JP2005292947A - データ処理装置、遅延回路及び遅延素子 - Google Patents

データ処理装置、遅延回路及び遅延素子 Download PDF

Info

Publication number
JP2005292947A
JP2005292947A JP2004103743A JP2004103743A JP2005292947A JP 2005292947 A JP2005292947 A JP 2005292947A JP 2004103743 A JP2004103743 A JP 2004103743A JP 2004103743 A JP2004103743 A JP 2004103743A JP 2005292947 A JP2005292947 A JP 2005292947A
Authority
JP
Japan
Prior art keywords
delay
circuit
signal
output
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103743A
Other languages
English (en)
Inventor
Katsuichi Tomobe
勝一 友部
Masafumi Suefuji
政文 末藤
Masayuki Iwahashi
誠之 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004103743A priority Critical patent/JP2005292947A/ja
Publication of JP2005292947A publication Critical patent/JP2005292947A/ja
Pending legal-status Critical Current

Links

Images

Abstract


【課題】 プロセスばらつきや動作環境の変化に対してSDRAMへのデータ出力タイミングのマージンを確保する。
【解決手段】 SDRAMインタフェースコントローラはデータ出力回路(30)と、SDRAMへのメモリクロック信号(CLK)に同期してデータ出力回路の出力タイミングを制御する出力制御回路(31)とを有し、出力制御回路は可変遅延回路(40)とDLL回路(41)を備える。DLL回路はメモリクロック信号とこれを内部可変遅延回路で遅延させた遅延クロック信号との位相差に基づいてメモリクロック信号に対して遅延クロック信号を所定位相遅延させる遅延制御データ(42)を生成し、可変遅延回路は遅延制御データによってメモリクロック信号を遅延させてデータ出力回路の出力タイミングを規定する。SDRAMインタフェースコントローラはSDRAMのリフレッシュ動作に同期して可変遅延回路への遅延制御データを更新する。
【選択図】 図2

Description

本発明は、シンクロナスDRAM(SDRAM)インタフェースコントローラを有するデータ処理装置、遅延回路及び遅延素子に関し、例えばDDR(ダブルデータレート)SDRAMインタフェースコントローラを有するデータプロセッサに適用して有効な技術に関する。
DDRSDRAMはDLLなどの技術を利用して外部入力クロック信号と内部出力クロック信号との位相を合わせることにより、内部のクロック配線等による位相遅れの影響を除いてアクセス時間の遅れやばらつきを抑えて、高速動作を達成する。特許文献1にはSDRAMが記載される。特許文献2にはセルフリフレッシュ状態においてDLL回路の動作を停止させて低消費電力を図る技術が記載される。
特開平11−317076号公報(図23)
特開平8−147967号公報(段落0096〜0098)
本発明者はデータプロセッサにおけるDDRSDRAMインタフェースコントローラについて検討した。DDRSDRAMインタフェースコントローラは書込み動作ではデータの入出力タイミングを規定するクロック信号としてのデータストローブ信号の立ち上がり及び立ち下がりエッジで書込みデータが確定するように、データストローブ信号に対してその1/4サイクル位相をずらして書込みデータを出力する。このとき、セットアップ・ホールドタイムを確保するのにDLLを用いてデータ出力タイミングを規定する。DLLを用いない単なるディレイ回路を用いたのではプロセスばらつきによって充分なタイミングマージンを確保できないと考えられるからである。DLL回路を用いる場合にもその遅延回路に対する遅延時間設定を初期設定で行なうだけの場合には温度や電圧の変化に対応できない。常時DLLを動作させる場合には遅延時間の設定を更新した際に遅延回路の出力にハザードを生じ、データストローブ信号の波形が大きく乱れる虞があり、データ出力タイミングに必要な動作マージンを確保できなくなることがある。
例えば、DLL回路を用いて遅延時間が設定される可変遅延回路にデコーダとゲート遅延回路を用いるとき、デコーダから出力されるデコード信号により可変遅延回路における遅延経路の選択が変更されたとき、その過渡応答状態が確定するのに時間がかかって、その間にハザードを生ずる虞がある。具体的には、デコーダは複数ビットの遅延制御データをデコードして複数ビットのデコード信号を生成し、前記遅延制御データの値に応じて前記複数ビットのデコード信号の1ビットを活性化する。ゲート遅延回路は前記デコード信号の各ビットに対応する制御端子を有し、活性化信号が供給される制御端子の位置に応じて入力信号の遅延ゲート段数を相違させる。ゲート遅延回路の論理構成上、選択される段数の遅延ゲートの状態が確定するのにその上位側遅延ゲートの出力が確定することを要する場合には、遅延経路の選択変更による遅延時間の確定に上位側遅延ゲートの出力が確定するのを待つことが必要になり、その遅延によってゲート遅延回路の出力波形に大きな乱れを生ずる。
また、可変遅延回路をインバータ等の遅延素子を直列接続した回路で構成するとき、遅延時間をMOSトランジスタのゲート幅などのサイズで規定する場合には遅延時間はレイアウトの最小サイズで規律され、比較的大きな遅延時間の確保が難しい。比較的大きな遅延時間を得るには、インバータのMOSトランジスタに負荷トランジスタを縦積みしてインバータの電流駆動能力を小さくすることも可能であるが、負荷トランジスタを構成するPMOSトランジスタのゲート電極を回路の接地端子に接続する配線と、負荷トランジスタを構成するNMOSトランジスタのゲート電極を電源端子に接続する配線がチャンネル領域をつぶし、結局、遅延素子のレイアウト幅が大きくなるということが避けられない。
本発明の目的は、プロセスばらつき並びに温度や電圧等の動作環境の変化に対してSDRAMへのデータ出力タイミングのマージンを確保することができるSDRAMインタフェースコントローラを備えたデータ処理装置を提供することにある。
本発明の別の目的は、デコーダとゲート遅延回路を用いた可変遅延回路においてデコード信号により可変遅延回路における遅延経路の選択が変更されてもゲート遅延回路の出力波形に大きな乱れを生ずるのを防止することにある。
本発明の更に別の目的は、素子が占有するレイアウト幅に対して比較的大きな遅延時間を安定に確保できる遅延素子を提供することにある。
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
〔1〕本発明に係るデータ処理装置は、半導体基板にSDRAMインタフェースコントローラ(16)を有する。前記SDRAMインタフェースコントローラはデータ出力回路(30)と、SDRAMに与えるメモリクロック信号に同期して前記データ出力回路の出力タイミングを制御する出力制御回路(31)とを有し、前記出力制御回路は可変遅延回路(40)及び遅延ロックループ回路(41)を備える。前記遅延ロックループ回路は前記メモリクロック信号(CLK)とこれを内部可変遅延回路で遅延させた遅延クロック信号(CLKd)との位相差に基づいて前記メモリクロック信号に対して遅延クロック信号を所定位相だけ遅延させる遅延制御データを生成し、前記可変遅延回路は前記遅延ロックループ回路で生成される遅延制御データによって前記メモリクロック信号を遅延させて前記データ出力回路の出力タイミング信号を生成する。前記SDRAMインタフェースコントローラはSDRAMのリフレッシュ動作に同期して前記可変遅延回路に与える前記遅延制御データの更新を行なう。
SDRAMがリフレッシュ動作を行なっているときSDRAMインタフェースコントローラはSDRAMに対するライトアクセスを行なわないから、その間に前記可変遅延回路に与える前記遅延制御データの更新を行なうことによって出力タイミング信号の波形に大きな乱れを生じたとしても、SDRAM何ら障害を生じない。
本発明の具体的な形態では、前記SDRAMインタフェースコントローラはダブルデータレートのSDRAMに対するインタフェース制御が可能であり、このとき、前記データ出力回路はライトデータの出力回路であり、前記出力タイミング信号は、前記メモリクロック信号に対して1/4サイクル遅延されたクロック信号の立ち上がり変化及び立ち下がり変化の各々に同期して前記データ出力回路に出力タイミングを指示する信号とされる。
本発明の別の具体的な形態では、前記遅延ロックループ回路は、内部可変遅延回路と遅延制御回路を有し、内部可変遅延回路は、前記メモリクロック信号を入力し、入力したメモリクロック信号を遅延制御データにしたがって遅延させた遅延クロック信号を出力し、前記遅延制御回路は前記メモリクロック信号と前記遅延クロック信号との位相差を相殺するように前記遅延制御データを生成する。前記可変遅延回路は遅延ロックループ回路から供給される遅延制御データによって、前記内部可変遅延回路の1/4の遅延時間を形成する回路とされることにより、前記メモリクロック信号に対して1/4サイクル遅延されたクロックの立ち上がり及び立ち下がりの夫々に同期して前記データ出力回路のデータ出力タイミングを形成することができる。
データ処理装置は前記シンクロナスDRAMインタフェースコントローラに内部バスで接続された中央処理装置を有するデータプロセッサ若しくはマイクロプロセッサなどとされる。
〔2〕本発明に係る可変遅延回路は、デコーダ(70)、ゲート遅延回路(71)及び論理和ゲート(72)を有する。デコーダは、複数ビットの遅延制御データをデコードして複数ビットのデコード信号を生成し、前記遅延制御データの値に応じて前記複数ビットのデコード信号の1ビットを活性化する。ゲート遅延回路は、前記デコード信号の各ビットに対応する制御端子を有し、活性化信号が供給される制御端子の位置に応じて入力信号の遅延ゲート段数を相違させる。論理和ゲートは前記複数ビットのデコード信号に対し、順次下位側より隣接上位ビットとの間で2ビットのデコード信号の論理和を生成すし、前記ゲート遅延回路の最下位を除く制御端子には前記論理和ゲートの対応出力を接続する。
これによれば、デコード出力が変化されると、その変化されたデコード出力は論理和ゲートを介して隣接上位と併せて2ビット分の制御端子に供給されるから、活性化されたデコード出力の対応制御端子による遅延ゲート段数に対してそれよりも1段階だけ遅延ゲート段数の多い状態も選択され、最大の遅延ゲート段数を経て帰還されて来る信号の確定を待たなくても、前記1段階だけ多い遅延ゲート段数を経て帰還されて来る信号が逸早く確定するので、デコード出力が変化してもそれによって遅延出力波形が大きく乱れるのを防止することができる。尚、この技術的手段は、上記データ処理装置が保有する前記可変遅延回路や内部可変遅延回路に適用することが可能である。
本発明の具体的な形態では、前記ゲート遅延回路は制御端子毎に遅延段を有し、前記各遅延段は、入力端子が制御端子(Tcn)と伝達信号入力端子(Tti)とに接続され出力端子が次段への伝達信号出力端子(Tto)に結合する第1ナンドゲート(81)、入力端子が制御端子の反転信号と伝達信号入力端子とに接続する第2ナンドゲート(82)、入力端子が第2ナンドゲートの出力端子と後段からの帰還信号入力端子(Tfi)に接続し出力端子が次段への帰還信号出力端子(Tfo)に接続する第3ナンドゲート(83)を有し、最終段遅延段において第3ナンドゲートの入力は第1ナンドゲートの出力及び第2ナンドゲートの出力に接続し、初段遅延段における伝達信号入力端子に前記入力信号が供給され、初段遅延段における帰還信号出力端子から前記入力信号の遅延信号が出力される。
上記ゲート遅延回路によれば、制御端子が論理値“1”に活性化されている遅延段の第2ナンドゲート及び第3ナンドゲートとその前の全ての遅延段の第1ナンドゲート及び第3ナンドゲートの出力が初段遅延段における伝達信号入力端子の入力論理値に応じて順次変化され、その動作遅延に応ずる遅延時間をもって初段遅延段における帰還信号出力端子から前記入力信号の遅延信号が得られる。このとき、制御端子が論理値“1”に活性化されている遅延段より後段の遅延段の状態は変化されない。制御端子が論理値“1”で活性化されている遅延段が変化されると、その変化に応じて当該遅延段よりも後段に位置する遅延段の状態が変化され、その変化が確定するまで、初段遅延段における帰還信号出力端子の状態は不定となり、大きく変動する虞がある。このとき、前記論理和ゲートの作用により、前後2個の遅延段の制御端子が論理値“1”に活性化されると、制御端子が論理値“1”の2個の遅延段のうち後段の遅延段とその次の遅延段の帰還出力端子は同じ論理値“1”にされるので、次に制御端子が論理値“1”にされる遅延段がその前後何れの遅延段に変化されても当該遅延段の帰還入力端子の論理値は変更されないから、当該遅延段よりも後段に位置する遅延段の状態が確定するまで初段遅延段における帰還信号出力端子の状態が不定にならない。
〔3〕本発明に係るディレイ値の大きな遅延素子は、直列された複数段のインバータ(90A,90B)を有し、各インバータは電源端子に結合された第1のPMOSトランジスタ(PMOSトランジスタはPチャンネル型MOSトランジスタを意味する)(91)、第1のPMOSトランジスタに直列接続された第2のPMOSトランジスタ(92)、回路の接地端子に結合された第1のNMOSトランジスタ(NMOSトランジスタはNチャンネル型MOSトランジスタを意味する)(93)、及び前記第1のNMOSトランジスタに直列接続された第2のNMOSトランジスタ(94)を有し、前記第1及び第2のPMOSトランジスタと前記第1及び第2のNMOSトランジスタのゲート電極が共通接続され、第2のPMOSトランジスタと第2のNMOSトランジスタのコモンドレインが出力端子とされ、前後に配置されたインバータで第1のPMOSトランジスタと第2のPMOSトランジスタの結合ノードが相互に接続され、前後に配置されたインバータで第1のNMOSトランジスタと第2のNMOSトランジスタの結合ノードが相互に接続される。
上記した手段によれば、MOSトランジスタの入力ゲート容量によって遅延時間をかせぐことができる。前後に配置されたインバータの第1のPMOSトランジスタと第2のPMOSトランジスタの結合ノードを相互に接続し、第1のNMOSトランジスタと第2のNMOSトランジスタの結合ノードを相互に接続することにより、直列されたMOSトランジスタのオフ状態においてその間の結合ノードがフローティングになってレベルが不定になることを抑止することができる。そのようなフローティング状態はインバータの過渡応答動作の影響してインバータの反転動作遅延時間を変化させる。インバータのMOSトランジスタに負荷トランジスタを縦積みしてインバータの電流駆動能力を小さくした構成と比較すると、負荷トランジスタを構成するPMOSトランジスタのゲート電極を回路の接地端子に接続する配線と、負荷トランジスタを構成するNMOSトランジスタのゲート電極を電源端子に接続する配線を設けずに済み、そのような配線がチャンネル領域をつぶして遅延素子のレイアウト幅が大きくなることを抑制することができる。尚、この技術的手段は、上記データ処理装置が保有するミニマムディレイ対策用遅延素子や内部可変、固定遅延回路の遅延素子に適用することが可能である。
本発明の具体的な形態では、前記インバータの第1及び第2のPMOSトランジスタを形成する第1導電型の半導体領域(104)をインバータ間で共通化し且つ第1のPMOSトランジスタと第2のPMPOSトランジスタ毎に離間させて並列に有し、前記インバータの第1及び第2のNMOSトランジスタを形成する第2導電型の半導体領域(105)をインバータ間で共通化し且つ第1のNMOSトランジスタと第2のNMPOSトランジスタ毎に並列に有し、並列された第1導電型の各半導体領域の中間部を相互に配線で結合することによって、前後に配置されたインバータがそれぞれ持つ第1のPMOSトランジスタと第2のPMOSトランジスタとの結合ノードを相互に接続し、並列された第2導電型の各半導体領域の中間部を相互に配線で結合することによって、前後に配置されたインバータが夫々持つ第1のNMOSトランジスタと第2のNMOSトランジスタとの結合ノードを相互に接続した、レイアウト構成を採用することが可能である。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
すなわち、プロセスばらつき並びに温度や電圧等の動作環境の変化に対してSDRAMへのデータ出力タイミングのマージンを確保することができるSDRAMインタフェースコントローラを備えたデータ処理装置を実現することができる。
デコーダとゲート遅延回路を用いた可変遅延回路においてデコード信号により可変遅延回路における遅延経路の選択が変更されてもゲート遅延回路の出力波形に大きな乱れを生ずるのを防止することができる。
素子が占有するレイアウト幅に対して比較的大きな遅延時間を安定に確保できる遅延素子を実現することができる。
《データプロセッサ》
図1には本発明を適用したデータプロセッサ(MCU)が例示される。前記データプロセッサ1は、特に制限されないが、CMOS集積回路製造技術により単結晶シリコンのような1個の半導体基板に形成される。前記データプロセッサ1は、CPU(Central Processing Unit)2を内蔵し、CPU2が接続する第1バス3には、バスブリッジ回路(BBRG)4、ダイレクトメモリアクセスコントローラ(DMAC)5、3次元画像の描画処理など行う3Dグラフィックスモジュール3(3DGFIC)6、クロックパルスジェネレータ(CPG)7及びメモリインタフェース回路(MRYIF)8が接続される。前記バスブリッジ回路4には更に第2バス10及び外部バス11に接続される。3Dグラフィックスモジュール6は3D専用バス14を介してメモリインタフェース回路8に接続される。
メモリインタフェース回路8にはメモリバス12を介して外部メモリとして前記SDRAM13が接続される。SDRAM13は例えばCPU2のメインメモリ、さらにはフレームバッファ等の画像メモリとして利用される。メモリインタフェース回路8はバスアービトレーションを行なうバスアービタ(ARBT)315とメモリ制御を行うSDRAMインタフェースコントローラ(MCNT)16とを有する。バスアービタ15バス3,10,14を介する外部メモリアクセスの競合を調停する。SDRAMインタフェースコントローラ16はSDRAM13に対するアクセス要求に応答して、クロック信号の立ち上り及び立ち下がりの双方に同期してSDRAM4をリード又はライト動作可能とする、DDR−SDRAM仕様にしたがったアクセス制御を行なう。
前記3D専用バス14に接続される3Dグラフィックスモジュール6は第1バス3を介してCPU2から3D描画コマンドなどの画像処理コマンドを受取って3D描画処理を行う。描画はSDRAM13のフレームバッファ領域に対して行なわれる。
第2バス10には2次元画像処理を行なう2Dグラフィックスモジュール(2DGFIC)20、表示制御回路(DU)21、及びATアタッチメントパケットインタフェース回路(ATAPI)22等が接続される。前記2グラフィックスモジュール20は例えば太線描画機能等を備え、描画はSDRAM13のフレームバッファ領域に対して行なわれる。表示制御回路21はSDRAM4のフレームバッファ領域に描画された画像データを順次読み出して、ディスプレイ装置の表示タイミングに同期させて出力する制御を行う。ATAPI323はハードディスクドライブ、DVD又はCD−ROMドライブ等のディスクドライブ装置に接続され、ディスクドライブ装置から記録情報を読取るためのインタフェース制御を行う。尚、外部バス11にはCPU2の動作プログラムを格納するメモリなどが接続される。
前記SDRAM13は、特に制限されないが、公知のMOS半導体集積回路製造技術によって単結晶シリコンのような一つの半導体基板に形成されている。SDRAM13は、マトリクス配置されたダイナミック型のメモリセルを備え、メモリセルの選択端子はワード線に結合され、メモリセルのデータ入出力端子はビット線に結合され、ビット線はセンスアンプを中心とした折り返しビット線構造による相補ビット線とされる。ワード線はロウアドレス信号にて選択され、ビット線はカラムアドレス信号にて選択される。センスアンプは、メモリセルからのデータ読出しによって夫々の相補ビット線に現れる微小電位差を検出して増幅する。相補ビット線はカラムアドレス信号のデコード信号でスイッチ制御されるカラム選択回路を介して共通データ線に導通される。共通データ線にはリードアンプとライトアンプが結合され、読み出し動作ではセンスアンプの出力がリードアンプで増幅されて、データ出力回路から外部に出力される。書き込み動作ではライトアンプがデータ入力回路から入力される書込みデータにしたがって相補ビット線を駆動してメモリセルにデータを書き込む。前記データ入力回路の入力端子と前記データ出力回路の出力端子は、特に制限されないが、16ビットのデータ入出力端子DQ0〜DQ15に結合される。
SDRAM13は、特に制限されないが、15ビットのアドレス入力端子A0〜A14を有し、アドレスマルチプレクス形態でロウアドレス信号とカラムアドレス信号が供給される。SDRAM13は、特に制限されないが、クロック信号CLK、/CLK(記号“/”はそれが付された信号がローイネーブルの信号又はレベル反転信号であることを意味する)、クロックイネーブル信号CKE、チップセレクト信号/CS、カラムアドレスストローブ信号/CAS、ロウアドレスストローブ信号/RAS、ライトイネーブル信号/WE、及びデータストローブ信号DQSなどの外部制御信号が入力される。SDRAM13の動作はそれら入力信号の状態の組み合わせによって規定されるコマンドで決定される。クロック信号CKはSDRAMの同期動作に用いるマスタクロックとしてのメモリロック信号とされる。
クロック信号CLK、/CLKはSDRAM13のマスタクロックとされ、その他の外部入力信号は当該クロック信号CLKの立ち上がりエッジに同期して有意とされる。前記データストローブ信号DQSは書込み動作時にライトストローブ信号として外部から供給される。即ち、クロック信号CLKに同期して書き込み動作が指示されたとき、その指示が行われた前記クロック信号周期の後のクロック信号周期からのデータストローブ信号DQSに同期するデータの供給が規定されている。読み出し動作時には前記データストローブ信号DQSはリードストローブ信号として外部に出力される。
ロウアドレス信号は、クロック信号CLKの立ち上がりエッジに同期する後述のロウアドレスストローブ・バンクアクティブコマンド(アクティブコマンド)サイクルにおけるアドレス入力端子A0〜A12のレベルによって定義される。前記カラムアドレス信号は、クロック信号CLKの立ち上がりエッジに同期する後述のカラムアドレス・リードコマンド(リードコマンド)サイクル、カラムアドレス・ライトコマンド(ライトコマンド)サイクルにおける端子A0〜A11のレベルによって定義される。前記ロウアドレスストローブ・バンクアクティブコマンドは、ロウアドレスストローブの指示などを有効にするコマンドであり、/CS,/RAS=ローレベル(“0”)、/CAS,/WE=ハイレベル(“1”)によって指示され、このときA0〜A12に供給されるアドレスがロウアドレス信号とされ、A13,A14に供給される信号がメモリバンクの選択信号として取り込まれる。カラムアドレス・リードコマンドは、バーストリード動作を開始するために必要なコマンドであると共に、カラムアドレスストローブの指示を与えるコマンドであり、/CS,/CAS,=ローレベル、/RAS,/WE=ハイレベルによって指示され、このときA0〜A11に供給されるアドレスがカラムアドレス信号として取り込まれる。その他に、カラムアドレス・ライトコマンド、プリチャージコマンド、セルフリフレッシュエントリコマンドなどがある。SDRAM4は、クロック信号CLKに同期するデータストローブ信号DQSの立ち上がり及び立ち下がりの両エッジに同期したデータ入出力が可能にされ、クロック信号CLKに同期してアドレス、制御信号を入出力できるため、DRAMと同様の大容量メモリをSRAMに匹敵する高速で動作させることが可能であり、また、選択された1本のワード線に対して幾つのデータをアクセスするかをバーストレングスによって指定することによって、内蔵カラムアドレスカウンタで順次カラム系の選択状態を切換えていって複数個のデータを連続的にリード又はライトすることも可能である。
《SDRAMインタフェースコントローラ》
図2にはSDRAMインタフェースコントローラ16における書込みデータ出力部の一例が示される。書込みデータ出力部は、データ出力回路30と、シンクロナスDRAM13に与えるクロック信号CLKに同期して前記データ出力回路の出力タイミングを制御する出力制御回路31とを有する。データ出力回路30は出力データラッチ回路(DL)32,33、出力データラッチ回路32,33の出力を選択するセレクタ(SEL)34、及びセレクタ34の出力を受ける出力バッファ(BUF)35を有する。バッファ35の出力はLSIのボンディングパッドのようなパッド(PAD)を経由してデータ端子DQに接続される。出力データラッチ回路32はクロックCLKのローレベル期間に入力データをラッチし、出力データラッチ回路33はクロックCLKのハイレベル期間に入力データをラッチする。セレクタ34は選択信号36のハイレベル期間に出力データラッチ32の出力を選択し、選択信号36のローレベル期間に出力データラッチ33の出力を選択する。前記出力制御回路31は可変遅延回路40及び遅延ロックループ回路としてのDLL回路41を備える。前記DLL回路41は前記クロック信号CLKとこれをその内部可変遅延回路で遅延させた遅延クロック信号との位相差に基づいて前記クロック信号CLKに対して遅延クロック信号を所定位相例えば1/4サイクルだけ遅延させる遅延制御データ42を生成する。前記可変遅延回路40は前記DLL回路41で生成される遅延制御データ42によって前記クロック信号CLKを例えば1/4サイクル遅延させて前記セレクタの選択信号を生成する。
図3にはSDRAMインタフェースコントローラ16による書込みデータの出力タイミングが例示される。アドレス信号ADDR及びコマンドCMDは、クロック信号CLKの立ち上がりから所定のタイミングで変化され、クロック信号CLKの次の立ち上がりで確定される。この時、書込みデータはデータストローブ信号DQSの立ち上がり及び立ち下がる出確定するように、データストローブ信号DQSよりも1/4サイクル遅延したタイミングに同期して変化される。データストローブ信号DSはクロック信号CLKに基づいてそれと同相で生成されたクロック信号であり、クロック信号CLKと実質同一のクロック信号とされる。これにより、SDRAMはデータストローブ信号DQSの変化に同期して書込みデータを取り込むことができる。このときデータストローブ信号DQSの変化に対する書込みデータのセットアップ・ホールドタイムを確保するのに前記可変遅延回路とDLL回路を用いている。単なる単純遅延回路を用いて1/4サイクル遅延させる場合にはプロセスばらつきによって充分なタイミングマージンを確保することができないからである。
図4にはDLL回路41の一例が示される。DLL回路41は、内部可変遅延回路44と遅延制御回路45を有する。内部可変遅延回路44は同じ可変遅延ユニット(DLU)44Uが4段直列接続されて構成され、前記クロック信号CLKを入力し、入力したクロック信号CLKを遅延制御データ46にしたがって遅延させた遅延クロック信号CLKdを出力する。遅延制御回路45は前記クロック信号CLKと前記遅延クロック信号CLKdとの位相差を相殺するように前記遅延制御データ46を生成する。可変遅延回路44は前記遅延制御データ46に基づいて遅延クロック信号CLKdの位相をメモリクロック信号CLKの位相に近付ける。遅延制御回路45は前記クロック信号CLKと前記遅延クロック信号CLKdとの位相差が許容範囲内でゼロになているときは遅延制御データ46の値をロックする。このロック状態において、1個の可変遅延ユニット44U当りクロック信号CLKの1/4サイクルの遅延を生じさせる。
前記遅延制御回路45は、位相比較器50、アップダウンカウンタ51、アンドゲート52、ラッチ回路53、2ビットカウンタ54、及びラッチ回路55、56を有する。2ビットカウンタ54はクロック信号CLKのサイクル数を1から4まで繰り返し計数し、4カウント毎に位相比較器50を活性化して動作可能とし、ラッチ回路53をラッチ動作させる。位相比較器50はクロック信号CLKの4サイクルに一度の割合で前記クロック信号CLKと前記遅延クロック信号CLKdとの位相差を検出し、位相遅れが有ればアップカウント信号(up)58を活性化し、位相進みが有ればダウンカウント信号(down)59を活性化し、位相差が許容範囲内でゼロのときロック信号(lock)60を活性化する。アップダウンカウンタ51はアップカウント信号(up)58が活性化されることにより+1アップカウントを行ない、ダウンカウント信号(down)59が活性化されることにより−1ダウンカウントを行なう。アップダウンカウンタ51の出力が遅延制御データ46とされ、遅延制御データは46はクロック信号CLKの4サイクルに1回の割合でラッチ回路53にラッチされて、アップダウンカウンタ51によるアップダウンカウントの対象にされる。ラッチ回路53の遅延制御データ46はDLL回路45のロック状態を示すロック信号60の活性化に応答してラッチ回路55にラッチされる。ラッチ回路55にラッチされた遅延制御データは、SDRAM13のリフレッシュ動作に同期してラッチ回路56にラッチされ、可変遅延回路に与えられる遅延制御データが更新される。SDRAMインタフェースコントローラは16は所定のリフレッシュインターバルを検出するためのリフレッシュカウンタ62を備える。リフレッシュカウンタ62は前記所定のリフレッシュインターバル毎にリフレッシュイネーブル信号63を活性化する。SDRAMインタフェースコントローラ16はリフレッシュイネーブル信号63の活性化に応答して、SDRAM13をリフレッシュ動作させる。その間、SDRAMインタフェースコントローラ16はバス3,10,14からのSDRAM13に対するアクセス要求の受付を拒否する。前記ラッチ回路56はリフレッシュイネーブル信号63の活性化に応答して、ラッチ回路55の出力をラッチして、可変遅延回路40へ供給する遅延制御データ42を更新する。SDRAM13のリフレッシュ動作期間中はSDRAM13に対するリードアクセス及びライトアクセスが拒否されているので、可変遅延回路40へ供給される遅延制御データ42が更新されることによって、可変遅延回路の遅延時間切り換え動作の過渡応答期間に遅延クロック信号36の波形に大きな乱れを生じたとしても、SDRAM13に何ら障害を生じさせない。
《可変遅延回路》
図5には前記可変遅延回路40又は可変遅延ユニット(DLU)44Uに適用可能な可変遅延回路の詳細が例示される。可変遅延回路40は、デコーダ70、ゲート遅延回路71、複数のOR(オア)ゲート72及びファインディレイ(FinD)73によって構成される。
デコーダ70は、複数ビットの遅延制御データs1〜s6をデコードして複数ビットのデコード信号T0〜T63を生成し、前記遅延制御データs1〜s6の値に応じて前記複数ビットのデコード信号T0〜T63のうちの1ビットを活性化する。
ゲート遅延回路71は前記デコード信号T0〜T63の各ビットに対応する制御端子Tcnを有し、活性化信号が供給される制御端子Tcnの位置に応じて入力信号inの遅延ゲート段数を相違させる論理構成を有する。例えば前記ゲート遅延回路71は、制御端子毎に遅延段DLG0〜DLG63を有し、前記各遅延段DLG0〜DLG63は、入力端子が制御端子Tcnと伝達信号入力端子Ttiとに接続され出力端子が次段への伝達信号出力端子Ttoに結合する第1ナンドゲート81、入力端子が制御端子Tcnの反転信号と伝達信号入力端子Ttiとに接続する第2ナンドゲート82、入力端子が第2ナンドゲートの出力端子と後段からの帰還信号入力端子Tfiに接続し出力端子が次段への帰還信号出力端子Tfoに接続する第3ナンドゲート83を有し、最終段遅延段DLG63において第3ナンドゲート83の入力は第1ナンドゲート81の出力及び第2ナンドゲート82の出力に接続し、初段遅延段DLG0における伝達信号入力端子Ttiに前記入力信号inが供給され、初段遅延段DLG0における帰還信号出力端子Tfoから前記入力信号inのゲート遅延信号が出力されるように構成される。前記ORゲート72は前記複数ビットのデコード信号T0〜T63に対し、順次下位側より隣接上位ビットとの間で2ビットのデコード信号の論理和を生成する。前記ゲート遅延回路71の最下位を除く制御端子Tcn1〜Tcn63には前記ORゲート72の対応出力が接続される。
ファインディレイ73は例えばMOSトランジスタのオン抵抗による遅延時間を有する。複数ビットの遅延制御データs0〜s6の最下位ビットs0の論理値が“1”のときその遅延時間を最終段遅延段DLG63の出力に付加して遅延信号outを得る。
上記図5の論理構成を有する可変遅延回路40によれば、デコード出力T0〜T63が変化されると、それによって活性化された1ビットのデコード出力はORゲート72を介して隣接上位と併せて2ビット分の制御端子Tcnに供給されるから、活性化されたデコード出力の対応制御端子tcnに応ずる遅延ゲート段数に対してそれよりも1段階だけ遅延ゲート段数の多い状態も選択され、最大の遅延ゲート段数を経て帰還されて来る信号の確定を待たなくても、前記1段階だけ多い遅延ゲート段数を経て帰還されて来る信号が逸早く確定するので、デコード出力T0〜T63が変化してもそれによって遅延出力波形が大きく乱れるのを防止することができる。
その作用を具体的に説明する。図6には遅延段DLG0の制御端子Tcnが“1”にされた状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値が例示される。図より明らかなように、入力信号inの“1,0”変化に対しナンドゲート(DB0)82の出力が“0,1”に変化し、ナンドゲート(DC0)83の出力が“1,0”に変化する。その他のナンドゲートの出力論理値は固定である。よって、初段の遅延段DLG0の制御端子Tcnが“1”にされたとき、入力信号inはナンドゲートDB0、DC0のゲート動作遅延時間分だけ伝達遅延される。
図7には遅延段DLG1の制御端子Tcnが“1”にされた状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値が例示される。図より明らかなように、入力信号inの“1,0”変化に対しナンドゲート(DA0)81の出力が“0,1”に変化し、ナンドゲート(DB1)82の出力が“1,0”に変化し、ナンドゲート(DC1)83の出力が“0,1”に変化し、ナンドゲート(DC0)83の出力が“1,0”に変化する。その他のナンドゲートの出力論理値は固定である。よって、第2段目の遅延段DLG1の制御端子Tcnが“1”にされたとき、入力信号inはナンドゲートDA0、DB1、DC1、DC0のゲート動作遅延時間分だけ伝達遅延される。
図6と図7を比べれば明らかなように、図6において入力inの変化に対して出力論理値固定のナンドゲートDA0乃至ナンドゲートDC1の論理値は、図7において入力inの変化に対して出力論理値固定のナンドゲートDA1乃至ナンドゲートDC2の論理値と正反対になる。したがって、遅延段の選択端子Tcnの状態が図6から図7に変化するときの過渡応答状態では、ナンドゲートDA1からナンドゲートDC2の出力が反転するのを待たなければ、入力信号inの変化に対する出力信号outの変化が確定しない。図8に示されるように時刻t0で切り換えたとき、不所望なゲート遅延Dlyを生じ、HZDに示されるようにナンドゲートDC0の出力波形が乱れる。
これに対し図5の構成では図6に対応する選択状態は図9のように遅延段DLG0とDLG1の制御端子Tcnが“1”にされた状態とされ、この状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値は図9より明らかなように、入力信号inの“1,0”変化に対してDA0からDC1までのナンドゲートの出力論理値は固定であるが、DC1,DC2の連続2段のナンドゲートの出力論理値は同一にされている。同じように、図7に対応する選択状態は図10のように遅延段DLG1とDLG2の制御端子Tcnが“1”にされた状態とされ、この状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値は図10より明らかなように、入力信号inの“1,0”変化に対してDA1からDC2までのナンドゲートの出力論理値は固定であるが、DC3,DC2の連続2段のナンドゲートの出力論理値は同一にされている。よって、図9の状態から図10の状態に遷移するとき、ナンドゲートDC2の出力は変化しないことになるから、当該ナンドゲートDC2の後段の状態が確定するまでその前段のナンドゲートの出力が安定しないことはない。したがって図9のHZDにおけるような波形の乱れを防止することができる。
上記可変遅延回路によれば、制御端子Tcnが論理値“1”に活性化されている遅延段の第2ナンドゲート82及び第3ナンドゲート83とその前の全ての遅延段の第1ナンドゲート81及び第3ナンドゲート83の出力が初段遅延段における伝達信号入力端子Ttiの入力論理値に応じて順次変化され、その動作遅延に応ずる遅延時間をもって初段遅延段DLG0における帰還信号出力端子Tfoから前記入力信号in(CLK)の遅延信号out(36)が得られる。このとき、制御端子Tcnが論理値“1”に活性化されている遅延段より後段の遅延段の状態は変化されない。制御端子Tcnが論理値“1”で活性化されている遅延段が変化されると、その変化に応じて当該遅延段よりも後段に位置する遅延段の状態が変化され、その変化が確定するまで、初段遅延段DLG0における帰還信号出力端子Tfoの状態は不定となり、大きく変動する虞がある。これに対し、前記ORゲート72の作用により、前後2個の遅延段の制御端子Tcnが論理値“1”に活性化されると、制御端子Tcnが論理値“1”の2個の遅延段のうち後段の遅延段とその次の遅延段の帰還出力端子Tfoは同じ論理値“1”にされるので、次に制御端子が論理値“1”にされる遅延段がその前後何れの遅延段に変化されても当該遅延段の帰還入力端子Tfiの論理値は変更されないから、当該遅延段よりも後段に位置する遅延段の状態が確定するまで初段遅延段DLG0における帰還信号出力端子Tfoの状態が安定しないことはない。
なお、可変遅延ユニット(DLU)44Uに図5の構成を適用した場合には複数ビットの遅延制御データs0〜s6は遅延制御データ46とされ、入力信号inがクロック信号CLK、遅延信号outが遅延クロック信号CLKdとされる。
《遅延素子》
前記可変遅延回路40や可変遅延ユニット(DLU)44Uにはインバータ遅延回路を用いることができる。また、データプロセッサ内の信号配線におけるミニマムディレイ違反に対処するために要所にインバータ遅延回路を用いることができる。以下ではそのようなインバータ遅延回路を構成するインバータ遅延素子について説明する。
図11にはインバータ遅延素子の回路図が例示される。インバータ遅延素子90は複数段のインバータ90A〜90Dを有する。インバータ90A、90Bは夫々特徴的な構成を備え、電源端子Vddに結合された第1のPMOSトランジスタ91、第1のPMOSトランジスタ91に直列接続された第2のPMOSトランジスタ92、回路の接地端子Vssに結合された第1のNMOSトランジスタ93、及び前記第1のNMOSトランジスタ93に直列接続された第2のNMOSトランジスタ94を有し、前記第1及び第2のPMOSトランジスタ91,92と前記第1及び第2のNMOSトランジスタ93,94のゲート電極が共通接続され、第2のPMOSトランジスタ92と第2のNMOSトランジスタ94のコモンドレインが出力端子とされ、前後に配置されたインバータ90A,90Bの間で第1のPMOSトランジスタ91と第2のPMOSトランジスタ92の結合ノードが相互に接続され、前後に配置されたインバータ90A,90Bの間で第1のNMOSトランジスタ93と第2のNMOSトランジスタ94の結合ノードが相互に接続される。ここではインバータ90C,90Dは1個のPMOSトランジスタと1個のNMOSトランジスタを直列接続したCMOSインバータで構成される。
図12には前記インバータ遅延素子90のレイアウト構成が例示される。図13には図12のレイアウトパターンと図11の回路構成との対応が示される。図12において100はpチャンネル型MOSトランジスタ(PMOSトランジスタ)が形成されるn型ウェル領域(nウウェル)、101はnチャンネル型MOSトランジスタ(NMOSトランジスタ)が形成されるp型ウェル領域(pウェル)、102はnウェル給電用コンタクト、103はpウェル給電用コンタクト、104はn型拡散領域、105はp型拡散領域である。106は電源電圧Vddが供給される電源配線、107は回路の接地電圧Vssが供給されるグランド配線、108A〜108Dはポリシリコンゲート配線、109はPMOSトランジスタ91のソースコンタクト、110はPNOSトランジスタ91のドレインコンタクト、111はPMOSトランジスタ92のソースコンタクト、112はNNOSトランジスタ93のソースコンタクト、112はNNOSトランジスタ93のソースコンタクト、113はNNOSトランジスタ93のドレインコンタクト、114はNMOSトランジスタ94のソースコンタクトである。ソースコンタクト109は拡散領域104を電源配線106に接続する。ソースコンタクト112は拡散領域105をグランド配線107に接続する。PMOSトランジスタ91,92用の拡散領域104はインバータ90A,90B間で共通化してPMOSトランジスタ毎に離間させて並列配置される。同様に、NMOSトランジスタ93,94用の拡散領域105はインバータ90A,90B間で共通化してNMOSトランジスタ毎に離間させて並列配置される。並列された拡散領域104はその中間部が相互に配線116で結合することにより、前後に配置されたインバータ90A,90Bがそれぞれ持つPMOSトランジスタ91とPMOSトランジスタ92との結合ノードが相互に接続される。同様に、並列された拡散領域105はその中間部が相互に配線117で結合することにより、前後に配置されたインバータ90A,90Bがそれぞれ持つNMOSトランジスタ93とNMOSトランジスタ94との結合ノードが相互に接続される。尚、図11及び図12において前記配線116,117を他と区別するために便宜上その周りを太線矩形で囲っている。
上記インバータ遅延素子90によれば、MOSトランジスタ91、92,93,94の入力ゲート容量によって遅延時間をかせぐことができる。前後に配置されたインバータのPMOSトランジスタ91とPMOSトランジスタ92の結合ノードを相互に接続し、NMOSトランジスタ93とNMOSトランジスタ94の結合ノードを相互に接続することにより、直列されたMOSトランジスタ91と92又は93と94のオフ状態においてその間の結合ノードNDp,NDnがフローティングになってレベルが不定になることを抑止することができる。そのようなフローティング状態はインバータ90A,90Bの過渡応答動作の影響してインバータ90A,90Bの反転動作遅延時間を変化させる。
第1の比較例として図14にはインバータ90Arf,90Brfを単なるCMOSインバータで形成したときの回路図が示され、そのレイアウトパターンは図15のようになり、図16には図14の回路構成と図15のレイアウトパターンとの対応が示される。第1の比較例の場合には遅延時間を専らMOSトランジスタのゲート幅などのサイズで規定することになり、遅延時間はレイアウトの最小サイズで規律され、比較的大きな遅延時間の確保が難しい。
第2の比較例として図17にはインバータ90Arf,90BrfとしてCMOSインバータのMOSトランジスタに負荷トランジスタを縦積みしてインバータの電流駆動能力を小さくしたインバータ遅延素子が示され、そのレイアウトパターンは図18のようになり、図19には図17の回路構成と図18のレイアウトパターンとの対応が示される。この場合には負荷トランジスタを構成するPMOSトランジスタのゲート電極を回路の接地端子Vssに接続する配線と、負荷トランジスタを構成するNMOSトランジスタのゲート電極を電源端子Vddに接続する配線がチャンネル領域をつぶし、結局、遅延素子のレイアウト幅が大きくなるということが避けられない。図18において、そのような配線によってつぶされるチャネル領域は太線矩形で囲まれた比較的大きな領域であり、無視できる程小さくはない。
上記比較例との関係において、図11乃至図13に示されるインバータ遅延素子によれば、比較的大きな遅延時間を確保することができ、その場合にも多くの配線がチャンネル領域をつぶして遅延素子のレイアウト幅が大きくなることを抑制することが可能である。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、シンクロナスDRSAMはダブルデータレートに限定されずシングルデータレートであってもよい。また、デコーダの後段にORゲートを配置した可変遅延回路はSDRAMインタフェースコントローラに適用する場合に限定されず、その他種々の半導体集積回路や電子回路に適用するこができる。またインバータ遅延素子も可変遅延回路に用いる場合に限定されず、ミニマムディレイ違反に対する遅延用の遅延素子はもとより、種々の遅延用途に広く適用することができる。このとき、インバータの直列段数は2段に限定されず、3段以上であってもよい。また、DLL回路は図4の構成に限定されず、ループにダミー遅延素子を含むようにした回路構成など、種々の回路構成を採用することができる。データ処理システムが搭載する回路モジュールは図1に限定されず、適宜変更可能である。データ処理装置はデータプロセッサやマイクロコンピュータに限定されず、その他に、システムオンチップの大規模なシステムLSIのような半導体集積回路等に広く適用することができる。
本発明を適用したデータプロセッサを例示するブロック図である。 SDRAMインタフェースコントローラにおける書込みデータ出力部の一例を示すブロック図である。 SDRAMインタフェースコントローラによる書込みデータの出力タイミングを例示するタイミングチャートである。 DLL回路の一例を示すブロック図である。 可変遅延回路の詳細を例示する論理回路図である。 遅延段DLG0の制御端子Tcnが“1”にされた状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値を例示する説明図である。 遅延段DLG1の制御端子Tcnが“1”にされた状態で入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値を例示する説明図である。 デコード信号の切り換えに伴って発生する不所望なゲート遅延とそれによる出力波形の乱れを例示したタイミングチャートである。 ORゲートを介在されることによって遅延段DLG0とDLG1の制御端子Tcnが“1”にされた状態で、入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値を示す動作説明図である。 ORゲートを介在されることによって遅延段DLG1とDLG2の制御端子Tcnが“1”にされた状態で、入力信号inが“1,0”に変化されたときゲート遅延回路71の各信号ノードの論理値を示す動作説明図である。 インバータ遅延素子を例示する回路図である。 図11のインバータ遅延素子のレイアウト構成を例示する平面図である。 図12のレイアウトパターンと図11の回路構成との対応を示す説明図である。 第1の比較例としてインバータ90Arf,90Brfを単なるCMOSインバータで形成したときの回路図である。 図14の回路のレイアウトパターンを示す平面図である。 図14の回路構成と図15のレイアウトパターンとの対応を示す説明図である。 第2の比較例としてCMOSインバータのMOSトランジスタに負荷トランジスタを縦積みしてインバータの電流駆動能力を小さくしたインバータ遅延素子を示す回路図である。 図17のレイアウトパターンを示す平面図である。 図17の回路構成と図18のレイアウトパターンとの対応を示す説明図である。
符号の説明
1 データプロセッサ
2 CPU
13 SDRAMインタフェースコントローラ
DQ0〜DQ15 データ入出力端子
CLK クロック信号
DQS データストローブ信号
30 データ出力回路
31 出力制御回路
32、33 出力データラッチ回路
34 セレクタ
36 選択信号
40 可変遅延回路
41 DLL回路
42 遅延制御データ
44 内部可変遅延回路
45 遅延制御回路
46 遅延制御データ
62 リフレッシュカウンタ
63 リフレッシュイネーブル信号
70 デコーダ
71 ゲート遅延回路
72 ORゲート
81 第1ナンドげーと
82 第2ナンドゲート
83 第3ナンドゲート
s1〜s6 遅延制御データ
T0〜T63 デコード出力
DLG0〜DLG63
Tcn 制御端子
Tto 伝達信号出力端子
Tti 伝達信号入力端子
Tfi 帰還信号入力端子
Tfo 帰還信号出力端子
90 インバータ遅延素子
90A,90B インバータ
91 第1のPMOSトランジスタ
92 第2のPMOSトランジスタ
93 第1のNMOSトランジスタ
94 第2のNMOSトランジスタ
104 n型拡散領域
105 p型拡散領域
116、117 配線

Claims (10)

  1. 半導体基板にシンクロナスDRAMインタフェースコントローラを有するデータ処理装置であって、
    前記シンクロナスDRAMインタフェースコントローラは、データ出力回路と、シンクロナスDRAMに与えるメモリクロック信号に同期して前記データ出力回路の出力タイミングを制御する出力制御回路とを有し、
    前記出力制御回路は可変遅延回路及び遅延ロックループ回路を備え、
    前記遅延ロックループ回路は前記メモリクロック信号とこれを内部可変遅延回路で遅延させた遅延クロック信号との位相差に基づいて前記メモリクロック信号に対して遅延クロック信号を所定位相だけ遅延させる遅延制御データを生成し、
    前記可変遅延回路は前記遅延ロックループ回路で生成される遅延制御データによって前記メモリクロック信号を遅延させて前記データ出力回路の出力タイミング信号を生成し、
    前記シンクロナスDRAMインタフェースコントローラはシンクロナスDRAMのリフレッシュ動作に同期して前記可変遅延回路に与える前記遅延制御データの更新を行なう、データ処理装置。
  2. 前記シンクロナスDRAMインタフェースコントローラはダブルデータレートのシンクロナスDRAMに対するインタフェース制御が可能であり、
    前記データ出力回路はライトデータの出力回路であり、
    前記出力タイミング信号は、前記メモリクロック信号に対して1/4サイクル遅延されたクロック信号の立ち上がり変化及び立ち下がり変化の夫々に同期して前記データ出力回路に出力タイミングを指示する、請求項1記載のデータ処理装置。
  3. 前記遅延ロックループ回路は、内部可変遅延回路と遅延制御回路を有し、
    内部可変遅延回路は、前記メモリクロック信号を入力し、入力したメモリクロック信号を遅延制御データにしたがって遅延させた遅延クロック信号を出力し、
    遅延制御回路は前記メモリクロック信号と前記遅延クロック信号との位相差を相殺するように前記遅延制御データを生成する、請求項1記載のデータ処理装置。
  4. 前記シンクロナスDRAMインタフェースコントローラに内部バスで接続された中央処理装置を有する、請求項1記載のデータ処理装置。
  5. 前記可変遅延回路と内部可変遅延回路の一方又は双方は、複数ビットの遅延制御データをデコードして複数ビットのデコード信号を生成し、前記遅延制御データの値に応じて前記複数ビットのデコード信号の1ビットを活性化するデコーダと、
    前記デコード信号の各ビットに対応する制御端子を有し、活性化信号が供給される制御端子の位置に応じて入力信号の遅延ゲート段数を相違させるゲート遅延回路と、
    前記複数ビットのデコード信号に対し、順次下位側より隣接上位ビットとの間で2ビットのデコード信号の論理和を生成する論理和ゲートと、を有し、
    前記ゲート遅延回路の最下位を除く制御端子には前記論理和ゲートの対応出力を接続する、請求項1記載のデータ処理装置。
  6. 前記可変遅延回路と内部可変遅延回路の一方又は双方は遅延素子の直列回路を有し、
    前記遅延素子は直列された複数段のインバータを有し、
    各インバータは電源端子に結合された第1のPMOSトランジスタ、第1のPMOSトランジスタに直列接続された第2のPMOSトランジスタ、回路の接地端子に結合された第1のNMOSトランジスタ、及び前記第1のNMOSトランジスタに直列接続された第2のNMOSトランジスタを有し、前記第1及び第2のPMOSトランジスタと前記第1及び第2のNMOSトランジスタのゲート電極が共通接続され、第2のPMOSトランジスタと第2のNMOSトランジスタのコモンドレインが出力端子とされ、前後に配置されたインバータ間で第1のPMOSトランジスタと第2のPMOSトランジスタの結合ノードが相互に接続され、前後に配置されたインバータ間で第1のNMOSトランジスタと第2のNMOSトランジスタの結合ノードが相互に接続される、請求項5記載のデータ処理装置。
  7. 複数ビットの遅延制御データをデコードして複数ビットのデコード信号を生成し、前記遅延制御データの値に応じて前記複数ビットのデコード信号の1ビットを活性化するデコーダと、
    前記デコード信号の各ビットに対応する制御端子を有し、活性化信号が供給される制御端子の位置に応じて入力信号の遅延ゲート段数を相違させるゲート遅延回路と、
    前記複数ビットのデコード信号に対し、順次下位側より隣接上位ビットとの間で2ビットのデコード信号の論理和を生成する論理和ゲートと、を有し、
    前記ゲート遅延回路の最下位を除く制御端子には前記論理和ゲートの対応出力を接続する、可変遅延回路。
  8. 前記ゲート遅延回路は、制御端子毎に遅延段を有し、
    前記各遅延段は、入力端子が制御端子と伝達信号入力端子とに接続され出力端子が次段への伝達信号出力端子に結合する第1ナンドゲート、入力端子が制御端子の反転信号と伝達信号入力端子とに接続する第2ナンドゲート、入力端子が第2ナンドゲートの出力端子と後段からの帰還信号入力端子に接続し出力端子が次段への帰還信号出力端子に接続する第3ナンドゲートを有し、最終段遅延段において第3ナンドゲートの入力は第1ナンドゲートの出力及び第2ナンドゲートの出力に接続し、初段遅延段における伝達信号入力端子に前記入力信号が供給され、初段遅延段における帰還信号出力端子から前記入力信号の遅延信号が出力される、請求項7記載の可変遅延回路。
  9. 直列された複数段のインバータを有し、各インバータは電源端子に結合された第1のPMOSトランジスタ、第1のPMOSトランジスタに直列接続された第2のPMOSトランジスタ、回路の接地端子に結合された第1のNMOSトランジスタ、及び前記第1のNMOSトランジスタに直列接続された第2のNMOSトランジスタを有し、前記第1及び第2のPMOSトランジスタと前記第1及び第2のNMOSトランジスタのゲート電極が共通接続され、第2のPMOSトランジスタと第2のNMOSトランジスタのコモンドレインが出力端子とされ、前後に配置されたインバータ間で第1のPMOSトランジスタと第2のPMOSトランジスタの結合ノードが相互に接続され、前後に配置されたインバータ間で第1のNMOSトランジスタと第2のNMOSトランジスタの結合ノードが相互に接続される、遅延素子。
  10. 前記インバータの第1及び第2のPMOSトランジスタを形成する第1導電型の半導体領域をインバータ間で共通化し且つ第1のPMOSトランジスタと第2のPMPOSトランジスタ毎に離間させて並列に有し、前記インバータの第1及び第2のNMOSトランジスタを形成する第2導電型の半導体領域をインバータ間で共通化し且つ第1のNMOSトランジスタと第2のNMPOSトランジスタ毎に並列に有し、
    並列された第1導電型の各半導体領域の中間部を相互に配線で結合することによって前後に配置されたインバータがそれぞれ持つ第1のPMOSトランジスタと第2のPMOSトランジスタとの結合ノードを相互に接続し、
    並列された第2導電型の各半導体領域の中間部を相互に配線で結合することによって前後に配置されたインバータが夫々持つ第1のNMOSトランジスタと第2のNMOSトランジスタとの結合ノードを相互に接続した、請求項9記載の遅延素子。
JP2004103743A 2004-03-31 2004-03-31 データ処理装置、遅延回路及び遅延素子 Pending JP2005292947A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103743A JP2005292947A (ja) 2004-03-31 2004-03-31 データ処理装置、遅延回路及び遅延素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103743A JP2005292947A (ja) 2004-03-31 2004-03-31 データ処理装置、遅延回路及び遅延素子

Publications (1)

Publication Number Publication Date
JP2005292947A true JP2005292947A (ja) 2005-10-20

Family

ID=35325847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103743A Pending JP2005292947A (ja) 2004-03-31 2004-03-31 データ処理装置、遅延回路及び遅延素子

Country Status (1)

Country Link
JP (1) JP2005292947A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226903A (ja) * 2006-02-23 2007-09-06 Sharp Corp 同期型メモリのコントロールシステム
KR101138028B1 (ko) * 2009-09-09 2012-04-20 엘피다 메모리 가부시키가이샤 클럭 생성 회로, 이를 포함하는 반도체 디바이스, 및 데이터 프로세싱 시스템
US8710890B2 (en) 2011-08-26 2014-04-29 Hitachi, Ltd. Variable delay line for delay locked loop
JP2014517422A (ja) * 2011-06-14 2014-07-17 マーベル ワールド トレード リミテッド Dqsゲーティングのためのシステムおよび方法
JP2014194838A (ja) * 2008-10-02 2014-10-09 International Business Maschines Corporation ローカル・クロック生成器の自己タイミング型較正を用いた拡張された電圧又はプロセス範囲にわたるsram性能の最適化
US8953409B2 (en) 2010-03-08 2015-02-10 Ps4 Luxco S.A.R.L. Semiconductor device capable of minimizing mutual effects between two different operations therein
CN106897233A (zh) * 2015-12-17 2017-06-27 格科微电子(上海)有限公司 数据传输接口的源同步电路
CN109903794A (zh) * 2017-12-08 2019-06-18 三星电子株式会社 包括延迟锁定环的存储装置及该存储装置的操作方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226903A (ja) * 2006-02-23 2007-09-06 Sharp Corp 同期型メモリのコントロールシステム
JP4714037B2 (ja) * 2006-02-23 2011-06-29 シャープ株式会社 同期型メモリのコントロールシステム
JP2014194838A (ja) * 2008-10-02 2014-10-09 International Business Maschines Corporation ローカル・クロック生成器の自己タイミング型較正を用いた拡張された電圧又はプロセス範囲にわたるsram性能の最適化
KR101138028B1 (ko) * 2009-09-09 2012-04-20 엘피다 메모리 가부시키가이샤 클럭 생성 회로, 이를 포함하는 반도체 디바이스, 및 데이터 프로세싱 시스템
US9007861B2 (en) 2009-09-09 2015-04-14 Ps4 Luxco S.A.R.L. Clock generating circuit, semiconductor device including the same, and data processing system
US8953409B2 (en) 2010-03-08 2015-02-10 Ps4 Luxco S.A.R.L. Semiconductor device capable of minimizing mutual effects between two different operations therein
JP2014517422A (ja) * 2011-06-14 2014-07-17 マーベル ワールド トレード リミテッド Dqsゲーティングのためのシステムおよび方法
US8710890B2 (en) 2011-08-26 2014-04-29 Hitachi, Ltd. Variable delay line for delay locked loop
CN106897233A (zh) * 2015-12-17 2017-06-27 格科微电子(上海)有限公司 数据传输接口的源同步电路
CN106897233B (zh) * 2015-12-17 2021-06-18 格科微电子(上海)有限公司 数据传输接口的源同步电路
CN109903794A (zh) * 2017-12-08 2019-06-18 三星电子株式会社 包括延迟锁定环的存储装置及该存储装置的操作方法

Similar Documents

Publication Publication Date Title
JP4632114B2 (ja) 半導体集積回路装置
US10860469B2 (en) Apparatuses and methods for providing internal memory commands and control signals in semiconductor memories
US6260128B1 (en) Semiconductor memory device which operates in synchronism with a clock signal
US6538956B2 (en) Semiconductor memory device for providing address access time and data access time at a high speed
US9142276B2 (en) Semiconductor device including latency counter
US8274844B2 (en) Semiconductor memory device, information processing system including the same, and controller
US6111795A (en) Memory device having row decoder
JP2009140322A (ja) タイミング制御回路および半導体記憶装置
JP4392681B2 (ja) 半導体記憶装置
JP2009093769A (ja) 半導体記憶装置、およびアドレスラッチの高速化方法
JP2011108300A (ja) 半導体装置及びその制御方法並びに半導体装置を備えたデータ処理システム
US8553489B2 (en) Semiconductor device having point-shift type FIFO circuit
US6456563B1 (en) Semiconductor memory device that operates in sychronization with a clock signal
JP2003059267A (ja) 半導体記憶装置
JP5377843B2 (ja) タイミング制御回路及び半導体記憶装置
JP2005292947A (ja) データ処理装置、遅延回路及び遅延素子
JP2001006360A (ja) 同期型半導体記憶装置
JP4121690B2 (ja) 半導体記憶装置
JP2011040423A (ja) 半導体装置
US7492661B2 (en) Command generating circuit and semiconductor memory device having the same
JP2004104681A (ja) 入力バッファ回路
US6147915A (en) Semiconductor integrated circuit
JP4353324B2 (ja) 半導体装置
JP2000339957A (ja) 半導体記憶装置
JP2010198715A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209