NL2008563C2 - Precipitation measurement system and method for measuring precipitation. - Google Patents

Precipitation measurement system and method for measuring precipitation. Download PDF

Info

Publication number
NL2008563C2
NL2008563C2 NL2008563A NL2008563A NL2008563C2 NL 2008563 C2 NL2008563 C2 NL 2008563C2 NL 2008563 A NL2008563 A NL 2008563A NL 2008563 A NL2008563 A NL 2008563A NL 2008563 C2 NL2008563 C2 NL 2008563C2
Authority
NL
Netherlands
Prior art keywords
electrical signal
piezoelectric element
waveform
precipitation
type
Prior art date
Application number
NL2008563A
Other languages
Dutch (nl)
Inventor
Ravi Bagree
Stijn Arthur Petrus Jong
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2008563A priority Critical patent/NL2008563C2/en
Priority to PCT/NL2013/050233 priority patent/WO2013147605A2/en
Application granted granted Critical
Publication of NL2008563C2 publication Critical patent/NL2008563C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Description

Title: Precipitation measurement system and method for measuring precipitation
The invention relates to a precipitation measurement system, in particular a system for measuring a precipitation variable on the basis of the size of each hydrometeor of the 5 precipitation. For example, the precipitation measurement system according to the invention may be a rain sensor or disdrometer.
In this application, the term “hydrometeor” is understood to mean any type of hydrometeor, such as rain, snow, hail, sleet, graupel (snow pellets), and any other type of product of the condensation of atmospheric water vapour that falls under the influence of 10 gravity. Therefore the term hydrometeor may refer, for example, to a raindrop, snowflake, hail particle, sleet particle or ice pellet. It is noted that the terms “hydrometeor” and “drop” are used interchangeably in this application, i.e. the term “drop” may also refer, for example, to a raindrop, snowflake, hail particle, sleet particle or ice pellet.
WO 03/027720 discloses a precipitation measurement system comprising a detector 15 surface which acts as an impact-receiving surface for falling raindrops. The system also comprises a detector serving to detect the energy pulses of raindrops impinging on the detector surface. The detector comprises a piezoelectric disc made from a piezoelectric ceramic material that is metallised on its both sides so that its two contact electrodes are located on the opposite sides of the piezoelectric disc. When a raindrop hits the detector 20 surface, the raindrop inflicts thereon a force that is further transmitted to the piezoelectric disc and is subsequently identified as a voltage pulse. Furthermore, the system comprises measurement electronic circuitry and a computational algorithm which are capable of computing rainfall intensity (mm/h) and cumulative rainfall (mm). The voltage pulse generated by each raindrop is converted to the size of the raindrop. However, the conversion 25 of the voltage pulse to the size of the raindrop is sometimes inaccurate.
It is an object of the invention to provide a precipitation measurement system having improved accuracy.
This object is achieved according to the invention by a precipitation measurement system, comprising: 30 - a precipitation sensor which is provided with: - a top cover comprising a top surface which is configured to receive the impact of falling hydrometeors, and a bottom surface which is facing away from the top surface, - a transducer member comprising: 35 • an electrically conductive element, • a piezoelectric element, which is provided with a peripheral edge and a central surface area which is defined inside the peripheral edge, which 2 piezoelectric element is arranged onto the electrically conductive element and connected thereto in an electrically conductive manner, and which transducer member is connected to the bottom surface of the top 5 cover in such a manner that the piezoelectric element is deformed by the impact of a hydrometeor when it falls onto the top surface of the top cover, and in which a projection of the central surface area, not including the peripheral edge of the piezoelectric element, onto the top surface of the 10 top cover defines a central zone of the top surface of the top cover, and also - a control unit, which is electrically connected to the electrically conductive element and to the piezoelectric element, in which preferably the control unit is connected to the electrically conductive element by means of a first electrical connection, for example a first 15 wire, and to the piezoelectric element by means of a second electrical connection, for example a second wire, and which control unit is configured to receive an electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed by the impact of a hydrometeor falling onto the top surface of the top cover, characterised in that 20 the precipitation sensor is configured in such a manner that the electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed by the impact of a hydrometeor falling onto the top surface of the top cover comprises a first type of waveform when the hydrometeor falls inside the central zone of the top surface of the top cover or a second type of waveform when the hydrometeor falls outside the central zone of 25 the top surface of the top cover, which second type of waveform is distinct from the first type of waveform, and the control unit is configured to analyse and process the electric signal in such a manner that the electric signal is identified as a proper measurement when the electric signal comprises the first type of waveform and is identified as an improper measurement when the 30 electric signal comprises the second type of waveform.
The precipitation measurement system known from WO 03/027720 suffers from the “edge effect”. Irrespective of the distribution of the hydrometeors over the top surface of the top cover, a number of drops will hit inside the central zone of the top cover and a number of drops will impinge outside of the central zone of the top cover, i.e. on the projection of the 35 peripheral edge of the piezoelectric element or radially outward of said projection. A drop impinges radially outward of said projection when the drop falls, for example, on the annular edge zone of the top cover surrounding the central zone or on a side of a casing of the 3 precipitation sensor. When a drop hits inside the central zone of the top cover, it will transfer its full momentum to the central surface area of the piezoelectric element. However, when a drop hits outside of the central zone of the top cover, its momentum will only be partially transferred. This may result in an inaccurate interpretation of the electric signal. For example, 5 a raindrop of 5 mm in diameter may be interpreted as a raindrop of only 2 mm in diameter.
It should be noted that it is known from the prior art to reduce the edge effect by increasing the surface area of the piezoelectric element, because this decreases the ratio between the number of drops hitting outside of the central zone of the top cover and the number of drops hitting inside of the central zone of the top cover. The larger the surface 10 area of the piezoelectric element, the greater the total number of drops impinging thereon and the smaller the percentage of drops hitting outside of the central zone of the top cover. However, as the total number of drops impinging on the surface area of the piezoelectric element increases, the probability of having simultaneous drop impacts increases and the number of drop impacts coinciding with each other will increase. This leads to problems in 15 the interpretation of the measured signals.
According to the invention the edge effect can be reduced or even eliminated by analysing the waveform of the electric signal generated by the piezoelectric element when it is deformed by the impact of a hydrometeor falling onto the top surface of the top cover. The electric signal may be a voltage signal, a charge signal or any other type of electric signal. It 20 has been surprisingly found according to the invention that the waveform of the electric signal depends on the location where the drop hits the top surface of the top cover. When the drop hits the top surface inside its central zone, the waveform is of a first type. However, if the drop hits the top surface outside its central zone, for example on the projection of the peripheral edge of the piezoelectric element onto the top surface or radially outward of said 25 projection, the waveform is of a second type that is distinct from the first type.
The control unit is configured to distinguish between the waveforms of the first and second type, and to classify the waveform of the first type as a proper measurement and the waveform of the second type as an improper measurement which has been influenced by the edge effect. As a result, for example, the improper measurements can be discarded so that 30 the edge effect is removed from the measurements. Alternatively, it may be possible for the control unit to perform additional processing of the electric signals identified as improper measurements so as to determine the actual size of the drop by compensating for the edge effect. In both cases, the precipitation measurement system according to the invention is very accurate.
35 It is noted that WO 03/027720 dissuades the skilled person from analysing and processing the electric signal in relation to the edge effect. After all, this document describes that in an ideal case, the response of the detector surface with the detector is such that the 4 output pulse amplitude and waveform are independent from the location of the raindrop impingement point, whereby the detector surface is homogeneous, and that this is not crucial to the system function, because a nonuniform response only causes a random error in the measurement signal that can be eliminated by using a sufficiently long integration time. As 5 explained above, in contrast thereto, it has been surprisingly found according to the invention that the waveform of the electric signal can be used as a criterion to determine if the drop hit the top surface of the top cover inside its central zone or not.
It is possible according to the invention that the electric signal comprising the first type of waveform comprises a substantially smooth envelope in the time domain, in which the 10 electric signal comprising the second type of waveform is distorted in such a manner that a substantially smooth envelope in the time domain cannot be defined, or even an envelope in the time domain cannot be defined at all, and in which the control unit comprises an envelope detector to identify if the electric signal comprises a substantially smooth envelope in the time domain. The envelope detector is configured to obtain an envelope of the electric 15 signal in the time domain by identifying successive peak values in the electric signal. The envelope is defined by analysing or determining an imaginary connecting line between the identified successive peak values. In this case, the control unit is configured to analyse and process the electric signal in such a manner that the electric signal is subjected to envelope detection by the envelope detector so as to determine if the electric signal comprises a 20 substantially smooth envelope. This makes it possible to distinguish the first and second type of waveform in a reliable manner.
As the envelope is defined by connecting discrete peak values, there will always be some kind of discontinuities in the envelope. In order to determine if the envelope of the electric signal can be said to be substantially smooth, the control unit is configured to classify 25 the electric signal in the time domain with the aid of a predetermined criterion on the basis of the smoothness of the envelope of the electric signal in the time domain. If the electric signal meets the predetermined criterion, the electric signal is classified as a substantially smooth electric signal, i.e. an electric signal comprising the first type of waveform. If the electric signal does not meet the predetermined criterion, the electric signal is classified as an 30 electric signal comprising the second type of waveform. In other words, the envelope can be used as an indication of the type of waveform, which is particularly reliable.
In a preferred embodiment of the invention, the electric signal comprising the first type of waveform comprises a substantially undistorted damping sine waveform, and the electric signal comprising the second type of waveform is distorted. When the second type of 35 waveform is distorted, it can easily be distinguished from a substantially undistorted damping sine waveform. Thus, the electric signals relating to the edge effect can be detected in an effective manner.
5
In an alternative embodiment of the invention, the control unit is configured to classify the electric signal in the frequency domain with the aid of a predetermined criterion on the basis of a variable of the electric signal in the frequency domain, in an electric signal comprising the first type of waveform or an electric signal comprising the second type of 5 waveform. The first type of waveform is not only distinct from the second type of waveform in the time domain, but also in the frequency domain. For example, it may be possible to determine on the basis of the number of peak values in the frequency domain whether the electric signal is of the first type of waveform or the second type of waveform. Thus, the edge effect can also be removed by analysing the electric signal in the frequency domain.
10 It is possible according to the invention for the control unit to be configured to determine the size of the hydrometeor on the basis of the electric signal when the electric signal is identified as a proper measurement. In this case, the control unit may also be configured to store in a memory the size of each hydrometeor determined on the basis of the electric signal corresponding to said hydrometeor. The memory may be any type of memory, 15 for example, a random access memory (RAM), a dynamic RAM (DRAM), a static RAM (SRAM), non-volatile memory and/or other types of memory storage devices.
In addition, it is possible according to the invention for the control unit to be configured to discard the electric signal when the electric signal is identified as an improper measurement. In this case, the improper measurements relating to the edge effect are 20 discarded, i.e. the edge effect is removed. As only the hydrometeors falling inside the central zone of the top cover are considered, the precipitation rate is calculated over the area of the central zone of the top cover.
In an embodiment of the invention, the control unit is configured to condition the electric signal when the electric signal is identified as an improper measurement and to 25 determine the size of the hydrometeor on the basis of the conditioned voltage signal. As an alternative to disregarding the improper measurements, it may be possible for the control unit to perform additional processing of the electric signals identified as improper measurements so as to determine the size of the hydrometeor by compensating for the edge effect. In this case, the control unit may also be configured to store in a memory the size of each 30 hydrometeor determined on the basis of the conditioned voltage signal corresponding to said hydrometeor. As already described above, the memory may be any type of memory.
In a preferred embodiment according to the invention, the control unit is configured to determine the precipitation rate on the basis of the sizes of hydrometeors stored in the memory. The precipitation rate is defined by the volume of water in the form of precipitation 35 that falls onto the top surface of the top cover of the precipitation sensor per unit of area and per unit of time. The precipitation rate is a measure for the intensity of precipitation. If the electric signal is identified as a proper measurement, said voltage signal is used as input to 6 compute the precipitation rate. In addition, if the electric signal is identified as an improper measurement, the conditioned voltage signal may also be used as input to compute the precipitation rate. In addition, the number of hydrometeors may be counted per unit time and used as input to compute the precipitation rate.
5 It is possible according to the invention that the piezoelectric element comprises a layer of piezoelectric material which is provided with an electrode layer on either side, and in which the peripheral edge of the piezoelectric element is formed by the peripheral edge of the layer of piezoelectric material. For example, the piezoelectric element comprises a disc made from a piezoelectric material that is metallised on its both sides so that its electrode 10 layers are situated on the opposite sides of the disc of piezoelectric material. The thickness of the piezoelectric element may be smaller than 1 mm, such as smaller than 0.5 mm. The piezoelectric material comprises, for example, ceramic, such as lead zirconate titanate (PZT), barium titanate and/or lead titanate. However, the piezoelectric material may also comprise quartz and/or any other type of piezoelectric material. In addition, for example, the 15 piezoelectric material can be multi-layered.
In an embodiment of the invention, the electrically conductive element is connected to the piezoelectric element over the entire central surface area of the piezoelectric element, for example by means of a conductive adhesive layer. The electrically conductive element and the piezoelectric element may form a layered structure. The electrically conductive element 20 may comprise a metal disc. The thickness of the electrically conductive element may be smaller than 1 mm, such as smaller than 0.5 mm. When the electrically conductive element and the piezoelectric element are connected together over the entire central surface area of the piezoelectric element, it is ensured that the impact of a hydrometeor is transferred effectively.
25 It is preferred according to the invention that the transducer member is connected to the bottom surface of the top cover by means of a connecting layer. The connecting layer ensures that the impact of a hydrometeor when it falls onto the top surface of the top cover is transferred effectively in a substantially vertical straight line through the material of the top cover and through the material of the connecting layer to the transducer member. The 30 connecting layer comprises, for example, an adhesive layer and/or an epoxy layer.
Preferably, the electrically conductive element of the transducer member is connected to the bottom surface of the top cover, whereby the piezoelectric element is situated below the electrically conductive element.
In an embodiment of the invention, the electrically conductive element and the 35 piezoelectric element are aligned co-axially with respect to each other, in which the size of the electrically conductive element is greater than the size of the piezoelectric element. In 7 this case, an annular edge surface area surrounds the peripheral edge of the piezoelectric element, including said peripheral edge.
It is also possible according to the invention that the top surface of the top cover comprises an annular edge zone which is defined between, on the one hand, a projection the 5 peripheral edge of the piezoelectric element, including said peripheral edge, onto the top surface, and on the other hand, a peripheral outer edge of the top surface of the top cover, and in which the electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed by the impact of a hydrometeor falling onto the top surface of the top cover comprises the second type of waveform when the hydrometeor falls inside 10 the annular edge zone.
Furthermore, the precipitation sensor may be provided with a casing comprising a peripheral wall and the top cover, in which the peripheral wall has an upper end which is closed by the top cover, and in which the electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed by the impact of a 15 hydrometeor impinging to the peripheral wall of the casing comprises the second type of waveform. The drops which hit against the side of the casing can also be filtered out according to the invention.
In a preferred embodiment, the electrically conductive element and the piezoelectric element are both substantially circular. The diameter of the electrically conductive element 20 can be greater than the diameter of the piezoelectric element. For example, the diameter of the electrically conductive element is between 2-30 cm, preferably between 2-10 cm, and more preferably between 4-6 cm.
The invention also relates to a method for measuring precipitation, in which use is made of a precipitation measurement system, 25 in which the precipitation measurement system comprises: - a precipitation sensor which is provided with: - a top cover comprising a top surface which is configured to receive the impact of falling hydrometeors, and a bottom surface which is facing away from the top surface, 30 - a transducer member comprising: • an electrically conductive element, • a piezoelectric element, which is provided with a peripheral edge and a central surface area which is defined inside the peripheral edge, which piezoelectric element is arranged onto the electrically conductive 35 element and connected thereto in an electrically conductive manner, and 8 which transducer member is connected to the bottom surface of the top cover in such a manner that the piezoelectric element is deformed by the impact of a hydrometeor when it falls onto the top surface of the top cover, and 5 in which a projection of the central surface area, not including the peripheral edge of the piezoelectric element, onto the top surface of the top cover defines a central zone of the top surface of the top cover, and also - a control unit, which is electrically connected to the electrically conductive element 10 and to the piezoelectric element, and in which preferably the control unit is connected to the electrically conductive element by means of a first electrical connection, for example a first wire, and to the piezoelectric element by means of a second electrical connection, for example a second wire, and which control unit is configured to receive an electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed 15 by the impact of a hydrometeor falling onto the top surface of the top cover, and in which the precipitation sensor is configured in such a manner that the electric signal which is generated by the piezoelectric element when the piezoelectric element is deformed by the impact of a hydrometeor falling onto the top surface of the top cover comprises a first type of waveform when the hydrometeor falls inside the central zone of the top surface of the top 20 cover or a second type of waveform when the hydrometeor falls outside the central zone of the top surface of the top cover, which second type of waveform is distinct from the first type of waveform, and in which the method comprises: analysing and processing the electric signal by means of the control unit in such a 25 manner that the electric signal is identified as a proper measurement when the electric signal comprises the first type of waveform and is identified as an improper measurement when the electric signal comprises the second type of waveform.
One or more of the features described above and/or one or more of the features of claim 1 and/or the claims dependent on claim 1 may be combined, separately or in 30 combination, with the method described above. The same or similar technical effects and advantages apply to this method.
The invention will now be explained with reference to an exemplary embodiment shown in the accompanying drawings.
Figure 1 is a perspective view of a precipitation measurement system according to 35 the invention.
Figure 2 is a cross-sectional view according to ll-ll in figure 1.
Figure 3 is a cross-sectional view according to Ill-Ill in figure 2.
9
Figures 4a, 4b are graphs in the time domain showing voltage signals generated by a raindrop falling on a central zone of the top cover and a raindrop falling on an edge zone of the top cover, respectively.
Figures 5a, 5b are graphs in the frequency domain showing voltage signals 5 generated by a raindrop falling on a central zone of the top cover and a raindrop falling on an edge zone of the top cover, respectively.
The precipitation measurement system is designated in its entirety by reference numeral 1. The precipitation measurement system 1 comprises a precipitation sensor 2 and a control unit 3, which is connected to the precipitation sensor 2. In the exemplary 10 embodiment shown in figure 1, a single precipitation sensor 2 is connected to the control unit 3 by means of a cable 4. Of course, the connection between the precipitation sensor 2 and the control unit 3 may also be wireless. Furthermore, it is possible according to the invention that a plurality of precipitation sensors 2 are connected to the control unit 3 so as to form a network of interconnected precipitation sensors (not shown). In addition, the control unit 3 15 can also be integrated with the precipitation sensor 2, and, optionally, a plurality of precipitation sensors 2 with integrated control units 3 may be connected to each other so as to form a network of interconnected precipitation sensors (not shown).
The precipitation sensor 2 comprises a casing 5, which is provided with a bottom 6, a peripheral wall 7 which extends from the bottom 6, and a top cover or roof member 8 which 20 is arranged on top of the peripheral wall 7. The top cover 8 may be integrated with the peripheral wall 7 and/or the bottom 6 of the casing 5. For example, the casing 5, the bottom 6 and the top cover 8 are made of polyvinyl chloride (PVC), which has water repellent properties and relatively low costs. A watertight junction between the PVC casing 5 and the PVC top cover 8 can be made using glue. Of course, the casing 5 may also be made of any 25 other type of material.
The top cover 8 has a top surface 9 which is configured to receive the impact of falling hydrometeors. The top cover 8 is shaped to prevent accumulation of water, for example it may have a domed shape. The top cover 8 has a bottom surface 10 which is facing away from the top surface 9 towards the interior of the casing 5 (see figure 2). The 30 bottom surface 10 is substantially flat. As shown in figure 2, the top cover 9 forms a solid part.
A transducer member 11 is arranged onto the bottom surface 10 of the top cover 8. The transducer member 11 comprises a layered structure which is provided with an electrically conductive element 12 and a piezoelectric element 14. The electrically conductive 35 element 12 and the piezoelectric element 14 are substantially flat. The thickness of the transducer member 11 is approximately 0.5-1 mm. In this exemplary embodiment, the electrically conductive element 12 is formed by a metal disc. The thickness of the metal disc 10 12 is approximately 0.25-0.5 mm. The metal disc 12 is connected to the bottom surface 10 of the top cover 8 by means of a connecting layer 19, for example an adhesive layer. Although it is not essential, in this exemplary embodiment the bottom surface 10 of the top cover 8 has an internal diameter corresponding to the external diameter of the metal disc 12. The 5 piezoelectric element 14 is situated below the metal disc 12. The connecting layer 19 ensures that the impact of a hydrometeor when it falls onto the top surface 9 of the top cover 8 is transferred effectively in a substantially vertical straight line through the material of the top cover 8 and through the material of the connecting layer 19 to the transducer member 11.
The piezoelectric element 14 comprises a disc-like layer 15 made from a piezoelectric 10 material. The piezoelectric material comprises, for example, ceramic such as lead zirconate titanate (PZT), barium titanate and/or lead titanate. The piezoelectric material may also comprise other materials, for example quartz. The piezoelectric material 15 is metallised on its upper and lower sides so as to form electrodes 16, 17. The layer of piezoelectric material 15 defines a peripheral edge of the piezoelectric element 14. In this exemplary embodiment, 15 the thickness of the piezoelectric material 15 and the electrodes 16, 17 in total is 0.25-0.5 mm. The metal disc 12 is connected to the upper electrode 17 of the piezoelectric element 14 by means of a conductive adhesive layer 18 so that the piezoelectric element 14 is bonded to the metal disc 12 substantially over its entire surface area by means of the upper electrode 17 and the conductive adhesive layer 18. Thus it is ensured that the impact of a 20 hydrometeor is transferred effectively. Alternatively, the upper electrode 17 and the conductive adhesive layer 18 may be integrated into a single layer (not shown).
As shown in figure 3 the metal disc 12 and the piezoelectric element 14 are aligned co-axially with respect to each other. The metal disc 12 and the piezoelectric element 14 are both substantially round. The diameter of the metal disc 12 is greater than the diameter of 25 the piezoelectric element 14. For example, the diameter of the metal disc 12 is approximately 5 cm, whereas the diameter of the piezoelectric element 14 is approximately 3 cm. As a result, an annular edge surface area A is formed between the peripheral edge of the piezoelectric element 14, including said peripheral edge, and a peripheral edge of the top cover 8. A vertical projection of the annular edge surface area A onto the top surface 9 of the 30 top cover 8 defines an annular edge zone A’ of the top surface 9 of the top cover 8. Likewise, a central surface area B is defined inside the peripheral edge of the piezoelectric element 14. When the central surface area B is projected along a vertical axis onto the top surface 9 of the top cover 8, it defines a central zone B’ of the top surface 9 of the top cover 8 (see figure 2).
35 The control unit 3 is connected to the metal disc 12 by means of a first wire 22 and to the piezoelectric element 14 by means of a second wire 21. The wires 21, 22 extend through the cable 4 to the control unit 3. Consequently, the control unit 3 is configured to receive an 11 electric signal which is generated by the piezoelectric element 14 when the piezoelectric element 14 is deformed by the impact of a hydrometeor falling onto the top surface 9 of the top cover 8.
Figures 4a and 4b show that the waveform of said voltage signal in the time domain 5 depends on the impingement point of the hydrometeor on the top surface 9 of the top cover 8. The electric signal comprises a first type of waveform (see figure 4a) when the hydrometeor falls inside the central zone B’ of the top surface 9 of the top cover 8, whereas a second type of waveform is generated (see figure 4b) when the hydrometeor falls inside the annular edge zone A’ of the top surface 9 of the top cover 8. The second type of waveform is 10 also generated when the drop impinges to the side of the peripheral wall 7 of the casing 5.
In this exemplary embodiment, the first type of waveform shown in figure 4a is a substantially undistorted damping sine waveform, whereas the second type of waveform shown in figure 4b is highly distorted. The substantially undistorted damping sine waveform comprises a substantially smooth envelope. Of course, the first type of waveform may 15 deviate to a certain extent from the damping sine waveform shown in figure 4a. However, in this case, the waveform will still comprise a substantially smooth envelope. For the highly distorted waveform shown in figure 4b a substantially smooth envelope cannot be defined. Thus, the first and second type of waveforms shown in figures 4a and 4b can be distinguished from each other by means of envelope detection.
20 The control unit 3 comprises an envelope detector to identify if the electric signal comprises a substantially smooth envelope. The envelope detector is configured to obtain an envelope of the electric signal by identifying successive peak values in the electric signal and determining an imaginary connecting line between the identified successive peak values. In this exemplary embodiment, it is determined with the aid of a predetermined criterion on the 25 basis of the smoothness of the envelope of the electric signal if the electric signal is classified as a first type of waveform or a second type of waveform. In this exemplary embodiment, when the electric signal does not comprise a substantially undistorted damping sine waveform, the waveform will be highly distorted. The control unit 3 is configured to analyse and process the electric signal in such a manner that the electric signal is identified as a 30 proper measurement when the electric signal comprises a substantially undistorted damping sine waveform and is identified as an improper measurement when the electric signal comprises a highly distorted waveform.
The control unit 3 is configured to determine the size of the hydrometeor on the basis of the electric signal when the electric signal is identified as a proper measurement. The 35 control unit 3 is configured to store in a memory the size of each hydrometeor determined on the basis of the electric signal corresponding to said hydrometeor only if the electric signal is 12 identified as a proper measurement. In addition, the control unit 3 is configured to discard the electric signal when the electric signal is identified as an improper measurement.
The control unit is configured to determine the precipitation rate on the basis of the sizes of hydrometeors stored in the memory. The precipitation rate is defined by the volume 5 of water in the form of precipitation that falls onto the top surface 9 of the top cover 8 of the precipitation sensor 2 per unit of area and per unit of time. The precipitation rate is a measure for the intensity of precipitation. If the electric signal is identified as a proper measurement, said voltage signal is stored in the memory and taken into account for calculating the precipitation rate. However, if the electric signal is identified as an improper 10 measurement, said voltage signal is not stored in the memory and disregarded when calculating the precipitation rate. By counting the number of hydrometeors per unit time the precipitation rate can be calculated.
In an alternative embodiment according to the invention, the control unit 3 is configured to condition the electric signal when the electric signal is identified as an improper 15 measurement and to determine the size of the hydrometeor on the basis of the conditioned voltage signal. In this case, the control unit 3 may be configured to store in the memory as well the size of each hydrometeor determined on the basis of the conditioned voltage signal corresponding to said hydrometeor.
Instead of analysing the waveform in the time domain as shown in figures 4a and 4b, 20 the first type of waveform and the second type of waveform can also be distinguished from each other in the frequency domain. Figures 5a and 5b show that the waveform of the voltage signal in the frequency domain also depends on the impingement point of the hydrometeor on the top surface 9 of the top cover 8. The electric signal comprises a first type of waveform (see figure 5a) when the hydrometeor falls inside the central zone B’ of the top 25 surface 9 of the top cover 8, whereas a second type of waveform is generated (see figure 5b) when the hydrometeor falls inside the annular edge zone A’ of the top surface 9 of the top cover 8. The second type of waveform is also generated when the drop impinges to the side of the peripheral wall 7 of the casing 5. The control unit may be modified accordingly.
The invention is not limited to the embodiments described above. The skilled person 30 may make various variations and modifications without departing from the scope of the invention.

Claims (19)

1. Neerslagmeetsysteem, omvattende: - een neerslagsensor (2) die is voorzien van: - een bovenste bedekking (8) omvattende een bovenoppervlak (9) dat is uitgevoerd voor het opnemen van de stootkracht van vallende 5 hydrometeoren, en een onderoppervlak (10) dat is afgekeerd van het bovenoppervlak (9), - een opnemerorgaan (11) omvattende: • een elektrisch geleidend element (12), • een piëzo-elektrisch element (14), dat is voorzien van een 10 omtreksrand en een centraal oppervlakgebied (B) dat is bepaald binnen de omtreksrand, welk piëzo-elektrisch element (14) is aangebracht op het elektrisch geleidende element (12) en daarmee elektrisch geleidend is verbonden, en welk opnemerorgaan (11) is verbonden met het onderoppervlak (10) 15 van de bovenste bedekking (8) zodanig dat het piëzo-elektrische element (14) wordt vervormd door de stootkracht van een hydrometeoor als deze op het bovenoppervlak (9) van de bovenste bedekking (8) valt, en waarbij een projectie van het centrale oppervlakgebied (B), de 20 omtreksrand van het piëzo-elektrisch element (14) niet inbegrepen, op het bovenoppervlak (9) van het bovenste bedekking (8) een centrale zone (B’) van het bovenoppervlak (9) van de bovenste bedekking (8) bepaalt, alsmede 25. een regeleenheid (3), die elektrisch is verbonden met het elektrisch geleidende element (12) en met het piëzo-elektrisch element (14), en welke regeleenheid (3) is uitgevoerd voor het ontvangen van een elektrisch signaal dat wordt gegeneerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die op het 30 bovenoppervlak (9) van de bovenste bedekking (8) valt, met het kenmerk, dat de neerslagsensor (2) zodanig is uitgevoerd dat het elektrische signaal dat wordt gegeneerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die op het bovenoppervlak van de bovenste bedekking (8) valt, een eerste soort golfvorm omvat als de hydrometeoor binnen de centrale zone (B’) van het bovenoppervlak (9) van de bovenste bedekking (8) valt of een tweede soort golfvorm omvat als de hydrometeoor buiten de centrale zone (B’) van het bovenoppervlak (9) van de 5 bovenste bedekking (8) valt, welke tweede soort golfvorm zich onderscheidt van de eerste soort golfvorm, en de regeleenheid (3) is uitgevoerd voor het analyseren en verwerken van het elektrische signaal zodanig dat het elektrische signaal wordt geïdentificeerd als een juiste meting als het elektrische signaal de eerste soort golfvorm omvat en wordt 10 geïdentificeerd als een onjuiste meting als het elektrische signaal de tweede soort golfvorm omvat.A precipitation measurement system, comprising: - a precipitation sensor (2) comprising: - an upper cover (8) comprising an upper surface (9) which is designed to take the impact of falling hydrometeors, and a lower surface (10) which is remote from the upper surface (9), - a sensor member (11) comprising: • an electrically conductive element (12), • a piezoelectric element (14), which is provided with a peripheral edge and a central surface area (B ) defined within the peripheral edge, which piezoelectric element (14) is arranged on the electrically conductive element (12) and electrically conductively connected thereto, and which sensor member (11) is connected to the lower surface (10) of the upper cover (8) such that the piezoelectric element (14) is distorted by the impact force of a hydrometer as it falls on the upper surface (9) of the upper cover (8), and where a projection of the central The surface area (B), not including the peripheral edge of the piezoelectric element (14), on the upper surface (9) of the upper cover (8) a central zone (B ') of the upper surface (9) of the upper covering (8) and 25. a control unit (3), which is electrically connected to the electrically conductive element (12) and to the piezoelectric element (14), and which control unit (3) is designed to receive an electrical signal generated by the piezoelectric element (14) when the piezoelectric element (14) is distorted by the impact force of a hydrometre that falls on the upper surface (9) of the upper cover (8), with characterized in that the precipitation sensor (2) is embodied such that the electrical signal generated by the piezoelectric element (14) as the piezoelectric element (14) is distorted by the impact force of a hydrometer on the upper surface of the upper b cover (8), a first waveform type if the hydromete falls within the central zone (B ') of the upper surface (9) of the upper cover (8) or a second waveform type if the hydromete is outside the central zone ( B ') falls from the upper surface (9) of the upper cover (8), which second type of waveform differs from the first type of waveform, and the control unit (3) is designed for analyzing and processing the electrical signal such that the electrical signal is identified as a correct measurement if the electrical signal comprises the first type of waveform and is identified as an incorrect measurement if the electrical signal comprises the second type of waveform. 2. Neerslagmeetsysteem volgens conclusie 1, waarbij het elektrische signaal omvattende de eerste soort golfvorm is voorzien van een in hoofdzaak gladde 15 envelope in het tijddomein, en waarbij het elektrische signaal omvattende de tweede soort golfvorm zodanig is vervormd dat een in hoofdzaak gladde envelope in het tijddomein niet kan worden bepaald, en waarbij de regeleenheid (3) is voorzien van een envelope detector om te identificeren of het elektrische signaal een in hoofdzaak gladde envelope in het tijddomein omvat. 202. Precipitation measurement system as claimed in claim 1, wherein the electrical signal comprising the first type of waveform is provided with a substantially smooth envelope in the time domain, and wherein the electrical signal comprising the second type of waveform is distorted such that a substantially smooth envelope is formed in the time domain. time domain cannot be determined, and wherein the control unit (3) is provided with an envelope detector to identify whether the electrical signal comprises a substantially smooth envelope in the time domain. 20 3. Neerslagmeetsysteem volgens conclusie 2, waarbij de envelope detector is uitgevoerd om een envelope van het elektrische signaal in het tijddomein te verkrijgen door het identificeren van opeenvolgende piekwaarden in het elektrische signaal en het analyseren van een denkbeeldige verbindingslijn tussen de 25 geïdentificeerde opeenvolgende piekwaarden.3. Precipitation measurement system according to claim 2, wherein the envelope detector is arranged to obtain an envelope of the electrical signal in the time domain by identifying consecutive peak values in the electrical signal and analyzing an imaginary connecting line between the identified consecutive peak values. 4. Neerslagmeetsysteem volgens een van de voorgaande conclusies , waarbij de regeleenheid (3) is uitgevoerd voor het classificeren van het elektrische signaal in het 30 tijddomein met behulp van een vooraf bepaald criterium op basis van de gladheid van de envelope van het elektrische signaal in het tijddomein, in een elektrisch signaal omvattende de eerste soort golfvorm en een elektrisch signaal omvattende de tweede soort golfvorm.4. Precipitation measuring system according to one of the preceding claims, wherein the control unit (3) is designed for classifying the electrical signal in the time domain using a predetermined criterion based on the smoothness of the envelope of the electrical signal in the time domain, in an electrical signal comprising the first type of waveform and an electrical signal comprising the second type of waveform. 5. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij het elektrische signaal omvattende de eerste soort golfvorm omvat een golfvorm van een in hoofdzaak onvervormde gedempte sinus, en waarbij het elektrische signaal omvattende de tweede soort golfvorm vervormd is.A precipitation measurement system according to any of the preceding claims, wherein the electrical signal comprising the first type of waveform comprises a waveform of a substantially undistorted damped sine, and wherein the electrical signal comprising the second type of waveform is distorted. 6. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij de regeleenheid (3) is uitgevoerd voor het classificeren van het elektrische signaal in het frequentiedomein met behulp van een vooraf bepaald criterium op basis van een variabele van het elektrische signaal in het frequentiedomein, in een elektrisch signaal omvattende de eerste soort golfvorm of een elektrisch signaal omvattende de 10 tweede soort golfvorm.A precipitation measurement system according to any one of the preceding claims, wherein the control unit (3) is designed to classify the electrical signal in the frequency domain using a predetermined criterion based on a variable of the electrical signal in the frequency domain, in a an electrical signal comprising the first type of waveform or an electrical signal comprising the second type of waveform. 7. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij de regeleenheid (3) is uitgevoerd om de grootte van de hydrometeoor te bepalen op basis van het elektrische signaal als het elektrische signaal wordt geïdentificeerd als 15 een juiste meting.7. Precipitation measurement system according to any one of the preceding claims, wherein the control unit (3) is designed to determine the size of the hydrometer based on the electrical signal if the electrical signal is identified as a correct measurement. 8. Neerslagmeetsysteem volgens conclusie 7, waarbij de regeleenheid (3) is uitgevoerd om de grootte van elke hydrometeoor die is bepaald op basis van het elektrische signaal dat overeenkomt met die hydrometeoor op te slaan in een 20 geheugen.8. Precipitation measuring system according to claim 7, wherein the control unit (3) is designed to store the magnitude of each hydromete determined on the basis of the electrical signal corresponding to that hydromete in a memory. 9. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij regeleenheid (3) is uitgevoerd om het elektrische signaal te verwijderen als het elektrische signaal is geïdentificeerd als een onjuiste meting. 25A precipitation measurement system according to any one of the preceding claims, wherein control unit (3) is arranged to remove the electrical signal if the electrical signal is identified as an incorrect measurement. 25 10. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij de regeleenheid (3) is uitgevoerd voor het bewerken van het elektrische signaal als het elektrische signaal is geïdentificeerd als een onjuiste meting en voor het bepalen van de grootte van de hydrometeoor op basis van het bewerkte elektrische signaal. 30A precipitation measurement system according to any one of the preceding claims, wherein the control unit (3) is designed for processing the electrical signal if the electrical signal is identified as an incorrect measurement and for determining the size of the hydrometer based on the processed electrical signal. 30 11. Neerslagmeetsysteem volgens conclusie 10, waarbij de regeleenheid (3) is uitgevoerd om de grootte van elke hydrometeoor die is bepaald op basis van het bewerkte elektrische signaal dat overeenkomt met die hydrometeoor op te slaan in een geheugen. 35A precipitation measurement system according to claim 10, wherein the control unit (3) is arranged to store the magnitude of each hydrometer measured on the basis of the processed electrical signal corresponding to that hydrometer. 35 12. Neerslagmeetsysteem volgens conclusie 8 of 11, waarbij de regeleenheid (3) is uitgevoerd voor het bepalen van de neerslaghoeveelheid op basis van de grootte van de hydrometeoren die zijn opgeslagen in het geheugen.A precipitation measurement system according to claim 8 or 11, wherein the control unit (3) is designed to determine the precipitation amount based on the size of the hydrometeists stored in the memory. 13. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij het piëzo-elektrisch element (14) is voorzien van een laag piëzo-elektrisch materiaal (15) die aan weerszijden is voorzien van een elektrodelaag (16,17), en waarbij de omtreksrand van het piëzo-elektrisch element (14) is gevormd door de omtreksrand 10 van de laag piëzo-elektrisch materiaal (15).A precipitation measurement system according to any one of the preceding claims, wherein the piezoelectric element (14) is provided with a layer of piezoelectric material (15) which is provided on both sides with an electrode layer (16, 17), and wherein the peripheral edge of the piezoelectric element (14) is formed by the peripheral edge 10 of the layer of piezoelectric material (15). 14. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij het elektrisch geleidende element (12) is verbonden met het piëzo-elektrisch element (14) over het gehele centrale oppervlakgebied van het piëzo-elektrisch element (14), 15 bijvoorbeeld door middel van een geleidende hechtlaag (18).14. Precipitation measurement system according to any of the preceding claims, wherein the electrically conductive element (12) is connected to the piezoelectric element (14) over the entire central surface area of the piezoelectric element (14), for example by means of a conductive adhesive layer (18). 15. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij het opnemerorgaan (11) is verbonden met het onderoppervlak (10) van de bovenste bedekking (8) door middel van een verbindingslaag (19). 20A precipitation measurement system according to any of the preceding claims, wherein the sensor member (11) is connected to the lower surface (10) of the upper cover (8) by means of a connecting layer (19). 20 16. Neerslagmeetsysteem volgens een van de voorgaande conclusies , waarbij het elektrisch geleidende element (12) en het piëzo-elektrisch element (14) coaxiaal ten opzichte van elkaar zijn uitgelijnd, en waarbij de grootte van het elektrisch geleidende element (12) groter is dan de grootte van het piëzo-elektrisch element 25 (14).A precipitation measurement system according to any of the preceding claims, wherein the electrically conductive element (12) and the piezoelectric element (14) are coaxially aligned with each other, and wherein the size of the electrically conductive element (12) is greater than the size of the piezoelectric element 25 (14). 17. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij het bovenoppervlak (9) van de bovenste bedekking (8) is voorzien van een ringvormige randzone (A’) die is bepaald tussen een projectie van de omtreksrand 30 van het piëzo-elektrisch element (14), die omtreksrand inbegrepen, op het bovenoppervlak (9), en een buitenste omtreksrand van het bovenoppervlak (9) van de bovenste bedekking (8), en waarbij het elektrische signaal dat wordt gegenereerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die op het bovenoppervlak van de bovenste bedekking (8) valt, de tweede soort golfvorm omvat als de hydrometeoor in de ringvormige randzone (A’) valt.A precipitation measurement system according to any of the preceding claims, wherein the upper surface (9) of the upper cover (8) is provided with an annular edge zone (A ') defined between a projection of the peripheral edge 30 of the piezoelectric element ( 14) including that peripheral edge on the upper surface (9) and an outer peripheral edge of the upper surface (9) of the upper cover (8), and wherein the electrical signal generated by the piezoelectric element (14) is the piezoelectric element (14) is distorted by the impact force of a hydromete that falls on the upper surface of the upper cover (8), the second type of waveform comprises when the hydromete falls in the annular edge zone (A '). 18. Neerslagmeetsysteem volgens een van de voorgaande conclusies, waarbij de 5 neerslagsensor (2) is voorzien van een behuizing (5) omvattende een omtrekswand (7) en de bovenste bedekking (8), waarbij de omtrekswand (7) een boveneind heeft dat is afgesloten door de bovenste bedekking (8), en waarbij het elektrische signaal dat wordt gegeneerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die tegen de 10 omtrekswand (7) van de behuizing (5) valt, de tweede soort golfvorm omvat.18. Precipitation measuring system according to one of the preceding claims, wherein the precipitation sensor (2) is provided with a housing (5) comprising a circumferential wall (7) and the upper cover (8), the circumferential wall (7) having an upper end that is sealed by the upper cover (8), and wherein the electrical signal generated by the piezoelectric element (14) as the piezoelectric element (14) is distorted by the impact force of a hydrometear which is against the circumferential wall (7) ) falls from the housing (5), the second type of waveform. 19. Werkwijze voor het meten van neerslag, waarin gebruik wordt gemaakt van een neerslagmeetsysteem (1), waarbij het neerslagmeersysteem (1) omvat: 15. een neerslagsensor (2) die is voorzien van: een bovenste bedekking (8) omvattende een bovenoppervlak (9) dat is uitgevoerd voor het opnemen van de stootkracht van vallende hydrometeoren, en een onderoppervlak (10) dat is afgekeerd van het bovenoppervlak (9), 20. een opnemerorgaan (11) omvattende: • een elektrisch geleidend element (12) • een piëzo-elektrisch element (14), dat is voorzien van een omtreksrand en een centaal oppervlakgebied (B) dat is bepaald binnen de omtreksrand, welk piëzo-elektrisch element (14) is 25 aangebracht op het elektrisch geleidende element (12) en daarmee elektrisch geleidend is verbonden, en welk opnemerorgaan (11) is verbonden met het onderoppervlak (10) van de bovenste bedekking (8) zodanig dat het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van 30 een hydrometeoor als deze op het bovenoppervlak (9) van de bovenste bedekking (8) valt, en waarbij een projectie van het centrale oppervlakgebied (B), de omtreksrand van het piëzo-elektrisch element (14) niet inbegrepen, op het bovenoppervlak (9) van de bovenste bedekking (8) een centrale zone (B’) van het van het bovenoppervlak (9) van de bovenste bedekking (8) bepaalt, alsmede - een regeleenheid (3), die elektrisch is verbonden met het elektrisch 5 geleidende element (12) en met het piëzo-elektrisch element (14), en welke regeleenheid (3) is uitgevoerd voor het ontvangen van een elektrisch signaal dat wordt gegeneerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die op het bovenoppervlak (9) van de bovenste bedekking (8) valt, en waarbij 10 de neerslagsensor (2) zodanig is uitgevoerd dat het elektrische signaal dat wordt gegeneerd door het piëzo-elektrisch element (14) als het piëzo-elektrisch element (14) wordt vervormd door de stootkracht van een hydrometeoor die op het bovenoppervlak (9) van de bovenste bedekking (8) valt, een eerste soort golfvorm omvat als de hydrometeoor binnen de centrale zone (B’) van het bovenoppervlak (9) 15 van de bovenste bedekking (8) valt of een tweede soort golfvorm omvat als de hydrometeoor buiten de centrale zone (B’) van het bovenoppervlak (9) van de bovenste bedekking (8) valt, welke tweede soort golfvorm zich onderscheidt van de eerst soort golfvorm, en waarbij de werkwijze omvat: 20 het analyseren en bewerken van het elektrische signaal door middel van de regeleenheid (3) zodanig dat het elektrische signaal wordt geïdentificeerd als een juiste meting als het elektrische signaal de eerste soort golfvorm omvat en wordt geïdentificeerd als een onjuiste meting als het elektrische signaal de tweede soort golfvorm omvat.A method for measuring precipitation, wherein a precipitation measurement system (1) is used, wherein the precipitation measurement system (1) comprises: 15. a precipitation sensor (2) comprising: an upper cover (8) comprising an upper surface ( 9) configured to receive the impact of falling hydrometeors, and a lower surface (10) facing away from the upper surface (9), 20. a sensor member (11) comprising: • an electrically conductive element (12) • a piezoelectric element (14) provided with a peripheral edge and a central surface area (B) defined within the peripheral edge, which piezoelectric element (14) is arranged on the electrically conductive element (12) and hence electrically is conductively connected, and which sensor member (11) is connected to the lower surface (10) of the upper cover (8) such that the piezoelectric element (14) is distorted by the impact force of a hydrometer such as d this falls on the upper surface (9) of the upper cover (8), and wherein a projection of the central surface area (B), not including the peripheral edge of the piezoelectric element (14), on the upper surface (9) of the upper cover (8) defines a central zone (B ') of the upper surface (9) of the upper cover (8), and - a control unit (3) electrically connected to the electrically conductive element (12) and with the piezoelectric element (14), and which control unit (3) is arranged to receive an electrical signal generated by the piezoelectric element (14) when the piezoelectric element (14) is distorted by the impact force of a hydrometer falling on the upper surface (9) of the upper cover (8), and wherein the precipitation sensor (2) is designed such that the electrical signal generated by the piezoelectric element (14) as the piezoelectric element (1 4) is distorted by the impact force of a hydromete that falls on the upper surface (9) of the upper cover (8), comprises a first type of waveform if the hydromete within the central zone (B ') of the upper surface (9) of the upper cover (8) falls or comprises a second type of waveform if the hydrometre falls outside the central zone (B ') of the upper surface (9) of the upper cover (8), which second type of waveform differs from the first type of waveform and wherein the method comprises: analyzing and processing the electrical signal by means of the control unit (3) such that the electrical signal is identified as a correct measurement if the electrical signal comprises the first type of waveform and is identified as an incorrect measurement if the electrical signal comprises the second type of waveform.
NL2008563A 2012-03-29 2012-03-29 Precipitation measurement system and method for measuring precipitation. NL2008563C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2008563A NL2008563C2 (en) 2012-03-29 2012-03-29 Precipitation measurement system and method for measuring precipitation.
PCT/NL2013/050233 WO2013147605A2 (en) 2012-03-29 2013-03-28 Precipitation measurement system and method for measuring precipitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2008563A NL2008563C2 (en) 2012-03-29 2012-03-29 Precipitation measurement system and method for measuring precipitation.
NL2008563 2012-03-29

Publications (1)

Publication Number Publication Date
NL2008563C2 true NL2008563C2 (en) 2013-10-01

Family

ID=48128554

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2008563A NL2008563C2 (en) 2012-03-29 2012-03-29 Precipitation measurement system and method for measuring precipitation.

Country Status (2)

Country Link
NL (1) NL2008563C2 (en)
WO (1) WO2013147605A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905636A1 (en) 2014-02-07 2015-08-12 Deutscher Wetterdienst Hail sensor
DE102014112926A1 (en) * 2014-09-09 2016-03-10 Hochschule Für Technik Und Wirtschaft Des Saarlandes Precipitation sensor, in particular hail sensor, and method for detecting a precipitation particle
CN107409462B (en) 2015-04-01 2020-01-17 飞利浦照明控股有限公司 Precipitation sensing luminaire
DE102018218360B4 (en) * 2018-10-26 2021-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SYSTEM AND METHOD FOR DETERMINING PARTICLE IMPACT ON A SAMPLE
US20210405254A1 (en) * 2018-11-06 2021-12-30 Understory, Inc. Rain sensor
IT201800010691A1 (en) * 2018-11-29 2020-05-29 Univ Degli Studi Di Palermo DEVICE AND METHOD FOR MEASURING THE ENERGY CHARACTERISTICS OF THE PRECIPITATIONS
CN115079311A (en) * 2022-06-15 2022-09-20 杭州鲁尔物联科技有限公司 Rainfall calculation method and device based on envelope curve, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10330128A1 (en) * 2003-07-04 2005-01-27 Hochschule Für Technik Und Wirtschaft Des Saarlandes Precipitation, especially hail, sensor, comprises an impact plate with piezoelectric transducer arranged at a distance from it and linked to it by a solid body that serves to transmit vibrations to it
US20060241875A1 (en) * 2003-07-01 2006-10-26 Juhani Aspola Method and device for hydrometeor detection
US20120031181A1 (en) * 2009-04-22 2012-02-09 Atte Salmi Method and device for detecting hydrometeors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116322B (en) 2001-09-24 2005-10-31 Vaisala Oyj Rain and hail sensors and procedure for measuring rainfall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241875A1 (en) * 2003-07-01 2006-10-26 Juhani Aspola Method and device for hydrometeor detection
DE10330128A1 (en) * 2003-07-04 2005-01-27 Hochschule Für Technik Und Wirtschaft Des Saarlandes Precipitation, especially hail, sensor, comprises an impact plate with piezoelectric transducer arranged at a distance from it and linked to it by a solid body that serves to transmit vibrations to it
US20120031181A1 (en) * 2009-04-22 2012-02-09 Atte Salmi Method and device for detecting hydrometeors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LICZNAR P ET AL: "Microprocessor field impactometer calibration: do we measure drops' momentum or their kinetic energy?", JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY AMERICAN METEOROLOGICAL SOCIETY USA, vol. 25, no. 5, May 2008 (2008-05-01), pages 742 - 753, XP002691173, ISSN: 0739-0572 *
MARTIN LÃFFLER-MANG ET AL: "Characteristics of a new automatic hail recorder", ATMOSPHERIC RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 100, no. 4, 27 October 2010 (2010-10-27), pages 439 - 446, XP028206081, ISSN: 0169-8095, [retrieved on 20101101], DOI: 10.1016/J.ATMOSRES.2010.10.026 *

Also Published As

Publication number Publication date
WO2013147605A2 (en) 2013-10-03
WO2013147605A3 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
NL2008563C2 (en) Precipitation measurement system and method for measuring precipitation.
US7249502B2 (en) Precipitation/hail sensor and method for precipitation rate measurement
US8448507B2 (en) Method and device for detecting hydrometeors
CN104316980B (en) piezoelectric type rainfall measuring device
EP1720043A1 (en) Apparatus and method for measuring wind and rain
US10451467B2 (en) Level sensor and method
US8675449B2 (en) Ultrasound sensor having blockage detection
CN105548287B (en) Grain moisture analyzer, analysis method and grain drying system
WO2016013544A1 (en) Dryness/wetness response sensor having high-speed response and high sensitivity
US9632211B2 (en) Precipitation sensor, especially a hail sensor, and method for detecting a precipitation particle
US20210405254A1 (en) Rain sensor
JPH0452566A (en) Space charge distribution measuring device of cable insulator
US9958574B2 (en) Hail sensor
KR101393370B1 (en) Apparatus for measuring strength and quantity of rainfall
US6601464B1 (en) Particle momentum sensor
CN106596388A (en) Electrochemical sensor for atmospheric corrosion detection of non-magnetic metal material
WO2003027719A1 (en) Precipitation sensor and method for precipitation rate measurement
AU2004259902A1 (en) Noncontact sensor
Hayashi et al. Development of a Compact Power-Saving Sensor Using Strain Gauges for Rainfall Estimation
RU190327U1 (en) A device for measuring the parameters of space meteoroid and technogenic particles and the study of their influence on the properties of satellite building materials
JPH0743369A (en) Analyzer with liquid level sensor
JP2005257614A (en) Device for determining degradation of oil
CN110907074A (en) Pressure sensor based on surface enhanced Raman scattering
CN115792493A (en) Cable terminal fault monitoring sensor, device and method
JPH03170028A (en) Level gauge

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20180401