JP2005268508A - セラミック薄膜コンデンサおよびその製造方法 - Google Patents

セラミック薄膜コンデンサおよびその製造方法 Download PDF

Info

Publication number
JP2005268508A
JP2005268508A JP2004078386A JP2004078386A JP2005268508A JP 2005268508 A JP2005268508 A JP 2005268508A JP 2004078386 A JP2004078386 A JP 2004078386A JP 2004078386 A JP2004078386 A JP 2004078386A JP 2005268508 A JP2005268508 A JP 2005268508A
Authority
JP
Japan
Prior art keywords
ceramic
dielectric layer
thin film
manufacturing
ceramic dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078386A
Other languages
English (en)
Inventor
Takuji Okeyui
卓司 桶結
Tasuku Miki
翼 三木
Yuki Hasegawa
由紀 長谷川
Atsushi Hino
敦司 日野
Ichiro Amino
一郎 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004078386A priority Critical patent/JP2005268508A/ja
Publication of JP2005268508A publication Critical patent/JP2005268508A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 電極を高温下に晒すことを要さないセラミック薄膜コンデンサの製造方法を提供すること。
【解決手段】 未焼結のセラミック膜3をレーザー照射に供することで焼結させてセラミック誘電体層2を形成する工程を有する、セラミック誘電体層2を一対の電極4、5で挟んだ構造をもつセラミック薄膜コンデンサ1の製造方法であり、より具体的には、(A)下部電極4の上にセラミックペーストを塗布し、次いで、塗布した前記ペーストを乾燥することで下部電極4の上に未焼結のセラミック膜3を形成する工程、(B)未焼結のセラミック膜3をレーザー照射に供することで焼結させて、セラミック誘電体層2を形成する工程、および(C)セラミック誘電体層2の上に上部電極5を形成する工程を有するセラミック薄膜コンデンサ1の製造方法。
【選択図】 図1

Description

本発明は、セラミック薄膜コンデンサおよびその製造方法に関する。
近年、電子機器の小型化、薄型化が要求されている。多くの電子機器にはICやコンデンサなどの電子部品が実装された回路基板が用いられ、こういった回路基板にも小型薄型化が要求されている。このため、基板の表面に実装されていたコンデンサを基板内部に形成することが行われている。そのためのコンデンサとして薄膜コンデンサが形成される。薄膜コンデンサの従来の製法として、例えば、セラミックペーストを下部電極の表面に塗布して、乾燥した後、800℃以上で焼結させてセラミック誘電体層を形成して、さらにその上に上部電極を形成する方法が挙げられる(特許文献1)。
特開2000−243137号公報
しかしながら、800℃以上といった高温下では、下部電極の酸化や溶融が生じ易い。よって、従来の製法では優れたコンデンサができなかったり、下部電極の材料選択の余地が非常に小さいといった懸念がある。本発明は、電極を高温下に晒すことを要さないセラミック薄膜コンデンサの製造方法を提供することを目的とする。併せて、本発明は、そのような製造方法によって製造し得る新規な構成のセラミック薄膜コンデンサの提供を目的とする。
本発明者らは、酸化物粒子の焼結挙動を鋭意研究した結果、必ずしも高温下に晒さなくてもコンデンサとして使用し得る程度にまでセラミックを焼結させる手段を見出して、以下の特徴を有する本発明を完成した。
(1)セラミック誘電体層を一対の電極で挟んだ構造をもつセラミック薄膜コンデンサの製造方法であって、未焼結のセラミック膜をレーザー照射に供することで焼結させてセラミック誘電体層を形成する工程を有する、セラミック薄膜コンデンサの製造方法。
(2)下記(A)〜(C)の工程を有する、上記(1)記載の製造方法。
(A)下部電極の上にセラミックペーストを塗布し、次いで、塗布した前記ペーストを乾燥することで下部電極の上に未焼結のセラミック膜を形成する工程。
(B)上記未焼結のセラミック膜をレーザー照射に供することで焼結させて、セラミック誘電体層を形成する工程。
(C)上記セラミック誘電体層の上に上部電極を形成する工程。
(3)(B)工程にて、得られるセラミック誘電体層の表面に凹凸を生じるようにレーザーを照射することを特徴とする上記(2)記載の製造方法。
(4)(B)工程にて、未焼結のセラミック膜を部分的にレーザー照射に供することで、パターニングされたセラミック誘電体層を形成することを特徴とする上記(2)または(3)記載の製造方法。
(5)さらに、上記セラミック誘電体層に樹脂を含浸させる工程を有する、上記(1)〜(4)のいずれか一項に記載の製造方法。
(6)上記セラミック薄膜コンデンサが配線回路基板に実装されるものであって、未焼結のセラミック膜を実装すべき配線回路基板上に形成して、前記配線回路基板上に形成された未焼結のセラミック膜をレーザー照射に供することを特徴とする、上記(1)〜(5)のいずれか一項に記載の製造方法。
(7)セラミック誘電体層を一対の電極で挟んだ構造をもつセラミック薄膜コンデンサであって、セラミック誘電体層の少なくとも一主面が凹凸を有するセラミック薄膜コンデンサ。
本発明のセラミック薄膜コンデンサの製造方法によれば、焼結によってセラミック誘電体層を得る過程における、下部電極の酸化、溶融の懸念が著しく軽減する。
本発明の好ましい態様では、セラミック誘電体層の少なくとも一主面に凹凸を形成し得る。そのようにして得られる本発明のセラミック薄膜コンデンサは大きな静電容量を有する。
本発明の好ましい態様では、レーザーを部分的に照射することにより、所望のパターンを形成したり、所望の面積のコンデンサを製造することができる。
本発明の好ましい態様では、焼結したセラミック誘電体層に樹脂を含浸することにより、セラミック薄膜コンデンサに柔軟性を付与することができる。
本発明の好ましい態様では、配線回路基板全体を加熱することなく前記基板上にてセラミック薄膜コンデンサ製造のための焼結をすることができ、セラミック薄膜コンデンサの製造と配線回路基板への実装とを同時に実現することができる。
本発明の製造方法の対象である、セラミック薄膜コンデンサは、セラミック誘電体層を一対の電極で挟んだ構造をもつコンデンサである。セラミック誘電体層は絶縁体である金属酸化物の焼結体からなる層であれば特に制限はなく、好ましくは強誘電性を呈する金属酸化物の焼結体からなる層である。セラミック誘電体層を挟む一対の電極の材料、構造は公知の電子部品の電極の材料、構造を適宜取り入れることができる。本発明の製造方法の特徴は、セラミック誘電体層を得るための焼結手段として未焼結のセラミック膜をレーザー照射に供することである。
未焼結のセラミック膜とは、焼結していない金属酸化物粒子を含む膜であり、膜の構造を維持するために金属酸化物粒子間に有機樹脂等が所謂バインダーとして存在していてもよいし、金属酸化物粒子どうしが熱によって焼結には至らない程度の弱い結合で膜を形成していてもよい。焼結とは、未焼結のセラミック膜を構成する金属酸化物粒子が主に固相反応によって互いに強固に結びついて一体構造(セラミックス)を形成することである。従来の加熱による焼結とは異なり、レーザー照射による焼結では、金属酸化物粒子どうしを焼結させるためのエネルギーを所望の部分のみに集中させることができる。このため、コンデンサの電極を構成する金属の不所望な反応を低減することができるばかりでなく、焼結させる部分をパターニングすることも可能である。
本発明の製造方法では、焼結のためのエネルギーをレーザー照射により局所的に供することが可能であるから、製造されるセラミック薄膜コンデンサが配線回路基板に実装されるものである場合には、未焼結のセラミック膜を実装すべき配線回路基板上に形成して、前記配線回路基板上に形成された未焼結のセラミック膜をレーザー照射に供することも可能である。そのように配線回路基板上でセラミック薄膜コンデンサを製造すれば、従来のように別途製造されたコンデンサを配線回路基板に実装する工程を省くことができ、実装ミスに伴う不良を著しく低減することができる。ここで、配線回路基板上に未焼結のセラミック膜を形成することは、配線回路基板上にセラミック薄膜コンデンサ用の電極を介して未焼結のセラミック膜を形成することも含む。
以下、本発明の好ましい形態の工程を順に説明するが、本発明は以下に記載する特定の工程に限られるものではなく、未焼結のセラミック膜をレーザー照射に供することで焼結させる工程を含むセラミック薄膜コンデンサの製造方法を広く包含するものである。本発明の好ましい形態は、上述の(A)〜(C)の工程を有する。図1は、本発明の製造方法を模式的に表す図である。以下、図1を参照しつつ、本発明の好ましい製造方法をより詳しく説明する。
(A)下部電極の上にセラミックペーストを塗布し、次いで、塗布した前記ペーストを乾燥することで下部電極の上に未焼結のセラミック膜を形成する工程(図1(a)):
下部電極4とは、セラミック薄膜コンデンサ1を構成する一対の電極のうちの片方の電極である。記載の便宜上、本明細書では工程の進行に伴って下方から上方へ層を形成するように上下方向を記載するが、このような方向に関する記載は実装方向や用時における方向を特定するものではない。下部電極4は電子部品の電極として用い得るものであれば特に制限はなく、一般的には金属箔であり、好ましくは銅箔やニッケル箔が挙げられる。絶縁基板上にスパッタリングやめっきなどにより形成した銅やニッケルの薄膜を下部電極4として用いてもよい。機械的強度、電気抵抗の観点から、下部電極4の厚さは、好ましくは9〜35μmであり、より好ましくは18〜35μmである。
図2は本発明で製造されるセラミック薄膜コンデンサの一例の断面図である。本発明で製造するセラミック薄膜コンデンサ1が図2に示すように配線回路基板6に実装される場合には、前記配線回路基板6の絶縁層(図示せず)の上に下部電極4を形成してもよい。この場合の絶縁層は配線回路基板に用い得る絶縁物からなる層を適宜取り入れることができ、ポリイミドやポリエステルなどからなる層が例示される。
下部電極4上に塗布するセラミックペーストは、少なくとも、焼結することでセラミックスを形成し得る未焼結の粒子(以下、「セラミック粒子」ともいう)と、溶剤とを含み、粘度調節、粒子の分散、得られるセラミック膜の安定性等を考慮して好ましくはバインダーとなる樹脂、可塑剤等をさらに含む。
セラミック粒子は、焼結によってセラミックスを形成し得る無機粒子であれば特に限定なく用いることができ、一般的には金属酸化物粒子が挙げられ、好ましくは強誘電性を呈する金属酸化物粒子が挙げられる。好ましく用いられる金属酸化物粒子としては、チタン酸塩、ジルコン酸塩、錫酸塩、珪酸塩、酸化チタン、アルミナなどが挙げられ、誘電率が高く入手容易な点から、チタン酸塩、ジルコン酸塩等が好ましい。チタン酸塩の具体例としては、チタン酸ストロンチウム、チタン酸バリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ランタン、チタン酸ネオジウム、チタン酸鉛、チタン酸ジルコン酸バリウム、ジルコン酸チタン酸鉛、チタン酸バリウムストロンチウムなどが挙げられ、好ましくはチタン酸バリウム、チタン酸ジルコン酸バリウム等である。ジルコン酸塩の具体例としては、チタン酸ジルコン酸バリウム、ジルコン酸チタン酸鉛、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛などが挙げられる。錫酸塩としては、錫酸バリウム、錫酸カルシウムなどが挙げられ、珪酸塩としては珪酸マグネシウムなどが挙げられる。
本発明で用いるセラミック粒子の形状、大きさは特に制限されず、通常用いられるセラミック粒子をそのまま用いてもよい。得られるコンデンサの小型化、薄型化やレーザーによる焼結の容易さの観点からは、セラミック粒子の体積平均粒子径は好ましくは0.05〜1μmである。セラミック粒子の体積平均粒子径は、セラミック粒子の希薄懸濁液にレーザーを照射したときの回折パターンから求めることができ、そのような測定は堀場製作所社製LA−750などによって行われる。
セラミックペーストの溶剤は、室温で液体であって、沸点が60〜200℃程度の物質であれば特に制限はなく、水であってもよいし有機溶剤であってもよいし、それらの混合系であってもよい。有機溶剤としてはアルコールなどの極性溶媒等が挙げられる。溶剤の選定基準としては、後述するバインダーや可塑剤を溶かすことや、セラミック粒子に対する濡れ性などが挙げられる。
好ましくは、本発明で用いるセラミックペーストはバインダーとなる樹脂を溶液状態で含む。バインダーとなる樹脂は従来公知のものを適宜使用し得る。水系バインダーとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、デンプン、ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸ソーダ、ポリアクリルアミドなどが例示され、分散性、安定性、水との相溶性の点から、好ましくはカルボキシメチルセルロース、ポリビニルアルコール等である。非水系バインダーとしては、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、ポリスチレン、アクリル系樹脂、ポリアミド樹脂、ポリビニルブチラールなどが挙げられ、シート成形性の点から、好ましくはポリビニルブチラール等である。
好ましくは、本発明で用いるセラミックペーストは可塑剤を含む。可塑剤としては、グリセリン、ポリエチレングリコール、ジブチルフタレート、トリオクチルトリメリテートなどが挙げられる。
セラミックペーストの具体的な調合は、公知技術を適宜参照してよく、その具体例は特許文献1に記載される。
下部電極4の上へセラミックペーストを塗布する手段は特に制限はなく、セラミックペーストの粘度などに応じて従来公知の塗工技術を適宜取り入れることができる。そのような塗工技術としては、例えば、ドクターブレードを用いたキャスティング法などが挙げられる。
セラミックペーストの塗工後の乾燥は、少なくとも塗膜としての形状を維持し得る程度にまで溶剤を蒸発させればよく、その具体的手段、条件は特に限定されるものではない。乾燥の具体例としては、80〜180℃にて1〜30分間放置することなどが挙げられる。このとき、真空または窒素雰囲気下での数時間の熱処理によってバインダーを除去してもよい。バインダーの除去の条件はバインダーの種類や量に応じて適宜決定することができる。以上のようにして、下部電極4上に未焼結のセラミック膜3を形成することができる。
(B)未焼結のセラミック膜をレーザー照射に供することで焼結させて、セラミック誘電体層を形成する工程:
本発明では、未焼結のセラミック膜3にレーザー光を照射することでエネルギーを供給して、未焼結のセラミック膜3を構成するセラミック粒子を焼結せしめる。このため、従来のように下部電極4ごと高温に加熱する場合と異なり、セラミックの焼結において、下部電極4に不所望なエネルギーを与えてしまうことが著しく低減できる。特に、配線回路基板上に未焼結のセラミック膜3を形成した場合には、配線回路基板自体にはエネルギーを加えずにセラミック粒子およびそのごく近傍にのみエネルギーを供給することができる。
本発明では従来公知のレーザーを特に限定なく使用することができる。具体的には、ArFエキシマレーザー、KrFエキシマレーザー、炭酸レーザー、グリーンレーザー(可視光)、YAGレーザー、UVYAGレーザーなどがあげられる。レーザーの波長は特に限定されず、好ましくは190〜3000nmである。レーザーの照射は、セラミックが焼結するに足る程度でよく、例えば、エネルギー密度50〜250mJ/cmでの1〜100ショットなどが挙げられる。このとき、パルス幅は好ましくは20〜80nsecである。
好ましくは、得られるセラミック誘電体層2の表面に凹凸を生じるようにレーザーを照射する。セラミック誘電体層2の表面とは、当該誘電体層2の一主面であればよいが、通常は、下部電極4と対向する面である。セラミック誘電体層の表面に凹凸を生じさせることはレーザーのエネルギー密度を大きくしたり照射時間を長くすることなどで容易に実現可能である。得られるセラミック誘電体層2の凹凸は、非接触光学式表面粗さ計により測定することができる最大粗さ(Rmax)が1〜20μmであることが好ましい。このようにセラミック誘電体層2の表面に凹凸を設けることにより、前記誘電体層の表面積が大きくなるから、セラミック薄膜コンデンサ1全体を大きくしなくても、当該コンデンサの容量を大きくすることができる。
本工程では、未焼結のセラミック膜3の全面をレーザー照射に供して全面的に焼結させてもよいし、未焼結のセラミック膜3を部分的にレーザー照射に供してもよい。未焼結のセラミック膜3のどの部分をレーザー照射に供するかをコントロールすることによって、未焼結のセラミック膜3のうちの所望の部分だけを焼結させることができる。換言すれば、所望のパターンのセラミック誘電体層2(パターニングされたセラミック誘電体層2)を形成することができる。このとき、未焼結のセラミック膜3のうちレーザー照射に供されなかった部分は、絶縁層としてそのまま残る(図1(b))。レーザー照射をコントロールするために、公知のレーザーに関する技術を適宜取り入れることができ、そのような技術には、例えば、レーザーを走査スキャンする技術やレーザーの形状を変更するアパーチャーを用いる技術などが含まれる。
このようにして得られるセラミック誘電体層2は、通常、多孔質である。このようなセラミック誘電体層2に柔軟性や強度を付与する目的で、当該誘電体層2の空隙にエポキシ樹脂やポリイミドなどの樹脂を含浸させてもよい(図示せず)。含浸方法は特に限定されず、熱溶融した樹脂を充填したり、溶液状の樹脂を充填した後に溶剤を除去したりする方法などがある。
このようにして得られるセラミック誘電体層2の大きさ形状は特に制限されず、所望の電気的、機械的な要求を充足するように適宜設定し得る。コンデンサ容量、誘電体層の機械的強度の点からはセラミック誘電体層2の厚さは好ましくは10〜100μmであり、当該誘電体層の厚さ方向に垂直な断面積は好ましくは0.04〜25mmであり、前記誘電体層の厚さ方向に垂直な断面は好ましくは長方形状または正方形状であり、その一辺の長さは好ましくは0.2〜5mm程度である。
(C)セラミック誘電体層の上に上部電極を形成する工程(図1(c)):
上部電極5とは、下部電極4と対になってセラミック誘電体層2を挟むように形成される電極である。上部電極5も下部電極4と同様に、電子部品の電極として用い得るものであれば特に制限はなく、一般的には金属薄膜であり、そのための金属としては、銅、ニッケル、金、白金などが例示される。上部電極5の形成方法は特に制限はなく、スパッタ蒸着などといった蒸着法やメッキ法などによることができる。膜強度、電気抵抗の観点から、上部電極5の厚さは、好ましくは0.05〜20μmである。
上記(B)工程にて、未焼結のセラミック膜3を部分的にレーザー照射に供してパターニングされたセラミック誘電体層2を得た場合には、前記パターニングされたセラミック誘電体層2と同じパターンにて上部電極5を形成することが好ましい。上部電極5をそのようにパターニングする手段としては、一般に配線回路基板の加工に用いられる、サブトラクティブ法、アディティブ法などが挙げられる。サブトラクティブ法をより具体的に説明すると、セラミック誘電体層2および未焼結のセラミック膜3の全面に金属薄膜を形成した後に(図1(c))、フォトレジストにより所定パターンのエッチングレジストを金属薄膜上に形成する(図示せず)。次いで、エッチングレジストで覆われていない部分の金属薄膜をエッチング液でエッチングして、エッチングレジストを除去することにより、パターニングされた上部電極5を形成することができる(図1(d))。このとき、同様の手段を講じて、下部電極4をパターニングしてもよい(図1(e))。
以下、実施例を用いて本発明をより詳しく説明するが、これらの例は本発明を何ら限定するものではない。
(実施例1)
銅箔4(厚さ35μm、縦250mm×横250mm)上にセラミックペーストをアプリケーターで塗布し、100℃で2分、次いで、150℃で30分の乾燥を行い、さらに、窒素雰囲気下、400℃で2時間加熱することによりバインダーを除去して、未焼結のセラミック膜3を形成した(図1(a))。上記セラミックペーストは、以下のものを含む。
セラミック粒子:堺化学製チタン酸バリウム(体積平均粒子径:0.5μm)
50重量部、
溶剤:α−ターピネオールとジエチレングリコールモノ−n−ブチルエーテルアセテートとを9:1(重量比)で混合してなる溶媒 8.8重量部、
バインダー:ポリビニルブチラール 17.5重量部、
可塑剤:トリオクチルトリメリテート 2重量部。
得られた未焼結のセラミック膜3に、KrFエキシマレーザー(波長248nm、パルス幅20nsec)をエネルギー密度250mJ/cm、ショット数50、レーザービームの直径を1mmにして照射した。その際、照射部分が縦3.2mm×横1.6mmの四角形となるようにパターニングし、前記四角形を100個形成するようにレーザーを照射した。隣合う四角形を隔てる距離は100μmにした。レーザー照射により、前記四角形が並ぶようにセラミック誘電体層2(厚さ50μm)を形成した(図1(b))。得られたセラミック誘電体層2の表面(銅箔4と対向する面)を非接触光学式表面粗さ計(WYKO社製、NT3000)で測定したところ、Rmaxは1μmであった。
得られたセラミック誘電体層2にエポキシ樹脂のメチルエチルケトン溶液(40重量%)を含浸させた。その後、100℃で5分間乾燥し、さらに150℃にて30分間放置することでエポキシ樹脂を硬化させた。その後、銅を厚さ1μmに蒸着して、セラミック誘電体層2のパターンと一致させるように、縦3.2mm×横1.6mmの四角形にエッチングした。この銅の膜が上部電極5である(図1(c)(d))。最後に、下部電極4も縦3.2mm×横1.6mmの四角形にエッチング加工してセラミック薄膜コンデンサ1を得た(図1(e))。得られたセラミック薄膜コンデンサ1の数は、パターニングによって得た縦3.2mm×横1.6mmのセラミック誘電体層2の数と同じであった。
得られたセラミック薄膜コンデンサ1の下部電極4には、酸化による損傷は見られなかった。このコンデンサのセラミック誘電体層2の周波数1MHzにおける比誘電率εは50であり、得られたコンデンサの容量は100pFであった。
(比較例1)
実施例1と同様にして未焼結のセラミック膜3を銅箔4の上に形成した。その後、前記セラミック膜3を銅箔4とともに、空気中900℃で2時間焼結した。その結果、厚み50μmのセラミック誘電体層2が得られた。得られたセラミック誘電体層2の表面は平滑であり、Rmaxは0.2μmであった。その後、銅を蒸着(厚さ:1μm)することにより上部電極5を形成しセラミック薄膜コンデンサ1を製造した。得られたセラミック薄膜コンデンサを縦3.2mm×横1.6mmの四角形に切り出した。この切り出したコンデンサを比較例1のコンデンサとして、上記実施例1のコンデンサと比較した。比較例1のコンデンサの下部電極4にはセラミックを焼結した時に生じた酸化層が生成していた。このコンデンサのセラミック誘電体層2の周波数1MHzにおける比誘電率εは50であり、得られたコンデンサの容量は50pFであった。
実施例1と比較例1の比誘電率εが同等であったことから、実施例1も比較例1も充分にセラミックが焼結したことが示唆される。実施例1のコンデンサが比較例1のコンデンサよりも容量が大きくなったのは、実施例1のコンデンサの上部電極5付近のセラミック誘電体層2の表面に凹凸が形成して表面積が増大したためであると考えられる。
本発明の製造方法を模式的に表す図である。工程の進行に伴って同図(a)から同図(e)へと推移する。 本発明で製造されるセラミック薄膜コンデンサの一例の断面図である。
符号の説明
1 セラミック薄膜コンデンサ
2 セラミック誘電体層
3 未焼結のセラミック膜
4 下部電極
5 上部電極
6 配線回路基板

Claims (7)

  1. セラミック誘電体層を一対の電極で挟んだ構造をもつセラミック薄膜コンデンサの製造方法であって、未焼結のセラミック膜をレーザー照射に供することで焼結させてセラミック誘電体層を形成する工程を有する、セラミック薄膜コンデンサの製造方法。
  2. 下記(A)〜(C)の工程を有する、請求項1記載の製造方法。
    (A)下部電極の上にセラミックペーストを塗布し、次いで、塗布した前記ペーストを乾燥することで下部電極の上に未焼結のセラミック膜を形成する工程。
    (B)上記未焼結のセラミック膜をレーザー照射に供することで焼結させて、セラミック誘電体層を形成する工程。
    (C)上記セラミック誘電体層の上に上部電極を形成する工程。
  3. (B)工程にて、得られるセラミック誘電体層の表面に凹凸を生じるようにレーザーを照射することを特徴とする請求項2記載の製造方法。
  4. (B)工程にて、未焼結のセラミック膜を部分的にレーザー照射に供することで、パターニングされたセラミック誘電体層を形成することを特徴とする請求項2または3記載の製造方法。
  5. さらに、上記セラミック誘電体層に樹脂を含浸させる工程を有する、請求項1〜4のいずれか一項に記載の製造方法。
  6. 上記セラミック薄膜コンデンサが配線回路基板に実装されるものであって、未焼結のセラミック膜を実装すべき配線回路基板上に形成して、前記配線回路基板上に形成された未焼結のセラミック膜をレーザー照射に供することを特徴とする、請求項1〜5のいずれか一項に記載の製造方法。
  7. セラミック誘電体層を一対の電極で挟んだ構造をもつセラミック薄膜コンデンサであって、セラミック誘電体層の少なくとも一主面が凹凸を有するセラミック薄膜コンデンサ。
JP2004078386A 2004-03-18 2004-03-18 セラミック薄膜コンデンサおよびその製造方法 Pending JP2005268508A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078386A JP2005268508A (ja) 2004-03-18 2004-03-18 セラミック薄膜コンデンサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078386A JP2005268508A (ja) 2004-03-18 2004-03-18 セラミック薄膜コンデンサおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2005268508A true JP2005268508A (ja) 2005-09-29

Family

ID=35092742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078386A Pending JP2005268508A (ja) 2004-03-18 2004-03-18 セラミック薄膜コンデンサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2005268508A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294764A (ja) * 2006-04-26 2007-11-08 Murata Mfg Co Ltd 電子部品およびその製造方法
JP2008103630A (ja) * 2006-10-20 2008-05-01 Hitachi Chem Co Ltd 樹脂基板内蔵用キャパシタ材料の製造方法
KR100829663B1 (ko) 2005-12-27 2008-05-19 세이코 엡슨 가부시키가이샤 세라믹스막의 제조 방법 및 세라믹스막 제조 장치
KR100856326B1 (ko) 2006-07-19 2008-09-03 삼성전기주식회사 레이저 리프트 오프를 이용한 유전체 박막을 갖는 박막 커패시터 내장된 인쇄회로기판 제조방법, 및 이로부터 제조된 박막 커패시터 내장된 인쇄회로기판
JP2014175261A (ja) * 2013-03-12 2014-09-22 Keio Gijuku 焼結体、及び、その製造方法
CN113285012A (zh) * 2020-02-20 2021-08-20 丰田自动车株式会社 致动器以及致动器的制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829663B1 (ko) 2005-12-27 2008-05-19 세이코 엡슨 가부시키가이샤 세라믹스막의 제조 방법 및 세라믹스막 제조 장치
JP2007294764A (ja) * 2006-04-26 2007-11-08 Murata Mfg Co Ltd 電子部品およびその製造方法
KR100856326B1 (ko) 2006-07-19 2008-09-03 삼성전기주식회사 레이저 리프트 오프를 이용한 유전체 박막을 갖는 박막 커패시터 내장된 인쇄회로기판 제조방법, 및 이로부터 제조된 박막 커패시터 내장된 인쇄회로기판
JP2008103630A (ja) * 2006-10-20 2008-05-01 Hitachi Chem Co Ltd 樹脂基板内蔵用キャパシタ材料の製造方法
JP2014175261A (ja) * 2013-03-12 2014-09-22 Keio Gijuku 焼結体、及び、その製造方法
CN113285012A (zh) * 2020-02-20 2021-08-20 丰田自动车株式会社 致动器以及致动器的制造方法

Similar Documents

Publication Publication Date Title
KR20080007933A (ko) 레이저 리프트 오프를 이용한 유전체 박막을 갖는 박막 커패시터 내장된 인쇄회로기판 제조방법, 및 이로부터 제조된 박막 커패시터 내장된 인쇄회로기판
JP2017168488A (ja) 積層セラミックコンデンサの製造方法
JP4518885B2 (ja) セラミック電子部品及びその製造方法
JP2005268508A (ja) セラミック薄膜コンデンサおよびその製造方法
JP2002015939A (ja) 積層型電子部品およびその製法
JP5409117B2 (ja) セラミックグリーンシートおよびセラミック多層基板の製造方法
JP3940421B2 (ja) 積層セラミック部品およびその製造方法
JP2881542B2 (ja) レーザ加工用セラミックグリーンシート及び積層セラミック電子部品の製造方法
KR100949253B1 (ko) 일과성 기질 상에 금속 및 유전체 조성물을 캐스팅하여테이프를 형성함으로써 높은 전기용량 밀도의 내장 세라믹콘덴서를 제조하는 방법
JP2006222440A (ja) コンデンサ素子
JP2005101317A (ja) セラミック電子部品及びその製造方法
EP1405552A1 (en) Method for manufacturing ceramic multilayer circuit board
JP2003188048A (ja) コンデンサ素子およびコンデンサ素子内蔵多層配線基板
JP4423025B2 (ja) 多層基板及びその製造方法
JP2004172412A (ja) コンデンサ素子およびコンデンサ素子内蔵多層配線基板
JP2004095685A (ja) 積層コンデンサ及びその製造方法
JPH05167253A (ja) 多層セラミック基板の製造方法
JP2004179568A (ja) 積層セラミック部品の製造方法
JPH0786739A (ja) 多層セラミック基板の製造方法
JP5195253B2 (ja) 電子部品の製造方法
JP2003318064A (ja) 積層コンデンサ及びその製造方法
JP4570423B2 (ja) 電子部品の製造方法
JP4467612B2 (ja) コンデンサ素子内蔵多層配線基板
JP2005039071A (ja) セラミック積層デバイスの製造方法
JP2005142352A (ja) 内部電極用シートおよびその製造方法