JP2005315155A - 可変バルブタイミング機構の制御装置 - Google Patents

可変バルブタイミング機構の制御装置 Download PDF

Info

Publication number
JP2005315155A
JP2005315155A JP2004133470A JP2004133470A JP2005315155A JP 2005315155 A JP2005315155 A JP 2005315155A JP 2004133470 A JP2004133470 A JP 2004133470A JP 2004133470 A JP2004133470 A JP 2004133470A JP 2005315155 A JP2005315155 A JP 2005315155A
Authority
JP
Japan
Prior art keywords
rotational phase
angle
lift top
rotation
top angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133470A
Other languages
English (en)
Inventor
Tatsu Miyakoshi
竜 宮腰
Kenichi Machida
憲一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004133470A priority Critical patent/JP2005315155A/ja
Publication of JP2005315155A publication Critical patent/JP2005315155A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

【課題】可変バルブタイミング機構の制御装置において、回転位相を変化させる要素とストッパ構造との当接位置がずれてしまった場合であっても実際の回転位相と制御上認識している回転位相との誤差を解消する。
【解決手段】前記目標回転位相が一定であるときに回転位相変化速度を算出する。カムシャフトの1回転周期内で回転速度変化速度が最大となるときがカムトルクの正負が切り換わるところであり、このときのクランク角度をリフトトップ角として求める。この求めたリフトトップ角と回転位相変化速度が最大となるときの実回転位相とに基づいて最遅角リフトトップ角を推定し、推定した最遅角リフトトップ角と最遅角リフトトップ角の設計値との差に基づいて回転位相補正値を算出する。そして、バルブタイミング制御に際し、算出した回転位相補正値により目標回転位相と実回転位相の偏差を補正する。
【選択図】図15

Description

本発明は、内燃機関のクランクシャフトに対するカムシャフトの回転位相を変化させることで、機関の吸気バルブ又は排気バルブのバルブタイミング(開閉タイミング)を変化させる可変バルブタイミング機構の制御装置に関する。
特許文献1には、内燃機関のクランクシャフトに対する吸気側カムシャフトの回転位相を変化させることによって吸気バルブのバルブタイミングを変化させる構成において、目標回転位相が0°である場合に、吸気側カムシャフトの最遅角学習を行うことが開示されている。このものでは、目標回転位相を0°とすると、吸気側カムシャフトを回転させるリンクギヤ(回転位相を変化させる要素)がハウジング(ストッパ構造)に当接し、かかる当接状態において最遅角(基準動作位置)の学習が行われる。
特開平8−200020号公報
ところで、上記特許文献1においては、回転位相を変化させる要素としてのリンクギヤがストッパ構造としてハウジングに当接した状態で最遅角学習が行われるため、例えば、リンクギヤとハウジングとの当接位置が組み付けバラツキ等によって本来設定された位置(設計上の位置等)からずれてしまっている場合には、このずれた当接位置において最遅角(基準動作位置)の学習が行われることになる。
したがって、バルブタイミング制御(回転位相制御)を行う際に、回転位相を変化させる要素とストッパ構造との当接位置と、本来の当接位置とのずれ分を制御誤差として是認せざるを得ず、精度のよいバルブタイミング制御、ひいては、所望のエンジン特性を実現できないおそれがあった。
本発明は、このような課題に着目してなされたものであり、組み付けバラツキ等によって回転位相を変化させる要素とストッパ構造との当接位置がずれてしまったような場合であっても、実際の回転位相と制御上認識している回転位相との誤差を解消し、精度のよいバルブタイミングを実現することを目的とする、
このため、請求項1に記載の発明は、内燃機関のクランクシャフトに対するカムシャフトの回転位相を変化させることで、機関の吸気バルブ又は排気バルブの開閉タイミングを変化させる可変バルブタイミング機構の制御装置において、機関の運転状態を検出する運転状態検出手段と、前記回転位相を任意のタイミングで検出可能な回転位相検出手段と、機関の運転状態に基づいて、目標回転位相を設定する目標回転位相設定手段と、前記目標回転位相が一定であるときに、前記回転位相の単位時間当たりの変化量を回転位相変化速度として算出する回転位相変化速度算出手段と、前記カムシャフトの1回転周期内において、前記回転位相変化速度算出手段の算出した回転位相変化速度が最大となるときのクランク角度を、前記吸気バルブ又は排気バルブのバルブリフト量が最大となるリフトトップ角として算出するリフトトップ角算出手段と、前記リフトトップ角算出手段の算出したリフトトップ角と、設定上のリフトトップ角である基準リフトトップ角とに基づいて、回転位相補正値を算出する回転位相補正値算出手段と、前記目標回転位相と実回転位相との偏差を前記回転位相補正値により補正し、補正後の偏差に基づいて前記可変バルブタイミング機構を制御する制御手段と、を備える。
回転位相が一定に保持されている状態であっても、バルブの開閉弁動作によって入力される交番トルク(カムトルク)の影響によって(実)回転位相は変化(振動)する。この変化は、カムトルクに大きさ及び方向に応じて変化し、閉弁状態からリフトトップに至るまでの正のカムトルクから、リフトトップを越えてから閉弁に至るまでの負のカムトルクに切り換わったときがリフトトップである。このとき、前記(実)回転位相の変化速度は最大(極大)となり、前記(実)回転位相の変化加速度は正から負に切り換わることになる(図15参照)。
したがって、カムシャフトの1回転周期内において(実)回転位相の変化速度が最大となるとき(=回転位相の変化加速度が正から負に切り換わるとき)のクランク角度をリフトトップ角とし、このリフトトップ角と設定上のリフトトップ角(設計値等)との偏差を求めることにより、組み付けバラツキ等によって生じた誤差(例えば、ストッパ構造によって規制される基準動作位置(最遅角位置)におけるバラツキ)を算出できる。そして、この誤差を回転位相補正値として、目標回転位相と実回転位相との偏差を補正することで、組み付けバラツキ等によって生じた誤差を修正することができ、バルブタイミング制御の精度を向上できる。
請求項2に記載の発明は、前記回転位相補正値算出手段が、前記リフトトップ角と、前記回転位相変化速度が最大となるときの実回転位相とに基づいて、前記開閉タイミングが最も遅れる最遅角位置においてバルブリフト量が最大となる最遅角リフトトップ角を推定する最遅角リフトトップ角推定手段を備え、最遅角リフトトップ角推定手段の推定した最遅角リフトトップ角と、前記最遅角位置における設定上のリフトトップ角である基準最遅角リフトトップ角との差に基づいて前記回転位相補正値を算出する。
このようにすれば、通常、動作基準位置(すなわち、設計上の基準位置でもある)として設定される最遅角位置での誤差を算出できるので、バルブタイミング制御の精度を更に向上できる。
請求項3に記載の発明は、前記回転位相変化速度算出手段が、前記目標回転位相が前記ストッパ構造によって規制される限界位置に相当するときは前記回転位相変化速度の算出を禁止する。
可変バルブタイミング機構が前記回転位相を変化させる要素の動作範囲をストッパ構造により規制するものである場合において、目標回転位相がストッパ構造によって規制される限界位置に相当するときは、そのストッパ構造側の回転位相の変動は制限されるので、カムトルクの影響による回転位相の変動を正確に検出できない。したがって、このような場合には、回転位相変化速度の算出を禁止することで誤った補正値の算出を防止できる。
以下、本発明の実施の形態を図に基づいて説明する。図1は、実施形態における車両用内燃機関の構成図である。この図1において、内燃機関101の吸気管102には、スロットルモータ103aでスロットルバルブ103bを開閉駆動する電子制御スロットル104が介装され、該電子制御スロットル104及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。
機関の各燃焼室には点火プラグ133が設けられており、これにより火花点火して混合気を着火燃焼させる。燃焼排気は燃焼室106から排気バルブ107を介して排出され、フロント触媒108及びリア触媒109で浄化された後、大気中に放出される。
前記吸気バルブ105及び排気バルブ107は、それぞれ吸気側カムシャフト134、排気側カムシャフト110に設けられたカムによって開閉駆動されるが、吸気側カムシャフト134には、可変バルブタイミング機構(VTC)113が設けられている。
このVTC113は、クランクシャフト120に対する吸気側カムシャフト134の回転位相を変化させることで吸気バルブ105の開閉タイミングを変化させる機構であり、その詳細については後述する。
なお、本実施形態では吸気バルブ105側のみにVTC113を備える構成としたが、吸気バルブ105側に代えて又は吸気バルブ105側と共に、排気バルブ107側にVTC113を備える構成であっても良い。
また、各気筒の吸気ポート130には、電磁式の燃料噴射弁131が設けられ、該燃料噴射弁131は、エンジンコントロールユニット(ECU)114からの噴射パルス信号によって開弁駆動されると、所定圧力に調整された燃料を吸気バルブ105に向けて噴射する。
マイクロコンピュータを内蔵するECU114には、各種センサからの出力信号が入力され、該信号に基づく演算処理によって、前記電子制御スロットル104、VTC113及び燃料噴射弁131を制御する。
前記各種センサとしては、アクセル開度を検出するアクセル開度センサAPS116、機関101の吸入空気量Qを検出するエアフローメータ115、クランクシャフト120からクランク角180°毎の基準クランク角信号REF(基準回転位置信号)と単位クランク角度毎の単位角度信号POSを取り出すクランク角センサ117、スロットルバルブ103bの開度TVOを検出するスロットルセンサ118、機関101の冷却水温度を検出する水温センサ119、吸気側カムシャフト134からカム角90°(クランク角180°)毎のカム信号CAM(基準回転位置信号)を取り出すカム角センサ202が設けられている。尚、前記基準クランク角信号REFの周期、又は、単位時間当たりの単位角度信号POSの発生数に基づいて、ECU114において機関回転速度Neが算出される。
次に、前記VTC113の構成を、図2〜図9に基づいて説明する。図2に示すように、本実施形態に係るVTC113は、前記吸気側カムシャフト(以下、単にカムシャフトという)134と、このカムシャフト134の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト120に連係されるタイミングスプロケット302を外周に有する駆動リング303(駆動回転体)と、この駆動リング303とカムシャフト134の前方側(図2において左側)に配置されて、カムシャフト134と駆動リング303との組付角を操作する組付角操作機構304と、この組付角操作機構304のさらに前方側に配置されて、同機構304を駆動する操作力付与手段305と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構304と操作力付与手段305の前面と周域を覆う図外のVTCカバーと、を備えている。なお、図3(及び図5)は図2のA−A断面図に相当し、図4は図2のB−B断面図に相当する。
駆動リング303は、段差状の挿通孔306を備えた短軸円筒状に形成され、この挿通孔306部分が、カムシャフト134の前端部に結合された従動軸部材307(従動回転体)に回転可能に組み付けられている。そして、駆動リング303の前面(カムシャフト134と逆側の面)には、図3に示すように、対面する平行な側壁を有する3個の径方向溝308(径方向ガイド)が駆動リング303のほぼ半径方向に沿うように形成されている。
また、従動軸部材307は、図2に示すように、カムシャフト134の前端部に突き合される基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー309が一体に形成され、軸芯部を貫通するボルト310によってカムシャフト134に結合されている。各レバー309には、リンク311の基端がピン312によって軸支連結され、各リンク311の先端には前記各径方向溝308に摺動自由に係合する円柱状の突出部313が一体に形成されている。
各リンク311は、突出部313が対応する径方向溝308に係合した状態において、ピン312を介して従動軸部材307に連結されているため、リンク311の先端側が外力を受けて径方向溝308に沿って変位すると、駆動リング303と従動軸部材307とは、リンク311の作用によって突出部313の変位に応じた方向及び角度だけ相対回動する。
また、各リンク311の先端部には、軸方向前方側に開口する収容穴314が形成され、この収容穴314に、後述する渦巻き溝315(渦巻き状ガイド)に係合する球面突起316aを有する係合ピン316(転動部材)と、この係合ピン316を前方側(渦巻き溝315側)に付勢するコイルばね317とが収容されている。なお、この実施形態においては、リンク311の先端の突出部313と、係合ピン316、コイルばね317等とによって径方向に変位可能な可動案内部が構成されている。
一方、従動軸部材307のレバー309の突設位置よりも前方側には、円板状のフランジ壁318aを有する中間回転体318が、軸受331を介して回転自在に支持されている。この中間回転体318のフランジ壁318aの後面側には、断面半円状の前述の渦巻き溝315が形成され、この渦巻き溝315に、前記各リンク311の先端の係合ピン316が転動自在に案内係合されている。渦巻き溝315の渦巻きは、駆動リング303の回転方向に沿って次第に縮径するように形成されている。従って、各リンク311先端の係合ピン316が渦巻き溝315に係合した状態において、中間回転体318が駆動リング303に対して遅れ方向に相対回転すると、リンク311の先端部は径方向溝308に案内されつつ、渦巻き溝315の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体318が進み方向に相対変位すると、半径方向外側に移動する。
この実施形態の組付角操作機構304は、以上説明した駆動リング303の径方向溝308、リンク311、突出部313、係合ピン316、レバー309、中間回転体318、渦巻き溝315等によって構成されている。この組付角操作機構304は、操作力付与手段305から中間回転体318にカムシャフト134に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝315と係合ピン316の係合部を通してリンク311の先端を径方向に変位させ、このときリンク311とレバー309の作用によって駆動リンク303と従動軸部材307に相対的な回動力を伝達する。
一方、操作力付与手段305は、中間回転体318を駆動リング303の回転方向に付勢するゼンマイばね319と、中間回転体318を駆動リング303の回転方向と逆方向に付勢すべく制動機構であるヒステリシスブレーキ320と、を備えてなり、内燃機関の運転状態に応じてヒステリシスブレーキ320の制動力を適宜制御することにより、中間回転体318を駆動リング303に対して相対回動させ、或は、この両者の回動位置を維持するようになっている。
ゼンマイばね319は、駆動リング303に一体に取り付けられた円筒部材321にその外周端部が結合される一方で、内周端部が中間回転体318の円筒状の基部に結合され、全体が中間回転体318のフランジ壁318aの前方側スペースに配置されている。
一方、ヒステリシスブレーキ320は、中間回転体318の前端部にリテーナプレート322を介して取り付けられた有底円筒状のヒステリシスリング323と、非回転部材である図外のVTCカバーに回転を規制した状態で取り付けられた磁界制御手段としての電磁コイル324と、電磁コイル324の磁気を誘導する磁気誘導部材であるコイルヨーク325と、を備え、電磁コイル324が機関の運転状態に応じて前記ECU114によって通電制御されるようになっている。
ヒステリシスリング323は、図6に示すように、外部の磁界の変化に対して位相遅れをもって磁束力が変化する特性(磁気的ヒステリシス特性)を持つヒステリシス材(半硬質材)によって形成され、外周側の円筒壁323a部分が前記コイルヨーク325によって制動作用を受けるようになっている。
コイルヨーク325は、電磁コイル325を取り囲むように全体が略円筒形状に形成され、その内周面が軸受328を介して従動軸部材307の先端部に回転可能に支持されている。そして、コイルヨーク315の後部面側(中間回転体318側)には磁気入出部分が円筒状の隙間をもって向かい合うように周面状の一対の対向面326,327が形成されている。
また、図7に示すように、コイルヨーク325の両対向面326,327には夫々円周方向に沿って複数の凹凸が連続して形成され、これらの凹凸のうち凸部326a,327aが磁極(磁界発生部)を成すようになっている。
そして、一方の対向面326の凸部326aと他方の対向面327の凸部327aは円周方向に交互に配置され、対向面326,327相互の近接する凸部326a,327aがすべて円周方向にずれている。従って、両対向面326,327の近接する凸部326a,327a間には、電磁コイル24の励磁によって図7に示すような円周方向に傾きをもった向きの磁界が発生する。そして、両対向面326,327間の隙間には前記ヒステリシスリング323の円筒壁323aが非接触状態で介装されている。
ここで、このヒステリシスブレーキ320の作動原理を図8によって説明する。なお、図8(a)はヒステリシスリング323(ヒステリシス材)に最初に磁界をかけた状態を示し、図8(b)は上記(a)の状態からヒステリシスリング323を変位(回転)させた状態を示す。
図8(a)の状態においては、コイルヨーク325の両対向面326,327間における磁界の向き(対向面27の凸部327aから他方の対向面326の凸部327aに向かう磁界の向き)に沿うようにヒステリシスリング323内に磁束の流れが生じる。
この状態からヒステリシスリング323が、外力Fを受けて図8(b)に示す状態に移動すると、外部磁界内をヒステリシスリング323が変位することとなるため、このときヒステリシスリング323の内部の磁束は位相遅れをもち、ヒステリシスリング323内部の磁束の向きは、対向面326,327間の磁界の向きに対してずれる(傾斜する)こととなる。従って、対向面327の凸部327aからヒステリシスリング323に入る磁束の流れ(磁力線)と、ヒステリシスリング323から他方の対向面326の凸部326aに向かう磁束の流れ(磁力線)が歪められ、このとき、この磁束の流れの歪みを矯正するような引き合い力が対向面326,327とヒステリシスリング323との間に作用し、その引き合い力がヒステリシスリング323を制動する抗力F’として働く。
このヒステリシスブレーキ320は、以上のようにヒステリシスリング323が対向面326,327間の磁界内を変位するときに、ヒステリシスリング323の内部の磁束の向きと磁界の向きのずれによって制動力を発生するものであるが、その制動力は、ヒステリシスリング323の回転速度(対向面326,327とヒステリシスリング323の相対速度)に関係なく、磁界の強さ、即ち、電磁コイル324の励磁電流の大きさに略比例した一定の値となる。
なお、図9は、ヒステリシスブレーキ320における回転速度と制動トルクの関係を、励磁電流をa〜d(a<b<c<d)に変えて調べた試験結果である。この試験結果から明らかなように、このヒステリシスブレーキ320は、例えば、渦電流を用いたブレーキのように回転速度の影響を受けることがなく、常に励磁電流値に応じた制動力を得ることができる。
本実施形態に係るVTC113は以上のような構成となっており、ヒステリシスブレーキ320の電磁コイル324の励磁がオフされると、ゼンマイばね319の力によって中間回転体318が駆動リング303に対して機関回転方向に最大限回転し、係合ピン316が渦巻き溝315の外周側端面315aに当接する。この当接位置がVTC113の機構上で変更し得る回転位相の最遅角位置となる(図3参照)。これにより、クランクシャフト120に対するカムシャフト134の回転位相はバルブタイミングが最も遅れる最遅角側(基準回転位相)に維持されることになる。
この状態から前記回転位相を最進角側に変更すべき指令が前記ECU114から発されると、ヒステリシスブレーキ320の電磁コイル324の励磁がオンにされて、ゼンマイばね319の力に抗する制動力が中間回転体318に付与される。これにより、中間回転体318が駆動リング303に対して(逆方向に)回転移動し、それによってリンク311の先端の係合ピン316が渦巻き溝315に誘導されてリンク311の先端部が径方向溝308に沿って変位し、リンク311の作用によって駆動リング303と従動軸部材307の組付角が最進角側に変更される。そして、電磁コイル324の励磁電流を増大して制動力を増大していくと、ついには係合ピン316が渦巻き溝315の内周側端面315bに当接する。この当接位置がVTC113の機構上で変更し得る回転位相の最進角位置となる(図5参照)。これにより、回転位相はバルブタイミングが最も進む最進角側に変更される。
そして、この状態(最進角側)から前記回転位相を最遅角側に変更すべく前記ECU114から発されると、ヒステリシスブレーキ320の電磁コイル324の励磁がオフにされ、再度ゼンマイばね319の力によって中間回転体318が戻す方向に回転移動する。すると、渦巻き溝315による係合ピン316の誘導によってリンク311が上記と逆方向に揺動し、図3に示すように、そのリンク311の作用によって駆動リング303と従動軸部材307の組付角が再度最遅角側に変更される。
なお、このVTC113によって変更される回転位相(基準回転位相である最遅角側からの進角量)は、以上説明した最遅角と最進角の二種の位相ばかりでなく、ヒステリシスブレーキ320の制動力の制御によって任意の位相に変更することができ、ゼンマイばね319の力とヒステリシスブレーキ320の制動力のバランスによってその位相を保持することもできる。
また、本実施形態では、図10に示すように、吸気側カムシャフト134と共に回転する回転体401と、この回転体401の外周に近接配置された電磁式のギャップセンサ402とを備えている。
回転体401は直接又は他の部材を介して間接的に吸気カムシャフト134に固定されており、その外周は、図10に示すように、吸気側カムシャフト134の中心からの距離が周方向で徐々に変化するよう形成されている。ギャップセンサ402は、吸気側カムシャフト134と回転に伴って変化する回転体401の外周とのギャップGpに応じた信号(電圧)をECU114に出力する。なお、回転体401は、吸気側カムシャフト134と共に回転するように設けられていれば、その固定方法や固定位置等は問わず、また、ギャップセンサ402は、回転体401の外周とのギャップGpに応じた信号を連続的に出力できればいずれの方式のものであってもよい。
ここで、ギャップセンサ402からの出力は、図11に示すように、回転体401の外周とのギャップに対してほぼ正比例の関係にあり、また、ギャップと吸気側カムシャフト134の回転角度とは1対1で対応するため、ギャップセンサ402の出力と吸気側カムシャフト134の回転角度(カム角)とは、図12に示すように、ほぼ正比例の関係となる。従って、ECU114は、ギャップセンサ402からの出力信号に基づいて瞬時に吸気側カムシャフト134の回転角度を検出することができる。
すなわち、本実施形態においては、(1)クランク角センサ117及びカムセンサ132の検出信号に基づいて、吸気側カムシャフト134の回転周期毎に、クランクシャフト120に対する吸気側カムシャフト134の回転位相(吸気バルブ105のバルブタイミング)を検出できる(以下、これを第1回転位相検出手段による検出という)と共に、(2)クランク角センサ117及びギャップセンサ402の検出信号に基づいて、任意のタイミングで、かつ連続的に前記回転位相(吸気バルブ105のバルブタイミング)を検出することができる(以下、これを第2回転位相検出手段による検出いう)。
具体的には、第1回転位相検出手段は、基準クランク角信号REFの発生からカム信号CAMの発生までの単位角度信号POSをカウントすることで前記回転位相を検出(算出)し、第2回転位相検出手段は、ギャップセンサ402の出力信号に基づいて検出した吸気側カムシャフト134の回転角度と、基準クランク角信号REFの発生から吸気側カムシャフト134の回転角度検出までの単位角度信号POSをカウントすることで検出したクランクシャフト120の回転角度とから前記回転位相を検出(算出)する。
このように、2つの回転位相検出手段を備えることにより、例えば、高回転時には前記第1回転位相検出手段により安定かつ正確にクランクシャフト120に対する吸気側カムシャフト134の回転位相を検出する一方、バルブタイミング制御等の実行周期よりも第1回転位相検出手段による回転位相の検出周期の方が長くなる低回転時には、前記第2回転位相検出手段により前記回転位相を検出する、というように、第1、第2回転位相検出手段を適宜選択して回転位相を検出することができる。
ところで、従来の可変バルブタイミング機構においては、回転位相を変化させる要素がストッパ構造に当接する位置、すなわち、上記VTC113における係合ピン316がストッパとしての渦巻き溝315の外周側315a、内周側315bの各端面に当接する位置で最遅角学習、最進角学習を行うようにしていた。しかし、このような学習では、既述のように、VTC113の組み付けバラツキ等によって、ストッパ位置の絶対的な位相のずれが生じた場合には、もはやそのずれを吸収することができず、制御誤差範囲内のものとして是認せざるを得ないという問題がある。
そこで、本実施形態では、最遅角位置において吸気バルブの(バルブ)リフト量が最大となる最遅角リフトトップ角を求め(推定し)、この最遅角リフトトップ角と設定上の最遅角リフトトップ角(例えば、最遅角位置におけるリフトトップ角の設計値であり、以下、「基準最遅角リフトトップ角」という)の差を回転位相補正値とする。そして、この回転位相補正値に基づいて、目標回転位相と実回転位相との偏差を補正することにより、高精度なバルブタイミング制御を実現するようにしている。
図13、14は、上記回転位相補正値の算出を示すフローチャートである。このフローは例えばキースイッチがONされると開始され、所定時間(単位時間)毎に実行される。
S11では、回転位相補正値算出終了フラグ判定F1が0であるか(クリアされているか)否かを判定する。この回転位相補正値算出終了判定フラグF1は、後述するように、回転位相補正値の算出が終了すると1に設定され(S25)、機関停止時には0クリアされる。そして、F1=0であればS12に進み、F1=1であれば本フローを終了する。
S12では、機関回転速度Neがあらかじめ設定した所定範囲内(Ne2<Ne<Ne1)であるか否かを判定する。かかる判定を行うのは、後述するように、回転位相補正値は、カムトルク(後述するように、バルブの開閉弁動作に伴いカムシャフトを介して入力される交番トルク)の影響による回転位相変動を利用して算出するからである。具体的には、カムトルク周期は機関回転と同期しているので、機関回転速度Neがある回転速度(Ne1)以上になるとカムトルクが高周波になってその影響がほとんどなくなることや、機関回転速度Neがある回転速度(Ne2)以下になると摩擦等の影響を無視できなくなること等を考慮したものである。機関回転速度Neが所定範囲内(Ne2<Ne<Ne1)であればS13に進み、それ以外は本フローを終了する。
S13では、VTC113の目標回転位相(目標角度)θTRGが最進角又は最遅角となっていないことを確認する。かかる確認を行うのは、上述したように、最遅角位置又は最進角位置に制御されると係合ピン316がストッパとして機能する渦巻き溝の端面315a,bに当接するため、カムトルク(交番トルク)が入力されても、その当接方向については回転位相の変動(変化)が規制されてしまうため、カムトルクの影響による回転位相変動を利用できないからである。目標回転位相≠最遅角、最進角であればS14に進み、目標回転位相=最遅角、最進角であれば本フローを終了する。なお、目標回転位相θTRGは機関運転状態に基づいて設定される。
S14では、目標回転位相θTRGが一定であるか否かを判定する。目標回転位相θTRGが一定であればS15に進み、それ以外は本フローを終了する。
S15では、実回転位相θNOWを検出し、目標回転位相θTRGと実回転位相θNOWとの偏差ERR(絶対値)が所定値αを下回っているか否かを判定する。なお、実回転位相θnowは前記第2回転位相検出手段により検出される。また、かかる判定に代えて、目標回転位相θTRGの設定後、所定時間経過したか否かを判定するようにしてもよい。
上記S14、15により(実)回転位相が一定に保持されている状態にあるか否かが確認される。
S16では、実回転位相θNOW及び該実回転位相θNOW検出時のクランク角度をメモリする。
S17では、S16で初めて実回転位相θNOW及びクランク角度のメモリを開始してから吸気側カムシャフト134が1回転したか(カムトルク周期1サイクル中でないか)否かを判定する。カムシャフト134が1回転していなければ本フローを終了し、目標回転位相θtgが一定であること等の条件のもと(S12〜S15)、実回転位相θNOW及びそのときのクランク角度のメモリが継続される。カムシャフト134が1回転していればS18に進む。
S18では、メモリした実回転位相θNOWに基づき回転位相変化速度(又は加速度)を算出する(図15参照)。
S19では、算出した回転位相変化速度が最も速かったとき(又は算出した回転位相変化加速度が正から負に切り換わったとき)のクランク角度をリフトトップ角(バルブリフト量が最大となるクランク角度)θLTとして算出する。
S20では、算出した回転位相変化速度が最も速かったとき(又は算出した回転位相変化加速度が正から負に切り換わったとき)に相当する実回転位相θNOW1をメモリ値から読込む。
S21では、算出したリフトトップ角θLTから読み出した実回転位相(最遅角側からの進角量)θNOW1を減算して最遅角位置におけるリフトトップ角(最遅角リフトトップ角)θLT-Rを算出(推定)する。θLT-R=θLT−θNOW1
S22では、算出した最遅角リフトトップ角θLT-Rと、設計上の最遅角リフトトップ角(最遅角リフトトップ角設計値)θLT-dとから、次式により回転位相補正値(補正角)ΔθLTを算出する。
ΔθLT=θLT-d−θLT-R
S23では、今回算出した回転位相補正値ΔθLTと前回算出した回転位相補正値ΔθLTZとの差(絶対値)が所定値βより小さいか否かを判定する。かかる判定を行うのは、算出した回転位相補正値ΔθLTが前回値ΔθLTZと大きく異なる場合には、適正な値が算出されなかったおそれがあるからである。│ΔθLT−ΔθLTZ│<βであれば適正な値が算出されたとしてS24に進み、│ΔθLT−ΔθLTZ│≧βであれば算出した回転位相補正値ΔθLTが適正でないと判断して本フローを終了する。この場合、算出した回転位相補正値ΔθLTをクリアし、その算出が行われなかったものとして、回転位相補正値ΔθLTの算出が再度やり直されることになる。
S24では、次式に示すように、回転位相補正値の今回値ΔθLTと前回値ΔθLTZとの平均値を最終的な回転位相補正値ΔθVTCとして決定する。
ΔθVTC=(ΔθLT+ΔθLTZ)/2
なお、単純な平均ではなく、加重平均としてもよい。
S25では、回転位相補正値算出終了フラグF1を1として本フローを終了する。
そして、目標回転位相θTRGと実回転位相θNOWとの偏差ERRに基づくバルブタイミング制御(フィードバック制御)において、かかる偏差ERRを上記決定した回転位相補正値ΔθVTCを用いて補正する。なお、目標回転位相θTRG又は実回転位相θNOWのいずれかを回転位相補正値ΔθVTCにより直接補正するようにしてもよいし、回転位相補正量ΔθVTCに基づいてVTC113への操作量を補正するようにしてもよい。
図15は、目標回転位相を一定に保持している状態における吸気側カムシャフト134回転中の、(a)カムトルク、(b)実回転位相(VTC実角度)、(c)回転位相変化速度(VTC角速度)及び(d)回転位相変化加速度(VTC角加速度)を示している。
吸気側カムシャフト134が回転することにより、バルブスプリングの付勢力に抗して吸気バルブ105を開弁するときと、バルブスプリングの付勢力によって閉弁するときとで逆向きに交互に生じるトルク(交番トルク)がカムシャフトを介してVTC113(回転位相を変化させる機構部)に作用(入力)する。この結果、回転位相を一定に保持している状態であっても、前記交番トルクによって回転位相が変動(振動)することになる。なお、ここでは、回転位相が遅角側に振れる方向に作用するカムトルクを「正のカムトルク」といい、回転位相が進角側に振れる方向に作用するカムトルクを「負のカムトルク」という。
回転位相が一定に保持されている状態において、正のカムトルクが発生しているとき(閉弁状態からバルブリフト量が最大となるリフトトップに至るまでの間)は、その大きさに応じて(実)回転位相は遅角側に振れ、負のカムトルクが発生しているとき(リフトトップから閉弁に至るまでの間)は、その大きさに応じて(実)回転位相は進角側に振れる(図15(a)、(b)参照)。そして、この(実)回転位相の変位量から、回転位相の変化速度(VTC角速度)及び回転位相変化加速度(VTC角加速度)が求められ、それぞれ図15(c)、(d)に示すようになる。
ここで、リフトトップはカムトルクが正から負に切り換わるところであり、図に示すように、その位置は、回転位相変化速度(VTC角速度)がカムシャフト1回転中で最大になるところであり、回転位相変化加速度(VTC角加速度)が正から負に切り換わるところに相当する。
そこで、本実施形態では、回転位相が一定に保持されている状態において、カムシャフト1回転中の単位時間当たりの(実)回転位相の変化をメモリし、(実)回転位相の変化速度(又は加速度)を算出し、算出した変化速度(又は加速度)が最大のとき(又は正から負に切り換わるとき)のクランク角度をリフトトップ角θLTとして算出する。同じく算出した変化速度(加速度)が最大のとき(又は正から負に切り換わるとき)に検出された実回転位相θNOW1と算出したリフトトップ角θLTとから、最遅角位置におけるリフトトップ角である最遅角リフトトップ角θLT-Rを推定し、この推定した最遅角リフトトップ角θLT-Rと設計上の最遅角リフトトップ角(設計値)θLT-dとの差を回転位相補正値ΔθLTとする。そして、回転位相補正値の今回値ΔθLTと前回値ΔθLTZとの平均値を最終的な回転位相補正値ΔθVTCとし、目標回転位相と実回転位相との偏差に基づくバルブタイミング制御に際しては、該偏差を前記回転位相補正値ΔθVTCで補正する。
これにより、VTC113の組み付けバラツキ等により実際の回転位相と設定上の回転位相との誤差を吸収して、バルブタイミング制御の精度を向上できる。
なお、以上説明した実施形態では、吸気バルブ105にVTC113を備えたものについて説明しているが、排気バルブ107側にVTC113を備えた場合であっても同様である。
また、クランクシャフト120に対する吸気側カムシャフト134の回転位相を任意のタイミングで検出できれば、前記第2回転位相検出手段に限るものではない。
さらに、以上では電磁式のVTCについて説明したが、油圧式のVTCに対して適用してもよいことは当然である。
ここで、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する
(イ)請求項1〜3のいずれか1つに記載の可変バルブタイミング機構の制御装置において、
前記回転位相補正値算出手段は、算出した回転位相補正値の今回値と前回値とに基づいて最終的な回転位相補正値を決定することを特徴とする。
(ロ)請求項1〜3、上記(イ)のいずれか1つに記載の可変バルブタイミング機構の制御装置において、
前記回転位相補正値算出手段は、前記回転位相補正値を複数回算出し、その平均値を最終的な回転位相補正値として決定することを特徴とする。
(ハ)請求項1〜3、上記(イ)、(ロ)のいずれか1つに記載の可変バルブタイミング機構の制御装置において、
前記回転位相検出手段(第2回転位相検出手段が相当する)は、前記クランクシャフトの回転位置を検出するクランクシャフト回転検出手段と、前記カムシャフトの回転位置を検出するカムシャフト回転検出手段とを備え、前記クランクシャフト回転検出手段及び前記カムシャフト回転検出手段の出力信号に基づいて前記回転位相を検出する構成であり、
少なくとも前記カムシャフト回転検出手段が、前記カムシャフトの回転位置に応じて異なる信号を出力することを特徴とする。
このようにすると、カムシャフト回転検出手段(ギャップセンサ402が該当する)の出力信号はカムシャフトの回転位置に1対1で対応するため、このカムシャフト回転検出手段の出力信号に基づいてカムシャフトの回転位置を任意のタイミングで瞬時に求めることできる。そして、クランクシャフト回転検出手段(クランク角センサ117が該当する)により検出したクランクシャフトの回転位置と、カムシャフト回転検出手段により検出したカムシャフトの回転位相とにより、クランクシャフトに対するカムシャフトの回転位相を、カムシャフトの回転周期とは無関係に検出することができ、低回転時であっても回転位相の検出に遅れが生じることはない。
実施形態に係る内燃機関のシステム構成図である。 実施形態に係る可変バルブタイミング機構(VTC)を示す断面図である。 図2のA−A断面図である。 図2のB−B断面図である。 上記VTCの作動状態を示す断面図(A−A断面図に相当する)。 ヒステリシス材の磁束密度−磁界特性を示すグラフである。 図4の部分拡大断面図である。 図7の部品を直線状に展開した模式図であり、初期状態(a)とヒステリシスリングが回転したとき(b)の磁束の流れを示す図である。 上記VTCのブレーキトルク−回転速度特性を示すグラフである。 第2回転位置検出手段を構成する回転体401とギャップセンサ402とを説明する図である。 ギャップセンサのギャップ−出力特性を示すグラフである。 ギャップセンサの出力−カム角(回転位置)特性を示すグラフである。 回転位相補正値の算出を示すフローチャート(1)である。 回転位相補正値の算出を示すフローチャート(2)である。 回転位相が一定に保持されている状態における(a)カムトルク、(b)実回転位相、(c)回転位相変化速度及び(d)回転位相変化加速度を示す図である。
符号の説明
101…内燃機関、105…吸気バルブ、113…VTC(可変バルブタイミング機構)、114…ECU(エンジンコントロールユニット)、クランク角センサ…117、120…クランクシャフト、132…カムセンサ、134…吸気側カムシャフト、401…回転体、402…ギャップセンサ

Claims (3)

  1. 内燃機関のクランクシャフトに対するカムシャフトの回転位相を変化させることで、機関の吸気バルブ又は排気バルブの開閉タイミングを変化させる可変バルブタイミング機構の制御装置であって、
    機関の運転状態を検出する運転状態検出手段と、
    前記回転位相を任意のタイミングで検出可能な回転位相検出手段と、
    機関の運転状態に基づいて目標回転位相を設定する目標回転位相設定手段と、
    前記目標回転位相が一定であるときに、前記回転位相の単位時間当たりの変化量を回転位相変化速度として算出する回転位相変化速度算出手段と、
    前記カムシャフトの1回転周期内において、前記回転位相変化速度算出手段の算出した回転位相変化速度が最大となるときのクランク角度を、前記吸気バルブ又は排気バルブのバルブリフト量が最大となるリフトトップ角として算出するリフトトップ角算出手段と、
    前記リフトトップ角算出手段の算出したリフトトップ角と、設定上のリフトトップ角である基準リフトトップ角とに基づいて、回転位相補正値を算出する回転位相補正値算出手段と、
    前記目標回転位相と実回転位相との偏差を前記回転位相補正値により補正し、補正後の偏差に基づいて前記可変バルブタイミング機構を制御する制御手段と、
    を備えることを特徴とする可変バルブタイミング機構の制御装置。
  2. 前記回転位相補正値算出手段は、
    前記リフトトップ角と、前記回転位相変化速度が最大となるときの実回転位相とに基づいて、前記開閉タイミングが最も遅れる最遅角位置においてバルブリフト量が最大となる最遅角リフトトップ角を推定する最遅角リフトトップ角推定手段を備え、
    最遅角リフトトップ角推定手段の推定した最遅角リフトトップ角と、前記最遅角位置における設定上のリフトトップ角である基準最遅角リフトトップ角との差に基づいて前記回転位相補正値を算出することを特徴とする請求項1記載の可変バルブタイミング機構の制御装置。
  3. 前記可変バルブタイミング機構は、前記回転位相を変化させる要素の動作範囲をストッパ構造により規制するものであって、
    前記回転位相変化速度算出手段は、前記目標回転位相が前記ストッパ構造によって規制される限界位置に相当するときは前記回転位相変化速度の算出を禁止することを特徴とする請求項1又は請求項2記載の可変バルブタイミング機構の制御装置。
JP2004133470A 2004-04-28 2004-04-28 可変バルブタイミング機構の制御装置 Pending JP2005315155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133470A JP2005315155A (ja) 2004-04-28 2004-04-28 可変バルブタイミング機構の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133470A JP2005315155A (ja) 2004-04-28 2004-04-28 可変バルブタイミング機構の制御装置

Publications (1)

Publication Number Publication Date
JP2005315155A true JP2005315155A (ja) 2005-11-10

Family

ID=35442848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133470A Pending JP2005315155A (ja) 2004-04-28 2004-04-28 可変バルブタイミング機構の制御装置

Country Status (1)

Country Link
JP (1) JP2005315155A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223017A (ja) * 2009-03-19 2010-10-07 Hitachi Automotive Systems Ltd 可変バルブタイミング機構の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223017A (ja) * 2009-03-19 2010-10-07 Hitachi Automotive Systems Ltd 可変バルブタイミング機構の制御装置

Similar Documents

Publication Publication Date Title
JP2008002324A (ja) 位相角検出装置及び該位相角検出装置を用いた内燃機関のバルブタイミング制御装置
JP4425155B2 (ja) 内燃機関のバルブタイミング制御装置
US8091523B2 (en) Apparatus for and method of controlling variable valve timing mechanism
JP2006257959A (ja) 可変動弁機構の制御装置
JP4680127B2 (ja) 内燃機関の減速時制御装置
JP4313704B2 (ja) 内燃機関のバルブタイミング制御装置
JP2003206710A (ja) 可変バルブタイミング機構の制御装置
JP2005299639A (ja) 内燃機関のバルブタイミング制御装置
JP4156346B2 (ja) 内燃機関のバルブタイミング制御装置
JP4125999B2 (ja) 可変バルブタイミング機構の制御装置
JP2005299640A (ja) 内燃機関のバルブタイミング制御装置
JP4299164B2 (ja) 可変バルブタイミング機構の制御装置
JP2005315155A (ja) 可変バルブタイミング機構の制御装置
JP2005264864A (ja) 内燃機関の制御装置
JP4200111B2 (ja) 動弁制御装置
JP2005233153A (ja) 可変バルブタイミング機構の制御装置
JP2005220760A (ja) 可変動弁制御装置及び制御装置
JP2009174473A (ja) 可変バルブタイミング機構の制御装置
JP2005220758A (ja) 内燃機関の制御装置
JP4313626B2 (ja) 可変バルブタイミング機構の制御装置
JP4956454B2 (ja) 可変バルブタイミング機構の制御装置
JP4901337B2 (ja) 内燃機関の制御装置及び変速制御装置
JP2006274957A (ja) 内燃機関のバルブタイミング制御装置
JP2007138857A (ja) 内燃機関のバルブタイミング制御装置
JP2005248845A (ja) 可変バルブタイミング機構の制御装置及び制御装置