JP2006010638A - 時刻データ取得装置、コンピュータプログラム及びサーバ - Google Patents

時刻データ取得装置、コンピュータプログラム及びサーバ Download PDF

Info

Publication number
JP2006010638A
JP2006010638A JP2004191657A JP2004191657A JP2006010638A JP 2006010638 A JP2006010638 A JP 2006010638A JP 2004191657 A JP2004191657 A JP 2004191657A JP 2004191657 A JP2004191657 A JP 2004191657A JP 2006010638 A JP2006010638 A JP 2006010638A
Authority
JP
Japan
Prior art keywords
time data
synchronization signal
time
internal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004191657A
Other languages
English (en)
Other versions
JP4468089B2 (ja
Inventor
Masanao Onozuka
昌修 小野塚
Tomohiro Yashiro
友博 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Precision Inc
Original Assignee
Seiko Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc filed Critical Seiko Precision Inc
Priority to JP2004191657A priority Critical patent/JP4468089B2/ja
Publication of JP2006010638A publication Critical patent/JP2006010638A/ja
Application granted granted Critical
Publication of JP4468089B2 publication Critical patent/JP4468089B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Computer And Data Communications (AREA)

Abstract

【課題】 GPS衛星からの時刻データを取得できない状況でも、コンピュータの内部時刻を簡易且つ高精度に調整できるようにする。
【解決手段】 GPS信号を受信するGPS受信機22と、受信信号の時刻データに基づいてRTC36の時刻を周期的に修正するRTCタスクと36を備えたので、RTC36の第1の発振器よりも高精度のOCXO35からの発振信号に基づくタイマ33のカウント動作によってGPS衛星からの同期信号と同期した内部同期信号を生成し、GPS信号から時刻データを抽出できない場合には、RTC37の更新タイミングと内部同期信号とを周期的に同期させ、これによりGPS衛星より時刻データを長時間取得できない場合であっても、RTC37の内部時計が計時する時刻を高精度に維持することができる。また、内部同期信号を生成するタイマ33のカウント値を制御することにより、閏秒等の時刻のずれを吸収した時刻進度の調整処理を行うことができる。
【選択図】 図3

Description

本発明は、GPS(Global Positioning System)衛星等の高精度の計時装置を有する測位衛星からの信号を受信して時刻データ及び同期信号を抽出する受信機に接続し、この受信機からの時刻データ及び同期信号に基づいて生成した提供用の時刻データを、ネットワークを介して提供するサーバに関するものであり、特に当該サーバに用いられる時刻データ取得装置及びコンピュータプログラムに用いて好適なものである。
近年、NTP(Network Time Protocol)により、ネットワーク上のクライアントやサーバ等に高精度の時刻データを提供するNTPサーバが利用されている。NTPとは、ネットワーク上のコンピュータやルータなどの機器の正確な位置合わせに用いられるプロトコルである。NTPサーバは階層構造化されていて、上位のStratum−1サーバが、高精度な時刻信号をネットワーク以外から参照して時刻合わせを行い、その下位のStratum−2サーバはStratum−1サーバを参照して時刻合わせを行い、さらにその下位のStratum−3サーバはStratum−2サーバを参照して時刻合わせを行うというように、各サーバは上位サーバの時刻データを順次参照して自機の時刻合わせを行う。
Stratum−1サーバが参照する時刻データとしては、UTC(協定世界時:Universal Time Coordinated)に同期した原子時計の時刻データであることが求められる。このため、例えば、GPS衛星を時刻信号の発生源(時刻源)として、このGPS衛星から発生される信号に含まれる時刻データが使用される。GPS衛星からの時刻データは、時刻源として従来から広く利用されており、例えば、特許文献1には、コンピュータに内蔵された時計を修正するために、時刻源であるGPS衛星から捕捉した信号の時刻データを用いる技術が開示されている。
特開平10−31083号公報
前述したように、他のサーバやクライアントに時刻データを提供するStratum−1サーバであるコンピュータは、GPS衛星からの時刻データを定期的に取得することで内部時計の時刻修正を行うが、GPS衛星からの時刻信号を常に良好に捕捉しているとは限らない。したがって、時刻信号を捕捉できない場合は、その間、コンピュータの内部時計が計時する時刻に依存する状態が続くことになる。一般に、コンピュータの内部時計の発振源には水晶発振器が使用されるので、リアルタイムクロックやソフトタイマの時刻精度があまり高くない。例えば、リアルタイムクロック等の一般的な時刻精度は日差800ミリ秒であり、高精度のものでも日差100ミリ秒程度と低い場合が殆どである。しかも、ネットワーク上での通信時間の揺らぎ、サーバ自身のハードウェア特性、又は室温変化など、精度低下につながる各種の要因が存在し、時刻精度はこれらの要因の影響を受けると更に低下してしまう。このため、一旦、GPS衛星から取得した時刻データによってコンピュータの内部時刻を修正したとしても、時刻の経過とともにその内部時刻は徐々にずれが生じてしまうという問題があった。
また、GPS衛星からの時刻データは閏秒調整され、これに合わせてNTPサーバも閏秒調整を行い、ネットワークを介したクライアントに調整後の時刻データを提供する。しかしながら、時刻データの供給を受けるクライアントのアプリケーションの中には、この閏秒に対する調整処理を適切に行っていないものもあるため、1秒分の閏秒調整を瞬間的に行うことによって前後の時刻データとのつながりが極端に非線形になってしまう問題もあった。この問題を避けるためには、時刻データを提供するNTPサーバ側が、長時間、例えば、1時間程度の時間幅間で時刻進度のずれが補正される線形的な調整処理を行い、閏秒分を吸収することが必要である。しかしながら、一般的なNTPサーバが、このような調整処理を行うようには必ずしもなっておらず、そのような場合は個々のNTPサーバに前述した線形的な調整処理をカスタマイズしなければならず、非常に煩雑な手間が生じてしまうという不都合があった。
しかも、この調整処理が行われる間は、内部時計の時刻とGPS衛星の時刻との同期を図ることができないので、必然的にコンピュータの内部時計の時刻精度に頼らざるを得ない状態になるが、前述したとおり内部時計の時刻精度があまり高くないので、この間はGPS衛星から捕捉した時刻と内部時計の時刻のずれが累積してしまうことになる。
また、時刻進度の調整処理は、閏秒等で必要となる補正量をごく微少な補正単位量になるよう除算処理によって分割し、周期的にこの単位補正量分だけ補正することを繰り返すことで実現できるが、前記除算処理においては小数点以下の値を伴なう数値演算(実数演算)が必要になるので処理コストが増大してしまうという問題があった。
そこで、本発明は前述した問題点に鑑み、GPS衛星等の測位衛星からの時刻データを取得できない状況でも、コンピュータの内部時刻を簡易且つ高精度に調整できることを目的としている。
本発明の時刻データ取得装置は、測位衛星より受信した信号に含まれる時刻データ、同期信号、及び受信状態の良否を示すデータを抽出する受信機と、第1の発振器からの発振出力に基づいて内部時刻データを更新して計時を行う計時装置と、前記第1の発振器よりも高精度な第2の発振器からの発振出力に基づくカウント動作により前記同期信号と同期する内部同期信号を発生させるタイマと、前記受信機により抽出された受信状態データが良好である場合は、前記受信機により抽出した同期信号を選択して出力し、前記受信機により抽出された受信状態データが良好でない場合は、前記タイマにより発生させた内部同期信号を選択して出力する同期信号選択処理手段と、前記受信機により抽出された時刻データに基づいて前記計時装置の内部時刻データを周期的に修正する際に、前記受信機により抽出された受信状態データが良好である場合は、前記同期信号選択処理手段により選択された同期信号に同期した前記抽出された時刻データを前記内部時刻データに設定し、前記受信機により抽出された受信状態データが良好でない場合は、前記同期信号選択処理手段により選択された内部同期信号に更新タイミングを同期させて前記内部時刻データの更新処理を行う内部時刻データ更新手段とを備えることを特徴としている。
また、前記内部同期信号を発生させるタイマは、前記受信機により抽出された受信状態データが良好である場合は、前記測位衛星より取得した同期信号によってリセット状態になり、前記受信機により抽出された受信状態データが良好でない場合は、所定のカウント値でリセット後、前記第2の発振器からの発振出力に基づいてカウント動作を繰り返すことを特徴としている。
また、前記内部時刻データ更新手段は、前記受信機により抽出された受信状態データが良好である場合に行う動作を中止して、前記計時装置の内部時刻データの補正量と、当該補正量の補正に要する所望の補正期間とを関係付ける補間処理を行う際に、所定の整数演算に基づいて前記カウント値を制御することにより、前記内部時刻データとして計時される時刻の進度を補正することを特徴としている。
また、前記内部時刻データの進度を補正する補間処理のアルゴリズムは、デジタル微分解析器で実行される処理手順であることを特徴としている。
また、前記計時装置の内部時刻データに関する補正量は、閏秒であることを特徴としている。
本発明のコンピュータプログラムは、測位衛星より受信した信号に含まれる時刻データ、同期信号、及び受信状態の良否を示すデータを抽出する受信機と、第1の発振器からの発振出力に基づいて内部時刻データを更新して計時を行う計時装置と、前記第1の発振器よりも高精度な第2の発振器とに接続されたコンピュータ上で動作するコンピュータプログラムであって、前記第2の発信機からの発振出力に基づくカウント動作により前記同期信号と同期する内部同期信号を発生させるタイマ処理と、前記受信機により抽出された受信状態データが良好である場合は、前記受信機により抽出した同期信号を選択して出力し、前記受信機により抽出された受信状態データが良好でない場合は、前記タイマにより発生させた内部同期信号を選択して出力する同期信号選択処理と、前記受信機により抽出された時刻データに基づいて前記計時装置の内部時刻データを周期的に修正する際に、前記受信機により抽出された受信状態データが良好である場合は、前記同期信号選択処理で選択された同期信号に同期した前記抽出された時刻データを前記内部時刻データに設定し、前記受信機により抽出された受信状態データが良好でない場合は、前記同期信号選択処理で選択された内部同期信号に更新タイミングを同期させて前記内部時刻データの更新処理を行う内部時刻データ更新処理とを実行させることを特徴としている。
本発明のサーバは、前記何れか一つに記載の時刻データ取得装置、又は前記何れか一つに記載のコンピュータプログラムを使用して、前記測位衛星からの受信信号から抽出した時刻データと、前記測位衛星からの受信信号から抽出した同期信号又は前記タイマで発生させた内部同期信号とに基づいて配信用の時刻データを生成し、通信回線を介して前記生成した時刻データを配信することを特徴としている。
本発明によれば、測位衛星からの受信信号より取得した時刻データに基づいて内部時計としての計時装置の時刻を周期的に修正するとともに、計時装置の第1の発振器よりも高精度の第2の発振器からの発振信号に基づくカウント動作によって測位衛星より取得した同期信号と同期した内部同期信号を生成し、測位衛星との受信状態が良好でないために受信信号から時刻データを抽出できない(受信状態データが有効でない)場合には、計時装置の更新タイミングを、生成した内部同期信号と周期的に同期させるように構成した。このため、測位衛星より時刻データを長時間取得できない場合であっても、計時装置が計時する時刻を高精度に維持することができる。
また、本発明によれば、内部同期信号を生成するタイマのカウント値を制御することにより、閏秒等の時刻のずれ、すなわち、補正量を吸収する時刻進度の調整処理を行うようにしたので、高精度の時刻進度調整を行うことができる。
さらに、補正量と、当該補正量の補正に要する所望の補正期間とを関係付ける補間処理では、所定の整数演算に基づいて前記カウント値を制御するようにしたので(例えば、デジタル微分解析器と称されるアルゴリズムによる補間処理)、所望の補正期間の調整処理を実数演算なしに行うことが可能となり、これにより低コストかつ高精度の閏秒調整処理を実現できる。
以下、本発明の好適な実施の形態について図面を参照しながら詳細に説明する。
本発明の時刻データ取得装置は、図1に示すようなサーバシステム100に適用される。サーバシステム100の構成は、本発明の時刻データ取得装置の機能を有するサーバ1と、他のサーバ3a,3bと、Webクライアント4と、その他のクライアント6とが、イーサネット(登録商標)2,5を介して互いに通信可能になるように接続されている。
サーバ1が前述したStratum−1サーバであり、またサーバ3a,3bがStratum−2サーバである。サーバ1は、GPSアンテナ7で受信したGBP信号に含まれる時刻データをイーサネット(登録商標)2を介してサーバ3a,3b及びWebクライアント4へ提供する。さらに、サーバ3a,3bは、受信した時刻データをイーサネット5を介して他のクライアント6へ提供する。
図2は、サーバ1の構成を示すブロック図である。図2に示すように、サーバ1は、GPS衛星23からの信号を受信するGPS受信機22と、且つ後述するリアルタイムクロック処理基板24と、各種操作用のスイッチ28Aと、その制御基板であるSWコントロール28Bと、表示用のVFD(Vacuum Fluorescence Display)29Aと、その制御基板であるVFDコントロール29Bと、サーバ基板25とを備えている。スイッチ28AとSWコントロール28B、及びVFD29AとVFDコントロール29Bは、それぞれ双方向に通信可能に接続されているとともに、SWコントロール28B及びVFDコントロール29Bは、RCU基板24とに接続されている。
GPS受信機22は、GPSアンテナ7が捕捉した少なくとも4つのGPS衛星23a,23b,23c,23dからの信号を受信すると、これら複数の受信信号に基づいて測位処理を行うことにより、自機の位置データ、時刻データ、及びUTC(協定世界時:Universal Time Coordinated)の秒位に同期した1PPS(Pulse Per Second)信号を抽出する。
GPS受信機22は、自機の位置データを取得した後は、当該位置データを用いて、1つのGPS衛星(例えば、GPS衛星23a)より捕捉した信号からの時刻データ及び1PPS信号を生成する動作モードとなる。本実施形態では、このときの動作モードを「固定モード」と呼び、また自機の位置を測位する動作モードを「測位モード」と呼ぶこととする。GPS受信機22が一旦、1PPS信号の生成を行うようになると、再びGPS衛星23aからの信号を捕捉して次の1PPS信号を生成するまで、GPS受信機22は、内部のタイマ(不図示)によって1PPS信号に同期した1Hzの信号を生成し、かつこれを1PPS信号として、後述するリアルタイムクロック処理基板24(以下、RCU基板24と称する)に出力することを繰り返す。
RCU基板24は、GPS受信機22と双方向の通信が可能なように接続される。このRCU基板24は、図示しないが、計時装置としてのリアルタイムクロックと、その計時のために用いる第1の発振信号を供給する水晶発振器と、当該水晶発振器よりも高精度な第2の発振信号を提供するOCXO(Oven Controlled Crystal Oscillator)とを備える。このOCXOの時刻精度は日差±10ミリ秒程度であり、通常の水晶発振器の時刻精度である日差±数100ミリ秒程度に比べて高いことが特徴である。また、OCXOによる発振信号は、後述するOCXOタイマ33のカウント値を更新するための源振となる。なお、RCU基板24が備えるマイクロコンピュータの動作クロックとしては、OCXOとは別の図示しない発振器にて発生される発振信号を用いる。
なお、本実施形態ではOCXOを使用しているがこれに限定するものでもなく、例えばルビジウム発振器等のさらに高精度発振器を用いても良いことは言うまでもない。
また、RCU基板24は、GPS受信機22と、リアルタイムクロックと、OCXOとをそれぞれ通信可能に接続されたRCU基板用マイクロコンピュータ(不図示)を更に備える。前記マイクロコンピュータは、全体動作を司るCPUと、RAMと、CPUが適切に動作するためのプログラム及びOSを格納したROM等から構成されている。そして、前記マイクロコンピュータは、例えば、時刻データのフォーマット変換、リアルタイムクロックの時刻修正、秒位の調整、第2の発振信号に基づくカウント動作、後述するサーバ基板25又はその他の入出力部との通信に関する処理を行う。
なお、RCU基板24及びGPS受信機22により、本発明の時刻データ取得装置が構成され、前記RCU基板用マイクロコンピュータにより、本発明のコンピュータプログラムが実行される。
サーバ基板25も、全体動作を司るCPUと、RAMと、CPUが適切に動作するためのプログラム及びOSを格納したROM等から構成されたサーバ基板用マイクロコンピュータ(不図示)を備える。RCU基板24と双方向に通信可能に接続される前記サーバ基板用マイクロコンピュータにより、NTP処理25A、SNMP(Simple Network Management Protocol)処理25B、UDP(User Datagram Protocol)処理25C、TCP/IP(Transmission Control Protocol/Internet Protocol)処理25D、イーサネットドライバ処理25E、制御用コマンド処理25F、及び各種のユーティリティ処理25G等が実行される。また、サーバ基板25は、外部に接続して通信を行うために、イーサネットポート26及びCOMポート27を備える。
<高い時刻精度の1PPS信号の生成について>
次に、RCU基板24における1PPS信号の生成処理の流れ及びその各処理内容を詳細に説明する。図3は、RCU基板24に備わるRCU基板用マイクロコンピュータの処理手順を示している。GPS受信機22がGPS信号を受信すると、GPS受信機22との通信によりGPSタスク31が実行される。具体的には、米国海洋電子機器協会のNMEA−0183規格に準ずるGPS信号から時刻データを取得する処理を行う。このGPSタスク31により取得される時刻データには、UTC、時、分、秒のデータが含まれている。そこで、GPSタスク31は、これらの各データをそれぞれ変数値にしてRCU基板24のRAMにおける所定のレジスタに設定し、他のタスク処理では、レジスタに設定されたこれら変数値を読み出して時刻データを算出し、所定の処理を行うようにしている。なお、GPS受信機22としては、NMEA−0183規格外の独自のバイナリフォーマットでGPS信号を出力するものも使用でき、GPS受信機の仕様に応じて時刻データの抽出処理は適宜に変更可能である。
また、GPS受信機22で受信される信号の中には、GPSアンテナ7がGPS衛星からの信号を良好に受信できたか否かといった受信状態に関するフラグを含んでいる。このフラグは、GPS受信機22が生成する1PPS信号の良否を示すので、時刻修正の判断に用いることが可能となる。そこで、GPS受信機22が、固定モード及び測位モードのそれぞれにおいて、必要な数のGPS衛星23a〜dから信号を捕捉し、これに基づいて1PPS信号を生成した場合は、有効な1PPS信号であることを示す値をフラグに設定する。GPSタスク31は、受信信号からこのフラグを抽出して、これをUTC、時、分、秒のデータとともに前記RAMの所定のレジスタに設定する。
さらにGPSタスク31は、前述した時刻データ及び1PPS信号の有効性に関するデータをレジスタへ設定する他に、所定の処理又はスイッチ28Aの操作に従ってGPS受信機22の動作を制御する処理を行う。例えば、GPS受信機22の動作モードを切替える指示を受信した場合、固定モード又は測位モードを指定するコマンドをGPS受信機22側に送信して切替え可能なように制御する。
GPS受信機22は、前記フラグを含んだ受信信号をGPS割り込み32へ出力し、GPS割り込み32は、この1PPS信号をトリガとして所定の処理を実行する。具体的には、1PPS信号の良否を示すフラグの値を確認し、有効な1PPS信号であれば、GPS受信機22からの1PPS信号をサーバ基板25へ出力する。図4はその処理手順を示している。
図4に示すように、GPS割り込み32は、先ず、後述する閏秒調整中か否か判定し(ステップS41)、前記判定の結果、閏秒調整中でなければ、受信した1PPS信号の良否を示すフラグを確認する(ステップS42)。GPS割り込み32は、当該フラグの値が有効、すなわち1PPS信号が良好であった場合、GPS受信機22より順次送られる1PPS信号に同期して信号を生成し(ステップS43)、これを1PPS信号としてサーバ基板25に出力する。また、GPS割り込み32は、サーバ基板25に対する1PPS信号の出力とともに、後述の図5に示すOCXO割り込み34によるOCXOタイマ33を用いた1ミリ秒毎にカウント値を増加させるカウント処理をリスタートさせてOCXOタイマ33のカウント値を零にする(ステップS44)。このリスタート処理により、GPS受信機22から送られた1PPS信号とOCXOタイマ33を用いたカウント処理にて生成される出力とが同期する。
OCXO割り込み34は、GPS割り込み32によりGPS受信機22からの1PPS信号が有効でないと判断された場合に、OCXO35からの発振信号に基づいて後述する手順で高精度な1Hz信号を1PPS信号として生成し、サーバ基板25に出力する。
図5に、OCXO割り込み34による処理手順の概略を示す。
図5に示すように、OCXO割り込み34は、まず、OCXO35からの発振信号に基づき1ミリ秒毎にOCXOタイマ33のカウント値を1増加させ(ステップS51)、すなわち、上述のカウント処理を行い、そのカウント値が1000を超えたか否かを判断する(ステップS52)。前記判断の結果、カウント値が1000を超えているときのみカウント値を零にクリアし、カウント処理をリスタートする(ステップS53)。次に、閏秒調整中か否かを判断する(ステップS54)。前記判断の結果、閏秒調整中でないときにのみ出力を発生し、1Hzの信号を発生させる。この1Hzの信号を1PPS信号としてサーバ基板25に出力する(ステップS55)。なお、ステップS52でのカウント値として1000を基準にしているのは、本実施形態では後述する1ミリ秒単位での調整を想定しているためである。したがって、調整単位に応じたカウント値が設定されるのは言うまでもない。
RTCタスク36は、GPS受信機22で捕捉した信号から抽出した時刻データを基に、リアルタイムクロック(RTC)37に時刻データの書き込み(更新)を行なってリアルタイムクロック37の時刻データを修正し、当該修正された時刻データをRTCから読み出して出力する。これは、GPS割り込み32にて生成される1PPS信号、又はOCXO割り込み34にて生成される1PPS信号によって、1秒毎にトリガされて開始されて処理する。なお、リアルタイムクロック37は、内部に水晶発振器37Aを備え、これを源振として時刻データを更新する。
図6に、RTCタスク36による処理手順の概略を示す。GPSタスク31にて設定された変数値を用いて、10秒毎にリアルタイムクロック37の時、分、秒データを更新し、時刻データの修正を行う(ステップS61)。本実施形態では、GPSタスク31による時、分、秒データの変数の設定処理が確実に完了してから更新されるようにするため、およそ数ミリ秒〜10ミリ秒の間待機した後にリアルタイムクロック37の更新を行う。
次に、リアルタイムクロック37の更新処理の完了を待つためにおよそ50ミリ秒待機した後、リアルタイムクロック37から必要な時刻データを読み出す(ステップS62)。次に、読み出した時刻データ38より、NMEA−0183規格に準ずるデータを生成する(ステップS63)。生成したデータは、送信タスク39によりサーバ基板25に送信される。RTCタスク36は、毎分59秒の後、次に、GPS割り込み32にて生成される1PPS信号、又はOCXOタイマ33にて生成される1PPS信号によって、リアルタイムクロック37を0秒アジャスト処理して分の値を進める(ステップS64)。これにより、リアルタイムクロック37の秒位を1PPS信号に同期させることができる。
また、ステップS62で読み出された時刻データ38は、表示等のその他の処理を行うメインタスク40に送られる。メインタスク40は、図2に示したVFD29Aの時刻表示を更新する。
また、サーバ基板25のサーバ基板用マイクロコンピュータは、NTP処理25A(図2参照)により、RCU基板24からのNMEA−0183規格に準ずるデータと、1PPS信号とに基づいて内部時計の時刻を修正及び補正する。NTP処理25Aは、例えば、FreeBSDのNTP Daemonのようなプログラムで実現される。サーバ基板25のサーバ基板用マイクロコンピュータは、イーサネット2を介してWebクライアント4等からNTPにて時刻データの要求を受けると、内部時刻から時刻データを生成してNTP経由で応答する。
なお、OCXO割り込み34によるOCXOタイマ33のカウント処理が特許請求の範囲に記載したタイマに相当し、GPS割り込み32及びOCXO割り込み34が同期信号選択処理手段に相当している。また、RTCタスク36により特許請求の範囲に記載した内部時刻データ更新手段が構成されている。
以上のように本実施形態の時刻データ取得装置は、RCU基板24において、GPS受信機22の受信状態を監視し、受信状態が良好のときは1PPS信号をサーバ基板25に出力するとともに、日差±10ミリ秒と高い時刻精度のOCXO35からの発振信号をカウントするOCXOタイマ33を1PPS信号に同期させ、これに対して受信状態が良好でないときは、OCXOタイマ33のカウントによって生成される1PPS信号をサーバ基板25に出力するように構成している。このため、GPS衛星23が捕捉できていないようなときでも、高い時刻精度の1PPS信号をサーバ基板25に出力することができるようになる。
また、受信状態が良好のときにGPS受信機22で取得した時刻データに基づいてリアルタイムクロック37を定期的に修正し、このときにリアルタイムクロック37の秒位をサーバ基板25に出力する1PPS信号と同期させるように構成している。このため、リアルタイムクロック37の時刻精度を高く保つことができる。このようなリアルタイムクロック37からの時刻データがサーバ基板25へ送信されるようにしているので、サーバ基板25はGPS衛星23を捕捉した受信機22からの時刻データ及び1PPS信号に準ずる、高精度の時刻データ及び1PPS信号を得ることができる。
<閏秒調整について>
次に、本実施の形態のサーバ1による閏秒調整に関する処理について説明する。図7は、RCU基板24においてマイクロコンピュータが閏秒調整を行う処理ブロック構成図を示しており、同図を参照しながら、閏秒調整処理70を説明する。
閏秒調整処理70は、閏秒という時刻進度のずれを長時間の幅で調整(吸収)する処理であり、スイッチ28Aの所定の操作によって起動が可能な状態に設定される。なお、スイッチ操作に限らず、Webクライアント等からネットワークを介して設定するようにしても良い。前述したRCU基板24におけるGPSタスク31は、GPS受信機22を介してGPS衛星23a〜23dより閏秒予告を予め受けるので、閏秒の調整時刻をレジスタ(不図示)に格納しておく。そこで、閏秒調整処理70は、格納された閏秒の調整時刻と、RTCタスク36から取得した内部時刻とを比較して、調整時刻であるか否かを判断する。前記判断の結果、内部時刻が調整時刻となると、閏秒調整処理70は閏秒の調整処理を開始する。また、この調整処理の間、GPS割り込み32の処理は休止し、GPSタスク31により設定された変数値を用いたRTCタスク36による時刻修正処理が休止する。
また、図7に示すように、閏秒調整処理70は、補正量レジスタ72及び経過時間レジスタ73を介した、レジスタ設定タスク71と補間処理タスク74とを実行する。レジスタ設定タスク71は、補正量レジスタ72に補正量、すなわち、閏秒を1ミリ秒単位で調整するための値としての1000を設定する。また、レジスタ設定タスク71は、調整処理に要する時間を表す値を経過時間レジスタ73に設定する。本実施形態の場合、3600秒かけて閏秒調整するものとして、経過時間レジスタ73に3600を設定する。
補間処理タスク74は、補正量と、当該補正量の補正に要する所望の補正期間との関係に対応する直線の整数演算による補間処理を行う。本実施形態において、その補間処理のアルゴリズムはデジタル微分解析器である。詳しくは後述するが、経過時間レジスタ73の1/2量(+1800)を誤差レジスタ(不図示)に設定して、1秒毎にこの値から補正量レジスタの値1000を減算する処理し、誤差レジスタの値が零以下になったときに1ミリ秒の補正を行う。
例えば、閏秒を+1秒とすれば、OCXO割り込み34におけるOCXOタイマ33のカウント値が1000となったか否かの判定処理を、1001となったか否かの判定処理に切り替えて1ミリ秒の補正を行う。また、閏秒を−1秒とすれば、999となったか否かの判定処理に切り替えて1ミリ秒の補正を行う。以降、閏秒を+1秒として説明する。本実施形態においては、この1ミリ秒の補正処理を計時補正処理という。そして、この補正が行われる度に現在の誤差レジスタの値に経過時間レジスタ73の値(+3600)を加算し、同様の処理を繰り返すものである。この一連の繰り返し処理を補間計算処理という。
次に、閏秒調整処理70の手順について説明する。図8は、閏秒調整処理70の全体的な手順を示したフローチャートである。図9は、図8に示すステップS37の処理内容、すなわち、補間計算及び計時補正処理に関する動作手順を詳細に示したフローチャートである。
図8のフローチャートに示すように、ステップS30で、レジスタ設定タスク71は、前述した経過時間レジスタ73、補正量レジスタ72、及び図示しない補正カウンタに初期値として0を設定する。補正カウンタは補正済みの補正量をカウントする。
次にステップS31で、RTCタスク36にて読み出された内部時刻と閏秒の調整時刻とを比較し、一致していれば調整処理を開始し、補正量レジスタ72に閏秒(1000ミリ秒)を示す1000を設定する(ステップ32)。次に、ステップS33で、補正カウンタに値として0を設定する。次に、ステップS34で、閏秒調整に要する経過時間を秒単位で経過時間レジスタ73に記憶する。前述したように、本実施形態の場合、経過時間レジスタ73には3600が設定される。
この場合、3600秒経過する間に内部時刻の1000ミリ秒の進みを補正することから、一般的には、RTCタスク24の内部時刻を1000ミリ秒/3600秒の割合で遅らせる方向に補正する必要があるということが直感的に理解できる。つまり、1/3.6=0.2777…であることから、1秒で0.2777…ミリ秒を補正する必要がある。しかし、0.2777…という値から明らかなように、浮動小数点表現される値が得られるような除算を行い、そしてこの値を1秒ごとに加算(又は減算)して補正量を求める計算をしなければならない。
このため、RCU基板24には、浮動小数点ユニットを内蔵したマイクロコンピュータを採用することが必要となるが、必然的にCPU価格が高くなってしまうので、組み込み機器用の低価格なマイクロコンピュータにはこのような浮動小数点ユニットが搭載されることが少ないかまたは殆ど存在しない。したがって、このような場合は、浮動小数点ユニットを内蔵する代わりにソフトウェア処理で浮動小数点処理(実数処理)を行うことになる。実際にソフトウェアによって処理することは可能であるが、一般に、計算時間が長く、計算誤差が大きくなるといった問題が生じてしまう。
そこで、本実施形態の閏秒調整処理70では、外部時刻と内部時刻との誤差を整数処理によって補間処理することが可能なアルゴリズムを用いて前述した問題点を解決することを特徴としている。
このアルゴリズムは、ラスタグラフィックスの処理で一般的に使用されている線形補間アルゴリズムであり、デジタル微分解析器とも呼ばれている手法である。具体的には、コンピュータ画面上の直線や円弧の座標を高速に計算するために用いて、真の直線から最短距離にある画素を加算のみの計算で求めることができることから処理速度を高速にすることができる。図10は、点(1,1)から点(8,4)を結ぶ線分を表現する際に、前記アルゴリズムによって選択される画素を網掛けで示した図である。
前記線形補間アルゴリズムを閏秒調整処理70に適用した場合、閏秒に関する誤差単位量として例えば1ミリ秒のような整数値を設定し、この誤差単位量分の補正を経過時間の何秒のときに実行していくかを決定することを意味する。これを図10を用いて説明すれば、例えば、8秒(横軸に相当)で計4ミリ秒(縦軸に相当)の誤差を補正しなければならないとすれば、経過時間1秒目で1ミリ秒補正して2秒目で補正せず、3秒目で再び1ミリ秒補正して4秒目で補正しないとすると4秒間での補正の累積が2ミリ秒になる。5秒目以降も同じように補正すると、結局、8秒間で補正の累積が4ミリ秒になる。このように、目標の誤差補正量4ミリ秒が経過時間8秒内で平均して施されるように、計算処理上、整数の加算のみを用いながら、誤差単位量分の補正量を段階的に行い、線形補間することができるものである。なお、実質的な誤差と内部時刻との関係は直線で表されるものに限らず曲線で表されるものであってもよい。このような処理をステップS36〜ステップS37で実行する。
ステップS36の前に、ステップS35では、後述するステップS39で用いる誤差レジスタの初期値を設定するため、シフト演算によって経過時間レジスタ73に設定されている値(3600)の1/2の値(1800)をレジスタ設定タスク71に設定する。そして、OCXO35からの発振信号をカウントする図示しないタイマにより1秒のカウントが完了したか否かを判断し(ステップS36)、つまり1秒毎にステップS39の補間計算及び計時補正処理を行う。ステップS36において用いるタイマは、OCXOタイマ33とは別に処理されるもので時刻進度調整されず、OCXO35からの発振信号に基づき1ミリ秒毎に1つカウント値を加算する。このタイマのカウント値が1000となったときにステップS36では1秒のカウントが完了したとしている。また、このタイマはタイマ33のリスタートとともにリスタートされる。
ステップS37の処理の詳細な手順を示したのが、図9に示すフローチャートである。
図9に示すように、まず、ステップS41で、レジスタ設定タスク71は、現在の誤差レジスタの値から補正量レジスタ72に設定されている値である1000を減算する。具体的には、ステップS35で誤差レジスタには初期値として1800が設定されているので、誤差レジスタ=1800−1000=800となる。
次に、誤差レジスタの値が0以下であるかを判断し(ステップS42)、前記判断の結果、0以下の場合はステップS43に進み、これに対して誤差レジスタの値が0より大きい場合は図8に示すステップS37を終了してステップS38へ進む。ステップS43では、減算された誤差レジスタの値に経過時間レジスタ73の値(3600)を加算する。
つまり、ステップS41〜43での処理は、1秒毎に誤差レジスタから補正量レジスタの値(1000)を減算する演算を繰り返し行って、誤差レジスタの値が0以下になった時点が1ミリ秒分の補正するタイミングとして決定する。そして、次の補正タイミングを決定するため、現在の誤差レジスタの値に経過時間レジスタ値(3600)を加算して、同様な減算処理を行えるようにしている。
そして、ステップS44で、決定した補正タイミングのときにのみ、OCXOタイマ33のカウント値を制御し、例えば、RTCタスク36の内部時刻の更新タイミングを1ミリ遅らせる処理を行う。すなわち、OCXO割り込み34によるOCXOタイマ33のカウント値が1000となったか否かの判定処理を、1001となったか否かの判定処理に切り替えて1ミリ秒の補正を行う。これとともに、レジスタ設定タスク71により補正回数を設定する補正カウンタの値を1増加している。
この結果、図11に示すように、経過時間3600秒の間で、1000回の補正タイミング(例えば、閏秒調整処理の開始から2秒、6秒、9秒、13秒・・・)のときに1ミリ秒の補正を行うこととなり、結局、RTC37の内部時刻を1時間あたり1秒遅らせることが可能となる。すなわち、図11は、閏秒挿入時における内部時刻がa秒としたとき、(a+0〜a+3600)秒であらわされる経過時間に対する閏秒(誤差時間)との関係を破線の直線で示したものである。この直線に基づく補間処理によって閏秒調整正が行われるようにしている。
ステップS38では、補正カウンタの値が1000となったか否か、すなわち、閏秒調整が終了したか否か判断する。閏秒調整が終了していなければ、ステップS36に戻り、ステップS36〜ステップS37に示すように、内部時刻の進度調整をすべきかを1秒毎に判断して必要に応じて1ミリ秒の補正を施すようにしている。この間、1PPS信号としては、時刻進度調整されたOCXOタイマ33からの信号が用いられる。これに基づいてRTCタスク36は時刻データを読み出し、また、リアルタイムクロック37のアジャスト処理を行う。補正カウンタの値が1000となって閏秒調整が終了すると閏秒調整処理70を終了し、前述した通常動作に戻る。
なお、本実施形態では、経過時間レジスタ73の1/2量(+1800)を誤差レジスタに設定して、ステップS41で1秒毎に誤差レジスタの値から補正量レジスタの値を減算する処理を説明したが、例えば、前記値(+1800)の符号を反転した−1800を使用してもよい。この場合、ステップS41では1秒ごとの減算処理ではなく加算処理を行うこととなり、ステップS42で誤差レジスタの値が0以上か否かを判断するように変更すればよい。そして、ステップS42で誤差レジスタの値が0以上になったときは、ステップS43で経過時間レジスタ73の値(3600)を減算するように処理する。つまり、誤差レジスタ=誤差レジスタ−経過時間レジスタにする。以上の処理を繰り返すことで前述した処理結果と同様の結果を得ることが出来る。
本実施形態の閏秒調整処理70では、高い時刻精度のOCXO35からの発振信号をカウントするOCXOタイマ33のカウント値を制御して閏秒のずれ、すなわち、補正量を吸収する時刻進度の調整処理を行うので、高精度の時刻進度調整が可能となる。
さらに、本実施形態の閏秒調整処理70は、補正量と、当該補正量の補正に要する所望の補正期間との関係に対応する直線の整数演算による補間処理、例えば、デジタル微分解析器と称されるアルゴリズムによる補間処理により時刻進度の調整を行うように構成しているので、所望の補正期間の調整処理を実数演算なしに行うことが可能となり、これにより低コストかつ高精度の閏秒調整処理を実現できる。
また、本発明の目的は、本実施の形態の時刻データ取得装置の機能を実現するソフトウェアのプログラムコードを記憶した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読みだして実行することによっても、達成されることは言うまでもない。
さらに、コンピュータが読みだしたプログラムコードを実行することにより、本実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS等が実際の処理の一部又は全部を行い、その処理によって本実施の形態の機能が実現される場合も含まれることは言うまでもない。
本発明の時刻データ取得装置を適用したサーバを用いたシステムの一実施形態を示す構成図である。 本発明の一実施形態であるサーバの構成を示すハード構成図である。 RCU基板に備わるマイクロコンピュータの処理手順を示すフローチャートである。 本発明の一実施形態であるサーバにおけるGPS割り込みの処理手順を示すフローチャートである。 本発明の一実施形態であるサーバにおけるOCXO割り込みの処理手順を示すフローチャートである。 本発明の一実施形態であるサーバにおけるRTCタスクの処理手順を示すフローチャートである。 本発明の一実施形態であるサーバによる閏秒調整を行う処理ブロック構成図である。 本発明の一実施形態であるサーバによる閏秒調整の全体的な処理手順を示すフローチャートである。 本発明の一実施形態であるサーバによる閏秒調整処理のうち、特に補間計算及び計時調整処理に関する処理手順を示すフローチャートである。 本発明の一実施形態であるサーバによる閏秒調整処理で行う補間計算のアルゴリズムを説明するための図である。 本発明の一実施形態であるサーバによる閏秒調整処理を実行したときの補正タイミング及び補正時間の累計の推移を模式的に示す図である。
符号の説明
1 サーバ
2 イーサネット
5 イーサネット
6 クライアント
7 GPSアンテナ
22 GPS受信機
23a〜23d GPS衛星
24 RCU基板
25 サーバ基板
31 GPSタスク
32 GPS割り込み
33 OCXOタイマ
34 OCXO割り込み
35 OCXO
36 RTCタスク
37 RTC
38 RTC時刻データ
39 送信タスク
40 メインタスク

Claims (11)

  1. 測位衛星より受信した信号に含まれる時刻データ、同期信号、及び受信状態の良否を示すデータを抽出する受信機と、
    第1の発振器からの発振出力に基づいて内部時刻データを更新して計時を行う計時装置と、
    前記第1の発振器よりも高精度な第2の発振器からの発振出力に基づくカウント動作により前記同期信号と同期する内部同期信号を発生させるタイマと、
    前記受信機により抽出された受信状態データが良好である場合は、前記受信機により抽出した同期信号を選択して出力し、前記受信機により抽出された受信状態データが良好でない場合は、前記タイマにより発生させた内部同期信号を選択して出力する同期信号選択処理手段と、
    前記受信機により抽出された時刻データに基づいて前記計時装置の内部時刻データを周期的に修正する際に、前記受信機により抽出された受信状態データが良好である場合は、前記同期信号選択処理手段により選択された同期信号に同期した前記抽出された時刻データを前記内部時刻データに設定し、前記受信機により抽出された受信状態データが良好でない場合は、前記同期信号選択処理手段により選択された内部同期信号に更新タイミングを同期させて前記内部時刻データの更新処理を行う内部時刻データ更新手段とを備えることを特徴とする時刻データ取得装置。
  2. 前記内部同期信号を発生させるタイマは、前記受信機により抽出された受信状態データが良好である場合は、前記測位衛星より取得した同期信号によってリセット状態になり、前記受信機により抽出された受信状態データが良好でない場合は、所定のカウント値でリセット後、前記第2の発振器からの発振出力に基づいてカウント動作を繰り返すことを特徴とする請求項1に記載の時刻データ取得装置。
  3. 前記内部時刻データ更新手段は、前記受信機により抽出された受信状態データが良好である場合に行う動作を中止して、前記計時装置の内部時刻データの補正量と、当該補正量の補正に要する所望の補正期間とを関係付ける補間処理を行う際に、所定の整数演算に基づいて前記カウント値を制御することにより、前記内部時刻データとして計時される時刻の進度を補正することを特徴とする請求項2に記載の時刻データ取得装置。
  4. 前記内部時刻データの進度を補正する補間処理のアルゴリズムは、デジタル微分解析器で実行される処理手順であることを特徴とする請求項3に記載の時刻データ取得装置。
  5. 前記計時装置の内部時刻データに関する補正量は、閏秒であることを特徴とする請求項3又は4に記載の時刻データ取得装置。
  6. 測位衛星より受信した信号に含まれる時刻データ、同期信号、及び受信状態の良否を示すデータを抽出する受信機と、第1の発振器からの発振出力に基づいて内部時刻データを更新して計時を行う計時装置と、前記第1の発振器よりも高精度な第2の発振器とに接続されたコンピュータ上で動作するコンピュータプログラムであって、
    前記第2の発信機からの発振出力に基づくカウント動作により前記同期信号と同期する内部同期信号を発生させるタイマ処理と、
    前記受信機により抽出された受信状態データが良好である場合は、前記受信機により抽出した同期信号を選択して出力し、前記受信機により抽出された受信状態データが良好でない場合は、前記タイマにより発生させた内部同期信号を選択して出力する同期信号選択処理と、
    前記受信機により抽出された時刻データに基づいて前記計時装置の内部時刻データを周期的に修正する際に、前記受信機により抽出された受信状態データが良好である場合は、前記同期信号選択処理で選択された同期信号に同期した前記抽出された時刻データを前記内部時刻データに設定し、前記受信機により抽出された受信状態データが良好でない場合は、前記同期信号選択処理で選択された内部同期信号に更新タイミングを同期させて前記内部時刻データの更新処理を行う内部時刻データ更新処理とを実行させるためのコンピュータプログラム。
  7. 前記内部同期信号を発生させるタイマ処理は、前記受信機により抽出された受信状態データが良好である場合は、前記測位衛星より取得した同期信号によってリセット状態になり、前記受信機により抽出された受信状態データが良好でない場合は、所定のカウント値でリセット後、前記第2の発振器からの発振出力に基づいてカウント動作を繰り返すことを特徴とする請求項6に記載のコンピュータプログラム。
  8. 前記内部時刻データ更新処理は、前記受信機により抽出された受信状態データが良好である場合に行う動作を中止して、前記計時装置の内部時刻データの補正量と、当該補正量の補正に要する所望の補正期間とを関係付ける補間処理を行う際に、所定の整数演算に基づいて前記カウント値を制御することにより、前記内部時刻データとして計時される時刻の進度を補正することを特徴とする請求項7に記載のコンピュータプログラム。
  9. 前記内部時刻データの進度を補正する補間処理のアルゴリズムは、デジタル微分解析器で実行される処理手順であることを特徴とする請求項8に記載のコンピュータプログラム。
  10. 前記計時装置の内部時刻データに関する補正量は、閏秒であることを特徴とする請求項8又は9に記載のコンピュータプログラム。
  11. 請求項1乃至5の何れか一つに記載の時刻データ取得装置、又は請求項6乃至10の何れか一つに記載のコンピュータプログラムを使用して、前記測位衛星からの受信信号から抽出した時刻データと、前記測位衛星からの受信信号から抽出した同期信号又は前記タイマで発生させた内部同期信号とに基づいて配信用の時刻データを生成し、通信回線を介して前記生成した時刻データを配信することを特徴とするサーバ。
JP2004191657A 2004-06-29 2004-06-29 時刻データ取得装置、コンピュータプログラム及びサーバ Expired - Fee Related JP4468089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191657A JP4468089B2 (ja) 2004-06-29 2004-06-29 時刻データ取得装置、コンピュータプログラム及びサーバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191657A JP4468089B2 (ja) 2004-06-29 2004-06-29 時刻データ取得装置、コンピュータプログラム及びサーバ

Publications (2)

Publication Number Publication Date
JP2006010638A true JP2006010638A (ja) 2006-01-12
JP4468089B2 JP4468089B2 (ja) 2010-05-26

Family

ID=35778045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191657A Expired - Fee Related JP4468089B2 (ja) 2004-06-29 2004-06-29 時刻データ取得装置、コンピュータプログラム及びサーバ

Country Status (1)

Country Link
JP (1) JP4468089B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175633A (ja) * 2007-01-17 2008-07-31 Seiko Epson Corp 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009168620A (ja) * 2008-01-16 2009-07-30 Seiko Epson Corp 電子時計および電子時計の制御方法
JP2009199139A (ja) * 2008-02-19 2009-09-03 Seiko Precision Inc パケット監視装置
JP2010033402A (ja) * 2008-07-30 2010-02-12 Asyst Technologies Japan Inc 搬送システムの時刻管理システム及び方法、並びにコンピュータプログラム
JP2010249594A (ja) * 2009-04-14 2010-11-04 Hitachi Ltd サーバ装置、日時生成装置および日時生成システム
JP2013505653A (ja) * 2009-12-10 2013-02-14 ゼットティーイー コーポレーション ローカル・エリア・ネットワークにおける時刻同期の実現方法及びシステム
CN103941268A (zh) * 2013-01-18 2014-07-23 精工爱普生株式会社 定时信号生成装置、定时信号生成方法
CN104931984A (zh) * 2014-03-18 2015-09-23 精工爱普生株式会社 位置信息生成装置、定时信号生成装置、电子设备及移动体
RU2615326C2 (ru) * 2015-02-13 2017-04-04 Леонид Иванович Ананьев Способ синхронизации времени в процессорах и устройствах вычислительной машины
CN107229218A (zh) * 2017-06-20 2017-10-03 中通客车控股股份有限公司 一种车载tbox系统的多时钟源校时装置及方法
KR20170124213A (ko) * 2016-05-02 2017-11-10 전자부품연구원 Gps를 이용하는 장치의 utc 시간 동기 방법
KR20180054103A (ko) * 2016-11-15 2018-05-24 전자부품연구원 비정상 동작 상황을 개선한 gps를 이용하는 장치의 utc 시간 동기 방법
JP2018159644A (ja) * 2017-03-23 2018-10-11 カシオ計算機株式会社 時計装置、時刻補正方法及びプログラム
CN109074467A (zh) * 2016-04-20 2018-12-21 格马尔托股份有限公司 用于管理便携式防篡改设备中的实时时钟的方法
US10222482B2 (en) 2013-01-18 2019-03-05 Seiko Epson Corporation Position information generation device, timing signal generation device, electronic apparatus, and moving object
CN109752738A (zh) * 2018-12-26 2019-05-14 广州中海达卫星导航技术股份有限公司 基于标准时标的imu与gnss数据同步方法
JP2020143945A (ja) * 2019-03-05 2020-09-10 日本電気株式会社 時刻更新システム、時刻更新方法及びプログラム
JP2020184103A (ja) * 2019-04-26 2020-11-12 コイト電工株式会社 信号制御装置
JP2021173627A (ja) * 2020-04-24 2021-11-01 Necプラットフォームズ株式会社 サーバ、サーバシステム、時刻同期方法及びプログラム
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572698B (zh) * 2016-01-18 2018-02-23 郑州威科姆科技股份有限公司 一种基于形态匹配的卫星接收机授时保持方法

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953416B2 (en) 2002-06-19 2015-02-10 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
JP2008175633A (ja) * 2007-01-17 2008-07-31 Seiko Epson Corp 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
US7983116B2 (en) 2008-01-16 2011-07-19 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
JP4600480B2 (ja) * 2008-01-16 2010-12-15 セイコーエプソン株式会社 電子時計
US8223593B2 (en) 2008-01-16 2012-07-17 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
US8351301B2 (en) 2008-01-16 2013-01-08 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
JP2009168620A (ja) * 2008-01-16 2009-07-30 Seiko Epson Corp 電子時計および電子時計の制御方法
US8531921B2 (en) 2008-01-16 2013-09-10 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
US9588499B2 (en) 2008-01-16 2017-03-07 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
US9213319B2 (en) 2008-01-16 2015-12-15 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
US9158286B2 (en) 2008-01-16 2015-10-13 Seiko Epson Corporation Electronic timepiece and control method for an electronic timepiece
JP2009199139A (ja) * 2008-02-19 2009-09-03 Seiko Precision Inc パケット監視装置
JP2010033402A (ja) * 2008-07-30 2010-02-12 Asyst Technologies Japan Inc 搬送システムの時刻管理システム及び方法、並びにコンピュータプログラム
JP2010249594A (ja) * 2009-04-14 2010-11-04 Hitachi Ltd サーバ装置、日時生成装置および日時生成システム
JP2013505653A (ja) * 2009-12-10 2013-02-14 ゼットティーイー コーポレーション ローカル・エリア・ネットワークにおける時刻同期の実現方法及びシステム
US8705578B2 (en) 2009-12-10 2014-04-22 Zte Corporation Method and system for implementing time synchronization in local area network (LAN)
JP2014137318A (ja) * 2013-01-18 2014-07-28 Seiko Epson Corp タイミング信号生成装置、電子機器、移動体、タイミング信号生成方法及び衛星信号受信機の制御方法
CN103941268A (zh) * 2013-01-18 2014-07-23 精工爱普生株式会社 定时信号生成装置、定时信号生成方法
US10222482B2 (en) 2013-01-18 2019-03-05 Seiko Epson Corporation Position information generation device, timing signal generation device, electronic apparatus, and moving object
US9952562B2 (en) 2013-01-18 2018-04-24 Seiko Epson Corporation Timing signal generating device, electronic apparatus, moving object, method of generating timing signals, and method of controlling satellite signal receiver
CN104931984A (zh) * 2014-03-18 2015-09-23 精工爱普生株式会社 位置信息生成装置、定时信号生成装置、电子设备及移动体
RU2615326C2 (ru) * 2015-02-13 2017-04-04 Леонид Иванович Ананьев Способ синхронизации времени в процессорах и устройствах вычислительной машины
CN109074467A (zh) * 2016-04-20 2018-12-21 格马尔托股份有限公司 用于管理便携式防篡改设备中的实时时钟的方法
KR20170124213A (ko) * 2016-05-02 2017-11-10 전자부품연구원 Gps를 이용하는 장치의 utc 시간 동기 방법
KR101965932B1 (ko) * 2016-05-02 2019-04-03 전자부품연구원 Gps를 이용하는 장치의 utc 시간 동기 방법
KR20180054103A (ko) * 2016-11-15 2018-05-24 전자부품연구원 비정상 동작 상황을 개선한 gps를 이용하는 장치의 utc 시간 동기 방법
KR101967027B1 (ko) * 2016-11-15 2019-04-09 전자부품연구원 비정상 동작 상황을 개선한 gps를 이용하는 장치의 utc 시간 동기 방법
JP2018159644A (ja) * 2017-03-23 2018-10-11 カシオ計算機株式会社 時計装置、時刻補正方法及びプログラム
CN107229218A (zh) * 2017-06-20 2017-10-03 中通客车控股股份有限公司 一种车载tbox系统的多时钟源校时装置及方法
CN109752738A (zh) * 2018-12-26 2019-05-14 广州中海达卫星导航技术股份有限公司 基于标准时标的imu与gnss数据同步方法
JP2020143945A (ja) * 2019-03-05 2020-09-10 日本電気株式会社 時刻更新システム、時刻更新方法及びプログラム
JP2020184103A (ja) * 2019-04-26 2020-11-12 コイト電工株式会社 信号制御装置
JP7304733B2 (ja) 2019-04-26 2023-07-07 コイト電工株式会社 信号制御装置
JP2021173627A (ja) * 2020-04-24 2021-11-01 Necプラットフォームズ株式会社 サーバ、サーバシステム、時刻同期方法及びプログラム
JP7120657B2 (ja) 2020-04-24 2022-08-17 Necプラットフォームズ株式会社 サーバ、サーバシステム、時刻同期方法及びプログラム
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station
US11683771B2 (en) * 2020-11-30 2023-06-20 Viettel Group Method and apparatus for data frame synchronization of 5G base station

Also Published As

Publication number Publication date
JP4468089B2 (ja) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4468089B2 (ja) 時刻データ取得装置、コンピュータプログラム及びサーバ
US20090129208A1 (en) Apparatus, system and method for keeping time
JP4356946B2 (ja) Pll装置
KR20010031512A (ko) 시각 출력 장치 및 시각 교정 방법
JPH08240671A (ja) 電子時計の正確度を保全し及び調節する方法及び装置
JP6823700B1 (ja) クロック調整装置、プログラム、及びクロック調整方法
JP2000199792A (ja) 時計装置及び時刻修正方法
JPH09247135A (ja) クロック再生装置およびクロック再生方法
CN108873669B (zh) 一种计算机同步时钟的utc时间计算方法
JP6276700B2 (ja) 基準信号発生装置及び基準信号発生方法
CN115150019A (zh) 一种多传感器时间同步方法、装置、设备及介质
JP4515080B2 (ja) 時刻修正装置及び時刻修正方法
JP6981351B2 (ja) 時刻同期システム
JP6196765B2 (ja) 通信装置、時刻制御方法、及びプログラム
KR102188937B1 (ko) 위성 시간 보정 장치 및 방법
JP2006047101A (ja) 時計精度修正装置
JP4666393B2 (ja) タイミングクロック生成装置、データ処理装置及びタイミングクロック生成方法
JP2005140595A (ja) 電波時計及びその時刻修正方法
US11144268B2 (en) Timing synchronization in a display-server computing system and method
JP2019129498A (ja) 時刻配信装置、および時刻調整方法
KR200212557Y1 (ko) 피씨 표준시간 보정장치
JP5572216B2 (ja) 基準信号発生装置、基準信号発生方法、および情報通信システム
CN116155429A (zh) 一种基于多级外部中断的卫星平台微秒级时间对准方法
Shmaliy et al. Efficient predictive steering of local clocks in GPS-based timekeeping
CN117914312A (zh) 一种信号补偿方法、装置、设备及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4468089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees