に線状の銀銅ロウ材を巻き付け後、900℃の温度で焼き付けることにより上記溝部を覆う導電層が形成した。尚、この時の線状の銀銅ロウ材の量は本発明品、従来品共に同じにした。   Then, a groove having a width of 1 mm and a depth of 0.5 mm is formed by cutting on the surface exposed from the recess of the power supply terminal having a diameter of 4 mm and a length of 15 mm, and a linear silver-copper brazing material is wound around the groove. A conductive layer covering the groove was formed by baking at a temperature of 900 ° C. The amount of the linear silver-copper brazing material at this time was the same for both the present product and the conventional product.

なお、メタライズ層を構成する金属には銀、銅、チタンの合金を、ロウ材には銅と銀を重量比で8:2の割合で含有した銀銅ロウを使用し、それぞれ900℃の温度でロウ付け固定した。   The metal constituting the metallized layer is made of an alloy of silver, copper, and titanium, and the brazing material is made of silver and copper brazing containing copper and silver in a weight ratio of 8: 2, each at a temperature of 900 ° C. And fixed with brazing.

そして、上記ウェハ支持部材を成膜用容器に据え付けて、載置面にウェハを載せ吸着し、静電吸着用電極にプラズマ発生用の13.56MHzの高周波電圧を印加し、ウェハの表面における温度分布を測定する実験を行った。ウェハの温度分布は、ウェハの表面における等配置の9点を光ファイバを用いて測定し、その温度の最大値と最小値の差をウェハの温度差とした。また、導電層の厚みは超音波探傷機(HIS3HF)にて測定した。本件の給電端子の導電層の厚みは、超音波が導電層とその中の導電層以外の給電端子との界面で反射起こることから超音波の反射の違いを画像処理して色付けし、色の違う導電層の厚みを超音波計測し、導電層の厚みを求めた。そして、導電層の最小厚みは導電層の厚みを5点測定した中で最小の厚みを導電層の最小厚みとした。

Figure 0004454505
Then, the wafer support member is mounted on the film formation container, the wafer is placed on the placement surface and sucked, a high frequency voltage of 13.56 MHz for generating plasma is applied to the electrostatic suction electrode, and the temperature on the surface of the wafer is measured. Experiments were conducted to measure the distribution. The temperature distribution of the wafer was measured using an optical fiber at nine points on the wafer surface, and the difference between the maximum value and the minimum value was taken as the wafer temperature difference. The thickness of the conductive layer was measured with an ultrasonic flaw detector (HIS3HF). The thickness of the conductive layer of the power supply terminal in this case is that the ultrasonic wave is reflected at the interface between the conductive layer and the power supply terminal other than the conductive layer in the conductive layer. The thickness of the different conductive layer was measured by ultrasonic measurement, and the thickness of the conductive layer was determined. The minimum thickness of the conductive layer was determined as the minimum thickness of the conductive layer among the five measured thicknesses.
Figure 0004454505

この表1の測定結果から試料No.1の本発明の範囲外の上記給電端子の表面に溝が無いものは、導電層の最小厚みが0.8μmと小さく、ウェハの温度差が15℃と大きかった。これは、溝を形成していない状態で導電層を形成したため、導電層が均一に形成されず、導電層に薄い部分がうまれ、そこで、上記給電端子が発熱を起こし、ウェハの温度差が大きくなったと考えられる。   From the measurement results in Table 1, the sample No. When the surface of the power supply terminal outside the range of 1 of the present invention has no groove, the minimum thickness of the conductive layer was as small as 0.8 μm, and the temperature difference of the wafer was as large as 15 ° C. This is because the conductive layer is formed in a state where no groove is formed, so that the conductive layer is not formed uniformly, and a thin portion is formed in the conductive layer, so that the power supply terminal generates heat and the temperature difference of the wafer is large. It is thought that it became.

これに対して、本発明品の上記給電端子に溝がある試料No.2は導電層の最小厚みが4.2μmと大きく、ウェハの温度差も8℃と小さく均熱性が優れている事が分かった。これは、溝を形成した上記給電端子に線状の銀銅ロウ材を巻き付けて導電層を形成することにより、給電端子表面に均一にばらつきのない導電層が形成され、導電層に薄い部分が無くなり、上記給電端子の発熱を抑えられたためウェハの温度差が小さかったと考えられる。  On the other hand, sample No. 1 having a groove in the power supply terminal of the product of the present invention. 2 showed that the minimum thickness of the conductive layer was as large as 4.2 μm, the temperature difference of the wafer was as small as 8 ° C., and the heat uniformity was excellent. This is because a conductive layer is formed on the surface of the power supply terminal by forming a conductive layer by winding a linear silver-copper brazing material around the power supply terminal in which the groove is formed, and a thin portion is formed on the conductive layer. It is considered that the temperature difference of the wafer was small because the heat generation of the power supply terminal was suppressed.

以上の結果から、板状セラミック体4の一方の主面をウェハWを載せる載置面4aとし、その内部に電極12を備えるとともに、上記載置面4a以外の板状セラミック体4の表面に上記電極12と電気的に接続される給電端子10を有するウェハ支持部材2において、上記給電端子10表面に導電層22と溝20を備えたことが良い事が分かった。  From the above results, one main surface of the plate-like ceramic body 4 is set as a placement surface 4a on which the wafer W is placed, and the electrode 12 is provided inside thereof, and the surface of the plate-like ceramic body 4 other than the placement surface 4a is provided. In the wafer support member 2 having the power supply terminal 10 electrically connected to the electrode 12, it was found that the conductive layer 22 and the groove 20 were provided on the surface of the power supply terminal 10.

次に、実施例1と同様に板状セラミック体4を作製し、導電層22となる線状の銀銅ロウ材の量を異ならせ、導電層22の平均厚みを異ならせたウェハ支持部材2をそれぞれ作製した。   Next, the plate-like ceramic body 4 is produced in the same manner as in Example 1, and the wafer support member 2 in which the amount of the linear silver-copper brazing material to be the conductive layer 22 is varied and the average thickness of the conductive layer 22 is varied. Were prepared.

そして、導電層22の平均厚みに対するウェハWの表面における温度分布を測定する実験を行った。ウェハWの温度分布、導電層22の厚みの測定方法は実施例1と同様に行った。また、導電層22の平均厚みは導電層22の厚みを5点測定した平均で導電層22の平均厚みとした。その結果を表2に示す。

Figure 0004454505
Then, an experiment for measuring the temperature distribution on the surface of the wafer W with respect to the average thickness of the conductive layer 22 was performed. The method for measuring the temperature distribution of the wafer W and the thickness of the conductive layer 22 was performed in the same manner as in Example 1. In addition, the average thickness of the conductive layer 22 is the average thickness of the conductive layer 22 measured by measuring the thickness of the conductive layer 22 at five points. The results are shown in Table 2.
Figure 0004454505

この表2から、導電層22の平均厚みが3〜100μmの範囲の試料No.22、23、24は、ウェハWの温度差が6℃以下と非常に優れたウェハ支持部材を作製することができた。  From Table 2, sample Nos. In which the average thickness of the conductive layer 22 is in the range of 3 to 100 μm. Nos. 22, 23, and 24 were able to produce very excellent wafer support members having a temperature difference of 6 ° C. or less.

それに対して導電層22の平均厚みが2μmと小さい試料No.21はウェハWの温度差が8℃と試料No.22、23、24に比べて悪かった。これは、導電層22の厚みが薄く、給電端子10表面の導電層22による低抵抗効果が少なく、上記給電端子10が試料No.22、23、24より発熱を起こしたため、ウェハWの温度差が大きくなったと考えられる。  On the other hand, the sample No. 2 in which the average thickness of the conductive layer 22 is as small as 2 μm. Sample No. 21 has a temperature difference of 8 ° C. for the wafer W. It was worse than 22, 23, 24. This is because the conductive layer 22 is thin, and the low resistance effect due to the conductive layer 22 on the surface of the power supply terminal 10 is small. It is considered that the temperature difference of the wafer W was increased because heat was generated from 22, 23, and 24.

また、導電層22の平均厚みが110μmと厚かった試料No.25は導電層22が厚過ぎるため、導電層22の一部剥がれが発生したため、給電端子10の抵抗が高くなり、高周波電流がスムーズに流れなかったため試料No.22、23、24より発熱を起こし、ウェハWの温度差が8℃と大きくなったと考えられる。  In addition, Sample No. in which the average thickness of the conductive layer 22 was as thick as 110 μm. 25, since the conductive layer 22 was too thick, part of the conductive layer 22 was peeled off, the resistance of the power supply terminal 10 was increased, and the high-frequency current did not flow smoothly. It is considered that heat was generated from 22, 23, and 24, and the temperature difference of the wafer W became as large as 8 ° C.

以上の結果から、上記導電層22の平均厚みが、3〜100μmの範囲であることが良い事が分かった。   From the above results, it was found that the average thickness of the conductive layer 22 is preferably in the range of 3 to 100 μm.

次に、給電端子10の導電層22平均厚みを一定にし、導電層22の材質を異ならせて実施例1と同様にウェハ支持部材2を作製した。   Next, the wafer support member 2 was produced in the same manner as in Example 1 by making the average thickness of the conductive layer 22 of the power supply terminal 10 constant and changing the material of the conductive layer 22.

そして、上記ウェハ支持部材2の給電端子10と静電吸着用電極12との間に、13.56MHz、2kWの高周波電力を印加し、この高周波電力の供給と停止をそれぞれ5分単位で行う通電サイクル試験を実施した。そして、この通電サイクル試験を1万回繰り返した後のウェハWの表面における温度分布を測定する実験を行った。ウェハWの温度分布の測定方法は実施例1と同様に行った。その結果を表3に示す。

Figure 0004454505
Then, high frequency power of 13.56 MHz and 2 kW is applied between the power supply terminal 10 of the wafer support member 2 and the electrostatic chucking electrode 12, and energization is performed to supply and stop the high frequency power in units of 5 minutes. A cycle test was performed. And the experiment which measures the temperature distribution in the surface of the wafer W after repeating this electricity supply cycle test 10,000 times was done. The method for measuring the temperature distribution of the wafer W was performed in the same manner as in Example 1. The results are shown in Table 3.
Figure 0004454505

この表3から、金、銀、銅、アルミニウムの少なくともいずれか1つを主成分である試料No.31、32、33、34、35はいずれも、ウェハWの温度差が6、5、5、6、5℃と1万回の通電後でも給電端子10の発熱を生じることがなく、長期間にわたってウェハ支持部材2を安定して使用できた。   From Table 3, Sample No. whose main component is at least one of gold, silver, copper, and aluminum. 31, 32, 33, 34, and 35, the temperature difference of the wafer W is 6, 5, 5, 6, 5 ° C., and the power supply terminal 10 does not generate heat even after 10,000 times of energization. Thus, the wafer support member 2 could be used stably.

それに対して試料No.36のクロムは1万サイクル後導電層22が劣化し、ウェハWの温度差が10℃と均熱性が悪いことが分かる。  In contrast, sample no. It can be seen that the chromium of 36 deteriorates the conductive layer 22 after 10,000 cycles, and the temperature difference of the wafer W is 10 ° C. and the heat uniformity is poor.

よって、以上の結果から導電層22の材質が金、銀、銅、アルミニウムの少なくともいずれか1つを主成分であることがより良いことが分かる。   Therefore, it can be seen from the above results that the material of the conductive layer 22 is preferably composed mainly of at least one of gold, silver, copper, and aluminum.

次に、上記給電端子10に導電層22のみを被覆したウェハ支持部材2と上記給電端子10にNiをメッキした後、導電層22を被覆したウェハ支持部材2と上記給電端子10に銅をメッキした後、導電層22を被覆したウェハ支持部材2を作製した。導電層22はそれぞれ銀銅ロウ材を使用して形成した。  Next, the power supply terminal 10 covered with the conductive layer 22 only and the power supply terminal 10 are plated with Ni, and then the wafer support member 2 coated with the conductive layer 22 and the power supply terminal 10 are plated with copper. After that, the wafer support member 2 coated with the conductive layer 22 was produced. Each conductive layer 22 was formed using a silver-copper brazing material.

そして、上記ウェハ支持部材2の給電端子10と静電吸着用電極12との間に、13.56MHz、2kWの高周波電力を印加し、この高周波電力の供給と停止をそれぞれ5分単位で行う通電サイクル試験を実施した。そして、この通電サイクル試験を2万回繰り返した後、導電層22と給電端子10の密着力を見るために、給電端子にセロハンテープを貼り、導電層22が剥がれるか試験を行った。また、その後更に通電サイクル試験を1万回繰り返し、給電端子にセロハンテープを貼り、導電層22が剥がれるか試験をもう一度行った。その結果を表4に示す。

Figure 0004454505
Then, high frequency power of 13.56 MHz and 2 kW is applied between the power supply terminal 10 of the wafer support member 2 and the electrostatic chucking electrode 12, and energization is performed to supply and stop the high frequency power in units of 5 minutes. A cycle test was performed. And after repeating this electricity supply cycle test 20,000 times, in order to see the adhesive force of the electroconductive layer 22 and the electric power feeding terminal 10, a cellophane tape was affixed on the electric power feeding terminal, and the test was done whether the electroconductive layer 22 peeled. Further, the energization cycle test was repeated 10,000 times thereafter, a cellophane tape was applied to the power supply terminal, and the test was conducted once again to see if the conductive layer 22 was peeled off. The results are shown in Table 4.
Figure 0004454505

この表4の結果から、Ni、銅の金属層を有した給電端子10の試料No.42、43は通電サイクル試験を2万回行った後でも導電層22が剥がれることなく、安定した密着強度を持つウェハ支持部材2を作製することができた。   From the results of Table 4, the sample No. of the power feeding terminal 10 having a metal layer of Ni and copper was obtained. Nos. 42 and 43 were able to produce the wafer support member 2 having a stable adhesion strength without peeling off the conductive layer 22 even after conducting an energization cycle test 20,000 times.

また、更に行った1万回の通電サイクル後の導電層22剥がれ試験では、Niの金属層を有した給電端子10の試料No.42のみが導電層22の剥がれがなかった。   Further, in the conductive layer 22 peeling test after 10,000 energization cycles, the sample No. of the power supply terminal 10 having a Ni metal layer was used. Only 42 did not peel off the conductive layer 22.

よって、以上の結果から、上記導電層と給電端子の界面に上記導電層と異なる金属層を形成していることが良いことが分かる。また、上記金属層がNiを主成分とすることは更に良いことが分かる。   Therefore, it can be seen from the above results that a metal layer different from the conductive layer is preferably formed at the interface between the conductive layer and the power feeding terminal. It can also be seen that the metal layer is preferably composed mainly of Ni.

(a)はウェハ支持部材2の平面図の一例であり、(b)は、そのX−X線の断面図である。(A) is an example of the top view of the wafer support member 2, (b) is sectional drawing of the XX. 本発明のウェハ支持部材2の給電端子10周辺を詳細に示す断面図である。It is sectional drawing which shows the electric power feeding terminal 10 periphery of the wafer support member 2 of this invention in detail. 本発明のウェハ支持部材2の給電端子10に導電層22を形成する前のロウ材18を取り付けた状態。A state in which the brazing material 18 before the conductive layer 22 is formed is attached to the power supply terminal 10 of the wafer support member 2 of the present invention. 従来のウェハ支持部材32を示す断面図である。It is sectional drawing which shows the conventional wafer support member 32. FIG.

符号の説明Explanation of symbols

2、32:ウェハ支持部材
4、34:板状セラミック体
4a、34a:載置面
4b、34b:絶縁層
10、40:給電端子
10a:溝の外表面
10b:溝の内表面
10c:雌ねじ
12、42:電極、静電吸着用電極
14:凹部
16:凹部内壁面
18:ロウ材層
18a:ロウ材をペースト状にして塗布した層
20:溝
22:導電層
23:線状のロウ材
W:ウェハ
2, 32: Wafer support member 4, 34: Plate-like ceramic body 4a, 34a: Placement surface 4b, 34b: Insulating layer 10, 40: Feed terminal 10a: Groove outer surface 10b: Groove inner surface 10c: Female screw 12 42: electrode, electrode for electrostatic attraction 14: recess 16: recess inner wall surface 18: brazing material layer 18a: layer coated with brazing material 20: groove 22: conductive layer 23: linear brazing material W : Wafer

Claims (7)

板状セラミック体の一方の主面をウェハを載せる載置面とし、その内部に電極を備え、上記載置面以外の板状セラミック体の表面に凹部を形成するとともに該凹部の内壁面に上記電極と電気的に接続する導電層を形成し、上記凹部に上記電極と上記導電層を介して気的に接続されるとともにプラズマを発生させるために高周波電力が印加される、タングステン,モリブデンおよびFe−Ni−Co合金のいずれかよりなる給電端子を一方側が上記凹部から露出するように装着してなるウェハ支持部材において、上記給電端子の上記凹部から露出した表面に溝を形成、該溝部を覆うとともに上記内壁面に形成した上記導電層と繋がった、上記給電端子より抵抗値が小さい導電層形成したことを特徴とするウェハ支持部材。 The one main surface of the ceramic plate and mounting surface mounting the wafer, the inner wall surfaces of the recess together when the Bei give an electrode therein, forming a recess in the surface of the ceramic plate other than the mounting surface the electrodes and the electrically conductive layer is formed to be connected, high frequency power for generating plasma is connected electrical to through the electrode and the conductive layer to the concave portion is applied to, tungsten, in the wafer support member having one side become more feeding terminal one of molybdenum and as an Fe-Ni-Co alloy is formed by mounting so as to be exposed from the recess, a groove is formed on the surface exposed from the recess portion of the feeding terminal, A wafer support member, characterized in that a conductive layer having a resistance value smaller than that of the power supply terminal, which is connected to the conductive layer formed on the inner wall surface and covers the groove, is formed. 上記給電端子に形成する溝及び導電層側面にのみ形成されていることを特徴とする請求項1に記載のウェハ支持部材。 The wafer support member according to claim 1, characterized in that the groove and the conductive layer is formed on the feeding terminal is formed only on the side surfaces. 上記導電層の平均膜厚が、3〜100μmの範囲であることを特徴とする請求項1または2に記載のウェハ支持部材。   3. The wafer support member according to claim 1, wherein an average film thickness of the conductive layer is in a range of 3 to 100 μm. 上記導電層の材質金、銀、銅、アルミニウムの少なくともいずれか1つ主成分であることを特徴とする請求項1〜3のいずれかに記載のウェハ支持部材。 The above material is gold conductive layer, silver, copper, wafer support member according to Izu Re one of claims 1 to 3, at least any one of aluminum, which is a main component. 上記給電端子の表面に上記導電層と異なる金属層を介して上記導電層が形成されていることを特徴とする請求項1〜4のいずれかに記載のウェハ支持部材。   5. The wafer support member according to claim 1, wherein the conductive layer is formed on a surface of the power supply terminal via a metal layer different from the conductive layer. 上記金属層がNiを主成分とすることを特徴とする請求項5に記載のウェハ支持部材。   The wafer support member according to claim 5, wherein the metal layer contains Ni as a main component. 上記給電端子の導電層あるいは金属層を形成した表面の算術平均粗さRaが0.1〜2であることを特徴とする請求項1〜6のいずれかに記載のウェハ支持部材。   The wafer support member according to any one of claims 1 to 6, wherein the arithmetic average roughness Ra of the surface on which the conductive layer or the metal layer of the power supply terminal is formed is 0.1 to 2.
JP2005002877A 2005-01-07 2005-01-07 Wafer support member Active JP4454505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002877A JP4454505B2 (en) 2005-01-07 2005-01-07 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002877A JP4454505B2 (en) 2005-01-07 2005-01-07 Wafer support member

Publications (2)

Publication Number Publication Date
JP2006190898A JP2006190898A (en) 2006-07-20
JP4454505B2 true JP4454505B2 (en) 2010-04-21

Family

ID=36797811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002877A Active JP4454505B2 (en) 2005-01-07 2005-01-07 Wafer support member

Country Status (1)

Country Link
JP (1) JP4454505B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858319B2 (en) * 2007-06-07 2012-01-18 住友電気工業株式会社 Wafer holder electrode connection structure
JP5174582B2 (en) * 2007-08-30 2013-04-03 日本碍子株式会社 Bonding structure
JP2014138164A (en) * 2013-01-18 2014-07-28 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP6698476B2 (en) * 2016-08-30 2020-05-27 京セラ株式会社 Electrostatic attraction member

Also Published As

Publication number Publication date
JP2006190898A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US9209061B2 (en) Electrostatic chuck device
KR100681253B1 (en) Support member for wafer
TWI480972B (en) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus including the same
JP2003160874A (en) Supporter for article to be treated, susceptor for semiconductor manufacturing apparatus and treatment apparatus
JP2000077508A (en) Electrostatic chuck
JP4454505B2 (en) Wafer support member
JPH08306629A (en) Wafer holding equipment
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP2005012144A (en) Electrostatic chuck
JP2002141404A (en) Material having built-in electrode and wafer supporting member using the same
JP2020035840A (en) Electrostatic chuck device
JP2004335151A (en) Ceramic heater
JP2005245106A (en) Electrostatic chuck
JP3728078B2 (en) Plasma generating material
JP2005150370A (en) Electrostatic chuck
JP3854145B2 (en) Wafer support member
JP3906087B2 (en) Wafer support member
JP2001284328A (en) Ceramic part
JPH10107132A (en) Electrostatic chuck
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP2002141403A (en) Wafer supporting member
JP3842695B2 (en) Semiconductor processing equipment
JPH09237826A (en) Electrostatic chuck
JP6698476B2 (en) Electrostatic attraction member
JP4069875B2 (en) Wafer holding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4