JP2005331369A - Gps受信装置およびgps受信装置における同期保持方法 - Google Patents

Gps受信装置およびgps受信装置における同期保持方法 Download PDF

Info

Publication number
JP2005331369A
JP2005331369A JP2004150030A JP2004150030A JP2005331369A JP 2005331369 A JP2005331369 A JP 2005331369A JP 2004150030 A JP2004150030 A JP 2004150030A JP 2004150030 A JP2004150030 A JP 2004150030A JP 2005331369 A JP2005331369 A JP 2005331369A
Authority
JP
Japan
Prior art keywords
signal
frequency
code
synchronization
variable frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150030A
Other languages
English (en)
Inventor
Haruo Kanetsuna
治男 金綱
Tomohisa Takaoka
呂尚 高岡
Manabu Tsuchiya
学 土屋
Tomoya Iwasaki
友哉 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004150030A priority Critical patent/JP2005331369A/ja
Publication of JP2005331369A publication Critical patent/JP2005331369A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】捕捉している衛星からの電波が弱くなった場合においても、できるだけコスタスループの引き込み状態を維持することができるようにする。
【解決手段】人工衛星からの受信信号が弱信号であって、コスタスループにおける可変周波数発振器の出力信号として、中間周波数信号に同期する信号を得ることが困難であるとき、コスタスループにおける可変周波数発振器へのループ制御を停止すると共に、コスタスループの可変周波数発振器の発振周波数を、DLLの可変周波数発振器の発振周波数から計算した周波数となるように制御する。
【選択図】図7

Description

この発明は、GPS(Global Positioning System)受信装置およびGPS受信装置における同期保持方法に関する。
人工衛星(以下、GPS衛星という)を利用して移動体の位置を測定するGPSシステムにおいて、GPS受信装置は、4個以上のGPS衛星からの信号を受信し、その受信信号から受信装置の位置を計算し、ユーザに知らせることが基本機能である。
GPS受信装置は、GPS衛星からの受信信号(以下、この信号をGPS衛星信号という)を復調してGPS衛星の軌道データを獲得し、GPS衛星の軌道および時間情報とGPS衛星信号の遅延時間から、自受信装置の3次元位置を連立方程式により導き出す。測位演算のために4個のGPS衛星からの信号が必要となるのは、GPS受信装置内部の時間と衛星の時間とで誤差があり、その誤差の影響を除去するためである。
民生用GPS受信装置の場合には、GPS衛星(Navstar)からのL1帯、C/A(Clear and Aquisition)コードと呼ばれる拡散符号によりスペクトラム拡散された信号電波を受信して、測位演算を行なう。
C/Aコードは、送信信号速度(チップレート)が1.023MHz、符号長が1023のPN(pseudo random noise;擬似ランダム雑音)系列の符号、例えばGold符号からなる拡散符号である。そして、GPS衛星からの信号は、50bpsのデータを拡散符号を用いてスペクトラム拡散した信号により、周波数が1575.42MHzのキャリアをBPSK(Binary Phase Shift Keying)変調した信号である。この場合、符号長が1023であるので、C/Aコードは、PN系列の符号が、図9(A)に示すように、1023チップを1周期(したがって、1周期=1ミリ秒)として、繰り返すものとなっている。
このC/AコードのPN系列の符号は、GPS衛星ごとに異なっているが、どのGPS衛星が、どのPN系列の符号を用いているかは、予めGPS受信装置で検知できるようにされている。また、後述するような航法メッセージ(軌道情報)によって、GPS受信装置では、どのGPS衛星からの信号を、その地点およびその時点で受信できるかが判るようになっている。したがって、GPS受信装置では、例えば3次元測位であれば、その地点およびその時点で取得できる4個以上のGPS衛星からの電波を受信して、スペクトラム逆拡散し、測位演算を行って、自分の位置を求めるようにする。
そして、図9(B)に示すように、衛星信号データ(航法メッセージデータ)の1ビットは、PN系列の符号の20周期分、つまり、20ミリ秒単位として伝送される。つまり、データ伝送速度は、50bpsである。PN系列の符号の1周期分の1023チップは、ビットが“1”のときと、“0”のときとでは、反転したものとなる。
図9(C)に示すように、GPSでは、30ビット(600ミリ秒)で1ワードが形成される。そして、図9(D)に示すように、10ワードで、1サブフレーム(6秒)が形成される。図9(E)に示すように、1サブフレームの先頭のワードには、データが更新されたときであっても常に規定のビットパターンとされるプリアンブルが挿入され、このプリアンブルの後にデータが伝送されてくる。
さらに、5サブフレームで、1メインフレーム(30秒)が形成される。そして、航法メッセージは、この1メインフレームのデータ単位で伝送されてくる。この1メインフレームのデータのうちの始めの3個のサブフレームは、エフェメリス情報と呼ばれる衛星毎に固有の軌道情報である。このエフェメリス情報は、1メインフレーム単位(30秒)で繰り返し送られるものであり、その情報を送信してくる衛星の軌道を求めるためのパラメータと、衛星からの信号の送出時刻とを含む。
すなわち、エフェメリス情報の3個のサブフレームの2番目のワードには、TOW(Time Of Week)が含まれ、メインフレームの最初のサブフレーム1の3番目のワードには、Week Numberと呼ばれる時刻データが含まれる。Week Numberは、1980年1月6日(日曜日)を第0週として1週ごとにカウントアップする情報である。また、TOWは、日曜日の午前0時を0として6秒(サブフレームの周期)ごとにカウントアップする時間の情報である。
GPS衛星のすべては、原子時計を備え、共通の時刻データを用いており、各GPS衛星からの信号の送出時刻は、原子時計に同期したものとされている。上記の2つの時刻データを受信することにより絶対時刻を求める。6秒以下の値は、衛星の電波に同期ロックする過程で、そのGPS受信装置が備える基準発振器の精度で、衛星の時刻に同期するようにする。
また、各GPS衛星のPN系列の符号も、原子時計に同期したものとして生成される。また、このエフェメリス情報から、GPS受信装置における測位計算の際に用いられる衛星の位置および衛星の速度が求められる。
エフェメリス情報は、地上の管制局からの制御により比較的頻繁に更新される精度の高い暦である。GPS受信装置では、このエフェメリス情報をメモリに保持しておくことにより、当該エフェメリス情報を測位計算に使用することができる。しかし、その精度上、使用可能な寿命は、通常、2時間程度とされており、GPS受信装置では、エフェメリス情報をメモリに記憶した時点からの時間経過を監視して、その寿命を超えたときには、メモリのエフェメリス情報を更新して書き換えるようにしている。
なお、新しいエフェメリス情報をGPS衛星から取得して、その取得したエフェメリス情報にメモリの内容を更新するには、最低18秒(3サブフレーム分)が必要であり、サブフレームの途中からデータが取れたときには、連続30秒が必要となる。
1メインフレームのデータの残りの2サブフレームの軌道情報は、アルマナック情報と呼ばれる全ての衛星から共通に送信される情報である。このアルマナック情報は、全情報を取得するために25フレーム分必要となるもので、各GPS衛星のおおよその位置情報や、どのGPS衛星が使用可能かを示す情報などからなる。
このアルマナック情報も、地上の制御局からの制御により少なくとも数日ごとに更新される。このアルマナック情報も、GPS受信装置のメモリに保持して使用することができるが、その寿命は、数か月とされており、時間と共に衛星の位置決定精度は悪くなるが、衛星の大よその位置を知るには十分使用できる。通常、アルマナック情報のGPS受信装置を使用している際に更新するのが普通である。GPS受信装置のメモリに、このアルマナック情報を蓄えておけば、電源投入後、どのチャンネルにどの衛星を割り当てればよいかを計算することができる。
GPS受信装置で、GPS衛星信号を受信して、上述のデータを得るためには、GPS受信装置に用意される、受信しようとするGPS衛星で用いられているC/Aコードと同じPN系列の符号(以下、この明細書では、PN系列の拡散符号をPN符号と記す。そして、GPS衛星のPN系列の拡散符号を衛星PN符号と呼び、GPS受信装置の対応するPN系列の拡散符号をレプリカPN符号と呼ぶこととする)を用いて、そのGPS衛星信号について、C/Aコードの位相同期を取ることによりGPS衛星信号を捕捉し、スペクトラム逆拡散を行なう。C/Aコードとの位相同期が取れて、逆拡散が行われると、ビットが検出されて、GPS衛星信号から時刻情報等を含む航法メッセージを取得することが可能になる。
GPS衛星信号の捕捉は、C/Aコードの位相同期検索により行われるが、この位相同期検索においては、GPS受信装置のレプリカPN符号とGPS衛星の衛星PN符号との相関を検出し、例えば、その相関検出結果の相関値が予め定めた値よりも大きい時に、両者が同期していると判定する。そして、同期が取れていないと判別されたときには、何らかの同期手法を用いて、GPS受信装置のレプリカPN符号の位相を制御して、衛星PN符号と同期させるようにしている。
ところで、上述したように、GPS衛星信号は、データを衛星PN符号で拡散した信号によりキャリアをBPSK変調した信号であるので、当該GPS衛星信号をGPS受信装置が受信するには、PN符号のみでなく、キャリアおよびデータの同期をとる必要があるが、PN符号とキャリアの同期は独立に行なうことはできない。
そして、GPS受信装置では、受信信号は、そのキャリア周波数を数MHz以内の中間周波数に変換して、その中間周波数信号で、上述の同期検出処理するのが普通であるが、この中間周波数信号におけるキャリア周波数(中間周波キャリア周波数(以下、IFキャリア周波数という))には、主にGPS衛星の移動速度に応じたドップラーシフトによる周波数誤差と、受信信号を中間周波数信号に変換したときに、GPS受信装置内部で発生させる局部発振器の周波数誤差分が含まれる。この中間周波数信号に含まれる局部発振器の周波数誤差分を、以下、中間周波キャリア誤差(以下,IFキャリア誤差という)という。
ここで、受信信号のIFキャリア周波数をfIF、定められているIFキャリア周波数をFIF、GPS衛星のドップラーシフトをfD、IFキャリア誤差をΔfIFとすると、前記IFキャリア周波数fIFは、
IF=FIF+fD+ΔfIF ・・・(式a)
で表わされる。
上記の周波数誤差要因により、中間周波数信号におけるキャリア周波数は未知であり、その周波数サーチを行なって、中間周波キャリア(以下、IFキャリアという)の同期を取る必要がある。また、PN符号の1周期内での同期点(同期位相)は、GPS受信装置とGPS衛星との位置関係に依存するのでこれも未知であるから、上述のように、何らかの同期手法が必要となる。
拡散符号およびIFキャリアの同期に時間を要すると、GPS受信装置の反応が遅くなり、使用上において不便を生じる。
従来のGPS受信装置では、周波数サーチを伴うスライディング相関によりキャリアおよび拡散符号についての同期検出を行なうと同時に、DLL(Delay Locked Loop)とコスタスループとにより、同期捕捉および同期保持動作をするようにしている。しかし、スライディング相関による同期捕捉、DLLおよびコスタスループによる同期保持は、原理的に高速な同期捕捉には不向きで、実際のGPS受信装置では、多チャンネル化して並列処理により同期捕捉までの処理を短縮している。
また、特許文献1(特開2003−258769号公報)には、同期捕捉部と同期保持部とを分け、同期捕捉部はマッチドフィルタを用いて構成し、同期保持部はDLLおよびコスタスループを用いて構成することにより、同期捕捉および同期保持を高速に行なえるようにしたものも提案されている。
上記の特許文献は、次の通りである。
特開2003−258769号公報
GPS受信装置では捕捉した衛星の電波が弱くなった場合、キャリア周波数に追従することが難しく、GPS受信装置の位置と速度、衛星の位置と速度、GPS受信装置の基準発振子の周波数誤差がわかっている場合は、コスタスループのフィードバックを止め、コスタスループの可変周波数発振器の発振周波数が、計算で求めた値となるようにコスタスループの可変周波数発振器を制御することでキャリア周波数に対する追従状態を維持できる。
しかし、GPS受信装置の位置、GPS受信装置の速度、衛星の軌道情報、GPS受信装置の基準発振子の周波数誤差のいずれかがわからない場合、コスタスループの可変周波数発振器の発振周波数とすべき周波数設定値を計算できない。
その場合は、通常、コスタスループの可変周波数発振器の発振周波数を、直前の値に保持する等の処理が考えられるが、保持した値が悪かったり、GPS受信装置のふるまいが変化して、前記周波数設定値が本来設定すべき値から大きく隔たってしまったりした場合、DLLも不安定になってしまい同期保持できなくなることもある。
また、同期保持ができた場合でも、その後、信号が強くなったときに、コスタスループの引き込みに時間がかかるため、すぐに測位に使用できないことや引き込みが不十分な状態で測位計算に使用してしまうことも考えられる。
この発明は、以上の点にかんがみ、捕捉している衛星からの電波が弱くなった場合においても、できるだけコスタスループの引き込み状態を維持することができるようにしたGPS受信装置および方法を提供することを目的とする。
上記の課題を解決するために、この発明のGPS受信装置は、
PN符号によりスペクトラム拡散変調されている人工衛星からの受信信号のキャリア周波数を中間周波数に変換して、中間周波数信号を出力する周波数変換手段と、
前記人工衛星からの受信信号の前記PN符号に対応する受信装置側PN符号を発生するPN符号発生手段と、
第1の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第1の制御信号を前記第1の可変周波数発振器に供給し、前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得るようにする第1のループ回路と、
前記PN符号発生手段からの前記PN符号の発生周波数および発生位相を制御するクロック信号を発生する第2の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第2の制御信号を前記第2の可変周波数発振器に供給し、前記受信装置側PN符号が、前記人工衛星からの受信信号のPN符号に同期するようにする第2のループ回路と、
前記人工衛星からの受信信号が弱信号であって、前記第1のループ回路において前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得ることが困難であるとき、前記第1のループ回路における前記第1の可変周波数発振器への前記第1の制御信号の供給を停止すると共に、前記第1の可変周波数発振器の発振周波数を、前記第2の可変周波数発振器の発振周波数から計算した周波数となるように制御する制御手段と、
を備えることを特徴とする。
上述の構成の発明においては、制御手段により、衛星からの受信信号が弱くなって、第1のループ回路における中間周波数信号についての同期を保持することが困難な状況になったときには、第1のループ回路の第1の可変周波数発振器の発信周波数を、第2のループ回路の可変周波数発振器の発振周波数に基づいて計算された周波数となるように制御して、第1のループ回路による同期保持をできるだけ継続するようにする。
この発明によれば、衛星からの受信信号(電波)が弱くなった場合でも、第1のループ回路(コスタスループ)における同期保持状態を継続することができる。また、その後、衛星からの受信信号が弱いために、その衛星からの受信信号が測位計算に使用できなくなった場合においても、第1のループ回路の第1の可変周波数発振器の発振周波数は、正しい値に近い値に制御されているので、当該衛星からの受信信号が強くなったときに、当該受信信号の捕捉引き込みが早くなり、直ぐに測位計算に利用でき、また、測位精度も低下しないという効果がある。
以下、この発明によるGPS受信装置および同期保持方法の実施形態を、図を参照しながら説明する。まず、この発明の実施形態に用いるGPS受信装置について説明する。
[GPS受信装置の構成]
以下に説明する実施形態のGPS受信装置は、従来の周波数サーチを伴うスライディング相関と、DLL(Delay Locked Loop)およびコスタスループとにより、キャリアおよびPN符号についての同期捕捉を行なうと同時に同期保持動作をする方法の欠点を改善した構成を備える。
すなわち、周波数サーチを伴うスライディング相関と、DLLおよびコスタスループとにより、IFキャリアおよび衛星PN符号についての同期捕捉を行なうと同時に同期保持動作をするという、従来の手法では、周波数サーチを伴うスライディング相関の方法が、上述したように、原理的に高速同期には不向きであって、拡散符号(PN符号)およびキャリアの同期に時間を要するという欠点があった。そして、このようにPN符号およびキャリアの同期に時間を要すると、GPS受信装置の反応が遅くなり、使用上において不便を生ずる。
従来、実際のGPS受信装置においては、上記の欠点を改善するため、多チャンネル化してパラレルに同期点を探索する必要があり、従来方式のままで大幅なチャンネル増を行なうとGPS受信装置の構成が複雑となると共に、コスト高となり、また、多チャンネルでパラレルに同期点を検索するものであるため、消費電力も大きくなっていた。消費電力の問題は、携帯型のGPS受信装置の場合には大きな問題である。
また、上述の従来の場合には、PN符号およびキャリアの同期捕捉と同期保持とは、周波数サーチを伴うスライディング相関と、DLLおよびコスタスループとにより、一体的に行っているので、例えばGPS衛星からの信号が途切れたときには、同期捕捉および同期保持を、再度、一体的に行なう必要があり、再同期捕捉および同期保持までの時間が長くなってしまうという問題もあった。
さらに、上述の従来の場合には、PN符号およびキャリアの同期捕捉と同期保持とは、周波数サーチを伴うスライディング相関と、DLLおよびコスタスループとにより、一体的に行っているので、GPS受信装置の感度を上げようとすると、原理的に同期捕捉および同期保持のための処理時間がかなり長くなってしまうことから、GPS受信装置の感度を上げることが容易ではないという問題もあった。
この実施形態で用いるGPS受信装置は、以上の問題点を解消できるように構成したもので、基本的な構成は、前記特許文献1に記載されたものと同様である。
[実施形態のGPS受信装置の全体構成]
図1は、この実施形態のGPS受信装置の構成例を示すブロック図であり、周波数変換部10と、同期捕捉部20と、同期保持部30と、制御部40と、GPSアンテナ1と、温度補償付き水晶発振回路からなる基準発振回路2と、タイミング信号生成回路3と、水晶発振回路4とを備えて構成される。
制御部40は、CPU(Central Processing Unit)41に対して、プログラムROM(Read Only Memory)42と、ワークエリア用のRAM(Random Access Memory)43と、実時間(RTC(Real Time Clock))を計測するための時計回路44と、タイマ45と、不揮発性メモリ46とが接続されて構成されている。
タイマ45は、各部の動作に必要な各種タイミング信号の生成および時間参照に使用される。不揮発性メモリ46には、GPS衛星信号から抽出したアルマナック情報およびエフェメリス情報からなる軌道情報が記憶されると共に、電源オフ操作前の電源オン時に得られていたGPS受信装置の位置情報およびIFキャリア誤差ΔfIFが記憶される。不揮発性メモリ46に対して、エフェメリス情報は、後述するように、例えば2時間毎に更新され、また、アルマナック情報は、GPS受信装置を更新している際、例えば数日毎に更新される。なお、不揮発性メモリ46は、電池バックアップされたRAMでもよい。
基準発振回路2からの基準クロック信号は、逓倍/分周回路3に供給されると共に、後述するように、周波数変換部10の周波数変換用の局部発振回路15に供給される。逓倍/分周回路3は、基準クロック信号を逓倍して、また、分周して、同期捕捉部20、同期保持部30および制御部40などに供給するクロック信号を生成する。逓倍/分周回路3は、制御部40のCPU41により逓倍比や分周比が制御される。
なお、水晶発振回路4からのクロック信号は、制御部40の時計回路44用のものとされている。制御部40の時計回路44以外の部位のクロック信号は、逓倍/分周回路3からのクロック信号とされる。
[周波数変換部10の構成]
GPS衛星信号は、前述もしたように、各GPS衛星から送信される信号であり、50bpsの送信データを、送信信号速度が1.023MHzで、符号長が1023であって、GPS衛星ごとに決められているパターンの衛星PN符号(C/Aコード)によりスペクトラム拡散した信号により、周波数が1575.42MHzのキャリア(搬送波)をBPSK変調したものである。
アンテナ1にて受信された1575.42MHzのGPS衛星信号は、周波数変換部10に供給される。周波数変換部10では、アンテナ1にて受信されたGPS衛星信号が、低雑音増幅回路11にて増幅された後、バンドパスフィルタ12に供給されて、不要帯域成分が除去される。バンドパスフィルタ12からの信号は、高周波増幅回路13を通じて中間周波変換回路14に供給される。
また、基準発振回路2の出力が、PLL(Phase Locked Loop)シンセサイザ方式の局部発振回路15に供給され、この局部発振回路15より基準発振器2の出力周波数に対して周波数比が固定された局部発振出力が得られる。そして、この局部発振出力が中間周波変換回路14に供給されて、GPS衛星信号のキャリア周波数が、信号処理し易い中間周波数、例えば1.023MHzに低域変換されて、中間周波変換回路14からは中間周波信号が得られる。以下、この中間周波信号のキャリア、すなわち、中間周波キャリアをIFキャリアと称する。
中間周波変換回路14からの中間周波信号は、増幅回路16で増幅され、ローパスフィルタ17で帯域制限された後、A/D変換器18で1ビットのデジタル信号(以下、この信号をIFデータという)に変換される。このIFデータは、同期捕捉部20および同期保持部30に供給される。
すなわち、この実施形態では、IFデータは、従来のスライディング相関およびコスタスループ+DLLのような同期捕捉・同期保持一体化回路に供給されるのではなく、機能的に分離された同期捕捉部20と、同期保持部30に供給される。
この実施形態において、同期捕捉部20は、GPS衛星信号についての同期捕捉、つまり、GPS衛星信号の衛星PN符号の位相検出およびIFキャリアの周波数の検出を行なう。このIFキャリア周波数を以下、IFキャリア周波数という。同期保持部30は、同期捕捉部20で捕捉したGPS衛星信号の衛星PN符号とIFキャリアの同期保持を行なう。
[同期捕捉部20と同期保持部30の構成]
この実施形態では、後述するように、同期捕捉部20では、周波数変換部10からのIFデータの所定時間分をメモリに取り込み、このメモリに取り込んだIFデータについて、GPS衛星信号の衛星PN符号と、個々のGPS衛星の衛星PN符号に対応するGPS受信装置が持つレプリカPN符号との相関演算を行って、拡散符号の位相同期捕捉を行なう。
拡散符号の位相同期捕捉に関しては、上述のようなスライディング相関の手法を用いることなく、スペクトラム拡散信号の同期捕捉を高速に行なう方法として、マッチドフィルタを用いる方法がある。
マッチドフィルタは、トランスバーサルフィルタにより、デジタル的に実現可能である。また、近年は、DSP(Digital Signal Processor)に代表されるハードウエアの能力の向上によって、高速フーリエ変換(以下、FFT(Fast Fourier Transform)という)処理を用いたデジタルマッチドフィルタにより、拡散符号の同期を高速に行なう手法が実現している。ただし、デジタルマッチドフィルタそのものは、拡散符号の同期を保持する機能を有しない。
後者のFFT処理を用いる方法は、古くから知られる相関計算の高速化方法に基づいており、受信装置側のレプリカPN符号と、衛星PN符号との間に相関がある場合には、相関のピークが検出され、ピークの位置が衛星PN符号の先頭の位相である。したがって、この相関のピークを検出することで、衛星PN符号の同期を捕捉、すなわち、GPS衛星の受信信号における衛星PN符号の位相を検出することができる。
GPS衛星からの受信信号のキャリア(中間周波数)は、FFTを利用した方法で、FFTの周波数領域での操作により、衛星PN符号の位相とともに検出することができる。衛星PN符号の位相は、疑似距離に換算され、4個以上の衛星について検出されれば、GPS受信装置の位置を計算することができる。また、キャリア周波数が検出されると、ドップラーシフト量が判り、これにより、GPS受信装置の速度が計算できる。
以上のことから、この実施形態では、高速フーリエ変換(以下、FFT(Fast Fourier Transform)という)処理を用いたデジタルマッチドフィルタによりPN符号についての相関計算を行い、その相関計算に基づいて同期捕捉処理を高速に行なう。
アンテナ1で受信されるGPS衛星信号には、複数のGPS衛星からの信号が含まれているが、同期捕捉部20では、すべてのGPS衛星についてのレプリカPN符号の情報を用意しており、その用意されているレプリカPN符号の情報を用いて、その時点でGPS受信装置が利用可能な複数個のGPS衛星信号の衛星PN符号との相関を計算することにより、それらの複数個のGPS衛星信号の同期捕捉をすることが可能である。
同期捕捉部20では、いずれのGPS衛星用のレプリカPN符号の情報を用いて同期捕捉したかにより、いずれのGPS衛星からの信号の同期捕捉をしたかを検知する。当該同期捕捉したGPS衛星の識別子としては、例えばGPS衛星番号が用いられる。
そして、同期捕捉部20は、同期捕捉したGPS衛星の衛星番号の情報と、同期捕捉により検出した衛星PN符号の位相の情報と、IFキャリア周波数の情報と、また、必要に応じて、相関の度合いを示す相関検出信号からなる信号強度の情報を、同期保持部30に渡すようにする。
同期捕捉部20で検出した衛星番号、衛星PN符号の位相、IFキャリア周波数、信号強度の情報を、同期保持部30へ渡す方法としては、データのフォーマット、割り込みの方法等を決めた上で、同期捕捉部20から同期保持部30へ直接渡す方法と、制御部40を介して渡す方法とがある。
前者の場合には、同期捕捉部20で、同期保持部30に渡す情報を生成する。あるいは、同期保持部30に、例えばDSPで構成される制御部を設け、その制御部で、同期捕捉部20からの情報に基づいて、同期保持部30で必要な情報を生成する構成とする。
また、後者の場合には、制御部40のCPU41が制御し、CPU41を介して情報の受け渡し、またCPU41から同期捕捉部20および同期保持部30の制御を行なうことができるので、後述する衛星PN符号についての位相補正や、同期捕捉部20と同期保持部30の状況に応じた多様な同期手順を設定しやすくなる。
そこで、以下に説明する実施形態では、同期捕捉部20から、衛星番号、衛星PN符号の位相、IFキャリア周波数、信号強度の情報を、同期保持部30へ渡す方法としては、制御部40を介して渡す方法を採用している。
同期捕捉部20の構成は、前記特許文献1に詳細に説明されているので、この明細書ではその説明を省略する。
同期捕捉部20で4個以上のGPS衛星からの信号の同期捕捉ができれば、GPS受信装置としては、それらのPN符号の位相とIFキャリア周波数とからGPS受信装置の位置と速度を計算することが可能である。つまり、同期保持部30を設けなくても測位演算を行なうことは可能である。
しかし、GPS受信装置として十分な高精度の測位および速度計算を行なうためには、高精度でPN符号の位相とIFキャリア周波数を検出する必要があり、そのためには、FFT演算を行なう場合のサンプリング回路におけるサンプリング周波数を高くする、FFT処理の単位としてバッファメモリに取り込むIFデータの時間長を長くするといったことが必要になる。
さらに、同期捕捉部20にデジタルマッチドフィルタを用いた構成とした場合には、デジタルマッチドフィルタ自身は、同期保持機能を有しないことをも考慮しなければならない。
以上のように、同期捕捉部20のみにより、GPS受信装置の位置計算および速度計算を十分な精度で行なおうとすると、ハードウエアのサイズ増によるコストアップと消費電力増となり、GPS受信装置を実際に製造する際の大きな問題となってしまう。
そこで、この実施形態では、粗い精度での同期捕捉を専用の同期捕捉部20で行い、複数のGPS衛星信号の同期保持および航法メッセージの復調は同期保持部30で行なうものとしている。そして、同期捕捉部20は、検出したGPS衛星番号と、その衛星PN符号の位相と、IFキャリア周波数と、相関検出信号からなる信号強度の情報を、制御部40を通じて同期保持部30にデータとして渡し、後述するように、同期保持部30は、そのデータを初期値として動作を開始するようにする。
[同期保持部30の構成]
複数のGPS衛星信号の同期保持を並列して行なうために、同期保持部30は、1つずつのGPS衛星信号を1チャンネルとして、複数チャンネル分を備える構成とされる。
図2は、この実施形態における同期保持部30の構成例を示す。この同期保持部30は、nチャンネル分のチャンネル同期保持部30CH1、30CH2、・・・、30CHnと、コントロールレジスタ33とからなる。チャンネル同期保持部30CH1、30CH2、・・・、30CHnのそれぞれは、コスタスループ31とDLL(Delay Locked Loop)32とを備える。
コントロールレジスタ33は、制御部40のCPU41に接続され、後述するように、コスタスループ31やDLL32のループフィルタのパラメータや、フィルタ特性を定めるためのデータを受け取り、CPU41により指示されるチャンネルの、CPU41により指示される部位に、そのデータを設定するようにする。また、コントロールレジスタ33は、コスタスループ31やDLL32のループフィルタからの相関値情報や周波数情報を受け取り、CPU41からのアクセスに応じてそれらの情報をCPU41に渡すようにする。
〔コスタスループ31と、DLL32の構成〕
図3はコスタスループ31の構成例を示すブロック図であり、また、図4は、DLL32の構成例を示すブロック図である。
コスタスループ31は、IFキャリア周波数の同期保持、送信データである航法メッセージの抽出を行なう部分であり、DLL32は、GPS衛星信号の衛星PN符号の位相同期保持を行なう部分である。そして、コスタスループ31とDLL32とが協働し、GPS衛星信号についてスペクトラム逆拡散を行って、スペクトラム拡散前の信号を得るとともに、このスペクトラム拡散前の信号を復調して航法メッセージを得て、制御部40のCPU41に供給する。以下、コスタスループ31およびDLL32の構成および動作について具体的に説明する。
〔コスタスループ31について〕
周波数変換部10からのIFデータは、乗算器201に供給される。この乗算器201には、図4に示すDLL32のPN符号発生器220からのレプリカPN符号が供給される。
DLL32のPN符号発生部220からは、一致(プロンプト)PN符号P、進み(アーリ)PN符号E、遅れ(レート)PN符号Lの、3つの位相のレプリカPN符号が発生する。DLL32では、後述するように、進みPN符号Eおよび遅れPN符号Lと、IFデータとの相関を計算し、それぞれの相関値が等しくなるように、PN符号発生器220からのレプリカPN符号の発生位相を制御し、これにより、一致PN符号Pの位相が、GPS衛星信号の衛星PN符号の位相と一致するようにする。
コスタスループ31の逆拡散用の乗算器101には、PN符号発生器220からの一致PN符号Pが供給されて、逆拡散される。この乗算器101からの逆拡散されたIFデータは、乗算器102および103に供給される。
コスタスループ31は、図3に示すように、乗算器102および103と、ローパスフィルタ104,105と、位相検出器106と、ループフィルタ107と、可変周波数発振器の例としてのNCO(Numerical Controlled Oscillator;数値制御型発振器)108と、相関検出器109と、2値化回路110と、PN符号ロック判定部111と、スイッチ回路112と、IFキャリアロック判定部113とからなっている。
スイッチ回路112は、コスタスループ31のループを開閉制御するためのもので、CPU41からの切り換え制御信号によりオンオフされる。同期保持動作がスタートする前の初期的な状態では、スイッチ回路112はオフとされて、ループ開の状態とされ、後述するように、同期保持動作がスタートして、コスタスループの相関検出器109の相関出力が有意な相関レベル以上となったときに、このスイッチ回路112がオンとされて、ループ閉とされるようにされる。
また、同期保持動作中であっても、同期捕捉および同期保持していた衛星からの電波が弱くなって、コスタスループ31でのキャリア周波数に対する追従が困難となったときには、相関検出器109の相関出力が有意な相関レベルよりも小さくなるので、このスイッチ回路112はオフとなってループ開とされる。
ローパスフィルタ104,105のカットオフ周波数情報と、ループフィルタ107のフィルタ特性を定めるパラメータと、NCO108の発振中心周波数を定めるための周波数情報とは、後述するように、同期捕捉部20での同期捕捉結果に基づいて、CPU41からコントロールレジスタ33を通じて設定される。
また、同期捕捉および同期保持していた衛星からの電波が弱くなって、コスタスループ31でのキャリア周波数に対する追従が困難となったときには、前述したように、CPU41からの切り換え制御信号により、スイッチ回路112がオフとされてループ開とされると共に、CPU41からコントロールレジスタ33を通じてNCO108の発振中心周波数が設定される。
乗算器101において逆拡散された信号は、乗算器102、103に供給される。これら乗算器102,103には、制御部40のCPU41からの周波数情報により、ほぼIFキャリア周波数にされたNCO108からの、直交位相のI(Cosine)信号と、Q(Sine)信号とが供給される。ここで、I信号が供給される乗算器102の系をIアームと称し、Q信号が供給される乗算器103の系をQアームと称する。後述するDLL32においても同様である。
これら乗算器102および103の乗算結果は、ローパスフィルタ104および105を通じて位相検出器106に供給される。ローパスフィルタ104および105は、制御部40のCPU41からのカットオフ周波数情報の供給を受け、これに供給された信号の帯域外ノイズを除去するものである。
位相検出器106は、ローパスフィルタ104および105からの信号に基づいて、IFキャリアとNCO108からの周波数信号との位相誤差を検出し、この位相誤差をループフィルタ107を介してNCO108に供給する。これによりNCO108が制御されて、NCO108からの出力周波数信号の位相が、IFキャリア成分に同期するようにされる。
なお、ループフィルタ107は、制御部40のCPU41から供給されるパラメータに応じて、位相検出器106からの位相誤差情報を積分して、NCO108を制御するNCO制御信号を形成するものである。NCO108は、ループフィルタ107からのNCO制御信号によって、前述したように、NCO108からの出力周波数信号の位相が、IFキャリア成分に同期するようにされる。
また、コスタスループ31のローパスフィルタ104および105の出力は、相関検出器109に供給される。相関検出器109は、これに供給されるローパスフィルタ104および105の出力信号をそれぞれ自乗して加算して出力する。この相関検出器109の出力は、IFデータとPN符号発生器220からの一致PN符号Pとの相関値CV(P)示すものである。この相関値CV(P)は、コントロールレジスタ33を通じて制御部40のCPU41に渡される。
そして、ローパスフィルタ104の出力信号は2値化回路110に供給されており、この2値化回路110より航法メッセージデータが出力される。
また、相関検出器109からの相関値CV(P)出力は、PN符号ロック判定部111に供給される。PN符号ロック判定部111は、相関値CV(P)出力と、予め定められているスレッショールド値とを比較し、相関値CV(P)出力がスレッショールド値よりも大きいときには、同期保持がロック状態であることを示し、相関値CV(P)出力がスレッショールド値よりも小さいときには、同期保持がアンロック状態であることを示すPN符号ロック判定出力を出力する。
この実施形態では、このPN符号ロック判定出力は制御部40のCPU41に送られ、CPU41は、このPN符号ロック判定出力から、同期保持部30におけるPN符号のロック状態、アンロック状態を認識するようにする。CPU41は、このPN符号ロック判定出力からは、PN符号の同期が保持されていることのみを判定する。したがって、CPU41は、このPN符号ロック判定出力からでは、PN符号の同期は取れているが、IFキャリアのロックが外れた状態の検知は行なわない。CPU41は、IFキャリアロック判定部113の出力から、IFキャリアの周波数ロックは外れたか否かの判定を行なう。
IFキャリアロック判定部113には、ローパスフィルタ104および105の出力は供給される。このIFキャリアロック判定部113では、ローパスフィルタ104および105の出力の絶対値の比を求め、その比の値が予め定めたスレッショールド値以上であるときには、IFキャリアの同期がロック状態であることを示し、そうでなかったときには、IFキャリアの同期が外れた状態(アンロック状態)であることを示すIFキャリアロック判定出力を出力する。
すなわち、IFキャリアロック判定出力は、ローパスフィルタ104の出力をIo、ローパスフィルタ105の出力をQoとし、前記スレッショールド値をthとしたとき、
|Io|/|Qo|>th
であるときにはロック状態、そうでなければ、アンロック状態を示すものとなる。
この実施形態では、このIFキャリアロック判定出力は制御部40のCPU41に送られる。CPU41は、このIFキャリアロック判定出力から、IFキャリアについてのロック状態、アンロック状態を認識するようにする。
〔DLL32について〕
図4に示すように、DLL32においては、周波数変換部10からのIFデータは、乗算器201および211に供給される。そして、乗算器201には、PN符号発生器220からの進みPN符号Eが供給され、また、乗算器211には、PN符号発生器220からの遅れPN符号Lが供給される。
乗算器201は、IFデータと進みPN符号Eとを乗算することにより、スペクトラム逆拡散を行い、この逆拡散がなされた信号を乗算器202、203に供給する。そして、乗算器202には、前述のコスタスループ31のNCO108からのI信号が供給され、乗算器203には、NCO108からのQ信号が供給される。
乗算器202は、逆拡散されたIFデータとNCO108からのI信号とを乗算し、その結果をローパスフィルタ204を通じて相関検出器206に供給する。同様に、乗算器203は、逆拡散されたIFデータとNCO108からのQ信号とを乗算し、その結果をローパスフィルタ205を通じて相関検出器206に供給する。
なお、ローパスフィルタ204、205は、コスタスループ31のローパスフィルタ104,105と同様に、制御部40のCPU41からのカットオフ周波数情報の供給を受け、これに供給された信号の帯域外ノイズを除去するものである。
相関検出器206は、これに供給されるローパスフィルタ204,205からの出力信号をそれぞれ自乗して加算して出力する。この相関検出器206からの出力は、IFデータと、PN符号発生器220からの進みPN符号Eとの相関値CV(E)示すものである。この相関値CV(E)は、位相検出器221に供給されるとともに、コントロールレジスタ33に格納され、制御部40のCPU41が用いることができるようにされる。
同様に、乗算器211は、IFデータと遅れPN符号Lとを乗算することにより、スペクトラム逆拡散を行い、この逆拡散がなされた信号を乗算器212、213に供給する。乗算器212には、前述したように、NCO108からのI信号が供給され、乗算器213には、NCO108からのQ信号が供給される。
乗算器212は、逆拡散されたIFデータとNCO108からのI信号とを乗算し、その結果をローパスフィルタ214を通じて相関検出器216に供給する。同様に、乗算器213は、逆拡散されたIFデータとNCO108からのQ信号とを乗算し、その結果をローパスフィルタ215を通じて相関検出器216に供給する。ローパスフィルタ214、215は、前述のローパスフィルタ204、205と同様に、制御部40のCPU41からのカットオフ周波数情報の供給を受け、これに供給された信号の帯域外ノイズを除去するものである。
相関検出器216は、これに供給されるローパスフィルタ214,215からの出力信号をそれぞれ自乗して加算し、その演算結果を出力する。この相関検出器216からの出力は、IFデータと、PN符号発生器220からの遅れPN符号Lとの相関値CV(L)を示すものである。この相関値CV(L)は、位相検出器221に供給されるとともに、コントロールレジスタ33に格納され、制御部40のCPU41が用いることができるようにされる。
位相検出器221は、相関検出器206からの相関値CV(E)と、相関検出器216からの相関値CV(L)との差分として、一致PN符号PとGPS衛星信号の衛星PN符号との位相差を検出し、その位相差に応じた信号をループフィルタ222を介してNCO223の数値制御信号として供給する。
PN符号発生器220には、このNCO(Numerical Controlled Oscillator;数値制御型発振器)223の出力信号が供給されており、このNCO223の出力周波数が制御されることにより、PN符号発生器220からのPN符号の発生周波数および位相が制御される。
なお、NCO223は、後述するように、同期捕捉部20の同期捕捉結果に応じた制御部40のCPU41からの初期発振周波数を制御する周波数情報の供給を受ける。
以上のDLL32におけるループ制御により、NCO223が制御されて、PN符号発生器220は、相関値CV(E)と相関値CV(L)とが同じレベルとなるように、PN符号P、E,Lの発生位相を制御する。これにより、PN符号発生器220から発生する一致PN符号Pが、IFデータをスペクトラム拡散しているPN符号と位相同期するようにされ、この結果、一致PN符号PによりIFデータが正確に逆スペクトラム拡散され、コスタスループ31において、2値化回路110から航法メッセージデータが復調されて出力される。
そして、その航法メッセージデータの復調出力は、図示しないデータ復調回路に供給されて制御部40で使用可能なデータに復調された後、制御部40に供給される。制御部40では、航法メッセージデータは、測位計算に用いられ、また、適宜、軌道情報(アルマナック情報やエフェメリス情報)が抽出されて、不揮発性メモリ46に格納される。
なお、DLL32のループフィルタ222は、前述したコスタスループ31のループフィルタ107と同様に、制御部40のCPU41から供給されるパラメータに基づいて、位相検出器221からの位相誤差情報を積分して、NCO223を制御するNCO制御信号を形成するものである。
DLL32においても、ループフィルタ222と、NCO223との間に、ループの開閉制御用のスイッチ回路224が設けられ、CPU41からの切り換え制御信号によりオンオフされる。
なお、同期保持動作がスタートする前の初期的な状態では、スイッチ回路224はオフとされ、ループ開の状態とされ、後述するように、同期保持動作がスタートして、コスタスループの相関検出器109の相関出力が有意なレベルとなったときに、このスイッチ回路224がオンとされて、ループ閉とされるようにされる。
[同期捕捉から同期保持への移行について]
この実施形態では、前述したように、同期捕捉部20は、検出したGPS衛星番号と、その衛星PN符号の位相と、IFキャリア周波数と、信号強度の情報とを、データとして制御部40のCPU41に渡す。なお、信号強度の情報は、同期保持処理への移行のための情報としては、必須のものではない。
取得したデータに基づいて制御部40のCPU41は、同期保持部30に供給するデータを生成し、それを同期保持部30に渡す。同期保持部30はそのデータを初期値として同期保持動作を開始するようにする。
制御部40のCPU41から同期保持部30に渡されるデータは、DLL32のPN符号発生器220からのレプリカPN符号の発生位相を制御するNCO223の初期発振周波数(発振中心周波数)を決定するための数値情報と、コスタスループ31のNCO108の初期発振周波数(発振中心周波数)を決定するための数値情報と、ループフィルタ107および222のフィルタ特性を決定するためのパラメータと、ローパスフィルタ104,105,204,205,214,215のカットオフ周波数を決定して、その周波数帯域の広狭を決定するための係数情報である。
このとき、CPU41から同期保持部30に供給される情報は、同期保持部30で、PN符号の同期保持およびIFキャリアの同期保持を開始する位相や周波数、また、フィルタ特性を定めるための初期値データであるが、CPU41は、同期捕捉部20で同期捕捉した結果として検出されたPN符号の位相およびIFキャリア周波数の近傍から同期保持を開始するように、前記初期値データを生成する。
したがって、同期保持部30では、同期捕捉部20で検出されたPN符号の位相近傍および検出されたIFキャリア周波数の近傍から同期保持動作を開始して、迅速に同期保持のロック状態にすることができるようになる。
ところで、GPS受信装置が位置および速度を計算するためには、同期捕捉開始から4個以上のGPS衛星に対して同期を確立し、保持しなければならない。同期捕捉部20と同期保持部30および両者を制御するCPU41とによって、4個以上のGPS衛星からの信号の同期を保持する過程(以下、この過程を同期捕捉・同期保持過程と呼ぶ)の例を次に説明する。
〔同期捕捉・同期保持過程の例〕
以下に説明する例では、同期捕捉部20は、GPS衛星信号の一つを同期捕捉すると、すぐに、CPU41に、同期保持動作開始のための割り込み指示と、同期捕捉結果としてのGPS衛星番号、その衛星PN符号の位相、IFキャリア周波数、相関検出レベルを表わす信号強度を転送し、転送が終わると別のGPS衛星についての同期捕捉に移る。
CPU41は、同期捕捉部20からの割り込み指示を受け取る毎に、同期保持部30に対して独立のチャンネルの割り当てを行なうと共に、初期値の設定を行って、同期保持動作を開始させるようにする。
図5は、この同期捕捉・同期保持過程の例における同期捕捉部20での同期捕捉処理の流れを説明するためのフローチャートである。
まず、同期捕捉のための初期設定を行なう(ステップS11)。この初期設定においては、同期捕捉のためにサーチするGPS衛星およびそのサーチの順番を、GPS受信装置が不揮発性メモリ46に記憶している有効な軌道情報に基づいて設定する。また、その軌道情報から、ドップラーシフトを考慮したキャリア周波数を計算して、サーチするIFキャリア周波数の中心と範囲を設定するようにする。
また、電源投入前の過去の動作で得た大体の発振器誤差が、GPS受信装置で判明しているのであれば、GPS受信装置位置を電源投入時に記憶されている位置、すなわち、前回電源を切る直前の位置と仮定して、軌道情報から計算したドップラーシフトに合わせて、サーチするIFキャリア周波数の中心と範囲を決めるようにすると、さらに同期保持に至るまでに要する時間を短縮できる。
初期設定が終了したら、サーチの順番に従って、同期捕捉する一つのGPS衛星を設定する(ステップS12)。これにより、同期捕捉対象の衛星番号が決まり、また、相関を検出しようとするPN符号が決まる。
次に、同期捕捉部20では、サンプリングしたIFデータの取り込みを開始し、この開始タイミングで、タイマをスタートさせる(ステップS13)。ここで、このタイマとしては、制御部40のタイマ45を用いるようにする。このタイマ45は、後述のように、同期保持処理スタートタイミングを設定する際にも用いられる。
次に、前述したデジタルマッチドフィルタを用いた同期捕捉処理により、ステップS12で設定したGPS衛星信号の衛星PN符号について相関検出処理を行なう(ステップS14)。
そして、GPS衛星信号の衛星PN符号について相関が検出されたか否か、つまり、GPS衛星信号の同期捕捉ができたか否か判別し(ステップS15)、相関が検出できたときには、CPU41に対して割り込み指示を発生させると共に、同期捕捉の検出結果として、GPS衛星番号、衛星PN符号の位相、IFキャリア周波数、信号強度の情報をCPU41に渡す(ステップS16)。
そして、サーチすべきGPS衛星のすべてについての同期捕捉サーチが終了したか否か判別し(ステップS17)、未だサーチすべきGPS衛星が残っているときには、ステップS82に戻り、同期捕捉する次のGPS衛星を設定して、以上の同期捕捉処理を繰り返す。また、ステップS17で、サーチすべきすべてのGPS衛星についての同期捕捉が終了したと判別したときには、同期捕捉動作を終了して、同期捕捉部20を待機状態(スタンバイ状態)にする。
また、ステップS15で相関が検出できないと判別したときには、その状態が予め定めた所定時間以上経過したか否か判別し(ステップS18)、所定時間経過していなければ、ステップS15に戻って、相関検出を継続する。
ステップS18で、所定時間経過したと判別したときには、ステップS17に進み、サーチすべきGPS衛星のすべてについての同期捕捉サーチが終了したか否か判別し、未だサーチすべきGPS衛星が残っているときには、ステップS12に戻り、同期捕捉する次のGPS衛星を設定し、以上の同期捕捉処理を繰り返す。
また、ステップS17で、サーチすべきすべてのGPS衛星についての同期捕捉が終了したと判別したときには、同期捕捉動作を終了して、同期捕捉部20を待機状態(スタンバイ状態)にする。
この実施形態では、CPU41は、同期捕捉部20への電源供給のオンオフ制御、または、この同期捕捉部20に対する逓倍/分周回路3からの動作クロックの供給のオンオフ制御を行なうことができるように構成されており、上記の同期捕捉部20のスタンバイ状態では、CPU41により、同期捕捉部20への電源の供給はオフ、または、動作クロックの供給が停止されて、不要な消費電力が抑えられている。
同期捕捉部20を、上述のように、デジタルマッチドフィルタで構成すると、FFT計算を速くするためには高いクロックで動作させることが望ましく、したがって、動作時の消費電力が大きくなるが、同期捕捉部20において、初期設定したすべてのGPS衛星からの信号の同期捕捉検出が終わり、同期保持部30で4個以上の同期保持ができていれば、同期捕捉部20の役割は終了する。
この実施形態では、上述のように、CPU41は、同期捕捉部20の役割終了後は、スタンバイ状態にしているので、同期捕捉部20における不要な消費電力が抑えられている。
なお、上記の例では、初期設定したすべてのGPS衛星についての同期捕捉が完了した後、CPU41は、同期捕捉部20をスタンバイ状態に移行させるようにしたが、同期保持部30で同期保持できたGPS衛星が4個以上になったことを確認してから、CPU41が同期捕捉部20をスタンバイ状態に移行させるようにしてもよい。
なお、CPU41は、一旦、スタンバイ状態になった同期捕捉部20を、再同期捕捉が必要な状態になったときに、動作状態に復帰させるようにすることができることは勿論である。
次に、同期捕捉部20からの割り込み指示を受けたCPU41による同期保持部30の制御処理について、図6、図7および図8のフローチャートを参照しながら説明する。
図6は、CPU41が、同期捕捉部20から、割り込み指示および同期捕捉結果としての衛星PN符号の位相、IFキャリア周波数、GPS衛星番号、信号強度の情報を受け取ったときに、同期保持部30においてチャンネル割り当てし、同期保持スタートをさせるための処理である。また、図7は、CPU41が、同期保持スタートさせた同期保持部30の各1チャンネルにおいての同期保持処理制御のためのフローチャートである。さらに、図8は、図7のフローチャートの一部の処理ステップの詳細を説明するためのフローチャートである。まず、図6の同期保持スタート処理について説明する。
まず、GPS受信装置への電源投入時などにおいて、CPU41は、同期保持部30のNCO、ローパスフィルタ、ループフィルタなどへ定数の初期設定を行っておく(ステップS21)。なお、このとき、コスタスループ31およびDLL32では、スイッチ回路112および224がオフとされて、いずれも初期状態はループ開とされる。
次に、CPU41は、同期捕捉部20からの割り込み指示を監視し(ステップS22)、割り込み指示を検出したときには、同期捕捉部20から、GPS衛星番号、衛星PN符号の位相、IFキャリア周波数、信号強度の情報を受け取ると共に、同期保持部30に対して、受け取ったGPS衛星番号に対して独立のチャンネルを割り当てるようにする設定する(ステップS23)。
そして、CPU41は、同期捕捉部20から受け取った衛星PN符号の位相から、同期保持スタートタイミングを計算するとともに、同期保持部30の、割り当てられたチャンネル内の各部に供給する初期値を、同期捕捉部20から受け取ったIFキャリア周波数に基づいて生成する(ステップS24)。
そして、CPU41は、生成した初期値を、コントロールレジスタ33を通じて同期保持部30の、ステップS23で割り当てられたチャンネル内の各部に送ると共に、同期保持部30の、ステップS23で割り当てられたチャンネル内のPN符号発生器220からの一致PN符号Pの発生位相を、前記同期保持スタートタイミングとするように制御して、同期保持動作をスタートさせる(ステップS25)。なお、このとき、コスタスループ31およびDLL32のループは開のままとする。
以上のようにして、同期捕捉されたGPS衛星信号について、同期保持のためのチャンネルが割り当てられ、同期保持スタートを行ったら、ステップS22に戻り、次の割り込みを待つ。
次に、以上のようにしてスタートしたチャンネル毎の同期保持処理を、図7のフローチャートについて説明する。
CPU41は、まず、同期保持部30からの相関値CV(P)が有意なレベルになったか否か判別し(ステップS31)、相関値CV(P)が有意なレベルになったら、コスタスループ31およびDLL32のループを閉じて、同期保持動作を行なう(ステップS32)。
次に、CPU41は、同期保持部30のコスタスループ31のロック判定部111からのロック判定出力を監視し(ステップS33)、同期保持部30のロックを確認したときには、同期保持しているGPS衛星の数を1だけインクリメントし(ステップS34)、同期保持状態を継続する(ステップS35)。
そして、CPU41は、この同期保持動作中において、同期保持部30からの相関値CV(P)が予め定められたレベル以下になっていないかどうかをチェックすることにより、衛星からの電波が弱くなって、コスタスループ31でのキャリア周波数に対する追従が困難となっていないかどうか判別する(ステップS36)。
ステップS36で、衛星からの電波が弱くなっていると判別したときには、CPU41は、DLL32は閉ループ制御状態を維持するが、コスタスループ31のスイッチ回路112をオフにして、ループ開の状態にすると共に、コスタスループ31のNCO108の発振周波数を、DLL32の発振周波数に基づいて推定し、前記NCO108の発振周波数が当該推定された発振周波数となるように制御する(ステップS37)。このステップS37での処理については、図8を用いて後述する。
ステップS37の次には、ステップS38に進む。また、ステップS36で、衛星からの電波が弱くなっていると判別したときには、そのままステップS38に進む。
ステップS38では、コスタスループ31のロック判定部111からのロック判定出力を監視し、同期保持のロックを確認したときには、ステップS35に戻って、同期保持状態を継続する。そして、ステップS38で同期保持のロックが外れたと判別したときには、同期保持しているGPS衛星の数を1だけデクリメントし(ステップS39)、同期保持が外れたときの処理を行なうようにする(ステップS40)。この同期保持が外れたときの処理については、その説明は省略する。
CPU41は、同期保持部30で4個以上のGPS衛星信号の同期保持ができたと判別したときには、GPS受信装置の位置の計算および速度の計算を行なうようにする。
また、ステップS31において、相関値CV(P)が有意なレベルにならないと判別したときには、その状態が予め定めた所定時間以上経過しかたどうか判別し(ステップS41)、所定時間以上経過したと判別したときには、図6のステップS23で割り当てた同期保持部30のチャンネルを空きチャンネルに戻し、当該チャンネルの同期保持を停止する(ステップS42)。
また、ステップS33において、ロック判定出力によりロック状態が検出できなかったときには、その状態が予め定めた所定時間以上経過しかたどうか判別し(ステップS43)、所定時間以上経過したと判別したときには、ステップS23で割り当てた同期保持部30のチャンネルを空きチャンネルに戻し、当該チャンネルの同期保持を停止する(ステップS42)。
ステップS41、ステップS42およびステップS43の部分は、次のような理由により設けられたものである。すなわち、同期捕捉部20が検出した相関が有意なレベルであっても、ノイズで偶々発生した偽の同期である場合もあり得る。突発的に生じたような持続性のない偽の同期に対しては、同期保持部30で同期が確立することはない。そこで、同期保持部30で一定のサーチ時間内に同期が確立できない場合には、同期保持動作を停止して、割り当てられたチャンネルを、空きチャンネルの状態に戻し、次の割り込みを待つようにしたものである。
[ステップS37の処理の詳細]
GPS受信装置では、少なくとも4個または3個の衛星を捕捉し、それぞれの衛星のPN符合の位相・キャリア周波数・航法メッセージを取得して測位計算するが、実際にカーナビゲーション等に使用してみると、正常に受信できていた信号が、受信装置の置かれている環境の変化で、受信電波が弱くなったり、完全に受信できなくなったりする。
受信装置の受信信号が弱くなると、コスタスループ31およびDLL32におけるIアームとQアームの値のノイズ成分が大きくなり、キャリア位相のずれが正しく検出できなくなるため、コスタスループ31のループ制御をオフにする方がよい。しかし、このような状態でも、コスタスループ31のNCO108の発振周波数を正しい値を設定することができれば、DLL32の同期は維持できる。
ここで、受信装置の大体の位置と正確な速度、衛星の大体の位置と正確な速度、NCO108の基準発振子の周波数のずれが全てわかっていれば、視線方向のドップラー周波数を計算し、NCO108に設定すべき正確な値を設定し、コスタスループ31とDLL32の同期状態を保持できるが、受信装置の大体の位置と正確な速度、衛星の大体の位置と正確な速度、NCO108の基準発振子の周波数のずれのうちのどれかが不明の場合は、その方法を使用できない。
このような場合、PN符号のチップレートは1.023MHz、搬送波の周波数は1575.42MHzであることから、DLL32のPN符号発生器220にクロック信号を供給するNCO223の周波数を、1540(1575.42MHz/1.023MHz=1540)倍した周波数値を、コスタスループ31のNCO108の発振周波数として設定するようにすることで、コスタスループ31とDLL32の同期状態を維持できる。
前述したステップS37の処理は、上記の処理を行なうものである。図8を参照しながら、ステップS37での処理の詳細について説明する。
先ず、CPU41は、ループを開状態にしたコスタスループ31のNCO108の発振周波数から、当該NCO108の発振周波数がIFキャリアに同期しているとしたときのIFキャリアのドップラー周波数fDを求める(ステップS51)。
すなわち、受信信号のIFキャリア周波数をfIF、定められているIFキャリア周波数をFIF、GPS衛星のドップラーシフトをfD、IFキャリア誤差をΔfIFとすると、前述の(式a)から、
fD=fIF−FIF−ΔfIF ・・・(式b)
となる。
ここで、コスタスループ31でループ制御がなされていて同期保持されている状態では、NCO108の発振周波数は、受信信号のIFキャリア周波数fIFに等しいはずであるので、CPU41は、このNCO108の周波数情報を検知し、中間周波キャリア誤差ΔfIFは、直前に求められていたものを用いるものとして、前記ドップラー周波数fDを、上記(式b)から求める。なお、中間周波キャリア誤差ΔfIFは、所定の固定値あるいは零として、ドップラー周波数fDを求めるようにしてもよいが、上述の例のように、既知の値を用いるようにすれば、精度がよくなる。
次に、CPU41は、ステップS51で求めたドップラー周波数fDを用いて、DLL32のPN符号発生器220からのPN符号の周波数(PN符号のチップレート)を、次の(式c)により求める(ステップS52)。
PN符号の周波数=(fD/1540)
+(位相検出器221で検出した位相差の周波数換算値)・・・(式c)
この(式c)において、ドップラー周波数fDを1/1540にするのは、衛星からのキャリア周波数は1575.42MHzであり、PN符号のチップレートは、1.023MHzであるので、その周波数の違いに応じた換算を行なうためである。
このステップS52で求められたPN符号の周波数は、DLL32により衛星からの受信信号に追従するようにされたものであることから、CPU41では、このステップS52で求められたPN符号の周波数を、1540倍することにより、衛星からのキャリアに追従するドップラー周波数fDcを求める(ステップS53)。
次に、ステップS53で求めたキャリアに追従するためのドップラー周波数から、コスタスループのNCO108の数値制御値を求め、当該数値制御値をNCO108に設定して、NCO108の発振周波数を、当該数値制御値に応じたものに設定する(ステップS54)。以上で、ステップS37の処理は、終了となる。
この実施形態のGPS受信装置においては、同期保持がスタートしてから、相関値CV(P)の値が所定レベルより小さくなって、衛星からの電波が弱くなったと判断されるときであっても、ステップS37の処理を実行することで、同期保持状態を、より長く継続することができる。
なお、原理的には、ステップS37の処理は、DLL32のPN符号発生器220の周波数情報をCPU41が検知して、その周波数情報を1540倍することにより、コスタスループ31のNCO108への設定周波数を算出することが可能である。しかし、上述の例の場合には、実際のコスタスループ31のNCO108の発振周波数を基準にし、それに対してDLL32での位相誤差を周波数換算したものを反映させて、NCO108の設定すべき発振周波数を生成するようにしたので、衛星からの受信信号に対する追従性がよくなると期待できる。
[変形例]
なお、この発明は、上述の例のような同期捕捉部と同期保持部とに分ける構成のGPS受信装置に限られるものではなく、従来例として説明した、周波数サーチを伴うスライディング相関によりキャリアおよび拡散符号についての同期検出を行なうと同時に、DLLとコスタスループとにより、同期捕捉および同期保持動作をするようにするGPS受信装置にも、この発明は適用可能である。
この発明によるGPS受信装置の実施形態の構成例を示すブロック図である。 図1の一部である同期保持部の構成例を示すブロック図である。 図2の同期保持部の一部を構成するコスタスループの構成例を示すブロック図である。 図2の同期保持部の一部を構成するDLLの構成例を示すブロック図である。 同期捕捉処理の一例の流れを説明するためのフローチャートである。 同期保持スタート処理の流れを説明するためのフローチャートである。 チャンネル毎同期保持処理の流れを説明するためのフローチャートである。 図7の一部のステップの詳細処理例を説明するためのフローチャートである。 GPS衛星からの信号の構成を示す図である。
符号の説明
31…コスタスループ、32…DLL、40…制御部、41…制御部40のCPU、108および223…NCO、109…相関検出器、112…スイッチ回路

Claims (4)

  1. PN符号によりスペクトラム拡散変調されている人工衛星からの受信信号のキャリア周波数を中間周波数に変換して、中間周波数信号を出力する周波数変換手段と、
    前記人工衛星からの受信信号の前記PN符号に対応する受信装置側PN符号を発生するPN符号発生手段と、
    第1の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第1の制御信号を前記第1の可変周波数発振器に供給し、前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得るようにする第1のループ回路と、
    前記PN符号発生手段からの前記PN符号の発生周波数および発生位相を制御するクロック信号を発生する第2の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第2の制御信号を前記第2の可変周波数発振器に供給し、前記受信装置側PN符号が、前記人工衛星からの受信信号のPN符号に同期するようにする第2のループ回路と、
    前記人工衛星からの受信信号が弱信号であって、前記第1のループ回路において前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得ることが困難であるとき、前記第1のループ回路における前記第1の可変周波数発振器への前記第1の制御信号の供給を停止すると共に、前記第1の可変周波数発振器の発振周波数を、前記第2の可変周波数発振器の発振周波数から計算した周波数となるように制御する制御手段と、
    を備えることを特徴とするGPS受信装置。
  2. 請求項1に記載のGPS受信装置において、
    前記第1のループ回路の前記比較結果に基づいて前記第1の可変周波数発振器の出力信号と前記中間周波数信号との相関度合いを示す相関値を算出する相関検出手段を備え、
    前記制御手段は、前記相関検出手段からの前記相関値と、予め定められた所定の値とを比較し、当該比較結果から前記人工衛星からの受信信号が弱信号であって、前記第1のループ回路において前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得ることが困難であると判別する
    ことを特徴とするGPS受信装置。
  3. 請求項1に記載のGPS受信装置において、
    前記制御手段は、前記第1の可変周波数発振器の発振周波数から前記人工衛星からの受信信号のキャリア周波数についての第1のドップラー周波数を求める第1のステップと、
    前記第2の可変周波数発振器の発振周波数を、前記第1のステップで求められた前記第1のドップラー周波数と前記第2の制御信号とに基づいて求める第2のステップと、
    前記第2のステップで求められた前記第2の可変周波数発振器の発振周波数から、前記人工衛星からの受信信号のキャリア周波数に追従するための第2のドップラー周波数を求める第3のステップと、
    前記第3のステップで求められた前記第2のドップラー周波数から、前記第1の可変周波数発振器の発振周波数を制御する制御信号を生成する第4のステップと、
    を備えることを特徴とするGPS受信装置。
  4. PN符号によりスペクトラム拡散変調されている人工衛星からの受信信号のキャリア周波数を中間周波数に変換して、中間周波数信号を出力する周波数変換手段と、
    前記人工衛星からの受信信号の前記PN符号に対応する受信装置側PN符号を発生するPN符号発生手段と、
    第1の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第1の制御信号を前記第1の可変周波数発振器に供給し、前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得るようにする第1のループ回路と、
    前記PN符号発生手段からの前記PN符号の発生周波数および発生位相を制御するクロック信号を発生する第2の可変周波数発振器を備えると共に、前記中間周波数信号を前記受信装置側PN符号により逆スペクトラム拡散を行ない、前記第1の可変周波数発振器の出力信号と前記逆スペクトラム拡散された中間周波数信号とを比較し、その比較結果に基づく第2の制御信号を前記第2の可変周波数発振器に供給し、前記受信装置側PN符号が、前記人工衛星からの受信信号のPN符号に同期するようにする第2のループ回路と、
    を備えるGPS受信装置における同期保持方法であって、
    前記人工衛星からの受信信号が弱信号であって、前記第1のループ回路において前記第1の可変周波数発振器の出力信号として、前記中間周波数信号に同期する信号を得ることが困難であるとき、前記第1のループ回路における前記第1の可変周波数発振器への前記第1の制御信号の供給を停止すると共に、前記第1の可変周波数発振器の発振周波数を、前記第2の可変周波数発振器の発振周波数から計算した周波数となるように制御する工程を備えることを特徴とするGPS受信装置における同期保持方法。
JP2004150030A 2004-05-20 2004-05-20 Gps受信装置およびgps受信装置における同期保持方法 Pending JP2005331369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150030A JP2005331369A (ja) 2004-05-20 2004-05-20 Gps受信装置およびgps受信装置における同期保持方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150030A JP2005331369A (ja) 2004-05-20 2004-05-20 Gps受信装置およびgps受信装置における同期保持方法

Publications (1)

Publication Number Publication Date
JP2005331369A true JP2005331369A (ja) 2005-12-02

Family

ID=35486127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150030A Pending JP2005331369A (ja) 2004-05-20 2004-05-20 Gps受信装置およびgps受信装置における同期保持方法

Country Status (1)

Country Link
JP (1) JP2005331369A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349587A (ja) * 2005-06-17 2006-12-28 Japan Radio Co Ltd Gps受信機
JP2007243626A (ja) * 2006-03-09 2007-09-20 Japan Radio Co Ltd スペクトラム拡散信号受信装置
US7817750B2 (en) 2007-05-21 2010-10-19 Seiko Epson Corporation Radio receiver including a delay-locked loop (DLL) for phase adjustment
US8036614B2 (en) 2008-11-13 2011-10-11 Seiko Epson Corporation Replica DLL for phase resetting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349587A (ja) * 2005-06-17 2006-12-28 Japan Radio Co Ltd Gps受信機
JP4708098B2 (ja) * 2005-06-17 2011-06-22 日本無線株式会社 Gps受信機
JP2007243626A (ja) * 2006-03-09 2007-09-20 Japan Radio Co Ltd スペクトラム拡散信号受信装置
JP4698446B2 (ja) * 2006-03-09 2011-06-08 日本無線株式会社 スペクトラム拡散信号受信装置
US7817750B2 (en) 2007-05-21 2010-10-19 Seiko Epson Corporation Radio receiver including a delay-locked loop (DLL) for phase adjustment
US8036614B2 (en) 2008-11-13 2011-10-11 Seiko Epson Corporation Replica DLL for phase resetting

Similar Documents

Publication Publication Date Title
JP3726897B2 (ja) Gps受信機およびgps衛星信号の受信方法
US7639181B2 (en) Method and device for tracking weak global navigation satellite system (GNSS) signals
US7053827B2 (en) GPS reception method and GPS receiver
US6888879B1 (en) Method and apparatus for fast acquisition and low SNR tracking in satellite positioning system receivers
US5134407A (en) Global positioning system receiver digital processing technique
JP2000508076A (ja) Gsp信号の高速獲得のための改良されたリアル・タイムクロック装置
TW544527B (en) Radiofrequency signal receiver with means for correcting the effects of multipath signals, and method for activating the receiver
JP4154609B2 (ja) 衛星信号受信処理装置および衛星信号受信処理方法
JP2003255040A (ja) Gps受信機および受信方法
JP4177585B2 (ja) Gps受信機および受信方法
US20070230545A1 (en) Method and apparatus for improved L2 performance in dual frequency semi-codeless GPS receivers
JP4095823B2 (ja) 信号の受信ダイナミックを改善するための手段を有する無線周波数信号受信機
JP2006254500A (ja) 相関検出装置、相関検出方法並びに受信装置
CN101430373B (zh) 全球定位系统接收机信号缺失下持续跟踪和定位方法
JP2007097220A (ja) 測位用衛星信号の受信機および測位用衛星信号の受信方法
JP3858983B2 (ja) Gps衛星信号の受信方法およびgps受信機
JP2005331369A (ja) Gps受信装置およびgps受信装置における同期保持方法
JP2002523752A (ja) スプリットc/aコード受信機
JP2005201737A (ja) 通信装置
JP2004040297A (ja) 測位用衛星信号の受信機および測位用衛星信号の受信方法
JP2003255036A (ja) 受信装置
JP2005331368A (ja) Gps受信装置およびgps受信装置における同期保持方法
JP3738766B2 (ja) 通信装置
JP3804618B2 (ja) 通信装置
JP2003232844A (ja) 受信装置