JP2005504298A - 降水/ひょうセンサー及び降水量測定のための方法 - Google Patents

降水/ひょうセンサー及び降水量測定のための方法 Download PDF

Info

Publication number
JP2005504298A
JP2005504298A JP2003531215A JP2003531215A JP2005504298A JP 2005504298 A JP2005504298 A JP 2005504298A JP 2003531215 A JP2003531215 A JP 2003531215A JP 2003531215 A JP2003531215 A JP 2003531215A JP 2005504298 A JP2005504298 A JP 2005504298A
Authority
JP
Japan
Prior art keywords
precipitation
detector
atmospheric
wind
hydrology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003531215A
Other languages
English (en)
Other versions
JP4509557B2 (ja
Inventor
ルゥッカラ,マウリ
サルミ,アッテ
イコネン,ヨウニ
レンクヴィスト,ヤン
ツゥルティアイネン,ヘイッキ
Original Assignee
ヴァイサラ オーワイジェー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴァイサラ オーワイジェー filed Critical ヴァイサラ オーワイジェー
Publication of JP2005504298A publication Critical patent/JP2005504298A/ja
Application granted granted Critical
Publication of JP4509557B2 publication Critical patent/JP4509557B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

従来技術の問題点を解決した降水/ひょうセンサー及び降水量測定のための方法を提供する。本発明は降水検知器(1)と降水パラメータ測定方法とに関する。検知器(1)は枠(5)と、枠(5)に取り付けられかつ大気水象を受け止めるようにされた表面(2)と、大気水象の衝突インパルスを電気信号に変換する検知手段(3)とを備える。本発明によれば、大気水象の衝突を受け止める表面(2)は凸状をなし、剛性でかつ検知器の枠(5)に剛結合され、検知手段(3)は大気水象の衝突を受け止める表面(2)に永久結合される。

Description

【技術分野】
【0001】
本発明は請求項1の前文に記載の降水/ひょう検知器に関する。
本発明はまた、降水量測定のための方法にも関する。
【背景技術】
【0002】
本技術分野で従来から用いられる雨検知器は2つのグループに分類できる。即ち、
1)雨水を集積槽に集め、集められた雨水の量の目方を量ったり、集められた雨水の高さを検知したりしてそこに蓄積された水の量を測定する集積型雨計測器。
2)少容量の槽を下に配置した煙突状集積器を備える降水量型検知器。槽は、所定の水量が蓄積されると、自動的にそれ自身を空にするようにされている(最も単純な実施態様は傾斜型バケツ機構である)。検知器はバケツがそれ自身を空にする度に計数パルスを伝え、1つのパルスは所定の雨量、例えば0.1mmを表示するように目盛りづけされる。
【0003】
これらのタイプの降水量雨検知器は以下の問題により阻害されている。即ち、
集積槽を空にすることは追加の人手作業(手動での槽空けの)や、測定サイクルのデッドタイム(自動槽空けの)を生じさせる。
【0004】
集積槽や煙突はまたほこりを捕らえ易く、槽や煙突の定期的な清掃が必要となる。
集積槽の縁部への雨水の付着及び/または集積槽からの雨水の蒸発は、重大な測定誤差を引き起こす。
雨検知器の動く部分は汚れや、例えば検知器構造に入り込んだ昆虫により動かなくなるおそれがある。
【0005】
異なる原理で作動するが、ディストロメーター(distrometer)と呼ばれる1つの器材も降水量を測定するのに使用できる。ディストロメーターは、降水における小滴のサイズ分布を測定できる装置である。この種の機械式ディストロメーター(いわゆるヨス−ヴァルトフォーゲル(Joss-Waldvogel)降雨ディストロメーター)は装置の枠に弾性支持された円錐形の検知器板を含み、そこに落ちる小滴が板をその平衡状態から反らすことができる。検知板の動きはセンサーのコイルにより誘導的に測定される。雨滴の衝突によりセンサーのコイルに発生した電圧パルスが記録され、パルスの大きさと、経験的な基準化係数とを基礎にして、個々の小滴の量とサイズ分布とが計算される。雨滴分布関数はさらに分析され、降水の強さと総蓄積量とを計算することができる。ディストロメーターはその高価で複雑な構造のため、オールラウンドな雨検知器としては一般に使用されず、むしろ気象学の研究においてのみ雨滴のサイズ分布を測定するのに用いられる。この装置の複雑な構造は主に、円錐形検知器板をディストロメーター枠へ弾性的に取り付けたことと、この、力応答装置の付いたぎこちない機械構造で決まる不便な測定方法とによる。
【0006】
【非特許文献1】
インターネットページ上の文書http://www.sensit.com/rain.htmは、雨滴の運動エネルギーを測定する装置を記述している。この測定装置は2つのパルス出力を持ち、これらの出力は、
1)雨滴数(検知されたエネルギー信号が所定の限度値を超えると出力パルスが送出される)と、
2)装置の圧電センサーの出力信号を組み入れて計算される雨滴の運動エネルギー、とを表示する。
これらの変数のいずれも雨滴の質量と速度の両方に依存するから、降雨量指示器としてそのまま用いるには適当でない。
さらに、上記装置は別々の構成要素を単独で用いて実行されるから、この装置は計算情報を編入しない。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、前述の従来技術の問題を克服できる新規なタイプの雨検知器を提供することにある。
【課題を解決するための手段】
【0008】
本発明は降雨とその種類とを、装置のケースに固着された加速または力のセンサーにより検知するというコンセプトに基づいている。本発明による方法は、力センサーから得られた出力信号を、各雨滴やひょう(あられ)の粒子により個々に発生した出力信号パルスの形状に関して分析することを基本とし、それぞれ、衝突する雨滴の量を決定したり、時間単位当りの雨滴の数を数えたり、また雨滴をひょうに類別したりすることができる。雨の総量と強さはその際、個々の雨滴や時間単位当りの雨滴の衝突回数についての測定データから決定される。本明細書で開示する計算アルゴリズムは、雨滴計数データだけでも、雨滴サイズのパラメータ値を表すデータだけでも、あるいはその両方を用いても実行できる。
【0009】
さらに、雨滴サイズの分布も、各雨滴について個々に記録された測定データから決定できる。
本発明によれば、雨の、量と強さとにおける風関連誤差は、別の風誤差修正アルゴリズムにより修正できる。
【0010】
本発明はさらに、雨滴の総量及び/または単独の雨滴を表す信号において1以上の雨滴のサイズによる1以上の特性パラメータは、信号パラメータをコンパイルするために用いられ、この信号パラメータが検知された雨滴の総容量に対応するから、信号パラメータの値を総計することにより検知された降雨の総量と強さとが計算できることを特徴とする。
【0011】
本発明の好ましい実施形態によれば、パラメータの計算は検知器の構造と調和し、その出力信号はそのまま降水の総量及び/または強さに対応する。
より具体的には、本発明による降水検知器は請求項1の特徴記載部分に述べた特徴により特徴づけられる。
【0012】
さらに、本発明による方法は請求項11の特徴記載部分に述べた特徴により特徴づけられる。
【発明の効果】
【0013】
本発明は有意義な利益を提供する。
先ず、本発明による降水検知器は動く部品がない。この検知器はその基本変形において、空にしたり清掃したりすることを必要とする集積槽や煙突、詰まる部品、集められた雨水の付着や蒸発のための誤差の恐れ、とを持っていない。機械式ディストロメーターとして同じ原理で動作するが、この検知器は非常に簡単な費用効率の高い構造を特徴とする。
【0014】
第2に、本発明による検知器は専ら単独のセンサー装置を用いて、総降雨量のみならず降雨の強さをも検知し、かつ降水中のひょうを同定する。
本発明の好ましい実施形態は風による測定誤差の補償を容易にする。
以下で、添付図面に示した例示的実施形態により本発明を検証する。
【発明を実施するための最良の形態】
【0015】
上述したように、本発明は降水の総量、大気水象サイズの分布、及び降水の強さの測定に関するものである。次に、これらの変数の定義を以下に与える。
【0016】
降雨の総量(累積降雨とも呼ぶ)
平坦な底の槽での降雨柱の立ての高さ。標準単位はmm。
【0017】
降雨強さ
単位時間当りの降雨の総量。標準単位はmm/h。
【0018】
雨滴サイズの分布
単位容積の空気に浮遊する一定の小滴のサイズの割合による雨滴の数。
【0019】
これに応じて、降雨総量の測定の目標は、水平な単位面積で検知される雨滴の全容量を決定することである。
雨滴の運動エネルギーについての従来の測定技術は、個々の雨滴の運動エネルギーE=1/2mvを集計することに基礎を置いている。
【0020】
図1について説明する。図示した降水検知器1は、雨滴及び/またはひょうなどの大気水象が衝突する検知器の表面2と、検知器表面2に衝突する雨滴のエネルギーパルスを検知する働きをする検知器3とを備える。検知器3は測定電子回路と、降雨強さ(mm/h)と累積降雨(mm)とを組み合せて計算できる計算アルゴリズムとで補完される。
【0021】
降ってくる雨滴の衝突受け止め面として作用する検知器表面2は剛性で、検知器ケース5に取り付けられる。取付けは全体的に固着しても、オーリングなどの弾性の取付け用アダプター部品により行ってもよい。一般的には、検知器3は検知器表面2に固着される。計算は、表示された雨滴パルスの数の記録情報、及び/または、パルスの幅やパルスの半値幅エネルギー(FWHM)値、あるいは両方の組合せなど、衝突する雨滴のサイズによるものとして知られる検知器の出力パルスのその他幾つかのパラメータを利用する。
【0022】
検知器表面2は平坦か、板状か、凸状(ドーム状)かにされ、そこへの水の蓄積が不可能になるように整形される。検知器3の取付けを容易にするため、検知器表面2の取付け領域を平坦に整形してもよい。設計の原則として、検知器表面の領域が大きいほど、そこに衝突する雨滴の数は多くなるから、累積降雨の計算値の統計誤差は小さくなる。一方、検知器の表面領域が大きいと、同時に起こる雨滴衝突の数が増え、これは測定信号の解釈において問題となる。実際、検知器の表面領域についての折衷案は20乃至150cmが有用とされる。検知器はさらに、複数のユニットから構成し、各ユニットが個々の検知器組立体を装備してもよい。
【0023】
検知器3は、検知器表面に衝突する雨滴により引き起こされる変形を感知する。有用な構造では、検知器3は、例えば、
検知器表面に取り付けた力または加速センサーや、
圧電性PVDFポリマーフィルムや圧電性セラミック材などの、検知器表面を覆う圧力感知フィルム
を用いて実施してもよい。
【0024】
理想的な場合においては、検知器表面と検知器との系結合の応答は、出力パルスの幅と波形とを雨滴衝突点の位置とは無関係とし、それにより検知器表面が均質となるような応答である。これは装置の機能にとって決定的ではない。なぜなら非画一的な応答は測定信号にランダムエラーを引き起こすだけであって、これは十分長い集積時間を使って排除できるからである。
【0025】
個々のパルスとして記録された信号情報に基く累積降雨とその強さの計算は、複数の異なる方法で実行できる。最も簡単な技術は雨滴を計数するだけだが、検知器の応答の正確さと信頼性は、検知器の出力パルスの波形により伝えられるその他の情報(例えば、パルスの幅や半分の最大パルス幅)を追加的に利用することで改善できる。この時、計算はディジタル信号処理技術とマイクロプロセッサとにより実行するのが好都合である。
【0026】
図2a及び図2bに、図1の検知器1の別の実施形態が示してある。検知器1は円筒形のケースの中に組み立てられ、そのカバー2は検知器表面として作用する幾分凸状の金属円盤であって、これは例えば1mm厚さのステンレス薄鋼板から作られる。カバー2はその縁部が検知器ケース5に中心的に剛結合され、さらにその下側は糊付けやはんだ付けにより圧電性セラミック要素3に取り付けてある。圧電要素は、両側が金属処理された圧電性セラミック材で作られた円盤であって、円盤状要素の両側にその2つの接触電極領域が位置している。この応用例では、圧電要素3は大気水象の衝突を検知する力センサーとして作用する。圧電要素3の電極は、検知器ケースの内部に位置する電子増幅器4に連結される。増幅された測定信号は、検知器ケースの底部8を通過するケーブルを介して計算手段に受け取られる。また、全体の測定用と計算用の電子回路は装置のケースに挿入してもよい。これにより、検出器の出力は、累積降雨及び/または降雨の強さを表示するディジタルやアナログの信号にすることができる。
【0027】
検知器表面2に衝突すると、雨滴はそこに力を加える。力はさらに圧電要素3に伝送されてから、圧電要素を介して発生する電圧パルスとして識別される。検知器カバー2の材料と寸法は、雨滴と衝突することにより誘発される共鳴振動が急速に減衰するような選択をされる。この構成では、出力パルスの波形は図3に示したようになる。
【0028】
圧電要素3により送られた電圧パルスは、雨滴サイズに関係するこれらの選ばれたパラメータに関して濾波、増幅、分析された後、最終的な計算を行うプロセッサ装置のメモリーに格納される。
【0029】
集められた測定データから降雨強さと累積降雨とを計算するために、多くの異なる技術を用いることができる。
次に、2つの実行可能な方法を述べる。
【実施例1】
【0030】
計算は、一般的に1―10分の範囲として選択された一定の測定サイクル時間の増分を使用して実行される。測定サイクル中に検知された出力パルスは、パラメータX(これはパルスの半値幅エネルギー値(W1/2)、ピークツゥピーク電圧(Vpp)、パルスの全数や出力パルスを特徴づけるその他任意のパラメータ、あるいは選択されたパラメータの組合せ、を含んでもよい)に対して分析され、分析された値はプロセッサのメモリーに格納される。各測定サイクルの終わりで、サイクルを通して検知された累積降雨の増分値ΔPの推定値は、方程式:
ΔP=f(m,x11,....,x1n,x21,...,x2n,...,xm1,...,xmn) (1)
を使って計算できる。
ここで、
m=測定サイクル中に検知された雨滴の数
n=計算に使用された、パルス特徴づけパラメータの数
ij=雨滴iに対して検知された出力パルスにおけるパルスパラメータjの値。
【0031】
jの値は、例えば次のように選択できる:1=半分の最大パルス幅(W1/2)、2=ピークツゥピーク電圧(Vpp)、3=パルスの数、4=出力パルスのその他のパラメータ特性、5=上記の組合せ。パルスの半分の最大パルス幅値W1/2は、正のパルス波形の半値幅エネルギー(FWHM)値(=1/2max)と言う。
【0032】
関数fは測定されたパルスパラメータの、降雨変数への実験的に決定された依存関係を表す。
累積降雨Pは、順次記録された測定サイクルの降雨増分値を集計して得られる。測定サイクル中の降雨の平均の強さRは、方程式:
R=ΔP/t (2)
から計算できる。
この方法は特に、降雨の量と強さとの同時測定に有用である。
【実施例2】
【0033】
この方法では、計算はリアルタイムで実行され、処理は第1の雨滴の検知で始まる。各検知された雨滴はパラメータx(これは図3に示したように、半分の最大パルス幅W1/2、ピークツゥピーク電圧Vpp、ピーク電圧Vmax、最小電圧Vmin、パルスの数または出力パルスを特徴づけるその他のパラメータ、あるいは選択されたパラメータの組合せ、でもよい)に対して分析され、それにより累積降雨Pが方程式:
P=Σi[f(Δti,xi1,...xin)] (3)
から計算される。
【0034】
ここで、インデックスi=1,2,...は、測定サイクル中に検知された個々の雨滴であり、Δtiは検知された雨滴と直前の雨滴との間の時間間隔である。関数fは測定されたパルスパラメータの、雨滴容量への実験的に決定された依存関係を表す。
【0035】
この方法は、累積降雨量が十分に増加し所定のしきい値を超える瞬間に信号パルスを送るパルス出力により、検知器の実施を容易にする。その上、検知器の出力は従来技術の傾斜バケツ型雨検知器と同じであるから、そのまま、気象台の設備に最も一般的に用いられるデータ集積装置に接続できる。
【0036】
雨検知器の正確さと上記の計算方法は、検知器の目盛付け精度にきわめて重大に依存する。目盛付けパラメータ、つまり方程式(1)及び(3)の定数は、研究所や実際の現場で例えば回帰分析道具を使って、検知器の応答を正確な基準検知器と比較することで実験的に決定される。そのような基準化データの例は図4に示してある。
【0037】
ひょうの検知は、例えば飛行場で重要である。この目的のための従来技術の装置は、具備した金属板の下にマイクロフォンを配置したひょう検知器である。ひょうはそれが生起する衝突音により識別される。このタイプのひょう検知器は周囲のノイズへのその感度により妨害され、米国特許第5,528,224号に記述されるような、周辺の気象状態についての光学測定装置の補完的検知器としてしか用いて好適でない。
【0038】
次に、より信頼できる方法でかつ周辺のノイズへの感度を低めながらひょうを検知する適当な方法を述べる。ひょうの検知は、上述の雨検知器の補助的特徴として組み込んでもよく、また、ひょうの検知だけを意図した検知器構造により利用してもよい。
【0039】
雨滴からのひょうの見分けは、検知器が生成する信号がお互いに非常に異なっているということを基礎にしている。検知器表面に対するひょうなどの固い物体の衝突は弾性的であるから、第1に出力パルスの立ち上がり速さが速く、第2に、パルスの振幅が雨滴により発生するパルスよりも大きい。第3の違いは、ひょうの衝突がドーム型検知器カバー2の共鳴周波数を励振し、これによりドーム型カバー2が衝突後も振動を続けるということである。さまざまな大気水象におけるこれらの違いは、大気水象の堅い粒子により発生する図5の検知器出力パラメータと、落ちてくる雨滴により発生する図3の検知器出力パルス波形を比較することではっきりと明らかになる。
【0040】
上述した雨検知器の実施形態は、検知器の要素がひょう感知マイクロフォンと違って周囲の空気と直接連通しないから、風媒ノイズには感応しない。
【0041】
ひょうの同定はこのように、検知器の出力信号の選択された特性パラメータ、例えば振幅、立ち上がり時間や共振周波数、あるいはこれらのパラメータの組合せなど、を検知することに基づいている。複数のこのような特性パラメータの組合せを用いることで、測定の信頼性は増し、かつ周囲のノイズによる間違った検知結果の数は少なくなる。
【0042】
無防備の検知器を使いながら実施される雨の測定で、風は重大な誤差要因である。当業界でゼロから30%までの範囲の誤差が報告されている。風に関係する誤差の大きさは風速、雨の強さ、降水の種類に依存する。
【0043】
当業界で、風関連誤差を補償する多くの多様な誤差修正方法が提案されている。制限領域内で降雨と風とのデータを同時に測定実行するシステムでは、適当な修正アルゴリズムを用いて、降雨強さの測定値についての風の誤差の影響を少なくすることができる。
【0044】
一方、従来の全てのシステムは、雨のデータ測定現場から明らかに離れた場所で測定された風のデータを利用している。これは、風のデータは一般的に地面から数メーターの高さで測定されるが、雨の測定は一般的にほぼ地面の高さで行われ、風センサーからは少なくとも数メーターだけ移動するからである。したがって、風関連誤差の修正に利用される風情報は、降雨測定現場での実際の風の状態を完全には代表していない。さらに現在の方法はリアルタイムで作用せず、風誤差の修正情報は定期的に遅れて取得され、普通は月単位、週単位、一日単位、あるいは12時間単位でしか入手できない。
【0045】
この理由から、次に、上記従来技術の不利を克服できる本発明による方法を説明する。この方法は以下に概説するステップにより概ね特徴づけられる。
【0046】
風誤差の修正については、直接降雨検知器の稼動現場か、少なくともそのごく近辺で集めた風情報を用いることのできるアルゴリズムを使用する。この記述の文脈で、用語「ごく近辺」は降雨検知器から1メーターより短い間隔を意味する。間隔は30cmより短いのが好都合である。これは、風センサーを容易に1つの同じ測定システムに組み込むことができるからである。
【0047】
アルゴリズムは自由に選択できる時間スケールを持つから、リアルタイムでの修正も可能である。
アルゴリズムは作動原理に拘わりなく全てのタイプの降雨センサーに適する。
【0048】
風誤差修正要因の一般形は、
k=Rtr/R=f(w,R) (4)
ここでRtrは実際の降雨量、kは誤差修正因子、wは風速、Rは降雨の測定量、fは誤差修正因子の、風速と降雨強さへの依存関係を表す実験的に決定された関数である。誤差修正の時間スケールは、等式(4)の変数Rとwの値の計算に必要な時間間隔と両立するものと定義する。
【0049】
修正された降雨量は測定降雨量に修正因子kを乗じることで得られる。同じ修正技術は他の検知器構造に関連して使用できるが、この場合関数(w,R)のキャラクターは当然ながら変更可能である。
【0050】
実際、誤差修正因子の、関数f(w,R)で表わされた降雨量Rと風速wへの依存関係は、2つの同様の降雨検知器を用いて実験的に決定される。試験構成において、一方の検知器は、風から最大限効果的に防護された現場に配置され、その結果その読みは風誤差により損なわれていない降雨量Rtrを表す。また、Rtrの値は風から防護された異なるタイプの降雨検知器を使っても測定できる。他方の降雨検知器は風の影響を受ける場所に置かれるため、その降雨の読みRは風関連誤差により損なわれる。後者の降雨検知器のごく近辺に、風速wを測定する風センサーを配置する。結果として、方程式(4)に記された関数f(w,R)はこのようにして集めた実験データから、例えば非線型回帰分析法を用いて決定できる。
【0051】
図6に示したように、装置は降雨検知器の表面領域の周りに適用された超音波風速測定器を備える。代表的には、装置は3つの超音波伝達―受取ユニット9を備え、これらのユニット9により風速の方向と強さとを超音波伝達―受取ユニット9間の音響伝播時間を基にして決定できる。この技術は、例えば米国特許第5,343,744号により詳細に記述されている。このようにすることにより、この新規な構成は実際に降雨の検知と同じ位置で風のパラメータを測定できる。対照的に、従来の気象台の降雨検知器は地面の高さに接近して置かれるが、風は数メーターの高さで測定されるから、降雨検知の現場から離れている。したがって、本明細書で開示した本発明の実施形態は、風と雨の測定現場をできるだけ互いに接近して配置し、これら両方の天候変数がほぼ同じ位置で測定されることを特徴としている。超音波の方法の代わりに、その他の風測定技術、例えば、ほぼ垂直に整列した各細長要素の末端部での温度測定を基礎とする、熱による方法も使用できる。この場合、風に面した測定要素の端部が一般に最低温度となる。
【0052】
図7に、異なる風速別の修正因子曲線が示してある。各データポイントは、10分の測定サイクル中に集められた降雨量を表す。修正曲線はさらに、非線型回帰分析法を用いて実験的に集められたデータ上で調整される。
【0053】
図8に、2つの降雨検知器に対する、10日の測定期間中に蓄積されたそれぞれ修正済みと非修正の集積降雨量を示してある。実験に用いられた各検知器は、一方が地面の上2メーターに取り付けられて風の影響を受け、他方が風から防護された現場に地面の高さで配置された以外は同じである。地面高さの検知器の読みと比較すると、地面の上2メーターに置かれた検知器は、測定された集積降雨が風関連誤差により組織的に少なくなるという読みを与えることが分かった。したがって、地面の上に置かれた検知器の読みは修正を必要とする。地面の上に取り付けられた検知器の測定精度の向上に、上で議論した修正アルゴリズムが使用できることは明らかである。
【0054】
本発明による構成の用途は、装置を集積型雨検知器で補完することでさらに広げることができる。ここでは、装置は2つの同じ検知器を備え、一方の検知器はその上に集積用煙突を配設される。煙突付き検知器であれば低い降水量に対する降雨情報も提供できる。この構成はまた装置の自己診断についても利用でき、例えば、煙突の詰まりは多量の降水期間中、詰まった検知器からの少降雨量の読みとして認識できる。
【0055】
煙突は加熱可能に設計できる。こうすれば、降雪時に加熱される煙突を装備した検知器は、実際の降水量と降雪の水量についての情報を提供できる。
【図面の簡単な説明】
【0056】
【図1】本発明による検知器の分解図である。
【図2a】本発明による検知器の第2の実施形態の縦側断面図である。
【図2b】図2の検知器実施形態の縦平断面図である。
【図3】本発明の装置における降雨滴の衝突を示したグラフである。
【図4】本発明に用いられた目盛付け曲線を示す図表である。
【図5】本発明の装置において、降ってくるひょうの衝突を示したグラフである。
【図6】風測定装置を具備した本発明の降水検知器の図である。
【図7】降水測定における風の影響を示したグラフである。
【図8】測定結果における風の修正結果を示したグラフである。
【符号の説明】
【0057】
1 降水検知器
2 検知器表面
3 検知器
4 測定電子回路
5 検知器ケース
8 底部
9 風測定装置

Claims (23)

  1. 枠(5)と、
    枠(5)に取り付けられ、かつ大気水象を受け止めるようにされたほぼ剛性の表面(2)と、
    大気水象の衝突インパルスを電気信号に変換する検知手段(3)と、を備えた降水のパラメータを測定する降水検知器(1)において、
    大気水象の衝突を受け止める前記表面(2)はその縁部が枠(5)に剛結合され、表面(2)は少なくとも部分的に凸状をなし、そして
    前記検知手段(3)は、大気水象の衝撃を受け止める前記表面(2)に永久結合されることを特徴とする降水検知器。
  2. 請求項1に記載の降水検知器において、降水受止め表面のごく近辺に風測定装置(9)が適用されることを特徴とする降水検知器。
  3. 請求項1乃至2のいずれか1項に記載の降水検知器において、前記風測定装置におけるセンサー(9)の数は3であることを特徴とする降水検知器。
  4. 請求項1乃至3のいずれか1項に記載の降水検知器において、前記センサー(9)は、音響伝播の遅れを測定できる超音波センサーであることを特徴とする降水検知器。
  5. 請求項1乃至4のいずれか1項に記載の降水検知器において、前記風センサー(9)は、熱による風速センサーであることを特徴とする降水検知器。
  6. 請求項1乃至5のいずれか1項に記載の降水検知器において、前記降水受止め表面(2)はドーム型表面であることを特徴とする降水検知器。
  7. 請求項1乃至6のいずれか1項に記載の降水検知器において、前記降水受止め表面(2)の頂面は平坦であることを特徴とする降水検知器。
  8. 請求項1乃至7のいずれか1項に記載の降水検知器において、前記降水受止め表面(2)の上に、煙突などの集積手段が適用されることを特徴とする降水検知器。
  9. 降水検知器システムにおいて、請求項1乃至8のいずれか1項に開示した種類の2つの検知器を備え、検知器の一方が降水を集める煙突を装備することを特徴とする降水検知器システム。
  10. 請求項9に記載のシステムにおいて、降水を集める煙突は加熱可能に適用されることを特徴とする降水検知器システム。
  11. 降水を個々の大気水象の高さで測定するステップと、
    大気水象の数を数えるステップと、
    個々の大気水象の高さで集められ、かつ前記個々の大気水象の衝突による検知器表面(2)の弾性変形から記録された測定データから、降水量情報をコンパイルするステップと、を含み、
    個々の衝突や時間単位当りのその数についての信号パラメータ情報が、降水の強さや降水の総量の決定に、あるいは降水における大気水象サイズの分布の分析に用いられる降水のパラメータを測定する方法において、
    大気水象は、縁部が枠(5)に剛結合された表面(2)により受け止められ、かつ表面(2)は少なくとも部分的に凸状であることを特徴とする方法。
  12. 請求項11に記載の方法において、個々に記録された衝突信号の各自は、前記大気水象のサイズに対応する少なくとも1つのパラメータ、あるいはパラメータの組合せをコンパイルするよう処理され、降水の強さ、降水の総量、あるいは降水における大気水象サイズの分布が決定されることを特徴とする方法。
  13. 請求項11及び/または12に記載の方法において、前記変形検知手段(3)は別個の構造物として作られ、降水検知器の表面(2)に結合されることを特徴とする方法。
  14. 降水を個々の大気水象の高さで測定するステップと、
    個々の大気水象の高さで集められた測定データから降水量情報をコンパイルするステップと、を含む降水のパラメータを測定する方法において、
    降水量は、大気水象の衝突による検知器表面の弾性変形を利用して測定され、
    大気水象のひょうへの分類は、個々の大気水象に関する信号情報に基づくことを特徴とする方法。
  15. 請求項14に記載の方法において、変形検知手段(3)は降水検知器の表面(2)に組み入れる方式で結合されることを特徴とする方法。
  16. 前記各請求項のいずれか1項に記載の方法において、風は降水量測定装置と少なくとも実質的に同じ位置において測定されることを特徴とする方法。
  17. 前記各請求項のいずれか1項に記載の方法において、風は超音波技術を使用して測定されることを特徴とする方法。
  18. 前記各請求項のいずれか1項に記載の方法において、風は熱技術を使用して測定されることを特徴とする方法。
  19. 前記各請求項のいずれか1項に記載の方法において、降水は、集積用煙突を装備した少なくとも実質的に同じ検知器を使用して測定され、測定結果は両方の検知器により記録されたデータの組合せとして得られることを特徴とする方法。
  20. 降水の強さ、降水の総量、あるいは降水における大気水象サイズの分布を検知する働きをする、降水のパラメータを測定する方法において、
    風は少なくとも実質的に降水測定装置の位置で測定されることを特徴とする方法。
  21. 請求項20に記載の方法において、降水の強さ、降水の総量、あるいは降水における大気水象サイズの分布は、測定された風速を基に修正されることを特徴とする方法。
  22. 請求項20あるいは21に記載の方法において、前記修正はリアルタイムでなされることを特徴とする方法。
  23. 請求項20あるいは21あるいは22に記載の方法において、前記降水測定は、検知器の請求項1乃至10のいずれか1項に開示した装置を用いて実施されることを特徴とする方法。
JP2003531215A 2001-09-24 2002-09-23 降水/ひょうセンサー及び降水量測定のための方法 Expired - Lifetime JP4509557B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20011876A FI116322B (fi) 2001-09-24 2001-09-24 Sade- ja raeanturi sekä menetelmä sateen mittaamiseksi
PCT/FI2002/000760 WO2003027720A1 (en) 2001-09-24 2002-09-23 Precipitation/hail sensor and method for precipitation rate measurement

Publications (2)

Publication Number Publication Date
JP2005504298A true JP2005504298A (ja) 2005-02-10
JP4509557B2 JP4509557B2 (ja) 2010-07-21

Family

ID=8561948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003531215A Expired - Lifetime JP4509557B2 (ja) 2001-09-24 2002-09-23 降水/ひょうセンサー及び降水量測定のための方法

Country Status (5)

Country Link
US (1) US7249502B2 (ja)
EP (1) EP1430331A1 (ja)
JP (1) JP4509557B2 (ja)
FI (1) FI116322B (ja)
WO (1) WO2003027720A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337095A (ja) * 2005-05-31 2006-12-14 Ngk Insulators Ltd 微小物体の飛翔状態検出装置、及び微小物体の飛翔状態検出方法
KR101000764B1 (ko) 2009-12-08 2010-12-13 제이엠씨엔지니어링 주식회사 강우량 측정 장치 및 이를 포함하는 강우량 예측 시스템
JP2013088369A (ja) * 2011-10-21 2013-05-13 Nexco-Maintenance Niigata Co Ltd 粒状氷検知装置
KR101393370B1 (ko) 2012-06-25 2014-05-09 강정철 강우 강도 및 강우량 감지 장치
KR101400874B1 (ko) 2013-05-15 2014-06-27 주식회사 대양계기 반도체식 로드셀을 활용한 강우량계
KR101946246B1 (ko) 2017-06-09 2019-02-11 주식회사 우정하이텍 강수형태 식별이 가능한 터치식 강수감지장치
KR101961633B1 (ko) * 2018-01-03 2019-03-26 한국해양과학기술원 음향 공진형 강수량계
JP2021502565A (ja) * 2017-11-08 2021-01-28 ルビコン リサーチ ピーティーワイ リミテッドRubicon Research Pty Ltd 雨量計/測候ステーション
JP2022516219A (ja) * 2018-11-06 2022-02-25 アンダーストーリー,インコーポレイテッド レインセンサ

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116424B (fi) * 2003-07-01 2005-11-15 Vaisala Oyj Menetelmä hydrometeoreja havaitsevan mittalaitteen yhteydessä sekä tähän liittyvä laitteisto
DE10330128B4 (de) * 2003-07-04 2005-05-25 Hochschule Für Technik Und Wirtschaft Des Saarlandes Niederschlagssensor, insbesondere Hagelsensor
US6936985B2 (en) * 2003-07-21 2005-08-30 Agc America, Inc. Sensing device for determining a rain rate
US6892580B2 (en) 2003-07-21 2005-05-17 Agc America, Inc. Method for determining a rate of rain
US9144204B2 (en) 2006-06-20 2015-09-29 Rain Bird Corporation User interface for a sensor-based interface device for interrupting an irrigation controller
EP2035629A4 (en) 2006-06-20 2012-08-29 Rain Bird Corp SENSOR DEVICE FOR IRRITATION INTERRUPTION
AU2007100914A4 (en) * 2006-10-20 2007-10-18 Geoffrey Leonard Goodwin Piezo - electric rain gauge
US7475594B2 (en) * 2007-06-15 2009-01-13 Neil Schultz Vehicle weather forecaster and navigation device with integrated power generator
WO2009082473A1 (en) * 2007-12-20 2009-07-02 Kah Carl L C Jr Wireless moisture probe, receiving controller and irrigation control system
US8033156B2 (en) * 2008-06-25 2011-10-11 The Boeing Company Sensor apparatus and method for detecting impacts
US7945388B2 (en) * 2008-06-25 2011-05-17 The Boeing Company Test bed for in-situ studies
US8291760B2 (en) * 2009-03-24 2012-10-23 Orbis Canada Limited Container for rain
FI123974B (fi) * 2009-04-22 2014-01-15 Vaisala Oyj Menetelmä hydrometeoreja havaitsevan mittalaitteen yhteydessä sekä tähän liittyvä mittalaite
KR101106163B1 (ko) 2009-11-19 2012-01-19 (주)맨 텍 센서를 이용한 우박감지시스템
CA2710697A1 (en) * 2010-07-15 2012-01-15 Enviro World Corporation Precipitation collector
US8635024B2 (en) * 2010-08-02 2014-01-21 International Business Machines Corporation Sensing device for determining weather event attributes
EP2702434B1 (en) 2011-04-29 2018-01-03 Airmar Technology Corporation Precipitation sensor and method of sensing precipitation
NL2008563C2 (en) 2012-03-29 2013-10-01 Univ Delft Tech Precipitation measurement system and method for measuring precipitation.
CN103439756B (zh) 2013-07-31 2016-02-10 中国人民解放军理工大学 一种基于粒子成像测速的自然降水粒子微物理特征测量方法
EP2905636A1 (de) 2014-02-07 2015-08-12 Deutscher Wetterdienst Hagelsensor
WO2015167914A1 (en) * 2014-04-29 2015-11-05 Clemson University Optical system for measuring particle characteristics
DE102014112926A1 (de) * 2014-09-09 2016-03-10 Hochschule Für Technik Und Wirtschaft Des Saarlandes Niederschlagssensor, insbesondere Hagelsensor, und Verfahren zur Detektion eines Niederschlagsteilchens
CN106918848A (zh) * 2015-12-24 2017-07-04 华云升达(北京)气象科技有限责任公司 一种冰雹传感器
US9841533B2 (en) 2016-03-08 2017-12-12 Arable Labs, Inc. Disdrometer having acoustic transducer and methods thereof
US10520646B2 (en) 2016-05-13 2019-12-31 Weatherflow, Inc. Haptic rain sensor
US10444769B2 (en) 2017-04-24 2019-10-15 Rain Bird Corporation Sensor-based interruption of an irrigation controller
US10757873B2 (en) 2017-04-24 2020-09-01 Rain Bird Corporation Sensor-based interruption of an irrigation controller
WO2019133273A1 (en) 2017-12-29 2019-07-04 Rain Bird Corporation Weather override irrigation control systems and methods
WO2021108776A2 (en) 2019-11-27 2021-06-03 University Of Utah Research Foundation Differential emissivity based evaporable particle measurement
CN112654898A (zh) * 2020-12-09 2021-04-13 中国科学院声学研究所南海研究站 一种自动触发和自校准的超声测雨系统
CN113189679A (zh) * 2021-04-20 2021-07-30 上海宏英智能科技股份有限公司 一种压电式雨量测量计
CN112904459B (zh) * 2021-04-21 2022-11-01 山东省计量科学研究院 一种雨量计
RU209886U1 (ru) * 2021-07-07 2022-03-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Устройство для измерения интенсивных осадков капель из выбросов воды в атмосферу
CN113885102B (zh) * 2021-09-29 2024-01-19 滨州学院 降水监测装置、降水检测方法、系统及存储介质
DE102022127608A1 (de) 2022-10-19 2024-04-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überwachung eines Kraftfahrzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722067U (ja) * 1980-07-15 1982-02-04
JPS6033078A (ja) * 1983-08-02 1985-02-20 Omron Tateisi Electronics Co 簡易型雨量計
JPH03251791A (ja) * 1990-02-28 1991-11-11 Koshin Denki Kogyo Kk 雨量補正装置付雨量計
JPH0464791U (ja) * 1990-10-15 1992-06-03
US5421198A (en) * 1993-12-10 1995-06-06 Windrop Weather Devices Weather monitoring apparatus and method
JPH09101377A (ja) * 1995-10-03 1997-04-15 Miyasaka Gomme Kk 降雪検出装置
JPH10260269A (ja) * 1997-03-18 1998-09-29 Norin Suisansyo Hokuriku Nogyo Shikenjo 落下衝撃を利用した降水の測定法
JP2001305241A (ja) * 2000-04-25 2001-10-31 Erumekku Denshi Kogyo Kk 雨量センサー

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665744A (en) * 1985-05-21 1987-05-19 Smith David G Combined rain gauge and weather vane
FR2595473B1 (fr) * 1986-03-10 1989-05-19 Centre Nat Rech Scient Dispositif de detection d'impacts, notamment de retombees humides, sur une surface de contact
EP0360892A1 (de) * 1988-09-27 1990-04-04 Volker Dipl.-Chem. Genrich Elektronischer Sensor zur Messung der Regenmenge durch Bewertung der Prallfläche einzelner Tropfen
LU87603A1 (de) * 1989-10-09 1991-05-07 Europ Communities Niederschlagsmesser
DE4033975A1 (de) * 1989-10-26 1991-05-08 Aisin Seiki Regentropfensensor
DE4011314A1 (de) * 1990-04-07 1991-10-10 Hottinger Messtechnik Baldwin Dehnungsmessstreifen und messgroessenaufnehmer mit derartigen dehnungsmessstreifen
DE4011416A1 (de) * 1990-04-09 1991-10-10 Telefunken Systemtechnik Witterungssensorik
US5125268A (en) * 1991-07-08 1992-06-30 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for acoustically measuring rainfall
US5528224A (en) * 1994-05-03 1996-06-18 Scientific Technology, Inc. Optical and acoustic weather identification system
DE4434432C2 (de) * 1994-09-27 2001-02-15 Bundesrep Deutschland Regenmeßgerät
IT1313757B1 (it) * 1999-09-10 2002-09-17 Franco Prodi Apparecchiatura pluviometrica disdrometrica ad elevata sensibilita' evelocita' di risposta

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722067U (ja) * 1980-07-15 1982-02-04
JPS6033078A (ja) * 1983-08-02 1985-02-20 Omron Tateisi Electronics Co 簡易型雨量計
JPH03251791A (ja) * 1990-02-28 1991-11-11 Koshin Denki Kogyo Kk 雨量補正装置付雨量計
JPH0464791U (ja) * 1990-10-15 1992-06-03
US5421198A (en) * 1993-12-10 1995-06-06 Windrop Weather Devices Weather monitoring apparatus and method
JPH09101377A (ja) * 1995-10-03 1997-04-15 Miyasaka Gomme Kk 降雪検出装置
JPH10260269A (ja) * 1997-03-18 1998-09-29 Norin Suisansyo Hokuriku Nogyo Shikenjo 落下衝撃を利用した降水の測定法
JP2001305241A (ja) * 2000-04-25 2001-10-31 Erumekku Denshi Kogyo Kk 雨量センサー

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337095A (ja) * 2005-05-31 2006-12-14 Ngk Insulators Ltd 微小物体の飛翔状態検出装置、及び微小物体の飛翔状態検出方法
JP4497370B2 (ja) * 2005-05-31 2010-07-07 日本碍子株式会社 微小物体の飛翔状態検出装置、及び微小物体の飛翔状態検出方法
KR101000764B1 (ko) 2009-12-08 2010-12-13 제이엠씨엔지니어링 주식회사 강우량 측정 장치 및 이를 포함하는 강우량 예측 시스템
JP2013088369A (ja) * 2011-10-21 2013-05-13 Nexco-Maintenance Niigata Co Ltd 粒状氷検知装置
KR101393370B1 (ko) 2012-06-25 2014-05-09 강정철 강우 강도 및 강우량 감지 장치
KR101400874B1 (ko) 2013-05-15 2014-06-27 주식회사 대양계기 반도체식 로드셀을 활용한 강우량계
KR101946246B1 (ko) 2017-06-09 2019-02-11 주식회사 우정하이텍 강수형태 식별이 가능한 터치식 강수감지장치
JP2021502565A (ja) * 2017-11-08 2021-01-28 ルビコン リサーチ ピーティーワイ リミテッドRubicon Research Pty Ltd 雨量計/測候ステーション
JP7251880B2 (ja) 2017-11-08 2023-04-04 ルビコン リサーチ ピーティーワイ リミテッド 雨量計/測候ステーション
KR101961633B1 (ko) * 2018-01-03 2019-03-26 한국해양과학기술원 음향 공진형 강수량계
JP2022516219A (ja) * 2018-11-06 2022-02-25 アンダーストーリー,インコーポレイテッド レインセンサ

Also Published As

Publication number Publication date
FI20011876A (fi) 2003-06-23
WO2003027720A1 (en) 2003-04-03
EP1430331A1 (en) 2004-06-23
US7249502B2 (en) 2007-07-31
FI20011876A0 (fi) 2001-09-24
JP4509557B2 (ja) 2010-07-21
FI116322B (fi) 2005-10-31
US20050174720A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4509557B2 (ja) 降水/ひょうセンサー及び降水量測定のための方法
US8448507B2 (en) Method and device for detecting hydrometeors
Jayawardena et al. Measuring drop size distribution and kinetic energy of rainfall using a force transducer
CN110794486B (zh) 一种降雨量传感器
GB2412735A (en) Acoustic rain sensor
NL2008563C2 (en) Precipitation measurement system and method for measuring precipitation.
Imeson et al. The measurement of water-drop impact forces with a piezo-electric transducer
US7286935B2 (en) Method and device for hydrometeor detection
Butterfield Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research
Salmi et al. Piezoelectric precipitation sensor from Vaisala
US20200142099A1 (en) Rain sensor
KR101393370B1 (ko) 강우 강도 및 강우량 감지 장치
Rezaei et al. Evaluating the SandFlow, an acoustic sediment transport sensor
WO2003027719A1 (en) Precipitation sensor and method for precipitation rate measurement
JP2004279255A (ja) 降水状態観測装置および観測方法
JPH09101377A (ja) 降雪検出装置
Hayashi et al. Development of a Compact Power-Saving Sensor Using Strain Gauges for Rainfall Estimation
Nystuen APL disdrometer evaluation
JP4970985B2 (ja) 花粉量算出方法、花粉量算出プログラム、花粉量算出システム
JPH0224448B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080813

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090313

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091013

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term