JP4069875B2 - Wafer holding member - Google Patents

Wafer holding member Download PDF

Info

Publication number
JP4069875B2
JP4069875B2 JP2004025546A JP2004025546A JP4069875B2 JP 4069875 B2 JP4069875 B2 JP 4069875B2 JP 2004025546 A JP2004025546 A JP 2004025546A JP 2004025546 A JP2004025546 A JP 2004025546A JP 4069875 B2 JP4069875 B2 JP 4069875B2
Authority
JP
Japan
Prior art keywords
heating resistor
plate
ceramic
wafer
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004025546A
Other languages
Japanese (ja)
Other versions
JP2004207748A (en
Inventor
三郎 永野
哲 神谷
保典 川辺
浩一 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004025546A priority Critical patent/JP4069875B2/en
Publication of JP2004207748A publication Critical patent/JP2004207748A/en
Application granted granted Critical
Publication of JP4069875B2 publication Critical patent/JP4069875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体や液晶の製造装置において、半導体ウェハや液晶用ガラス等のウェハを保持・搬送するために使用する静電チャックやサセプター等のウェハ保持部材に関する。   The present invention relates to a wafer holding member such as an electrostatic chuck or a susceptor used for holding and transporting a wafer such as a semiconductor wafer or glass for liquid crystal in a semiconductor or liquid crystal manufacturing apparatus.

半導体製造工程で、半導体ウェハに成膜を施すCVD装置やそのウェハに微細加工処理を施すドライエッチング装置において、半導体ウェハの保持部材としてサセプターが用いられている。   In a semiconductor manufacturing process, a susceptor is used as a holding member for a semiconductor wafer in a CVD apparatus for forming a film on a semiconductor wafer and a dry etching apparatus for performing fine processing on the wafer.

例えば、図に示すように、セラミックス製の板状体11の表面にウェハ20の載置面11aを形成してサセプターを構成し、この板状体11の内部にはプラズマ発生用電極12とその通電端子13、発熱抵抗体14とその通電端子15、15を埋設した構造となっている。 For example, as shown in FIG. 4 , a mounting surface 11a of a wafer 20 is formed on the surface of a ceramic plate-like body 11 to constitute a susceptor. The energizing terminal 13, the heating resistor 14 and the energizing terminals 15 and 15 are embedded.

いま、載置面11aにウェハ20を載置しておいて、プラズマ発生用電極12とウェハ20の上部に備えた上部電極(不図示)との間に高周波電圧を印加すれば、プラズマを発生させることができる。また、発熱抵抗体14に電圧を印加してウェハ20を所定温度に加熱することもできる。   If the wafer 20 is placed on the placement surface 11a and a high frequency voltage is applied between the plasma generating electrode 12 and an upper electrode (not shown) provided on the upper portion of the wafer 20, plasma is generated. Can be made. It is also possible to apply a voltage to the heating resistor 14 to heat the wafer 20 to a predetermined temperature.

さらに、図示していないが、板状体11の内部に静電電極を埋設しておいて、ウェハ20を静電吸着するようにした静電チャックとすることもできる。   Further, although not shown, an electrostatic chuck in which electrostatic electrodes are embedded in the plate-like body 11 and the wafer 20 is electrostatically attracted can be used.

これらのウェハ保持部材を製造する場合は、セラミックグリーンシートにプラズマ発生用電極12や発熱抵抗体14を成すW,Mo等の金属ペーストを塗布し、他のセラミックグリーンシートを積層することによって得ることができる。なお、上記セラミックスとしては、さまざまなものを用いることができるが、特に耐プラズマ性に優れた窒化アルミニウムを主成分とするセラミックスが用いられている(特許文献1参照)。
特開平6−151332号公報
When manufacturing these wafer holding members, the ceramic green sheet is obtained by applying a metal paste such as W or Mo forming the plasma generating electrode 12 or the heating resistor 14 and laminating other ceramic green sheets. Can do. Various ceramics can be used as the ceramic, and a ceramic mainly composed of aluminum nitride having excellent plasma resistance is used (see Patent Document 1).
JP-A-6-151332

上記板状体11を成すセラミックスは常温では極めて絶縁性の高いものであるが、高温では抵抗値が低下する傾向があり、しかも焼成時にW,Mo等の金属成分がセラミックス中に拡散することによって、さらに抵抗値が低下しやすいものであった。そのため、セラミックスの抵抗値が低下することによって、プラズマ発生用電極12や発熱抵抗体14に印加した電圧から漏れ電流が生じるという問題があった。   The ceramic forming the plate-like body 11 is extremely high in insulation at room temperature, but tends to have a low resistance value at high temperatures, and when metal components such as W and Mo diffuse into the ceramic during firing. Further, the resistance value was likely to be lowered. Therefore, there has been a problem that leakage current is generated from the voltage applied to the plasma generating electrode 12 and the heating resistor 14 due to a decrease in the resistance value of the ceramic.

例えば、プラズマ発生用電極12に印加した高周波電圧の漏れ電流が発熱抵抗体14に伝わると、発熱抵抗体14への通電が制御できなくなったり、遮断されてしまうなどの問題があった。また、発熱抵抗体14からの漏れ電流が板状体11の下面11bに伝わると、この下面11bが接する金属板等に漏れ電流が流れてしまい、発熱抵抗体14の温度制御が困難となってしまうという問題があった。   For example, when the leakage current of the high-frequency voltage applied to the plasma generating electrode 12 is transmitted to the heating resistor 14, there is a problem that energization to the heating resistor 14 cannot be controlled or is interrupted. Further, when the leakage current from the heating resistor 14 is transmitted to the lower surface 11b of the plate-like body 11, the leakage current flows to a metal plate or the like that is in contact with the lower surface 11b, making it difficult to control the temperature of the heating resistor 14. There was a problem that.

特に窒化アルミニウムを主成分とするセラミックスは、300℃の体積固有抵抗が1×1010Ω・cm、400℃の体積固有抵抗が8.7×108 Ω・cmと他のセラミックスに比べて体積固有抵抗が低いため、上記問題が顕著であった。 In particular, ceramics mainly composed of aluminum nitride have a volume resistivity of 1 × 10 10 Ω · cm at 300 ° C. and a volume resistivity of 8.7 × 10 8 Ω · cm at 400 ° C. compared to other ceramics. Since the specific resistance is low, the above problem is remarkable.

また、上記プラズマ発生用電極12には約20Aの大きな電流を流すため、通電端子13の抵抗を小さくするために、直径10mm以上の大きな通電端子13を用いる必要があった。そのため、金属製の通電端子13とセラミックス製の板状体11との熱膨張差による応力が大きくなり、通電端子13のロウ付け後や使用時の温度変化に伴ってセラミックス製板状体11側にクラックが入りやすいという問題もあった。   In addition, since a large current of about 20 A flows through the plasma generating electrode 12, it is necessary to use a large energizing terminal 13 having a diameter of 10 mm or more in order to reduce the resistance of the energizing terminal 13. Therefore, the stress due to the difference in thermal expansion between the metal energizing terminal 13 and the ceramic plate-like body 11 becomes large, and the ceramic plate-like body 11 side with the temperature change after brazing of the energizing terminal 13 or during use. There was also a problem that cracks were likely to occur.

そこで、本発明は、ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体を埋設し、該発熱抵抗体と板状体の表面との間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えてウェハ保持部材を構成したことを特徴とする。 Therefore, the present invention embeds a heating resistor inside a ceramic plate having a wafer mounting surface, and the ceramic plate is placed between the heating resistor and the surface of the plate. The present invention is characterized in that a wafer holding member is configured by including a leakage current preventing layer made of an insulating layer having a larger volume resistivity than that of the formed ceramic .

また本発明は、ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体とプラズマ発生用電極を埋設し、両者の間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えてウェハ保持部材を構成したことを特徴とする。 The present invention, volume than ceramics constituting the inside heating resistor and the buried and plasma generating electrode, both the ceramic plate body between the ceramic plate-shaped body having a mounting surface of the wafer The present invention is characterized in that a wafer holding member is configured by including a leakage current preventing layer made of an insulating layer having a large specific resistance .

このように本発明では、発熱抵抗体とプラズマ発生用電極との間や、発熱抵抗体と板状体の表面との間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えて、上記漏れ電流を防止するようにしたものである。なお、ここで漏れ電流防止層を備えるとは、漏れ電流が流れないような高抵抗層を備えることを意味し、具体的にはそれぞれの間の距離をある一定以上に大きくしたり、あるいは別材質の絶縁層を備えたりすることを言う。 As described above, in the present invention, the insulation having a larger volume resistivity than the ceramic forming the ceramic plate-like body between the heating resistor and the plasma generating electrode or between the heating resistor and the surface of the plate-like body. A leakage current prevention layer composed of layers is provided to prevent the leakage current. Here, the provision of a leakage current prevention layer means provision of a high resistance layer that does not allow leakage current to flow. Specifically, the distance between each of them is increased to a certain value or more. It says often a useful includes an insulating layer of material.

以上のように、本発明は、ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体を埋設し、該発熱抵抗体と板状体の表面との間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えてウェハ保持部材を構成したことによって、発熱抵抗体への印加電圧が板状体の表面を通じて外部に漏れることを防止し、発熱抵抗体の制御に悪影響を及ぼすことを防止できる。 As described above, the present invention, the ceramic plate between the inside of the heating resistor is embedded, the heat-generating resistor and the plate-shaped surface of the ceramic plate-shaped body having a mounting surface of the wafer Since the wafer holding member is configured with a leakage current prevention layer made of an insulating layer having a larger volume specific resistance than the ceramics forming the rod-like body, the voltage applied to the heating resistor leaks to the outside through the surface of the plate-like body It is possible to prevent adverse effects on the control of the heating resistor.

また本発明によれば、ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体とプラズマ発生用電極を埋設し、両者の間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えてウェハ保持部材を構成したことによって、プラズマ発生用電極への印加電圧による漏れ電流が発熱抵抗体に伝わることを防止し、発熱抵抗体の制御に悪影響を及ぼすことを防止できる。 Further, according to the present invention, the heating resistor and the plasma generating electrode are embedded in the ceramic plate-like body having the wafer mounting surface, and the ceramic plate-like body is formed between the two. By configuring the wafer holding member with a leakage current prevention layer made of an insulating layer having a large volume resistivity, the leakage current due to the voltage applied to the plasma generating electrode is prevented from being transmitted to the heating resistor. Can be prevented from adversely affecting the control.

以下本発明のウェハ保持部材の実施形態をサセプターを例にとって図によって説明する。   Hereinafter, embodiments of a wafer holding member of the present invention will be described with reference to the drawings by taking a susceptor as an example.

図1に示す保持部材は、セラミックスからなる円板状の板状体11の表面をウェハの載置面11aとし、内部にプラズマ発生用電極12とその通電端子13、発熱抵抗体14とその通電端子15、15を埋設してある。   In the holding member shown in FIG. 1, the surface of a disk-like plate-shaped body 11 made of ceramics is used as a wafer mounting surface 11a, and a plasma generating electrode 12 and its energizing terminal 13 and a heating resistor 14 and its energizing are contained therein. Terminals 15 and 15 are embedded.

いま、載置面11aに半導体ウェハ等のウェハ20を載置しておいて、プラズマ発生用電極12とウェハ20の上側に配置した上部電極(不図示)との間に高周波電圧を印加すればプラズマを発生させることができる。また、発熱抵抗体14に電圧を印加し発熱させることによって、ウェハ20を所定温度に加熱することができる。   Now, when a wafer 20 such as a semiconductor wafer is placed on the placement surface 11a, a high frequency voltage is applied between the plasma generating electrode 12 and an upper electrode (not shown) disposed on the upper side of the wafer 20. Plasma can be generated. Further, the wafer 20 can be heated to a predetermined temperature by applying a voltage to the heating resistor 14 to generate heat.

そして、本発明のウェハ保持部材では、上記プラズマ発生用電極12と発熱抵抗体14の間にセラミック製板状体11を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えたことを特徴とする。ここで、漏れ電流防止層とは、プラズマ発生用電極12と発熱抵抗体14の間の漏れ電流を防止するような高抵抗層のことであり、具体的には両者の間に板状体11を成すセラミックスよりも抵抗値の大きい絶縁層16を介在させることをいう。 Then, the wafer holding member of the present invention, the leakage current preventing layer made of large insulating layer having a volume resistivity than ceramics forming the ceramic plate-shaped body 11 between the heating resistor 14 and the plasma generation electrode 12 It is characterized by having. Here, the leakage current preventing layer is that of the high resistance layer so as to prevent leakage current between the plasma generating electrode 12 and the heat generating resistor 14, in particular plate-like between the two persons It means that an insulating layer 16 having a resistance value larger than that of the ceramic forming the body 11 is interposed.

まず、プラズマ発生用電極12と発熱抵抗体14間の距離d1 (cm)を大きくする場合は、プラズマ発生用電極12に印加する電力Q(W)と板状体11を成すセラミックスの使用温度での体積固有抵抗ρ(Ω・cm)に対して、d1 ≧3×106 ×Q/ρを満足するように設定すれば良い。このように距離d1 を大きくしておけば、絶縁層16を備えなくても良い。 First, when the distance d 1 (cm) between the plasma generating electrode 12 and the heating resistor 14 is increased, the power Q (W) applied to the plasma generating electrode 12 and the operating temperature of the ceramics forming the plate-like body 11 are used. It may be set so that d 1 ≧ 3 × 10 6 × Q / ρ is satisfied with respect to the volume specific resistance ρ (Ω · cm). If the distance d 1 is increased in this way, the insulating layer 16 need not be provided.

また、抵抗値の大きい絶縁層16を介在させる場合は、板状体11を成すセラミックスよりも抵抗値の大きいセラミックスを介在させておけば良い。例えば板状体11自体は窒化アルミニウム質セラミックスで形成し、プラズマ発生用電極12と発熱抵抗体14の間に、窒化アルミニウムよりも抵抗値の大きい窒化珪素質セラミックスからなる絶縁層16を介在させておけば良い。   Further, when the insulating layer 16 having a large resistance value is interposed, a ceramic having a larger resistance value than the ceramic forming the plate-like body 11 may be interposed. For example, the plate-like body 11 itself is formed of an aluminum nitride ceramic, and an insulating layer 16 made of a silicon nitride ceramic having a resistance value higher than that of aluminum nitride is interposed between the plasma generating electrode 12 and the heating resistor 14. It ’s fine.

このように、プラズマ発生用電極12と発熱抵抗体14の間に漏れ電流防止層を備えることによって、プラズマ発生用電極12に印加した高周波電圧の漏れ電流が発熱抵抗体14に伝わることを防止することができる。   As described above, by providing the leakage current prevention layer between the plasma generating electrode 12 and the heating resistor 14, the leakage current of the high frequency voltage applied to the plasma generating electrode 12 is prevented from being transmitted to the heating resistor 14. be able to.

また、本発明では、発熱抵抗体14と板状体11の下面11bとの間にセラミック製板状体11を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えたことを特徴とする。この漏れ電流防止層とは、発熱抵抗体14と下面11bとの間の漏れ電流を防止するような高抵抗層のことであり、具体的には両者の間に板状体11を成すセラミックスよりも抵抗値の大きい絶縁層16を介在させることをいう。 Further, in the present invention, a leakage current preventing layer made of an insulating layer having a larger volume resistivity than the ceramic forming the ceramic plate 11 is provided between the heating resistor 14 and the lower surface 11b of the plate 11. It is characterized by. And the leakage current preventing layer is that of the high resistance layer so as to prevent leakage current between the heating resistors 14 and the lower surface 11b, ceramics specifically constituting the plate-like body 11 between the two persons Insulating layer 16 having a larger resistance value is interposed.

まず、発熱抵抗体14と下面11b間の距離d2 を大きくする場合は、この距離d2 を0.1mm以上、好ましくは0.5mm以上、さらに好ましくは1mm以上とすれば良い。 First, when the distance d 2 between the heating resistor 14 and the lower surface 11b is increased, the distance d 2 may be set to 0.1 mm or more, preferably 0.5 mm or more, and more preferably 1 mm or more.

また、より抵抗値の大きい絶縁層を介在させる場合は、板状体11を成すセラミックスよりも抵抗値の大きいセラミックスを備えておけば良い。例えば板状体11を窒化アルミニウム質セラミックスで形成しておいて、その下面11b側にアルミナセラミックスや窒化珪素質セラミックス等の体積固有抵抗の大きい絶縁層16を備えれば良い。この絶縁層16は、グリーンシートの段階で積層し同時焼成したり、あるいは別体で作製したりしておいて接合すれば良い。 When an insulating layer having a higher resistance value is interposed, a ceramic having a higher resistance value than that of the ceramic forming the plate-like body 11 may be provided . Formed in advance example if the plate-like body 11 of aluminum nitride ceramics, it Sonaere greater insulating layer 16 having a volume resistivity such as alumina ceramics or silicon nitride ceramics on its lower surface 11b side. The insulating layer 16 may be bonded in advance to or prepared by laminating simultaneously baking or or another body in the green sheet stage.

また、板状体11を成す窒化アルミニウム質セラミックスは焼成時に発熱抵抗体14の金属成分が拡散して抵抗値が低下することから、このような金属拡散の生じない窒化アルミニウム質セラミックスを別体で作製しておいて絶縁層16として接合することもできる。   Further, since the aluminum nitride ceramics forming the plate-like body 11 diffuses the metal component of the heating resistor 14 at the time of firing and the resistance value is lowered, the aluminum nitride ceramics which do not cause such metal diffusion are separately provided. It can also be produced and bonded as the insulating layer 16.

なお絶縁層16を成すセラミックスとしては、室温で50W/m・K以上、500℃で30W/m・K以上の熱伝導率を有する高熱伝導率の窒化珪素質セラミックスが好適である。   As the ceramic forming the insulating layer 16, silicon nitride ceramics with high thermal conductivity having a thermal conductivity of 50 W / m · K or more at room temperature and 30 W / m · K or more at 500 ° C. are suitable.

このように、発熱抵抗体14と下面11bの間に漏れ電流防止層を備えることによって、発熱抵抗体14に印加した電圧の漏れ電流が下面11bを通じて保持部材を支持する金属板に伝わることを防止することができる。   Thus, by providing the leakage current prevention layer between the heating resistor 14 and the lower surface 11b, the leakage current of the voltage applied to the heating resistor 14 is prevented from being transmitted to the metal plate supporting the holding member through the lower surface 11b. can do.

なお、図2では、板状体11の内部にプラズマ発生用電極を備えず、発熱抵抗体14を下面11b側に備えたため、下面11b側に漏れ電流防止層を備えたが、要するに発熱抵抗体14とこれに最も近い板状体11の表面との間に漏れ電流防止層を備えれば良い。   In FIG. 2, the plate-like body 11 is not provided with a plasma generating electrode, and the heating resistor 14 is provided on the lower surface 11b side. Therefore, the leakage current preventing layer is provided on the lower surface 11b side. What is necessary is just to provide a leakage current prevention layer between 14 and the surface of the plate-like body 11 nearest to this.

また、上記板状体11を成すセラミックスとしては、Al2 3 、AlN、ZrO2 、SiC、Si3 4 等の一種以上を主成分とするセラミックスを用いる。中でも特に耐プラズマ性の点から、99重量%以上のAl2 3 を主成分とし、SiO2 、MgO、CaO等の焼結助剤を含有するアルミナセラミックスや、AlNを主成分とし周期律表第2a族元素酸化物や第3a族元素酸化物を0.5〜20重量%の範囲で含有する窒化アルミニウム質セラミックス、あるいは99重量%以上のAlNを主成分とする高純度窒化アルミニウム質セラミックスのいずれかが好適である。 Further, as the ceramics forming the plate-like body 11, ceramics mainly composed of one or more of Al 2 O 3 , AlN, ZrO 2 , SiC, Si 3 N 4 and the like are used. Among these, from the viewpoint of plasma resistance, alumina ceramics containing 99% by weight or more of Al 2 O 3 as a main component and containing sintering aids such as SiO 2 , MgO, CaO, etc., and AlN as a main component, a periodic table. Aluminum nitride ceramics containing Group 2a element oxides or Group 3a element oxides in the range of 0.5 to 20% by weight, or high purity aluminum nitride ceramics mainly containing 99% by weight or more of AlN Either is preferred.

さらに、上記プラズマ発生用電極12や発熱抵抗体14は、W,Mo等の高融点金属からなるものであり、例えば上記セラミックスのグリーンシート上にこれらの高融点金属ペーストを塗布して、他のセラミックスグリーンシートを積層し一体焼成することによって、本発明のウェハ保持部材を製造することができる。   Further, the plasma generating electrode 12 and the heating resistor 14 are made of a refractory metal such as W or Mo. For example, the refractory metal paste is applied on the ceramic green sheet, By laminating ceramic green sheets and firing them integrally, the wafer holding member of the present invention can be manufactured.

また、上記通電端子13、15は金属からなる柱状体であり、板状体11の下面11b側に形成した挿入孔に挿入してプラズマ発生用電極12や発熱抵抗体14に導通させ、ロウ材等で接合したものである。   The energization terminals 13 and 15 are columnar bodies made of metal, and are inserted into insertion holes formed on the lower surface 11b side of the plate-like body 11 so as to be electrically connected to the plasma generating electrode 12 and the heating resistor 14, and the brazing material. Etc. are joined together.

このうち、特にプラズマ発生用電極12への通電端子13は、例えば13.56MHzの高周波で約20Aの大電流を流すが、この電流は主に通電端子13の表面を流れることになる。そのため、通電端子13での抵抗を小さくするためにできるだけ表面積を大きくし、しかもセラミックス製の板状体11との熱膨張差による悪影響を防止できるように応力緩和部を形成してある。   Among these, the energizing terminal 13 to the plasma generating electrode 12 particularly flows a large current of about 20 A at a high frequency of, for example, 13.56 MHz, and this current mainly flows on the surface of the energizing terminal 13. For this reason, the stress relaxation portion is formed so as to increase the surface area as much as possible in order to reduce the resistance at the energizing terminal 13 and to prevent adverse effects due to the difference in thermal expansion from the ceramic plate 11.

具体的には、図(a)に示すように通電端子13に貫通孔13aを形成したり、図(b)に示すように通電端子13の一方端側にスリット13bを形成したりしてある。そのため、この保持部材を使用する際に温度変化が生じて、セラミック製板状体11との熱膨張差に基づく応力が生じても、金属製通電端子13の貫通孔13aやスリット13bが応力緩和部として作用するため、セラミック製板状体11にクラック等が生じることを防止できる。 Specifically, or form a through hole 13a in the electricity supply terminal 13 as shown in FIG. 2 (a), or a slit 13b on one end side of the energizing terminal 13 as shown in FIG. 2 (b) It is. Therefore, temperature change occurring when using the holding member, even when stress due to the difference in thermal expansion between the ceramic made plate-like body 11, through holes 13a and slits 13b of the metallic conductive terminal 13 is stress to act as a relieving part, it is possible to prevent the cracks occurring in the ceramic-made plate-like body 11.

また、これらの貫通孔13aやスリット13bを備えることによって、高周波電流の流れる表面積を増大できるため、通電端子13自体を小型化しても抵抗値を小さくできる。例えば、中実の円柱状体の通電端子13の場合、13.56MHzで20Aの電流を流すためには直径10mm以上とする必要があるが、図(a)に示す通電端子13の場合は、外径6mm、内径4mm程度で良く、小型化することができる。 Further, since the surface area through which the high-frequency current flows can be increased by providing these through holes 13a and slits 13b, the resistance value can be reduced even if the current-carrying terminal 13 itself is downsized. For example, in the case of a solid cylindrical body of the energization terminal 13, but in order to flow a current of 20A at 13.56MHz is required to be more than the diameter 10 mm, when the electricity supply terminal 13 shown in FIG. 2 (a) The outer diameter may be about 6 mm and the inner diameter may be about 4 mm, and the size can be reduced.

なお、発熱抵抗体14への通電端子15についても、同様に応力緩和部を形成しておけば好適である。また、これらの通電端子13、15には、給電端子を接続できるようにネジ孔を形成することもできる。   In addition, it is suitable if the stress relaxation part is similarly formed also about the electricity supply terminal 15 to the heating resistor 14. In addition, screw holes can be formed in the energization terminals 13 and 15 so that power supply terminals can be connected.

次に、上記通電端子13の接合構造を説明する。図(a)に示すように、板状体11の下面11b側において、通電端子13の挿入孔11dの周囲に座ぐり11cを形成してある。そして、挿入孔11dに通電端子13を挿入し、通電端子13と挿入孔11dの間及び座ぐり11cにロウ材17を介在させてロウ付けにより接合してある。なお、図(b)に示すように、座ぐり11cをテーパ状として、この座ぐり11cにロウ材17を介在させることもできる。 Next, the joining structure of the energization terminal 13 will be described. As shown in FIG. 3 (a), the lower surface 11b side of the plate-like body 11, is formed a counterbore 11c around the insertion hole 11d of the conductive terminal 13. The energizing terminal 13 is inserted into the insertion hole 11d, and the brazing material 17 is interposed between the energizing terminal 13 and the insertion hole 11d and the counterbore 11c, and is joined by brazing. Incidentally, as shown in FIG. 3 (b), a counterbore 11c as tapered, may be interposed brazing material 17 in the counterbore 11c.

ここで、座ぐり11cのロウ材17は、周辺部にむかって厚みが小さくなるような滑らかな円弧状のメニスカスとなっている。そのため、セラミックス製板状体11と金属製通電端子13との熱膨張差により生じた応力を徐々に緩和することができるのである。なお、このような応力緩和作用を成すためには、上記メニスカスを成すロウ材17の周辺部の角度αを60°以下と小さくしておくことが好ましい。   Here, the brazing material 17 of the spot facing 11c is a smooth arc-shaped meniscus whose thickness decreases toward the periphery. Therefore, the stress produced by the difference in thermal expansion between the ceramic plate 11 and the metal energizing terminal 13 can be gradually relaxed. In order to achieve such a stress relaxation action, it is preferable to reduce the angle α of the peripheral portion of the brazing material 17 forming the meniscus to 60 ° or less.

また、発熱抵抗体14側の通電端子15についても、上記と同様の接合構造とすることができる。   Further, the energization terminal 15 on the heating resistor 14 side can also have a joint structure similar to the above.

なお、上記図1〜4に示した例では、サセプター型のウェハ保持部材について説明したが、上記板状体11に静電電極を埋設して静電チャック型のウェハ保持部材とすることもできる。   In the example shown in FIGS. 1 to 4, the susceptor type wafer holding member has been described, but an electrostatic electrode may be embedded in the plate-like body 11 to form an electrostatic chuck type wafer holding member. .

また、本発明のウェハ保持部材は、半導体の製造工程におけるプラズマCVD、減圧CVD、PVD、プラズマエッチング等の高周波プラズマを用いる工程において半導体ウェハを保持する際に好適に使用することができるが、この他に液晶の製造工程における液晶用ガラスの保持など、さまざまな用途に使用することができる。   Further, the wafer holding member of the present invention can be suitably used when holding a semiconductor wafer in a process using high-frequency plasma such as plasma CVD, low pressure CVD, PVD, plasma etching, etc. in a semiconductor manufacturing process. In addition, it can be used for various purposes such as holding glass for liquid crystal in the manufacturing process of liquid crystal.

本発明実施例として、図1に示すウェハ保持部材用いて説明するAs an embodiment of the present invention, a wafer holding member shown in FIG. 1 will be described .

高純度の窒化アルミニウム粉末に溶媒とバインダーを添加してスラリーを作製し、ドクターブレード法等のテープ成形法によりグリーンシートを複数枚成形した。このうち一枚のグリーンシートにスクリーン印刷法によって、窒化アルミニウム粉末を添加したタングステンペーストを印刷してプラズマ発生用電極12や発熱抵抗体14を形成し、これを覆うように他のグリーンシートを積層して50℃、30kg/cm2 程度の圧力で熱圧着することにより積層体を形成した。これを切削加工して円板状とした後、真空脱脂し、続いて2000℃程度の温度で還元焼成し、研削加工を施すことにより、内部にプラズマ発生用電極12と発熱抵抗体14を備えた板状体11からなるウェハ保持部材を得た。 A slurry was prepared by adding a solvent and a binder to high-purity aluminum nitride powder, and a plurality of green sheets were formed by a tape forming method such as a doctor blade method. Of these, a tungsten paste to which aluminum nitride powder is added is printed on one green sheet by screen printing to form the plasma generating electrode 12 and the heating resistor 14, and another green sheet is laminated so as to cover it. Then, a laminated body was formed by thermocompression bonding at 50 ° C. and a pressure of about 30 kg / cm 2 . This is cut into a disk shape, vacuum degreased, subsequently reduced and fired at a temperature of about 2000 ° C., and subjected to grinding to provide the plasma generating electrode 12 and the heating resistor 14 inside. A wafer holding member made of a plate-like body 11 was obtained.

ここで、プラズマ発生用電極12と発熱抵抗体14間の距離d1 の異なる試料を作製し、それぞれ異なる温度で、プラズマ発生用電極12には2kWの電力を印加したときに、プラズマ発生用電極12からの漏れ電流によって発熱抵抗体14側の制御が不可能になるかどうかを調べた。 Here, samples having different distances d 1 between the plasma generating electrode 12 and the heating resistor 14 were prepared, and when 2 kW of power was applied to the plasma generating electrode 12 at different temperatures, the plasma generating electrode Whether the control of the heating resistor 14 side becomes impossible due to the leakage current from 12 is examined.

その結果は表1に示す通りである。この結果より、温度が高くなるほど板状体11を成す窒化アルミニウム質セラミックスの体積固有抵抗が低下するため、距離d1 を大きくしなければ発熱抵抗体14の制御が不可能となることが判った。そして、発熱抵抗体14の制御を可能とするためには、プラズマ発生用電極12に印加する電力Q(W)と板状体11を成すセラミックスの使用温度での体積固有抵抗ρ(Ω・cm)に対して、d1 ≧3×106 ×Q/ρとすれば良いことがわかった。

Figure 0004069875
The results are as shown in Table 1. From this result, it was found that the volume resistivity of the aluminum nitride ceramic forming the plate-like body 11 decreases as the temperature rises, so that the heating resistor 14 cannot be controlled unless the distance d 1 is increased. . In order to enable control of the heating resistor 14, the volume specific resistance ρ (Ω · cm) at the operating temperature of the electric power Q (W) applied to the plasma generating electrode 12 and the ceramics forming the plate 11. ) On the other hand, it was found that d 1 ≧ 3 × 10 6 × Q / ρ.
Figure 0004069875

本発明のウェハ保持部材を示す断面図である。It is sectional drawing which shows the wafer holding member of this invention. (a)(b)は本発明のウェハ保持部材に用いる通電端子を示す斜視図である。(A) (b) is a perspective view which shows the electricity supply terminal used for the wafer holding member of this invention. (a)(b)は本発明のウェハ保持部材における通電端子の接合構造を示す部分断面図である。(A) (b) is a fragmentary sectional view which shows the joining structure of the energization terminal in the wafer holding member of this invention. 従来のウェハ保持部材を示す断面図である。It is sectional drawing which shows the conventional wafer holding member.

符号の説明Explanation of symbols

11:板状体
11a:載置面
11b:下面
11c:座ぐり
11d:挿入孔
12:プラズマ発生用電極
13:通電端子
13a:貫通孔
13b:スリット
14:発熱抵抗体
15:通電端子
16:絶縁層
17:ロウ材
20:ウェハ
11: plate-like body 11a: mounting surface 11b: lower surface 11c: spot facing 11d: insertion hole 12: electrode 13 for plasma generation: energizing terminal 13a: through-hole 13b: slit 14: heating resistor 15: energizing terminal 16: insulation Layer 17: brazing material 20: wafer

Claims (2)

ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体を埋設し、該発熱抵抗体と板状体の表面との間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えたことを特徴とするウェハ保持部材。 A heating resistor is embedded inside a ceramic plate having a wafer mounting surface, and is more volume specific than the ceramic that forms the ceramic plate between the heating resistor and the surface of the plate. A wafer holding member comprising a leakage current prevention layer made of an insulating layer having high resistance . ウェハの載置面を備えたセラミック製板状体の内部に発熱抵抗体とプラズマ発生用電極を埋設し、両者の間に前記セラミック製板状体を成すセラミックスよりも体積固有抵抗の大きい絶縁層から成る漏れ電流防止層を備えたことを特徴とするウェハ保持部材。 Buried and internal to the heating resistor and the plasma generating electrode of the ceramic plate-shaped body having a mounting surface of the wafer, a large insulation volume resistivity than ceramics forming the ceramic plate body therebetween features and to roux E Ha holding member further comprising a leakage current preventing layer made of the layer.
JP2004025546A 2004-02-02 2004-02-02 Wafer holding member Expired - Fee Related JP4069875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025546A JP4069875B2 (en) 2004-02-02 2004-02-02 Wafer holding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025546A JP4069875B2 (en) 2004-02-02 2004-02-02 Wafer holding member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7790896A Division JP3602908B2 (en) 1996-03-29 1996-03-29 Wafer holding member

Publications (2)

Publication Number Publication Date
JP2004207748A JP2004207748A (en) 2004-07-22
JP4069875B2 true JP4069875B2 (en) 2008-04-02

Family

ID=32822029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025546A Expired - Fee Related JP4069875B2 (en) 2004-02-02 2004-02-02 Wafer holding member

Country Status (1)

Country Link
JP (1) JP4069875B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280012B2 (en) * 2014-09-29 2018-02-14 京セラ株式会社 Sample holder
JP7125265B2 (en) * 2018-02-05 2022-08-24 日本特殊陶業株式会社 Substrate heating device and manufacturing method thereof
US20210265189A1 (en) * 2018-09-28 2021-08-26 Kyocera Corporation Ceramic structure and wafer system

Also Published As

Publication number Publication date
JP2004207748A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3323135B2 (en) Electrostatic chuck
JP4040284B2 (en) Electrode built-in susceptor for plasma generation and manufacturing method thereof
KR100438881B1 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP2005210077A (en) Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor
JP2008153194A (en) Heating device
JP2003124299A (en) Electrode contained susceptor and its manufacturing method
JP2000243821A (en) Wafer support member
JP3602908B2 (en) Wafer holding member
JPH09270454A (en) Wafer holding apparatus
JP2005012143A (en) Wafer holding member
JP4436575B2 (en) Wafer support member and manufacturing method thereof
JP4069875B2 (en) Wafer holding member
JP3728078B2 (en) Plasma generating material
JP2004071647A (en) Complex heater
JP2004055608A (en) Susceptor with built-in electrode
JP2004146566A (en) Ceramic heater for semiconductor manufacturing device
JP2001077185A (en) Electrostatic chuck and its manufacture
JP3854145B2 (en) Wafer support member
JPH09237826A (en) Electrostatic chuck
JP3821075B2 (en) Ceramic heater and manufacturing method thereof
JP2003077781A (en) Ceramic heater for semiconductor manufacturing/ inspecting device
JPH0969555A (en) Electrostatic chuck
JP2002170870A (en) Ceramic substrate and electrostatic chuck for semiconductor fabrication/inspection equipment
JP3652862B2 (en) Electrostatic chuck and plasma generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees