JP2005258397A - Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer - Google Patents

Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer Download PDF

Info

Publication number
JP2005258397A
JP2005258397A JP2004324691A JP2004324691A JP2005258397A JP 2005258397 A JP2005258397 A JP 2005258397A JP 2004324691 A JP2004324691 A JP 2004324691A JP 2004324691 A JP2004324691 A JP 2004324691A JP 2005258397 A JP2005258397 A JP 2005258397A
Authority
JP
Japan
Prior art keywords
formula
liquid crystal
alignment film
alignment
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324691A
Other languages
Japanese (ja)
Other versions
JP4586503B2 (en
Inventor
Satoshi Tanioka
聡 谷岡
Junichiro Yokota
純一郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2004324691A priority Critical patent/JP4586503B2/en
Publication of JP2005258397A publication Critical patent/JP2005258397A/en
Application granted granted Critical
Publication of JP4586503B2 publication Critical patent/JP4586503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alignment layer which can impart a preferable molecular alignment state to a liquid crystal layer on the alignment layer, to provide a liquid crystal aligner to form the layer, and to provide a liquid crystal display element having preferable black display characteristics and having the alignment layer. <P>SOLUTION: The liquid crystal alignment layer has a function of controlling the degree of orientation Δ of a liquid crystal layer on the alignment layer to ≥0.05, wherein the degree of orientation is defined by formula (1). In formula (1), A¾¾ (corresponding to A⊥) represents absorbance attributed to the characteristic group vibration in the liquid crystal layer when IR light having a polarized component parallel to the aligning direction enters the liquid crystal layer, and A⊥ represents absorbance attributed to the characteristic group vibration in the liquid crystal layer when IR light having a polarizing component perpendicular to the aligning direction enters the liquid crystal layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定式で表される配向膜上の液晶層の配向度Δを0.05以上にすることができる、一軸配向性の高い配向膜、その配向膜を形成することができる液晶配向剤、および該配向膜を有する液晶表示素子に関する。   The present invention provides an alignment film having a high uniaxial orientation capable of forming an alignment degree Δ of the liquid crystal layer on the alignment film represented by the specific formula of 0.05 or more, and a liquid crystal alignment capable of forming the alignment film. The present invention relates to an agent and a liquid crystal display element having the alignment film.

液晶表示素子はノートパソコンやデスクトップパソコンのモニターをはじめ、ビデオカメラのビューファインダー、投写型のディスプレイなどの様々な液晶表示装置に使われており、最近ではテレビとしても用いられるようになってきた。さらに、光プリンターヘッド、光フーリエ変換素子、ライトバルブなどのオプトエレクトロニクス関連素子としても利用されている。従来の液晶表示素子としては、ネマチック液晶を用いた表示素子が主流であり、90度ツイストしたTN(Twisted Nematic)型液晶表示素子、通常180度以上ツイストしたSTN(Super Twisted Nematic)型液晶表示素子、薄膜トランジスタを使用したいわゆるTFT(Thin−film−transistor)型液晶表示素子が実用化されている。   Liquid crystal display elements are used in various liquid crystal display devices such as notebook computer and desktop personal computer monitors, video camera viewfinders, and projection displays. Recently, they have also been used as televisions. Furthermore, they are also used as optoelectronic-related elements such as optical printer heads, optical Fourier transform elements, and light valves. As a conventional liquid crystal display element, a display element using a nematic liquid crystal is mainly used. A TN (Twisted Nematic) type liquid crystal display element twisted by 90 degrees, and a STN (Super Twisted Nematic) type liquid crystal display element usually twisted by 180 degrees or more. A so-called TFT (Thin-film-transistor) type liquid crystal display element using a thin film transistor has been put into practical use.

しかしながら、これらの液晶表示素子は画像が適正に視認できる視野角が狭く、斜め方向から見たときに、輝度やコントラストの低下、および中間調での輝度反転を生じるという欠点を有している。近年、この視野角の問題については、光学補償フィルムを用いたTN型液晶表示素子、垂直配向と突起構造物の技術を併用したMVA(Multi−domain Vertical Alignment)型液晶表示素子、または横電界方式のIPS(In−Plane Switching)型液晶表示素子(特許文献1〜3参照)などの技術により改良され、それらの素子は実用化されている。   However, these liquid crystal display elements have a drawback that the viewing angle at which an image can be properly viewed is narrow, and when viewed from an oblique direction, luminance and contrast are lowered, and luminance is inverted in a halftone. In recent years, with respect to this viewing angle problem, a TN type liquid crystal display element using an optical compensation film, a MVA (Multi-domain Vertical Alignment) type liquid crystal display element using a combination of vertical alignment and protrusion structure technology, or a horizontal electric field type IPS (In-Plane Switching) type liquid crystal display elements (see Patent Documents 1 to 3) and the like, and these elements have been put into practical use.

液晶表示素子の性能を表す指標の一つとして黒表示の輝度に対する白表示の輝度の比率であるコントラストが用いられている。一般的に白表示の輝度は大きく変わらないため、コントラストは分母の黒表示の輝度に大きく左右される。したがって、コントラストを高めるためには黒表示の輝度を下げることが重要である。この黒表示の輝度を下げる方法としては、例えば旋光モードのTN型液晶表示素子においては、液晶のΔn(複屈折)とセルギャップをファーストミニマム条件に最適化する方法(非特許文献1参照)等が挙げられるが、配向膜の一軸配向性が充分でないと、オーダーパラメーターで表される液晶の配向方向の分布に起因する光漏れにより、黒表示特性が悪化することがある。   As an index representing the performance of the liquid crystal display element, contrast, which is the ratio of the luminance of white display to the luminance of black display, is used. In general, since the brightness of white display does not change greatly, the contrast greatly depends on the brightness of the black display of the denominator. Therefore, it is important to reduce the luminance of black display in order to increase the contrast. As a method for lowering the luminance of black display, for example, in a TN type liquid crystal display element in an optical rotation mode, a method of optimizing Δn (birefringence) and cell gap of liquid crystal to the first minimum condition (see Non-Patent Document 1), etc. However, if the uniaxial orientation of the alignment film is not sufficient, the black display characteristics may be deteriorated due to light leakage caused by the distribution of the alignment direction of the liquid crystal expressed by the order parameter.

特に、IPS型液晶表示素子は、一般的にクロスニコル下で片方の偏光板の方向に液晶の配向方向を合わせることにより、電圧の無印加時に黒表示を行うノーマリーブラック表示である。このような素子構成のとき、液晶の配向方向の分布に起因する光漏れが顕著であり、黒表示特性が悪化し易く問題である。さらに、IPS型液晶表示素子においてもラビング処理により配向膜は一軸配向性を付与される。しかし、櫛歯状に配置された電極の段差近傍の領域が特にラビング処理されにくいことから、配向膜の一軸配向性は不完全となる。この領域は、無秩序な方向に配向するため光漏れが生じてコントラストの悪化を招いていた。   In particular, the IPS liquid crystal display element is a normally black display that performs black display when no voltage is applied by aligning the alignment direction of liquid crystal with the direction of one polarizing plate under crossed Nicols. In such an element configuration, light leakage due to the distribution in the alignment direction of the liquid crystal is remarkable, and the black display characteristics are easily deteriorated. Further, even in the IPS liquid crystal display element, the alignment film is given uniaxial orientation by rubbing treatment. However, the region in the vicinity of the step of the electrodes arranged in a comb shape is particularly difficult to be rubbed, so that the uniaxial orientation of the alignment film is incomplete. Since this region is oriented in a disordered direction, light leakage occurs and the contrast deteriorates.

以上の様に、液晶表示素子のコントラストを向上するためには、一軸配向性の高い配向膜を用いて液晶の分子配向状態を制御することが重要である。   As described above, in order to improve the contrast of the liquid crystal display element, it is important to control the molecular alignment state of the liquid crystal using an alignment film having high uniaxial alignment.

これまで、ラビング処理により配向処理を施された配向膜上における液晶の配向機構として、次の2つが提案されている。
(1)ラビング処理により発生するマイクログループに起因する表面形状効果
(2)ラビング処理により一軸配向した配向膜と該配向膜と接する液晶との分子間相互作用
近年では(1)の表面形状効果の寄与は比較的小さく、(2)の分子間相互作用の寄与が支配的であることが確認されている。したがって、一軸配向性の高い配向膜を用いることにより、配向膜に接している液晶の分子配向状態を制御して液晶表示素子としての性能を改善することが期待できる。
Until now, the following two proposals have been made as alignment mechanisms of liquid crystals on alignment films that have been subjected to alignment treatment by rubbing treatment.
(1) Surface shape effect due to micro groups generated by rubbing treatment
(2) Intermolecular interaction between alignment film uniaxially aligned by rubbing treatment and liquid crystal in contact with the alignment film In recent years, contribution of surface shape effect of (1) is relatively small, and contribution of intermolecular interaction of (2) Has been confirmed to be dominant. Therefore, it can be expected that by using an alignment film having high uniaxial alignment properties, the liquid crystal display element can be improved in performance by controlling the molecular alignment state of the liquid crystal in contact with the alignment film.

特公昭63−21907号公報Japanese Examined Patent Publication No. 63-21907 特開平6−160878号公報JP-A-6-160878 特開平9−15650号公報JP-A-9-15650 吉野勝美、尾崎雅則共著、液晶とディスプレイ応用の基礎、コロナ社、P107〜109Katsumi Yoshino and Masanori Ozaki, Fundamentals of Liquid Crystal and Display Applications, Corona, P107-109

本発明の課題は、配向膜上の液晶に良好な分子配向状態を付与することのできる配向膜、その配向膜を形成することのできる液晶配向剤、および該配向膜を有する、黒表示特性の良好な液晶表示素子を提供することである。   An object of the present invention is to provide an alignment film capable of imparting a favorable molecular alignment state to the liquid crystal on the alignment film, a liquid crystal alignment agent capable of forming the alignment film, and a black display characteristic having the alignment film. It is to provide a good liquid crystal display element.

本発明者らは前記課題を解決するために鋭意検討した。その結果、次式(1)で表される、配向膜上の液晶層の配向度Δを0.05以上にすることができる配向膜が得られ、該配向膜を有する液晶表示素子が黒表示特性が飛躍的に改善された液晶表示素子になることを見出し、これらの知見に基づいて本発明を完成した。

Figure 2005258397
式中、A‖は配向処理方向に平行な偏光成分を有する赤外光を液晶層に入射させたときの液晶層の特性基振動による吸光度であり、A⊥は配向処理方向に垂直な偏光成分を有する赤外光を液晶層に入射させたときの液晶層の特性基振動による吸光度である。 The present inventors diligently studied to solve the above problems. As a result, an alignment film represented by the following formula (1) capable of setting the alignment degree Δ of the liquid crystal layer on the alignment film to 0.05 or more is obtained, and the liquid crystal display element having the alignment film displays black. The present inventors have found that the liquid crystal display device has dramatically improved characteristics, and completed the present invention based on these findings.
Figure 2005258397
In the formula, A‖ is the absorbance due to the characteristic group vibration of the liquid crystal layer when infrared light having a polarization component parallel to the alignment treatment direction is incident on the liquid crystal layer, and A⊥ is a polarization component perpendicular to the alignment treatment direction. It is the light absorbency by the characteristic group vibration of the liquid crystal layer when infrared light having a light intensity is incident on the liquid crystal layer.

本発明は、下記から構成される。
[1]式(1)で表される配向膜上の液晶層の配向度Δを0.05以上にすることができる液晶配向膜。
The present invention comprises the following.
[1] A liquid crystal alignment film capable of setting the alignment degree Δ of the liquid crystal layer on the alignment film represented by the formula (1) to 0.05 or more.

[2]液晶層の配向度Δが0.05〜1.0である前記[1]項記載の液晶配向膜。 [2] The liquid crystal alignment film according to the above [1], wherein the alignment degree Δ of the liquid crystal layer is 0.05 to 1.0.

[3]液晶が下記構造の化合物(以下8CBと略記する)を用いた場合である[1]または[2]項に記載の液晶配向膜。

Figure 2005258397
[3] The liquid crystal alignment film according to item [1] or [2], wherein the liquid crystal is a compound having the following structure (hereinafter abbreviated as 8CB).
Figure 2005258397

[4]配向膜の配向処理条件が毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmでラビング処理することである[1]〜[3]の何れか1項に記載の液晶配向膜。 [4] The alignment treatment condition of the alignment film is that rubbing treatment is performed at a push-in amount of 0.2 to 0.8 mm, a stage moving speed of 5 to 250 mm / sec, and a roller rotation speed of 500 to 2,000 rpm. [3] The liquid crystal alignment film according to any one of [3].

[5]液晶配向膜が以下に示すテトラカルボン酸二無水物の少なくとも1種と、以下に示すジアミンの少なくとも1種から得られるポリイミドである[1]〜[4]項の何れか1項に記載の液晶配向膜。ただし、下記式中のnは1〜20の整数であり、Rは水素または炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−CH=CH−または−C≡C−で置き換えられてもよい。シクロヘキサン環およびベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。 [5] The liquid crystal alignment film according to any one of [1] to [4], wherein the liquid crystal alignment film is a polyimide obtained from at least one of the following tetracarboxylic dianhydrides and at least one of the following diamines. The liquid crystal aligning film of description. However, an integer n in the following formulas 1 to 20, R is hydrogen or alkyl having 1 to 20 carbon atoms, any -CH 2 - in the alkyl may -O -, - CH = CH- or It may be replaced by -C≡C-. Any hydrogen in the cyclohexane ring and the benzene ring may be replaced by halogen or alkyl having 1 to 5 carbon atoms.

Figure 2005258397
Figure 2005258397

Figure 2005258397







Figure 2005258397







Figure 2005258397






Figure 2005258397






Figure 2005258397















Figure 2005258397















Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397






Figure 2005258397
[6]液晶として8CBを用い、配向膜の配向処理条件が毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmでラビング処理し、配向膜として[5]項に記載されたポリイミドを用いた[1]項に記載の配向膜。
Figure 2005258397
[6] Using 8CB as the liquid crystal, the alignment treatment condition of the alignment film is rubbing with a hair-pushing amount of 0.2 to 0.8 mm, a stage moving speed of 5 to 250 mm / sec, and a roller rotation speed of 500 to 2,000 rpm. The alignment film according to item [1], wherein the polyimide described in item [5] is used as the alignment film.

[7]ポリイミドのテトラカルボン酸二無水物成分が式1−1、式1−2、式1−7、式1−13、式1−17、式1−18、式1−19、式1−20、式1−27、式1−28、および式1−29のそれぞれで表されるテトラカルボン酸二無水物から選択される少なくとも1種である[5]または[6]項に記載の液晶配向膜。 [7] The tetracarboxylic dianhydride component of polyimide is formula 1-1, formula 1-2, formula 1-7, formula 1-13, formula 1-17, formula 1-18, formula 1-19, formula 1 As described in the item [5] or [6], which is at least one selected from tetracarboxylic dianhydrides represented by -20, formula 1-27, formula 1-28, and formula 1-29 Liquid crystal alignment film.

[8]ポリイミドのジアミン成分が式2−5、式2−6、式2−9、式2−10、式2−11、式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、式2−30、式2−35、式2−39、式2−40、式2−41、式2−42、式2−43、および式2−56のそれぞれで表されるジアミンから選択される少なくとも1種である[5]〜[7]項の何れか1項に記載の液晶配向膜。ここに、前記式中のnは2〜10の整数であり、ベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。 [8] The diamine component of the polyimide is formula 2-5, formula 2-6, formula 2-9, formula 2-10, formula 2-11, formula 2-12, formula 2-13, formula 2-14, formula 2 -15, Formula 2-16, Formula 2-17, Formula 2-18, Formula 2-19, Formula 2-20, Formula 2-30, Formula 2-35, Formula 2-39, Formula 2-40, Formula 2 -41, the formula 2-42, the formula 2-43, and the formula any of [5] to [7], which is at least one selected from diamines represented by formulas 2-56 Liquid crystal alignment film. Here, n in the above formula is an integer of 2 to 10, and any hydrogen in the benzene ring may be replaced with halogen or alkyl having 1 to 5 carbon atoms.

[9]ポリイミドのジアミン成分が式2−5、式2−6、式2−9、式2−10、式2−11、式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、式2−30、式2−35、式2−39、式2−40、式2−41、式2−42、式2−43、および式2−56のそれぞれで表されるジアミンから選択される少なくとも1種である[5]〜[7]項の何れか1項に記載の液晶配向膜。ここに、前記式中のnは2〜10の整数である。 [9] The diamine component of the polyimide is formula 2-5, formula 2-6, formula 2-9, formula 2-10, formula 2-11, formula 2-12, formula 2-13, formula 2-14, formula 2 -15, Formula 2-16, Formula 2-17, Formula 2-18, Formula 2-19, Formula 2-20, Formula 2-30, Formula 2-35, Formula 2-39, Formula 2-40, Formula 2 -41, the formula 2-42, the formula 2-43, and the formula any of [5] to [7], which is at least one selected from diamines represented by formulas 2-56 Liquid crystal alignment film. Here, n in the said formula is an integer of 2-10.

[10][5]〜[9]項の何れか1項に記載のポリイミドまたはその前駆体であるポリアミック酸を含有する液晶配向剤。 [10] A liquid crystal aligning agent containing the polyimide according to any one of items [5] to [9] or a polyamic acid which is a precursor thereof.

[11][1]〜[9]項の何れか1項に記載の液晶配向膜を有する液晶表示素子。 [11] A liquid crystal display device having the liquid crystal alignment film according to any one of items [1] to [9].

本発明によれば、特に優れた黒表示特性を有する液晶表示素子、該液晶表示素子を実現するための一軸配向性の高い配向膜および該配向膜を形成することが可能な液晶配向剤を提供することができる。   According to the present invention, a liquid crystal display element having particularly excellent black display characteristics, an alignment film having high uniaxial orientation for realizing the liquid crystal display element, and a liquid crystal aligning agent capable of forming the alignment film are provided. can do.

本発明は、配向膜上の液晶層の配向度Δが0.05以上の、一軸配向性の高い配向膜を用いることにより、優れた黒表示特性を有する液晶表示素子を実現したものである。この様な配向膜は、後述するポリマーを含有する本発明の液晶配向剤から作成された塗膜の表面を、適切な方法(例えば後述する方法)でラビングすることにより得られる。   The present invention realizes a liquid crystal display element having excellent black display characteristics by using an alignment film having a high uniaxial alignment property in which the alignment degree Δ of the liquid crystal layer on the alignment film is 0.05 or more. Such an alignment film can be obtained by rubbing the surface of a coating film prepared from the liquid crystal aligning agent of the present invention containing a polymer described later by an appropriate method (for example, a method described later).

本発明では、前記式(1)で表される、配向膜上の液晶層の配向度Δにより液晶の分子配向状態を評価する。   In the present invention, the molecular alignment state of the liquid crystal is evaluated based on the degree of alignment Δ of the liquid crystal layer on the alignment film represented by the formula (1).

配向膜の配向処理方法としてはラビング法、光配向法、転写法などが一般に知られているが、本発明の目的が達成される範囲内である限り同様に適用可能である。本発明における配向処理方向とは、ラビング法の場合はラビングローラーの回転方向、光配向法の場合は配向処理に用いる光の偏光方向、転写法の場合は転写元の基板等の配向方向のことをいう。 A rubbing method, a photo-alignment method, a transfer method, or the like is generally known as an alignment treatment method for the alignment film, but can be similarly applied as long as the object of the present invention is achieved. In the present invention, the orientation direction refers to the direction of rotation of the rubbing roller in the case of the rubbing method, the polarization direction of the light used for the orientation treatment in the case of the photo-alignment method, and the orientation direction of the transfer source substrate in the case of the transfer method. Say.

配向膜上の液晶層の配向度Δは、偏光赤外光を用いた赤外線吸収分光法により評価することができる。この方法は、試料に直交する2つの直線偏光赤外光を入射したときの赤外線吸収量が分子配向方位によって違うという赤外二色性を検出して、分子配向を評価するものである。すなわち、赤外線分光光度計(好ましくはFT−IR)の光源と液晶層を有する試料を保持する試料ホルダーとの間に偏光子を配置し、配向処理方向が偏光子の偏光方向と平行になるようにして試料ホルダーに前記試料を固定し、赤外吸光度を測定する。次に、試料を試料ホルダーに固定した状態で試料ホルダーを90度回転させて偏光子を通過した偏光赤外光が配向処理方向と垂直に試料に入射するようにして赤外吸光度を測定する。このようにして得られた赤外吸光度において、強い吸収(ピーク)を示す波長における値からΔが算出される。なお、この方法の適用範囲は、シリコンやフッ化カルシウム(ホタル石:CaF)など赤外光が透過する基板上に作成された試料に限られる。赤外光はガラス基板を透過しないため、この方法は、ガラス基板上に作成した試料の分子配向を測定できない。 The orientation degree Δ of the liquid crystal layer on the alignment film can be evaluated by infrared absorption spectroscopy using polarized infrared light. This method evaluates the molecular orientation by detecting infrared dichroism that the amount of infrared absorption when two linearly polarized infrared rays orthogonal to the sample are incident differs depending on the molecular orientation. That is, a polarizer is disposed between a light source of an infrared spectrophotometer (preferably FT-IR) and a sample holder holding a sample having a liquid crystal layer so that the alignment treatment direction is parallel to the polarization direction of the polarizer. The sample is fixed to the sample holder, and the infrared absorbance is measured. Next, in the state where the sample is fixed to the sample holder, the sample holder is rotated 90 degrees, and the infrared absorbance is measured so that the polarized infrared light passing through the polarizer is incident on the sample perpendicular to the alignment treatment direction. In the infrared absorbance thus obtained, Δ is calculated from a value at a wavelength showing strong absorption (peak). Incidentally, the scope of the method, the silicon and calcium fluoride (fluorite: CaF 2), such as limited to a sample infrared light is created on a substrate which transmits. Since infrared light does not pass through the glass substrate, this method cannot measure the molecular orientation of the sample prepared on the glass substrate.

本発明に係わる配向度Δを測定するために液晶層を形成する液晶組成物は、8CBが用いられる。8CBの化学構造を下記に示す。
8CB

Figure 2005258397
本発明における液晶層の特性基振動数は、例えば強い赤外線吸収スペクトルのピークは2225cm−1付近(C≡N伸縮振動)、1510cm−1付近(ベンゼン環のC−C伸縮振動)などに現れる。配向膜等の特性基振動数と重ならない限りどの赤外線吸収スペクトルのピークを用いてもよいが、例えば2225cm−1付近(C≡N伸縮振動)の吸光度より配向度Δを評価するのが好ましい。本発明における2225cm−1付近の吸光度とは、2175〜2275cm−1の範囲にある吸光スペクトルの最大値のピーク高さを示す。 8CB is used as the liquid crystal composition for forming the liquid crystal layer in order to measure the orientation degree Δ according to the present invention. The chemical structure of 8CB is shown below.
8CB
Figure 2005258397
The characteristic group frequency of the liquid crystal layer in the present invention, for example, has a strong infrared absorption spectrum peak around 2225 cm −1 (C≡N stretching vibration), around 1510 cm −1 (CC stretching vibration of the benzene ring). Any infrared absorption spectrum peak may be used as long as it does not overlap with the characteristic group frequency of the alignment film or the like. For example, it is preferable to evaluate the orientation degree Δ from the absorbance near 2225 cm −1 (C≡N stretching vibration). The absorbance near 2225 cm −1 in the present invention indicates the peak height of the maximum value of the absorption spectrum in the range of 2175 to 2275 cm −1 .

本発明においては配向膜上の液晶層の配向度Δを評価する。液晶分子間の長距離相互作用の影響を避けるためには、配向膜上の液晶層は単分子層であることが好ましい。しかしながら、液晶分子間の長距離相互作用の影響が小さく本発明の目的を損なわない限り、たとえ単分子層以上の厚さであったとしても特に問題ではない。
本発明における液晶層は蒸着法により形成する。蒸着条件は大気中または真空中(10−1〜10−6Pa)にて、好ましくは20〜200℃、より好ましくは25〜120℃にて、好ましくは5〜600分間、より好ましくは10〜180分間蒸着処理を実施する。特に、液晶単分子層を形成する場合、その蒸着量は、配向膜上の液晶単分子層のみから光第二高調波が発生することを利用して、光第二高調波発生(SHG)の信号強度をモニターしながら、SHG強度が飽和したとき蒸着を止めることにより決定する(伊藤 et al. 液晶討論会第23回、3PB06、P420〜421参照)。
なお、上記の方法で形成された液晶単分子層の吸光度の和(A‖+A⊥)が既知の場合、得られるサンプルのA‖+A⊥が好ましい範囲になるように蒸着条件を設定して、液晶層を形成することができる。8CBを用いた場合は、液晶単分子層のA‖+A⊥はおよそ0.0003であることから、液晶層のA‖+A⊥が0.0002〜0.0006の範囲が好ましく、0.0002〜0.0004の範囲であることが更に好ましい。A‖+A⊥が、0.0002以上であれば液晶層の厚さは十分であり、0.0006以下であれば液晶分子間の長距離相互作用の影響が小さいため、配向膜に接している8CBの分子配向状態を評価することができる。
In the present invention, the degree of alignment Δ of the liquid crystal layer on the alignment film is evaluated. In order to avoid the influence of long-range interaction between liquid crystal molecules, the liquid crystal layer on the alignment film is preferably a monomolecular layer. However, as long as the influence of the long-range interaction between the liquid crystal molecules is small and the object of the present invention is not impaired, even if the thickness is not less than a monomolecular layer, there is no particular problem.
The liquid crystal layer in the present invention is formed by a vapor deposition method. Deposition conditions are in the air or in vacuum (10 −1 to 10 −6 Pa), preferably 20 to 200 ° C., more preferably 25 to 120 ° C., preferably 5 to 600 minutes, more preferably 10 to 10 minutes. The vapor deposition process is performed for 180 minutes. In particular, when a liquid crystal monomolecular layer is formed, the amount of vapor deposition is that of optical second harmonic generation (SHG) using the fact that optical second harmonics are generated only from the liquid crystal monomolecular layer on the alignment film. It is determined by stopping the deposition when the SHG intensity is saturated while monitoring the signal intensity (see Ito et al., Liquid Crystal Discussion Group 23rd, 3PB06, P420-421).
In addition, when the sum of absorbance (A 液晶 + A⊥) of the liquid crystal monolayer formed by the above method is known, the deposition conditions are set so that A‖ + A⊥ of the obtained sample is in a preferable range, A liquid crystal layer can be formed. When 8CB is used, since A‖ + A⊥ of the liquid crystal monomolecular layer is approximately 0.0003, A‖ + A⊥ of the liquid crystal layer is preferably in the range of 0.0002 to 0.0006, and 0.0002 to More preferably, it is in the range of 0.0004. If A‖ + A⊥ is 0.0002 or more, the thickness of the liquid crystal layer is sufficient, and if it is 0.0006 or less, the influence of the long-range interaction between liquid crystal molecules is small, so that it is in contact with the alignment film. The molecular orientation state of 8CB can be evaluated.

また、本発明の配向膜上の液晶層の赤外吸収スペクトルの吸光度は、特に液晶単分子層を形成した場合などにおいて、試料1枚あたりのピーク強度が弱すぎて評価不能となる場合がある。このような場合は、2〜10枚の試料を重ねて赤外吸収スペクトルを測定することによりS/N比を向上させて評価する(伊藤 et al. 液晶討論会第23回、3PB06、P420〜421参照)。   In addition, the absorbance of the infrared absorption spectrum of the liquid crystal layer on the alignment film of the present invention may not be evaluated because the peak intensity per sample is too weak, particularly when a liquid crystal monolayer is formed. . In such a case, the S / N ratio is improved by measuring 2 to 10 samples and measuring the infrared absorption spectrum (Ito et al. Liquid Crystal Symposium 23rd, 3PB06, P420 ~ 421).

本発明の液晶表示素子用の配向膜は、前記式(1)で表される配向膜上の液晶層の配向度Δが0.05以上、好ましくは0.05〜1.0、さらに好ましくは0.1〜1.0の配向膜である。液晶層の配向度Δが0.05以上であれば分子配向性が実用的に充分であり、得られる液晶表示素子の黒表示特性は良好となる。   In the alignment film for a liquid crystal display element of the present invention, the degree of alignment Δ of the liquid crystal layer on the alignment film represented by the formula (1) is 0.05 or more, preferably 0.05 to 1.0, more preferably An alignment film of 0.1 to 1.0. When the orientation degree Δ of the liquid crystal layer is 0.05 or more, the molecular orientation is practically sufficient, and the black display characteristics of the obtained liquid crystal display element are good.

本発明の液晶表示素子用の配向膜の膜厚は、通常10〜500nm、好ましくは30〜200nmである。   The film thickness of the alignment film for the liquid crystal display element of the present invention is usually 10 to 500 nm, preferably 30 to 200 nm.

本発明に係わる液晶層の上記配向度Δを有する配向膜を形成することができる液晶配向剤は、ポリアミック酸、ポリアミック酸エステル、可溶性ポリイミド、ポリアミドイミドなどの高分子成分を溶剤に溶解した状態のワニス組成物である。この液晶配向剤を基板上に塗布し、溶剤を乾燥したのち配向処理を施すことにより配向膜が形成される。該高分子成分は、ランダム共重合体、ブロック共重合体などの共重合体であってもよく、複数種の高分子成分を併用してもよい。   The liquid crystal aligning agent that can form the alignment film having the alignment degree Δ of the liquid crystal layer according to the present invention is a state in which a polymer component such as polyamic acid, polyamic acid ester, soluble polyimide, and polyamideimide is dissolved in a solvent. It is a varnish composition. An alignment film is formed by applying the liquid crystal aligning agent on the substrate, drying the solvent, and performing an alignment treatment. The polymer component may be a copolymer such as a random copolymer or a block copolymer, or a plurality of types of polymer components may be used in combination.

配向膜を形成するための特に好ましい液晶配向剤は、テトラカルボン酸二無水物などとジアミンとを反応させて得られるポリアミック酸、該ポリアミック酸の脱水反応などによって得られる溶媒に可溶性のポリイミドである。   A particularly preferred liquid crystal aligning agent for forming the alignment film is a polyamic acid obtained by reacting a tetracarboxylic dianhydride or the like with a diamine, a polyimide soluble in a solvent obtained by a dehydration reaction of the polyamic acid, or the like. .

該ポリアミック酸、可溶性ポリイミドを与えるテトラカルボン酸二無水物は、芳香環に直接カルボン酸無水物基が結合した芳香族系(複素芳香環系を含む)、芳香環に直接カルボン酸無水物基が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。該ポリアミック酸、該ポリアミック酸の脱水反応などによって得られる可溶性ポリイミドは、液晶表示素子の電気特性の低下原因となりやすいエステルやエ−テル結合などの酸素や硫黄を含まない構造のものが好ましい。しかし、そのような構造を有していてもこれらの特性に悪影響を与えない範囲内の使用量であれば何ら問題とはならない。   The tetracarboxylic dianhydride that gives the polyamic acid and soluble polyimide has an aromatic system (including a heteroaromatic ring system) in which a carboxylic acid anhydride group is directly bonded to an aromatic ring, and a carboxylic acid anhydride group directly on an aromatic ring. It may belong to any group of aliphatic systems (including heterocyclic systems) that are not bonded. The polyamic acid and the soluble polyimide obtained by the dehydration reaction of the polyamic acid preferably have a structure that does not contain oxygen or sulfur, such as an ester or an ether bond, which tends to deteriorate the electrical characteristics of the liquid crystal display element. However, even if it has such a structure, there is no problem as long as the amount used is within a range that does not adversely affect these characteristics.

本発明で用いることのできるテトラカルボン酸二無水物の具体例は前記1−1〜1−38である。   Specific examples of the tetracarboxylic dianhydride that can be used in the present invention are 1-1 to 1-38.

これらの中で、式1−1、式1−2、式1−7、式1−13、式1−17、式1−18、式1−19、式1−20、式1−27、式1−28、および式1−29で表されるテトラカルボン酸二無水物が好ましい。さらに好ましくは式1−1、式1−7、式1−13、式1−17、式1−19、式1−20、および式1−29で表されるテトラカルボン酸二無水物である。   Among these, Formula 1-1, Formula 1-2, Formula 1-7, Formula 1-13, Formula 1-17, Formula 1-18, Formula 1-19, Formula 1-20, Formula 1-27, The tetracarboxylic dianhydride represented by Formula 1-28 and Formula 1-29 is preferable. More preferred are tetracarboxylic dianhydrides represented by Formula 1-1, Formula 1-7, Formula 1-13, Formula 1-17, Formula 1-19, Formula 1-20, and Formula 1-29. .

本発明で用いることのできるテトラカルボン酸二無水物はこれらに限定されることなく、本発明の目的が達成される範囲内で他にも種々の形態が存在することはいうまでもない。また、これらのテトラカルボン酸二無水物は単独で、または2種以上を組み合わせて用いることもできる。   Needless to say, the tetracarboxylic dianhydride that can be used in the present invention is not limited to these, and various other forms exist within the scope of achieving the object of the present invention. These tetracarboxylic dianhydrides may be used alone or in combination of two or more.

脂肪族系テトラカルボン酸二無水物は電圧保持率などの電気的特性に優れている。しかし、脂肪族系テトラカルボン酸二無水物はプレチルト角などの配向特性にやや難点があり、特に180℃以下の低温焼成のときは配向が崩れやすいことがある。一方、芳香族系テトラカルボン酸二無水物は配向安定性に優れているが、電気的特性に関しては、脂肪族系テトラカルボン酸二無水物を用いた方がむしろ好ましい。したがって、芳香族系テトラカルボン酸二無水物と脂肪族系テトラカルボン酸二無水物を併用した方がより好ましい。   Aliphatic tetracarboxylic dianhydrides are excellent in electrical characteristics such as voltage holding ratio. However, aliphatic tetracarboxylic dianhydrides have some difficulty in orientation characteristics such as a pretilt angle, and the orientation may be easily lost particularly when firing at a low temperature of 180 ° C. or lower. On the other hand, aromatic tetracarboxylic dianhydrides are excellent in alignment stability, but it is preferable to use aliphatic tetracarboxylic dianhydrides in terms of electrical characteristics. Therefore, it is more preferable to use an aromatic tetracarboxylic dianhydride and an aliphatic tetracarboxylic dianhydride in combination.

本発明の液晶配向剤の高分子成分であるポリアミック酸、可溶性ポリイミドを与えるジアミンの具体例は前記2−1〜2−56である。下記の具体例中におけるnは1〜20の整数である。Rは水素または炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−CH=CH−または−C≡C−で置き換えられてもよい。シクロヘキサン環およびベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。好ましいこれらの環は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられていない環である。 Specific examples of the diamine that gives the polyamic acid and the soluble polyimide, which are the polymer components of the liquid crystal aligning agent of the present invention, are 2-1 to 2-56. N in the following specific examples is an integer of 1-20. R is hydrogen or alkyl having 1 to 20 carbon atoms, and in this alkyl, arbitrary —CH 2 — may be replaced by —O—, —CH═CH— or —C≡C—. Any hydrogen in the cyclohexane ring and the benzene ring may be replaced by halogen or alkyl having 1 to 5 carbon atoms. Preferred of these rings are rings not substituted with halogen or alkyl having 1 to 5 carbon atoms.

これらの中で、式2−5、式2−6、式2−9、式2−10、式2−11、式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、式2−30、式2−35、式2−39、式2−40、式2−41、式2−42、式2−43、および式2−56で表されるジアミンが好ましい。さらに好ましくは、直鎖状のアルキレンを有する式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、および式2−39で表される芳香族ジアミンの中でnが2〜10であるジアミン、またはベンゼン環のメタ位にアミノを有する式2−6および式2−43で表されるジアミン、ベンゼン環の3,3’−位にアミノを有する式2−10、式2−13、式2−16および式2−20で表されるジアミン、ベンゼン環の3,4’−位にアミノを有する式2−11および式2−14で表されるジアミンである。より一層好ましいジアミンは式2−12、式2−13、式2−14、式2−39、式2−42及び式2−43で表されるジアミンであり、この場合では、式中のnは2〜10の整数であり、ベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。これらのジアミンを用いることにより、特に一軸配向性の高い配向膜を形成することができ、高い配向度Δが得られやすい。   Among these, Formula 2-5, Formula 2-6, Formula 2-9, Formula 2-10, Formula 2-11, Formula 2-12, Formula 2-13, Formula 2-14, Formula 2-15, Formula 2-16, Formula 2-17, Formula 2-18, Formula 2-19, Formula 2-20, Formula 2-30, Formula 2-35, Formula 2-39, Formula 2-40, Formula 2-41, Diamines represented by Formula 2-42, Formula 2-43, and Formula 2-56 are preferred. More preferably, Formula 2-12, Formula 2-13, Formula 2-14, Formula 2-15, Formula 2-16, Formula 2-17, Formula 2-18, and Formula 2-19 having a linear alkylene Among the aromatic diamines represented by formulas 2-20 and 2-39, diamines wherein n is 2 to 10, or formulas 2-6 and 2-43 having amino at the meta position of the benzene ring Diamines represented by formulas 2-10, 2-13, 2-16 and 2-20 having amino at 3,3′-position of the benzene ring, and 3,4 ′ of the benzene ring It is a diamine represented by Formula 2-11 and Formula 2-14 having an amino at the -position. Even more preferred diamines are those represented by formula 2-12, formula 2-13, formula 2-14, formula 2-39, formula 2-42 and formula 2-43, in which case n in the formula Is an integer of 2 to 10, and any hydrogen in the benzene ring may be replaced by halogen or alkyl having 1 to 5 carbons. By using these diamines, an alignment film having particularly high uniaxial orientation can be formed, and a high degree of orientation Δ is easily obtained.

また、コレステリル、アンドロステリル、β−コレステリル、エピアンドロステリル、エリゴステリル、エストリル、11α−ヒドロキシメチルステリル、11α−プロゲステリル、ラノステリル、メチルテストロステリル、ノレチステリル、プレグネノニル、β−シトステリル、スチグマステリル、テストステリル、酢酸コレステロ−ルエステルなどのステロイド骨格の側鎖を有するジアミンを挙げることができる。   Also, cholesteryl, androsteryl, β-cholesteryl, epiandrosteryl, erygosteryl, estril, 11α-hydroxymethylsteryl, 11α-progesteryl, lanosteryl, methyltestosteryl, noretisteryl, pregnenoyl, β-sitosteryl, stigmasteryl, testosteryl, acetic acid Examples thereof include diamines having side chains of a steroid skeleton such as cholesterol esters.

さらに、本発明で用いることのできる前述のジアミンと併用することができるその他のジアミンとして、シロキサン結合を有するシロキサン系ジアミンを挙げることができる。該シロキサン系ジアミンは特に限定されるものではないが、式(2)で表されるものが本発明において好ましく使用することができる。

Figure 2005258397
式中、RおよびRは独立して炭素数1〜3のアルキルまたはフェニルであり、Rはメチレン、フェニレンまたはアルキル置換されたフェニレンである。xは1〜6の整数であり、yは1〜10の整数である。 Furthermore, siloxane type diamine which has a siloxane bond can be mentioned as another diamine which can be used together with the above-mentioned diamine which can be used by this invention. Although this siloxane type diamine is not specifically limited, What is represented by Formula (2) can be preferably used in this invention.
Figure 2005258397
In the formula, R 2 and R 3 are independently alkyl or phenyl having 1 to 3 carbon atoms, and R 4 is methylene, phenylene or alkyl-substituted phenylene. x is an integer of 1-6, and y is an integer of 1-10.

本発明で用いることのできるジアミンはこれらに限定されることなく、本発明の目的が達成される範囲内で他にも種々の形態が存在することはいうまでもない。また、これらのジアミンは単独で、または2種以上を組み合わせて用いることができる。   The diamine that can be used in the present invention is not limited to these, and it goes without saying that various other forms exist within the range in which the object of the present invention is achieved. Moreover, these diamines can be used alone or in combination of two or more.

一方、本発明で用いることのできるジアミンについても前述したテトラカルボン酸二無水物と同様に、芳香環に直接アミノ基が結合した芳香族系(複素芳香環系を含む)、芳香環に直接アミノ基が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。中でも環構造を有する芳香族および環構造を有する脂肪族のジアミンは、液晶層の配向性を良好に保つため好ましい。さらに、液晶表示素子の電気特性の低下原因となりやすいエステルやエ−テル結合などの酸素や硫黄を含まない構造のものが好ましい。しかし、そのような構造を有していてもこれらの特性に悪影響を与えない範囲内の使用量であれば何ら問題とはならない。   On the other hand, diamines that can be used in the present invention are also aromatic systems (including heteroaromatic ring systems) in which an amino group is directly bonded to an aromatic ring, as well as the tetracarboxylic dianhydrides described above. It may belong to any group of an aliphatic system (including a heterocyclic system) to which no group is bonded. Among them, aromatic diamines having a ring structure and aliphatic diamines having a ring structure are preferable because the orientation of the liquid crystal layer is kept good. Furthermore, the thing of the structure which does not contain oxygen and sulfur, such as an ester and an ether bond which tends to cause the electrical characteristic of a liquid crystal display element to fall is preferable. However, even if it has such a structure, there is no problem as long as the amount used is within a range that does not adversely affect these characteristics.

さらに、これらのテトラカルボン酸二無水物およびジアミン以外にポリアミック酸、可溶性ポリイミドの反応末端を形成する、モノアミン化合物、または/およびモノカルボン酸無水物を併用することも可能である。基板への密着性をよくするために、アミノシリコン化合物を導入することもできる。   Furthermore, in addition to these tetracarboxylic dianhydrides and diamines, it is also possible to use a polyamic acid, a monoamine compound or / and a monocarboxylic anhydride that forms a reactive end of a soluble polyimide. In order to improve the adhesion to the substrate, an aminosilicon compound can be introduced.

アミノシリコン化合物の例は、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシランなどである。   Examples of aminosilicon compounds are paraaminophenyltrimethoxysilane, paraaminophenyltriethoxysilane, metaaminophenyltrimethoxysilane, metaaminophenyltriethoxysilane, aminopropyltrimethoxysilane, aminopropyltriethoxysilane, and the like.

本発明で用いるポリアミック酸または可溶性ポリイミドの分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)のポリスチレン換算の重量平均分子量(Mw)で、好ましくは10,000〜500,000、さらに好ましくは20,000〜200,000である。   The molecular weight of the polyamic acid or soluble polyimide used in the present invention is, for example, a weight average molecular weight (Mw) in terms of polystyrene of gel permeation chromatography (GPC), preferably 10,000 to 500,000, more preferably 20,000. ~ 200,000.

本発明の液晶配向剤中の高分子成分の濃度は、特に限定されないが0.1〜40重量%が好ましい。該液晶配向剤を基板に塗布するときには、膜厚調整のため含有されている高分子成分を予め溶剤により希釈する操作が必要とされることがある。高分子成分の濃度が40重量%以下であると液晶配向剤の粘度が最適となり、膜厚調整のために液晶配向剤を希釈する必要があるときに、液晶配向剤に対して溶剤を容易に混合できるため好ましい。スピンナ−法や印刷法などの塗布方法のときには膜厚を良好に保つために、通常10重量%以下とすることが多い。その他の塗布方法、例えばディッピング法やインクジェット法ではさらに低濃度とすることもあり得る。一方、高分子成分の濃度が0.1重量%以上であると、得られる配向膜の膜厚が最適となり易い。従って高分子成分の濃度は、通常のスピンナ−法や印刷法などの塗布方法では0.1重量%以上、好ましくは0.5〜10重量%である。しかしながら、該液晶配向剤の塗布方法によっては、さらに希薄な濃度で使用してもよい。   Although the density | concentration of the high molecular component in the liquid crystal aligning agent of this invention is not specifically limited, 0.1 to 40 weight% is preferable. When the liquid crystal aligning agent is applied to the substrate, it may be necessary to dilute the polymer component contained in advance with a solvent in order to adjust the film thickness. When the concentration of the polymer component is 40% by weight or less, the viscosity of the liquid crystal aligning agent becomes optimal, and when it is necessary to dilute the liquid crystal aligning agent to adjust the film thickness, the solvent can be easily added to the liquid crystal aligning agent It is preferable because it can be mixed. In the case of a coating method such as a spinner method or a printing method, the amount is usually 10% by weight or less in order to keep the film thickness good. Other coating methods such as a dipping method or an ink jet method may further reduce the concentration. On the other hand, when the concentration of the polymer component is 0.1% by weight or more, the thickness of the obtained alignment film tends to be optimal. Therefore, the concentration of the polymer component is 0.1% by weight or more, preferably 0.5 to 10% by weight in a coating method such as a usual spinner method or printing method. However, depending on the application method of the liquid crystal aligning agent, it may be used at a dilute concentration.

本発明の液晶配向剤において前記高分子成分と共に用いられる溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。かかる溶剤は、ポリアミック酸、可溶性ポリイミドなどの高分子成分の製造工程や用途方面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。これらの溶剤を例示すれば以下のとおりである。ポリアミック酸や可溶性ポリイミドに対し親溶剤である非プロトン性極性有機溶剤の例として、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,Nジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトンなどのラクトンを挙げることができる。塗布性改善などを目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテルなどのエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテルなどのジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノブチルエーテルなどのプロピレングリコールモノアルキルエーテル、マロン酸ジエチルなどのマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテルなどのジプロピレングリコールモノアルキルエーテル、これらアセテート類などのエステル化合物を挙げることができる。これらの中で、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテルなどを特に好ましく用いることができる。   The solvent used together with the polymer component in the liquid crystal aligning agent of the present invention can be applied without particular limitation as long as it is a solvent having the ability to dissolve the polymer component. Such a solvent includes a wide range of solvents that are usually used in the production process and applications of polymer components such as polyamic acid and soluble polyimide, and can be appropriately selected depending on the purpose of use. Examples of these solvents are as follows. Examples of the aprotic polar organic solvent that is a parent solvent for polyamic acid and soluble polyimide include N-methyl-2-pyrrolidone, dimethylimidazolidinone, N-methylcaprolactam, N-methylpropionamide, N, N-dimethyl. Examples include lactones such as acetamide, dimethyl sulfoxide, N, N dimethylformamide, N, N-diethylformamide, diethylacetamide, and γ-butyrolactone. Examples of other solvents for improving coating properties include alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monoalkyl ethers such as ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, etc. Diethylene glycol monoalkyl ether, ethylene glycol monoalkyl or phenyl acetate, triethylene glycol monoalkyl ether, propylene glycol monoalkyl ether such as propylene glycol monobutyl ether, dialkyl malonate such as diethyl malonate, dipropylene such as dipropylene glycol monomethyl ether Examples include glycol monoalkyl ethers and ester compounds such as acetates.Among these, N-methyl-2-pyrrolidone, dimethylimidazolidinone, γ-butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether and the like can be particularly preferably used. .

本発明の液晶配向剤は、必要により各種の添加剤を含むことができる。例えば、塗布性の向上を望むときにはかかる目的に沿った界面活性剤を、帯電防止の向上を必要とするときは帯電防止剤を、また基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤を配合してもよい。   The liquid crystal aligning agent of this invention can contain various additives as needed. For example, when it is desired to improve the coating property, a surfactant according to such purpose, an antistatic agent when it is necessary to improve the antistatic property, and a silane coupling agent or the like when it is desired to improve the adhesion to the substrate. A titanium-based coupling agent may be blended.

本発明に係わる液晶表示素子は、通常2枚の透明電極付基板間に狭持される液晶を含有する。該液晶は、TN型液晶表示素子においては90度ツイストしており、STN型液晶表示素子においては通常180度以上ツイストしている。特に、薄膜トランジスタを使用したカラー表示のTFT型液晶素子においては、第1の透明基板上に薄膜トランジスタ、絶縁膜、保護膜および画素電極などが形成されており、第2の透明基板上に画素領域以外の光を遮断するブラックマトリクス、カラーフィルター、平坦化膜および画素電極などを有する。
さらに、IPS型液晶表示素子においては、薄膜トランジスタが形成された第1の透明基板、対向する第2の透明基板およびそれらの基板間に狭持される液晶からなる。第1の透明基板は、交互に櫛歯が延びるように形成された画素電極および共通電極を有する。従来の液晶表示素子と同様に第2の透明基板は、画素領域以外の光を遮断するブラックマトリクス、カラーフィルター、平坦化膜などを有する。櫛歯状の電極は、ガラスなどの透明基板上にCrなどの金属をスパッタリング法などを用いて堆積した後、所定の形状のレジストパターンをマスクとしてエッチングを行って形成される。
The liquid crystal display device according to the present invention usually contains a liquid crystal sandwiched between two substrates with transparent electrodes. The liquid crystal is twisted by 90 degrees in the TN liquid crystal display element, and is usually twisted by 180 degrees or more in the STN liquid crystal display element. In particular, in a color display TFT type liquid crystal element using a thin film transistor, a thin film transistor, an insulating film, a protective film, a pixel electrode, and the like are formed on a first transparent substrate, and other than the pixel region on the second transparent substrate. A black matrix, a color filter, a planarization film, a pixel electrode, and the like.
Further, the IPS liquid crystal display element includes a first transparent substrate on which a thin film transistor is formed, a second transparent substrate facing each other, and a liquid crystal sandwiched between the substrates. The first transparent substrate has pixel electrodes and common electrodes formed so that comb teeth alternately extend. Similar to the conventional liquid crystal display element, the second transparent substrate has a black matrix, a color filter, a flattening film, and the like that block light outside the pixel region. The comb-like electrode is formed by depositing a metal such as Cr on a transparent substrate such as glass using a sputtering method or the like, and then etching using a resist pattern having a predetermined shape as a mask.

次いで、得られた2枚の透明基板上に液晶配向剤を塗布する工程、これに続く乾燥工程および脱水・閉環反応に必要な加熱処理する工程が施される。   Next, a step of applying a liquid crystal aligning agent on the obtained two transparent substrates, a subsequent drying step, and a heat treatment step necessary for dehydration / ring closure reaction are performed.

液晶配向剤の塗布工程での塗布方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法などが一般に知られている。これらの方法は本発明においても同様に適用可能である。また、乾燥工程および脱水・閉環反応に必要な加熱処理を施す工程の方法として、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法などが一般に知られている。これらの方法も本発明において同様に適用可能である。   As a coating method in the liquid crystal aligning agent coating step, a spinner method, a printing method, a dipping method, a dropping method, an ink jet method and the like are generally known. These methods are similarly applicable in the present invention. Further, as a method of a drying process and a process of performing a heat treatment necessary for dehydration / ring-closing reaction, a method of performing a heat treatment in an oven or an infrared furnace, a method of performing a heat treatment on a hot plate, and the like are generally known. These methods are equally applicable in the present invention.

乾燥工程は溶剤の蒸発が可能な範囲内の比較的低温で実施することが好ましい。加熱処理の工程は一般に150〜300℃程度の温度で行うことが好ましい。   The drying step is preferably performed at a relatively low temperature within a range where the solvent can be evaporated. In general, the heat treatment step is preferably performed at a temperature of about 150 to 300 ° C.

次いで、得られた配向膜を配向処理する工程、該基板をスペーサーを介して対向させて組み立てる工程、液晶材料を封入する工程、偏光フィルムを貼り付ける工程を経て液晶表示素子が製造される。配向処理工程での配向処理方法としてはラビング法、光配向法、転写法などが一般に知られている。本発明の目的が達成される範囲内である限り、これらの方法は本発明においても同様に適用可能である。   Next, a liquid crystal display element is manufactured through a process of aligning the obtained alignment film, a process of assembling the substrates with a spacer interposed therebetween, a process of encapsulating a liquid crystal material, and a process of attaching a polarizing film. As an alignment treatment method in the alignment treatment step, a rubbing method, a photo-alignment method, a transfer method and the like are generally known. As long as the object of the present invention is achieved, these methods are applicable to the present invention as well.

本発明の配向膜を製造する際に特に好ましく用いることのできる配向処理方法はラビング法である。本発明の目的が達成される範囲内である限りどのようなラビング処理条件であってもよい。好ましい条件は、毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmである。更に好ましいステージ移動速度は31〜250mm/secである。毛足押し込み量が大きくなるほど、ステージ移動速度が小さくなるほど、またはローラー回転速度が大きくなるほど、ラビング処理の条件が強くなり配向膜上の液晶層において高い配向度Δが得られる。しかし、ラビング処理条件が強くなりすぎると配向膜の膜削れが発生することがある。本発明の配向膜はステージ移動速度を31mm/sec以上にすることができ、生産速度を上げられるという長所も有しているのである。   A rubbing method is an alignment treatment method that can be particularly preferably used when the alignment film of the present invention is produced. Any rubbing treatment condition may be used as long as the object of the present invention is achieved. The preferable conditions are a push-in amount of 0.2 to 0.8 mm, a stage moving speed of 5 to 250 mm / sec, and a roller rotation speed of 500 to 2,000 rpm. A more preferable stage moving speed is 31 to 250 mm / sec. The greater the amount of pushing in the bristle, the lower the stage moving speed, or the higher the roller rotation speed, the stronger the rubbing treatment conditions and the higher the degree of alignment Δ in the liquid crystal layer on the alignment film. However, if the rubbing conditions are too strong, the alignment film may be scraped. The alignment film of the present invention has an advantage that the stage moving speed can be set to 31 mm / sec or more and the production speed can be increased.

本発明の液晶表示素子は、配向処理の前後に洗浄液による洗浄処理を行うこともできる。洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄などが挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコールなどの各種アルコール類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、塩化メチレンなどのハロゲン系溶剤、アセトン、メチルエチルケトンなどのケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。   The liquid crystal display element of the present invention can be subjected to a cleaning treatment with a cleaning liquid before and after the alignment treatment. Examples of the cleaning method include brushing, jet spray, steam cleaning, and ultrasonic cleaning. These methods may be performed alone or in combination. The cleaning liquid is pure water, various alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, aromatic hydrocarbons such as benzene, toluene, and xylene, halogen solvents such as methylene chloride, and ketones such as acetone and methyl ethyl ketone. Although it can be used, it is not limited to these. Of course, these cleaning liquids are sufficiently purified and have few impurities.

本発明で用いることのできる液晶表示素子において好適なプレチルト角の値は、液晶表示素子の型式により異なる。プレチルト角が0.1〜5.0度程度の場合はIPS型液晶表示素子に好適であり、プレチルト角が3〜8度程度の場合は、TN型液晶表示素子に好適である。また、STN型液晶表示素子、VA型液晶表示素子の場合は、さらに大きなプレチルト角が要求される場合もある。   In the liquid crystal display element that can be used in the present invention, a suitable pretilt angle value varies depending on the type of the liquid crystal display element. A pretilt angle of about 0.1 to 5.0 degrees is suitable for an IPS liquid crystal display element, and a pretilt angle of about 3 to 8 degrees is suitable for a TN liquid crystal display element. In the case of STN type liquid crystal display elements and VA type liquid crystal display elements, a larger pretilt angle may be required.

本発明の液晶表示素子において用いられる液晶組成物は、特に制限はなく、誘電率異方性が正の各種の液晶組成物を用いることができる。好ましい液晶組成物の例は、特許第3086228号公報、特許第2635435号公報、特表平5−501735号公報、特開平8−157828号公報、特開平8−231960号公報、特開平9−241644号公報(EP885272A1明細書)、特開平9−302346号公報(EP806466A1明細書)、特開平8−199168号公報(EP722998A1明細書)、特開平9−235552号公報、特開平9−255956号公報、特開平9−241643号公報(EP885271A1明細書)、特開平10−204016号公報(EP844229A1明細書)、特開平10−204436号公報、特開平10−231482号公報、特開2000−087040公報、特開2001−48822公報などに開示されている。   The liquid crystal composition used in the liquid crystal display element of the present invention is not particularly limited, and various liquid crystal compositions having positive dielectric anisotropy can be used. Examples of preferred liquid crystal compositions include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Japanese Patent Laid-Open No. 5-501735, Japanese Patent Laid-Open No. 8-157828, Japanese Patent Laid-Open No. 8-231960, and Japanese Patent Laid-Open No. 9-241644. (EP885272A1 specification), JP-A-9-302346 (EP806466A1 specification), JP-A-8-199168 (EP722998A1 specification), JP-A-9-235552, JP-A-9-255958, JP-A-9-241463 (EP885271A1), JP-A-10-204016 (EP844229A1), JP-A-10-204436, JP-A-10-231482, JP-A-2000-087040, JP Opened in Gazette 2001-48822 It is.

誘電率異方性が負の各種の液晶組成物を用いることもできる。好ましい液晶組成物の例は、特開昭57−114532号公報、特開平2−4725号公報、特開平4−224885号公報、特開平8−40953号公報、特開平8−104869号公報、特開平10−168076号公報、特開平10−168453号公報、特開平10−236989号公報、特開平10−236990号公報、特開平10−236992号公報、特開平10−236993号公報、特開平10−236994号公報、特開平10−237000号公報、特開平10−237004号公報、特開平10−237024号公報、特開平10−237035号公報、特開平10−237075号公報、特開平10−237076号公報、特開平10−237448号公報(EP967261A1明細書)、特開平10−287874号公報、特開平10−287875号公報、特開平10−291945号公報、特開平11−029581号公報、特開平11−080049号公報、特開2000−256307公報、特開2001−019965公報、特開2001−072626公報、特開2001−192657公報などに開示されている。   Various liquid crystal compositions having negative dielectric anisotropy can also be used. Examples of preferred liquid crystal compositions are JP-A 57-114532, JP-A-2-4725, JP-A-4-22485, JP-A-8-40953, JP-A-8-104869, Japanese Laid-Open Patent Publication No. 10-168076, Japanese Laid-Open Patent Publication No. 10-168453, Japanese Laid-Open Patent Publication No. 10-236989, Japanese Laid-Open Patent Publication No. 10-236990, Japanese Laid-Open Patent Publication No. 10-236992, Japanese Laid-Open Patent Publication No. 10-236993, Japanese Laid-open Patent Publication No. -236994, JP-A-10-237000, JP-A-10-237004, JP-A-10-237024, JP-A-10-237035, JP-A-10-237075, JP-A-10-237076 JP, 10-237448, (EP967261A1), JP 10-28. 874, JP-A-10-287875, JP-A-10-291945, JP-A-11-029581, JP-A-11-080049, JP-A-2000-256307, JP-A-2001-019965, JP-A-2001-072626, JP-A-2001-192657, and the like.

前記誘電率異方性が正または負の液晶組成物に一種以上の光学活性化合物を添加して使用することも何ら差し支えない。   One or more optically active compounds may be added to the liquid crystal composition having a positive or negative dielectric anisotropy.

以下、本発明を実施例および比較例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例で用いるテトラカルボン酸二無水物、ジアミンおよび溶剤の名称を略号で示す。以降の記述にはこの略号を使用することがある。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited to these Examples. In addition, the name of the tetracarboxylic dianhydride, diamine, and solvent which are used by an Example and a comparative example is shown by an abbreviation. This abbreviation may be used in the following description.

テトラカルボン酸二無水物
ピロメリット酸二無水物 :PMDA
1,2,3,4−シクロブタンテトラカルボン酸二無水物 :CBDA
ジアミン
1,3−ビス(4−(4−アミノベンジル)フェニル)プロパン:BZ3
4,4’−ジアミノジフェニルエーテル :DDE
4,4’−ジアミノジフェニルエタン :DDEt
4,4’−ジアミノジフェニルメタン :DDM
溶剤成分
N−メチル−2−ピロリドン :NMP
γ―ブチロラクトン :GBL
ブチルセロソルブ :BC
Tetracarboxylic acid dianhydride pyromellitic dianhydride: PMDA
1,2,3,4-cyclobutanetetracarboxylic dianhydride: CBDA
Diamine 1,3-bis (4- (4-aminobenzyl) phenyl) propane: BZ3
4,4′-Diaminodiphenyl ether: DDE
4,4′-Diaminodiphenylethane: DDEt
4,4'-diaminodiphenylmethane: DDM
Solvent component N-methyl-2-pyrrolidone: NMP
γ-butyrolactone: GBL
Butyl cellosolve: BC

実施例1
1)液晶配向剤A1の調製
温度計、攪拌機、原料投入仕込み口および窒素ガス導入口を備えた200mlの四つ口フラスコにBZ3を3.2542g、脱水NMPを30.00g入れ、乾燥窒素気流下攪拌溶解した。反応系の温度を5℃に保ちながらPMDAを1.7458g添加し、30時間反応させた後、NMPを25.00g、GBLを15.00gおよびBCを25.00g加えて高分子成分の濃度が5重量%のポリアミック酸の液晶配向剤を調製した。原料の反応中に反応温度により温度が上昇するときは、反応温度を約70℃以下に抑えて反応させた。得られたポリアミック酸の重量平均分子量は73,000であった。なお、重量平均分子量は、島津製作所製GPC測定装置(クロマトパックC−R7A)を用いてカラム温度50℃にて測定した。
Example 1
1) Preparation of liquid crystal aligning agent A1 In a 200 ml four-necked flask equipped with a thermometer, stirrer, raw material charging inlet and nitrogen gas inlet, 3.2542 g of BZ3 and 30.00 g of dehydrated NMP were placed under a dry nitrogen stream. Dissolved with stirring. While maintaining the temperature of the reaction system at 5 ° C., 1.7458 g of PMDA was added and reacted for 30 hours. Then, 25.00 g of NMP, 15.00 g of GBL and 25.00 g of BC were added, and the concentration of the polymer component was increased. A liquid crystal aligning agent of 5% by weight of polyamic acid was prepared. When the temperature rose due to the reaction temperature during the reaction of the raw materials, the reaction was carried out while keeping the reaction temperature at about 70 ° C. or lower. The resulting polyamic acid had a weight average molecular weight of 73,000. In addition, the weight average molecular weight was measured at a column temperature of 50 ° C. using a GPC measuring apparatus (Chromatopack C-R7A) manufactured by Shimadzu Corporation.

2)赤外光の吸光度、配向膜の膜厚の測定および配向度Δの算出
得られた液晶配向剤A1をCaF基板上にスピンナーにて塗布した。塗布条件は2300rpm、15秒であった。塗膜後80℃にて約5分間乾燥した後、210℃にて30分間加熱焼成処理を行い膜厚およそ60nmのポリイミド膜を形成した。得られたポリイミド膜を株式会社飯沼ゲージ製作所製のラビング処理装置を用いて、ラビング布(毛足長1.9mm:レーヨン)の毛足押し込み量0.40mm、ステージ移動速度を60mm/sec、ローラー回転速度を1000rpmの条件で、ラビング処理し配向膜を作製した。
2) Absorbance of infrared light, measurement of alignment film thickness and calculation of alignment degree Δ The obtained liquid crystal aligning agent A1 was applied onto a CaF 2 substrate with a spinner. The coating conditions were 2300 rpm and 15 seconds. After coating, the film was dried at 80 ° C. for about 5 minutes, and then heated and baked at 210 ° C. for 30 minutes to form a polyimide film having a thickness of about 60 nm. Using a rubbing treatment apparatus manufactured by Iinuma Gauge Co., Ltd., the obtained polyimide film was rubbed cloth (hair foot length 1.9 mm: rayon), the amount of pushing the hair foot 0.40 mm, the stage moving speed 60 mm / sec, a roller A rubbing treatment was performed at a rotational speed of 1000 rpm to produce an alignment film.

次いで、容器に入れた液晶(8CB)を70±3℃に加熱し、得られた配向膜面が液晶の蒸発方向になるように液晶面と平行に基板を設置して、配向膜上に液晶を蒸着した。なお、液晶の蒸着量は、後述する配向膜上の液晶層の(A⊥+A‖)の値が0.0002〜0.0006になるように蒸着時間を調節することにより決定した
得られた液晶層の赤外線吸収スペクトルの測定は、パーキンエルマー製FT−IR装置(Paragon1000)を用いて、分解能4cm−1、積算144回の条件で測定した。また、水蒸気のノイズを除去するために乾燥窒素(露点−60℃以下)を使用して試料室10リッター/分、分光室5リッター/分で各々の室をパージした。
偏光子を透過した赤外光を基板に対して垂直に液晶層側から入射した。配向膜のラビング方向(配向処理方向)と偏光方向とが平行で測定したときの吸光度をA‖とし、垂直で測定したときの吸光度をA⊥とした。平行と垂直で測定した赤外光スペクトルの差スペクトルを吸光度で計算し、C≡N伸縮振動に相当する2226cm−1付近のピーク高さを(A‖−A⊥)とした。また、吸光度で表示した平行と垂直とのスペクトルのC≡N伸縮振動に相当するピーク高さの和(A‖+A⊥)を計算したところ、0.0004であった。
Next, the liquid crystal (8CB) placed in the container is heated to 70 ± 3 ° C., and the substrate is placed in parallel with the liquid crystal surface so that the obtained alignment film surface is in the liquid crystal evaporation direction. Was deposited. The liquid crystal deposition amount was determined by adjusting the deposition time so that the value of (A⊥ + A‖) of the liquid crystal layer on the alignment film described later was 0.0002 to 0.0006. The infrared absorption spectrum of the layer was measured using a Perkin Elmer FT-IR apparatus (Paragon1000) under the conditions of a resolution of 4 cm −1 and a total of 144 times. Further, in order to remove water vapor noise, each chamber was purged at 10 liters / minute in the sample chamber and 5 liters / minute in the spectroscopic chamber using dry nitrogen (dew point of −60 ° C. or lower).
Infrared light transmitted through the polarizer was incident from the liquid crystal layer side perpendicular to the substrate. The absorbance when the rubbing direction (orientation treatment direction) of the alignment film was measured in parallel with the polarization direction was A‖, and the absorbance when measured perpendicularly was A 垂直. The difference spectrum of the infrared light spectrum measured in parallel and perpendicular was calculated by absorbance, and the peak height in the vicinity of 2226 cm −1 corresponding to C≡N stretching vibration was defined as (A‖−A⊥). Further, the sum of peak heights (AC + A⊥) corresponding to C≡N stretching vibration of the parallel and vertical spectra expressed by absorbance was calculated to be 0.0004.

次いで、前記式(1)に従い、得られた(A‖−A⊥)および(A‖+A⊥)の値より計算すると、配向膜上の液晶層の配向度Δは0.30であった。   Next, when calculated from the values of (A 計算 −A⊥) and (A‖ + A⊥) obtained according to the formula (1), the degree of orientation Δ of the liquid crystal layer on the alignment film was 0.30.

3)黒表示特性の測定
一対のITO透明電極付きガラス基板を用いる以外は、配向度Δの算出に準じた方法で配向膜を形成した。
一方のガラス基板に4μmのギャップ材を散布し、配向膜を形成した面を内側にして他方のガラス基板を対向させた後、エポキシ硬化剤でシールし、ギャップ4μmのパラレルセルを作成した。前記セルに液晶組成物Aを注入し、注入口を光硬化剤で封止した。次いで、110℃で30分間加熱処理を行って、黒表示特性測定用セルとした。液晶材料として使用した液晶組成物Aの組成を下記に示す。この組成物のNI点は100.0℃であり、複屈折は0.093であった。
3) Measurement of black display characteristics An alignment film was formed by a method according to the calculation of the degree of orientation Δ except that a pair of glass substrates with ITO transparent electrodes was used.
4 μm gap material was sprayed on one glass substrate, the other glass substrate was opposed with the surface on which the alignment film was formed facing inside, and then sealed with an epoxy curing agent to create a parallel cell with a gap of 4 μm. Liquid crystal composition A was injected into the cell, and the injection port was sealed with a photocuring agent. Next, heat treatment was performed at 110 ° C. for 30 minutes to obtain a cell for measuring black display characteristics. The composition of the liquid crystal composition A used as the liquid crystal material is shown below. The NI point of this composition was 100.0 ° C., and the birefringence was 0.093.

液晶組成物A

Figure 2005258397
Liquid crystal composition A
Figure 2005258397

次いで、中央精機株式会社製の液晶特性評価装置(OMS−CA3)を用いて、クロスニコル下で液晶の配向方向を偏光子方向に合わせて光透過率を測定したところ0.0020%であり、これを黒表示特性として評価した。なお、黒表示特性測定用セルの無い状態で偏光子と検光子を平行に配置した場合の光量を100%として光透過率を算出した。
また、ラビング筋のような配向むらや配向欠陥は全く認められず、非常に均一な表示が得られた。
Next, using a liquid crystal characteristic evaluation apparatus (OMS-CA3) manufactured by Chuo Seiki Co., Ltd., the light transmittance was measured by aligning the alignment direction of the liquid crystal with the polarizer direction under crossed Nicols, and was 0.0020%. This was evaluated as a black display characteristic. The light transmittance was calculated by setting the light quantity when the polarizer and the analyzer are arranged in parallel without the black display characteristic measuring cell as 100%.
In addition, no alignment unevenness and alignment defects such as rubbing streaks were observed, and a very uniform display was obtained.

4)プレチルト角の測定
20μm用のギャップ材を用いて作成し、配向処理方向をアンチパラレルとしたこと以外は、黒表示特性測定用セルと同様の方法によってプレチルト角測定用セルを作成した。なお、プレチルト角測定における液晶材料も黒表示特性測定時と同じものを用いた。このセルを用いてクリスタルローテーション法にて液晶のプレチルト角を測定したところ、1.8度であった。
4) Measurement of pretilt angle A pretilt angle measurement cell was prepared in the same manner as the black display characteristic measurement cell except that it was prepared using a gap material for 20 μm and the alignment treatment direction was antiparallel. The liquid crystal material used for the pretilt angle measurement was the same as that used for the black display characteristic measurement. Using this cell, the pretilt angle of the liquid crystal was measured by the crystal rotation method and found to be 1.8 degrees.

実施例2〜5
実施例1における液晶配向剤A1の代わりに、液晶配向剤A2〜A5をそれぞれ後記の表1の原料組成で調製し、これを用いて配向度Δ、黒表示特性およびプレチルト角の評価を実施例1と同様に行なった。
Examples 2-5
In place of the liquid crystal aligning agent A1 in Example 1, liquid crystal aligning agents A2 to A5 were respectively prepared with the raw material compositions shown in Table 1 below, and this was used to evaluate the orientation degree Δ, black display characteristics, and pretilt angle. 1 was performed.

比較例1
実施例1における液晶配向剤A1の代わりに液晶配向剤A5を用いて、毛足押し込み量0.05mmのラビング処理条件とした以外は実施例1と同様に、配向度Δ、黒表示特性およびプレチルト角の評価を行なった。
Comparative Example 1
In the same manner as in Example 1, except that the liquid crystal aligning agent A5 was used instead of the liquid crystal aligning agent A1 and the rubbing treatment conditions were set such that the amount of indentation was 0.05 mm, the degree of orientation Δ, black display characteristics, and pretilt Corner evaluation was performed.

比較例2
実施例1における液晶配向剤A1の代わりに液晶配向剤A3を用いて、ラビング処理を行なわなかったこと以外は実施例1と同様に、配向度Δ、黒表示特性およびプレチルト角の評価を行なった。
Comparative Example 2
The alignment degree Δ, black display characteristics, and pretilt angle were evaluated in the same manner as in Example 1 except that the rubbing treatment was not performed using the liquid crystal aligning agent A3 instead of the liquid crystal aligning agent A1 in Example 1. .

比較例3
実施例1における液晶配向剤A1の代わりに液晶配向剤A6を用いて、毛足押し込み量0.01mmのラビング処理条件とした以外は実施例1と同様に、配向度Δ、黒表示特性およびプレチルト角の評価を行なった。
Comparative Example 3
In the same manner as in Example 1, except that the liquid crystal aligning agent A6 is used instead of the liquid crystal aligning agent A1 and the rubbing treatment condition is 0.01 mm, the orientation degree Δ, the black display characteristics, and the pretilt are set. Corner evaluation was performed.

比較例4
実施例1における液晶配向剤A1の代わりに液晶配向剤A2を用いて、ステージ移動速度を300mm/secのラビング処理条件とした以外は実施例1と同様に、配向度Δ、黒表示特性およびプレチルト角の評価を行なった。
Comparative Example 4
Similar to Example 1, except that the liquid crystal aligning agent A2 is used instead of the liquid crystal aligning agent A1 and the stage moving speed is set to a rubbing treatment condition of 300 mm / sec. Corner evaluation was performed.

各種液晶配向剤の調製
液晶配向剤A2〜A6の調製については、液晶配向剤A1と同様の方法で調製した。反応中に反応熱により温度が上昇するときは、反応温度を約70℃以下に抑えて反応させた。
各実施例および比較例の原料モル比および重量平均分子量を表1に示した。
Preparation of various liquid crystal aligning agents About preparation of liquid crystal aligning agent A2-A6, it prepared by the method similar to liquid crystal aligning agent A1. When the temperature rose due to heat of reaction during the reaction, the reaction temperature was kept at about 70 ° C. or lower for the reaction.
The raw material molar ratio and the weight average molecular weight of each Example and Comparative Example are shown in Table 1.

Figure 2005258397
Figure 2005258397

各実施例および比較例のラビング処理条件、配向膜上の液晶層のA⊥+A||、配向膜上の液晶層の配向度Δ、黒表示特性およびプレチルト角の評価結果を表2に示した。
なお、本発明の実施例の試験方法において、優れた黒表示特性とは0.005%以下の値を意味する。
Table 2 shows the evaluation results of the rubbing treatment conditions, A⊥ + A || of the liquid crystal layer on the alignment film, the degree of alignment Δ of the liquid crystal layer on the alignment film, the black display characteristics, and the pretilt angle in each example and comparative example. .
In the test methods of the examples of the present invention, the excellent black display characteristic means a value of 0.005% or less.

Figure 2005258397
*)測定不能とあるのは、配向不良が発生して測定できなかったことを示す。
Figure 2005258397
*) Inability to measure indicates that alignment failure occurred and measurement was not possible.

実施例1〜5および比較例1〜3の結果から、配向膜上の液晶層の配向度Δが0.05以上である配向膜を用いることにより0.005%以下の優れた黒表示特性を示す液晶表示素子が得られることがわかる。また、実施例1〜5の配向膜は、特にIPS型液晶表示素子として好ましいプレチルト角を示すことがわかる。   From the results of Examples 1 to 5 and Comparative Examples 1 to 3, an excellent black display characteristic of 0.005% or less was obtained by using an alignment film having an alignment degree Δ of the liquid crystal layer on the alignment film of 0.05 or more. It can be seen that the liquid crystal display element shown is obtained. Moreover, it turns out that the alignment film of Examples 1-5 shows a pretilt angle preferable especially as an IPS type | mold liquid crystal display element.

Claims (11)

式(1)で表される配向膜上の液晶層の配向度Δを0.05以上にすることができる液晶配向膜。
Figure 2005258397
式中、A‖は配向処理方向に平行な偏光成分を有する赤外光を液晶層に入射させたときの液晶層の特性基振動による吸光度であり、A⊥は配向処理方向に垂直な偏光成分を有する赤外光を液晶層に入射させたときの液晶層の特性基振動による吸光度である。
The liquid crystal aligning film which can make orientation degree (DELTA) of the liquid crystal layer on the alignment film represented by Formula (1) 0.05 or more.
Figure 2005258397
In the formula, A‖ is the absorbance due to the characteristic group vibration of the liquid crystal layer when infrared light having a polarization component parallel to the alignment treatment direction is incident on the liquid crystal layer, and A⊥ is a polarization component perpendicular to the alignment treatment direction. It is the light absorbency by the characteristic group vibration of the liquid crystal layer when infrared light having a light intensity is incident on the liquid crystal layer.
液晶層の配向度Δが0.05〜1.0である請求項1に記載の液晶配向膜。 The liquid crystal alignment film according to claim 1, wherein the alignment degree Δ of the liquid crystal layer is 0.05 to 1.0. 液晶が下記構造の化合物(以下8CBと略記する)を用いた場合である請求項1または2に記載の液晶配向膜。
Figure 2005258397
The liquid crystal alignment film according to claim 1 or 2, wherein the liquid crystal is a compound having the following structure (hereinafter abbreviated as 8CB).
Figure 2005258397
配向膜の配向処理条件が毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmでラビング処理することである請求項1〜3の何れか1項に記載の液晶配向膜。 The alignment processing conditions of the alignment film are that rubbing is performed at a push-in amount of 0.2 to 0.8 mm, a stage moving speed of 5 to 250 mm / sec, and a roller rotation speed of 500 to 2,000 rpm. 2. A liquid crystal alignment film according to item 1. 液晶配向膜が以下に示すテトラカルボン酸二無水物の少なくとも1種と、以下に示すジアミンの少なくとも1種から得られるポリイミドである請求項1〜4の何れか1項に記載の液晶配向膜。ただし、下記式中のnは1〜20の整数であり、Rは水素または炭素数1〜20のアルキルであり、このアルキルにおいて任意の−CH−は−O−、−CH=CH−または−C≡C−で置き換えられてもよい。シクロヘキサン環およびベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。
Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397
The liquid crystal alignment film according to any one of claims 1 to 4, wherein the liquid crystal alignment film is a polyimide obtained from at least one of the following tetracarboxylic dianhydrides and at least one of the following diamines. However, an integer n in the following formulas 1 to 20, R is hydrogen or alkyl having 1 to 20 carbon atoms, any -CH 2 - in the alkyl may -O -, - CH = CH- or It may be replaced by -C≡C-. Any hydrogen in the cyclohexane ring and the benzene ring may be replaced by halogen or alkyl having 1 to 5 carbon atoms.
Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397

Figure 2005258397
液晶として8CBを用い、配向膜の配向処理条件が毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmでラビング処理し、配向膜として請求項5に記載されたポリイミドを用いた請求項1に記載の配向膜。 8CB is used as the liquid crystal, and the alignment treatment condition of the alignment film is a rubbing treatment with an indentation amount of 0.2 to 0.8 mm, a stage moving speed of 5 to 250 mm / sec, and a roller rotation speed of 500 to 2,000 rpm. The alignment film according to claim 1, wherein the polyimide according to claim 5 is used. ポリイミドのテトラカルボン酸二無水物成分が式1−1、式1−2、式1−7、式1−13、式1−17、式1−18、式1−19、式1−20、式1−27、式1−28、および式1−29のそれぞれで表されるテトラカルボン酸二無水物から選択される少なくとも1種である請求項5または6に記載の液晶配向膜。 The tetracarboxylic dianhydride component of polyimide is formula 1-1, formula 1-2, formula 1-7, formula 1-13, formula 1-17, formula 1-18, formula 1-19, formula 1-20, The liquid crystal alignment film according to claim 5 or 6, which is at least one selected from tetracarboxylic dianhydrides represented by formula 1-27, formula 1-28, and formula 1-29. ポリイミドのジアミン成分が、式2−5、式2−6、式2−9、式2−10、式2−11、式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、式2−30、式2−35、式2−39、式2−40、式2−41、式2−42、式2−43、および式2−56のそれぞれで表されるジアミンから選択される少なくとも1種である請求項5〜7の何れか1項に記載の液晶配向膜。ここに、前記式中のnは2〜10の整数であり、ベンゼン環の任意の水素は、ハロゲンまたは炭素数1〜5のアルキルで置き換えられてもよい。 The diamine component of the polyimide is the formula 2-5, formula 2-6, formula 2-9, formula 2-10, formula 2-11, formula 2-12, formula 2-13, formula 2-14, formula 2-15. , Formula 2-16, Formula 2-17, Formula 2-18, Formula 2-19, Formula 2-20, Formula 2-30, Formula 2-35, Formula 2-39, Formula 2-40, Formula 2-41 The liquid crystal alignment film according to claim 5, which is at least one selected from diamines represented by formulas 2-42, 2-43, and 2-56. Here, n in the above formula is an integer of 2 to 10, and any hydrogen in the benzene ring may be replaced with halogen or alkyl having 1 to 5 carbon atoms. ポリイミドのジアミン成分が、式2−5、式2−6、式2−9、式2−10、式2−11、式2−12、式2−13、式2−14、式2−15、式2−16、式2−17、式2−18、式2−19、式2−20、式2−30、式2−35、式2−39、式2−40、式2−41、式2−42、式2−43、および式2−56のそれぞれで表されるジアミンから選択される少なくとも1種である請求項5〜7の何れか1項に記載の液晶配向膜。ここに、前記式中のnは2〜10の整数である。 The diamine component of the polyimide is the formula 2-5, formula 2-6, formula 2-9, formula 2-10, formula 2-11, formula 2-12, formula 2-13, formula 2-14, formula 2-15. , Formula 2-16, Formula 2-17, Formula 2-18, Formula 2-19, Formula 2-20, Formula 2-30, Formula 2-35, Formula 2-39, Formula 2-40, Formula 2-41 The liquid crystal alignment film according to claim 5, which is at least one selected from diamines represented by formulas 2-42, 2-43, and 2-56. Here, n in the said formula is an integer of 2-10. 請求項5〜9の何れか1項に記載のポリイミドまたはその前駆体であるポリアミック酸を含有する液晶配向剤。 The liquid crystal aligning agent containing the polyamic acid which is the polyimide of any one of Claims 5-9, or its precursor. 請求項1〜9の何れか1項に記載の液晶配向膜を有する液晶表示素子。 The liquid crystal display element which has a liquid crystal aligning film of any one of Claims 1-9.
JP2004324691A 2004-02-12 2004-11-09 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film Expired - Fee Related JP4586503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324691A JP4586503B2 (en) 2004-02-12 2004-11-09 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004035774 2004-02-12
JP2004324691A JP4586503B2 (en) 2004-02-12 2004-11-09 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film

Publications (2)

Publication Number Publication Date
JP2005258397A true JP2005258397A (en) 2005-09-22
JP4586503B2 JP4586503B2 (en) 2010-11-24

Family

ID=35084118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324691A Expired - Fee Related JP4586503B2 (en) 2004-02-12 2004-11-09 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film

Country Status (1)

Country Link
JP (1) JP4586503B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
JP2008185877A (en) * 2007-01-31 2008-08-14 Chisso Corp Diamine, alignment layer and liquid crystal display element
JP2009175715A (en) * 2007-12-27 2009-08-06 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
JP2011090219A (en) * 2009-10-23 2011-05-06 Hitachi Displays Ltd Liquid crystal display device
WO2011093463A1 (en) * 2010-01-29 2011-08-04 日立化成工業株式会社 Compound having trimethylene structure, polymer compound containing unit that has trimethylene structure, and reactive compound having trimethylene structure
JP2014016635A (en) * 2013-09-12 2014-01-30 Japan Display Inc Liquid crystal aligning agent varnish
JP2015026086A (en) * 2014-10-24 2015-02-05 株式会社ジャパンディスプレイ Liquid crystal alignment agent varnish
TWI494348B (en) * 2012-04-17 2015-08-01 Nissan Chemical Ind Ltd Polymer, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element and diamine
JPWO2016021333A1 (en) * 2014-08-04 2017-06-01 Jnc株式会社 Liquid crystal display element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156621A (en) * 1985-12-28 1987-07-11 Toshiba Corp Preparation of ferroelectric liquid crystal element
JPS6321907B2 (en) * 1979-12-25 1988-05-10 Citizen Watch Co Ltd
JPH06160878A (en) * 1992-09-18 1994-06-07 Hitachi Ltd Liquid crystal display device
JPH0915650A (en) * 1995-04-28 1997-01-17 Hitachi Ltd Liquid crystal display device
JPH11264981A (en) * 1998-03-17 1999-09-28 Chisso Corp Aligning agent for antiferroelectric liquid crystal display element, alignment layer using the aligning agent and antiferroelectric liquid crystal display element having the alignment layer
JP2001002780A (en) * 1999-06-23 2001-01-09 Nissan Chem Ind Ltd Diamine compound having silphenylene residue and polyamide, polyamic acid, polyimide, liquid crystal orienting agent and liquid crystal display element produced by using the compound
JP2003015160A (en) * 2001-07-03 2003-01-15 Hitachi Ltd Active matrix type liquid crystal display device
JP2005049835A (en) * 2003-07-14 2005-02-24 Chisso Corp Polyimide-based varnish capable of forming alignment layer for liquid crystal display element of horizontal electric field system, alignment layer, and liquid crystal display element of horizontal electric field system having the alignment layer
JP2005120343A (en) * 2003-09-26 2005-05-12 Chisso Corp Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321907B2 (en) * 1979-12-25 1988-05-10 Citizen Watch Co Ltd
JPS62156621A (en) * 1985-12-28 1987-07-11 Toshiba Corp Preparation of ferroelectric liquid crystal element
JPH06160878A (en) * 1992-09-18 1994-06-07 Hitachi Ltd Liquid crystal display device
JPH0915650A (en) * 1995-04-28 1997-01-17 Hitachi Ltd Liquid crystal display device
JPH11264981A (en) * 1998-03-17 1999-09-28 Chisso Corp Aligning agent for antiferroelectric liquid crystal display element, alignment layer using the aligning agent and antiferroelectric liquid crystal display element having the alignment layer
JP2001002780A (en) * 1999-06-23 2001-01-09 Nissan Chem Ind Ltd Diamine compound having silphenylene residue and polyamide, polyamic acid, polyimide, liquid crystal orienting agent and liquid crystal display element produced by using the compound
JP2003015160A (en) * 2001-07-03 2003-01-15 Hitachi Ltd Active matrix type liquid crystal display device
JP2005049835A (en) * 2003-07-14 2005-02-24 Chisso Corp Polyimide-based varnish capable of forming alignment layer for liquid crystal display element of horizontal electric field system, alignment layer, and liquid crystal display element of horizontal electric field system having the alignment layer
JP2005120343A (en) * 2003-09-26 2005-05-12 Chisso Corp Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
JP2008185877A (en) * 2007-01-31 2008-08-14 Chisso Corp Diamine, alignment layer and liquid crystal display element
JP2009175715A (en) * 2007-12-27 2009-08-06 Chisso Corp Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
JP2011090219A (en) * 2009-10-23 2011-05-06 Hitachi Displays Ltd Liquid crystal display device
WO2011093463A1 (en) * 2010-01-29 2011-08-04 日立化成工業株式会社 Compound having trimethylene structure, polymer compound containing unit that has trimethylene structure, and reactive compound having trimethylene structure
US9051246B2 (en) 2010-01-29 2015-06-09 Hitachi Chemical Company, Ltd. Compound having trimethylene structure, polymer compound containing unit that has trimethylene structure, and reactive compound having trimethylene structure
JP5770642B2 (en) * 2010-01-29 2015-08-26 日立化成株式会社 Compound having trimethylene structure, polymer compound containing unit having trimethylene structure, and reactive compound having trimethylene structure
TWI494348B (en) * 2012-04-17 2015-08-01 Nissan Chemical Ind Ltd Polymer, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element and diamine
JP2014016635A (en) * 2013-09-12 2014-01-30 Japan Display Inc Liquid crystal aligning agent varnish
JPWO2016021333A1 (en) * 2014-08-04 2017-06-01 Jnc株式会社 Liquid crystal display element
JP2015026086A (en) * 2014-10-24 2015-02-05 株式会社ジャパンディスプレイ Liquid crystal alignment agent varnish

Also Published As

Publication number Publication date
JP4586503B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4620438B2 (en) Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP4775796B2 (en) Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP5156894B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP4645213B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, liquid crystal sandwich substrate, and liquid crystal display element
JP5481771B2 (en) Photo-alignment film and liquid crystal display element
JP5293943B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014024846A (en) Optical alignment film, and liquid crystal display element
WO2018092811A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2008108493A1 (en) Liquid crystal aligning agent and horizontal electric field type liquid crystal display element
JP5194342B2 (en) Liquid crystal aligning agent and vertical alignment liquid crystal display element for vertical alignment liquid crystal display element
JP4586503B2 (en) Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film
JP4599904B2 (en) Polyimide varnish for forming an alignment film for a horizontal electric field type liquid crystal display element, an alignment film, and a horizontal electric field type liquid crystal display element having the alignment film
WO2018117240A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017170483A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
WO2018174091A1 (en) Polymer and liquid crystal alignment agent using same
KR101039352B1 (en) Liquid crystal aligning agents, alining layers and liquid drystal display devices having the aligning layers
KR20190052052A (en) A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
WO2020040089A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
JP2005120343A (en) Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer
WO2019044795A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018047872A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR101084499B1 (en) Polyimide type varnish, liquid crystal alignment film, and in-plane electric field liquid crystal display element
JP5995055B2 (en) Photo-alignment film providing high alignment and high pretilt angle, and method of manufacturing liquid crystal display device using the same
WO2020040091A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees