WO2018174091A1 - Polymer and liquid crystal alignment agent using same - Google Patents

Polymer and liquid crystal alignment agent using same Download PDF

Info

Publication number
WO2018174091A1
WO2018174091A1 PCT/JP2018/011182 JP2018011182W WO2018174091A1 WO 2018174091 A1 WO2018174091 A1 WO 2018174091A1 JP 2018011182 W JP2018011182 W JP 2018011182W WO 2018174091 A1 WO2018174091 A1 WO 2018174091A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
polyamic acid
repeating unit
group
Prior art date
Application number
PCT/JP2018/011182
Other languages
French (fr)
Japanese (ja)
Inventor
研造 矢田
貴裕 須賀
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020197029948A priority Critical patent/KR102505385B1/en
Priority to JP2019507708A priority patent/JP7078033B2/en
Priority to CN201880018861.9A priority patent/CN110475805B/en
Publication of WO2018174091A1 publication Critical patent/WO2018174091A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a novel polymer suitable for, for example, a liquid crystal aligning agent and a liquid crystal aligning agent using the same.
  • a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
  • at least one polymer selected from polyamic acid, polyamic acid ester, and polyimide is used for the liquid crystal alignment film that is most widely used industrially from the viewpoint of its high reliability, liquid crystal alignment, and the like. Yes.
  • the liquid crystal alignment film can be formed by applying a liquid crystal aligning agent in which a polymer as described above is dissolved in an organic solvent on a substrate and baking it.
  • a liquid crystal aligning agent in which a polymer as described above is dissolved in an organic solvent on a substrate and baking it.
  • a polymer precipitates when storing a liquid crystal aligning agent at low temperature.
  • the properties of the liquid crystal display element are adversely affected as a result of poor applicability to the substrate and inability to obtain a uniform liquid crystal alignment film.
  • a liquid crystal aligning agent or the like having a high solubility in an organic solvent and excellent printability has been proposed (see Patent Document 1 and Patent Document 2).
  • An object of the present invention is to provide a polymer in which various solvents can be selected because of its high solubility in organic solvents, and as a result, the obtained film-like product has excellent characteristics as a liquid crystal aligning agent.
  • the present inventors have found that the above object can be achieved by a polymer having a repeating unit of polyamic acid ester and a repeating unit of polyimide.
  • the gist of the present invention is as follows. (1) A polymer having a repeating unit of polyamic acid ester, a repeating unit of polyimide, and a repeating unit of polyamic acid, and having a basic group in any of the repeating units. (2) The repeating unit of the polyamic acid ester is represented by the following formula (1), the repeating unit of the polyimide is represented by the following formula (2), and the repeating unit of the polyamic acid is represented by the following formula (3).
  • X 1 , X 2 and X 3 are each independently a tetravalent organic group derived from a tetracarboxylic acid component.
  • Y 1 , Y 2 and Y 3 Are each independently a divalent organic group derived from a diamine, and at least one of Y 1 , Y 2 , and Y 3 has a basic group, and R 1 is an alkyl group having 1 to 5 carbon atoms. .
  • the content of the repeating unit of the polyamic acid ester, the repeating unit of the polyimide, and the repeating unit of the polyamic acid has 10 to 90 mol%, 9 to 89 mol%, and 1 to 81 mol%, respectively.
  • X1 to X3 in the formulas (1) to (3) are at least one selected from the group consisting of structures represented by the following formulas: Polymer.
  • R 3 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom
  • a monovalent organic group having 1 to 6 carbon atoms or a phenyl group (8)
  • a liquid crystal aligning agent containing the polymer described in any one of (1) to (7) above. (9) The liquid crystal aligning film obtained from the liquid crystal aligning agent as described in said (8).
  • a liquid crystal display device comprising the liquid crystal alignment film according to (9).
  • various solvents can be selected because of its high solubility, and as a result, a polymer capable of giving a polymer solution having high printability on a substrate or the like can be obtained.
  • the polymer of the present invention is particularly preferably used for a liquid crystal alignment agent that gives a liquid crystal alignment film for controlling the alignment of liquid crystal because of its high solubility and printability of the resulting polymer solution on a substrate.
  • the polymer of the present invention has a repeating unit of polyamic acid ester, a repeating unit of polyimide, and a repeating unit of polyamic acid, and has a basic group in the repeating unit (hereinafter also referred to as a specific polymer). ).
  • the repeating unit of polyamic acid ester, the repeating unit of polyimide, and the repeating unit of polyamic acid contained in the specific polymer can be represented by the following formulas (1) to (3), respectively.
  • X 1 , X 2 and X 3 are tetravalent organic groups derived from a tetracarboxylic acid derivative, and Y 1 , Y 2 and Y 3 are divalent derived from a diamine.
  • Y 1 , Y 2 and Y 3 has a basic group, and R 1 is an alkyl group having 1 to 5 carbon atoms.
  • X 1 , X 2 , X 3 and Y 1 , Y 2 , Y 3, and two R 1 may be the same or different.
  • the content of each of the repeating unit of polyamic acid ester, the repeating unit of polyimide, and the repeating unit of polyamic acid is 10 to 90 mol%, 9 to 89 mol%.
  • the content is preferably 1 to 81 mol%, more preferably 40 to 90 mol%, 9 to 59 mol%, and 1 to 51 mol%, respectively.
  • tetracarboxylic acid component for obtaining the specific polymer
  • examples of the tetracarboxylic acid component for obtaining the specific polymer include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Then, these are also collectively referred to as a tetracarboxylic acid component.
  • tetracarboxylic dianhydride examples include an aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, and the like. Can do.
  • the structure of X is not particularly limited, and these are the same as the definitions of X 1 , X 2 and X 3 in the repeating units of the above formulas (1) to (3).
  • Specific examples include, but are not limited to, the following formulas (X1-1) to (X1-46).
  • R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom And a monovalent organic group having 1 to 6 carbon atoms or a phenyl group.
  • R 3 to R 6 in formula (X1-1) are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of liquid crystal alignment. preferable.
  • the formula (X1-1) the following formula (X1-11) or (X1-12) is preferable.
  • the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
  • the diamine component for obtaining the specific polymer of the present invention is represented by the following formula [2].
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • a 1 and A 2 are preferably a hydrogen atom or a methyl group from the viewpoint of liquid crystal alignment.
  • the structure of Y is the same as the definition of Y 1 , Y 2 and Y 3 in the repeating units of the above formulas (1) to (3). Specific examples are as follows, but are not limited thereto.
  • n is an integer of 1 to 6
  • Me is a methyl group
  • Boc represents a tert-butoxycarbonyl group.
  • a diamine having a basic group is used for producing the specific polymer because the reaction at the time of producing the specific polymer of the present invention is easy to proceed.
  • Specific examples of the basic group are preferably a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a piperidine ring, or a piperazine ring.
  • the basic group may be contained in the main chain of the diamine or in the side chain.
  • the diamine having a basic group has the structure of Y-71, Y-73, Y-96, Y-76, Y-77, Y-163, Y-164, Y-165 or Y-172 exemplified above.
  • the diamine to contain is preferable. These diamine-derived structures may be contained in any of the repeating units in the above formulas (1) to (3), and may be contained in a plurality of repeating units.
  • the preferred content of the diamine having a basic group is preferably from 5 to 90 mol%, more preferably from 10 to 70 mol%, based on the total diamine component used in the production of the specific polymer of the present invention.
  • the polyamic acid used for the production of the specific polymer can be produced by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be manufactured.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. May be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used for the production of the specific polymer can be produced by imidizing the polyamic acid.
  • a polyimide can also be produced by imidation of a polyamic acid ester.
  • chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidization can be performed by stirring polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst and the like remain in the solution after the imidization reaction of the polyamic acid, the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. It is preferable to use a liquid crystal aligning agent.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, an imidized polymer powder purified by drying at normal temperature or by heating can be obtained.
  • the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the specific polymer of the present invention is obtained by reacting an imidized polymer powder obtained by partially imidizing the polyamic acid obtained above or a polymer solution obtained by dissolving the imidized polymer in an organic solvent with an alcohol. Obtained by esterification. Specifically, it is obtained by immersing the imidized polymer powder obtained above in alcohol or stirring it in alcohol. By immersing in alcohol for 15 to 100 hours, preferably 15 to 50 hours, a powder of a specific polymer can be obtained. The temperature during the reaction is preferably 20 to 60 ° C. When stirring in alcohol, the powder of the specific polymer can be obtained in 5 to 100 hours, preferably 20 to 70 hours.
  • the powder of the specific polymer can be obtained in 20 to 100 hours. Preferably it is 20 to 70 hours.
  • the temperature during the reaction is preferably 20 to 60 ° C.
  • the polyamic acid repeating unit, the polyimide repeating unit, and the polyamic acid ester repeating unit can be adjusted by arbitrarily adjusting the imidation rate of the polyamic acid and by arbitrarily adjusting the esterification rate of the imidized product.
  • a specific polymer contained in an arbitrary ratio can be obtained.
  • the specific polymer of the present invention can also be obtained by first producing a polyamic acid ester and imidizing it.
  • the polyamic acid ester can be produced by the following methods (1) to (3).
  • Polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
  • a polymer having a repeating unit of polyamic acid and polyamic acid ester can be produced at the same time, and a polymer having a repeating unit of polyamic acid, polyimide and polyamic acid ester can also be produced by imidization thereof.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be.
  • the concentration of the polymer in the organic solvent at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass from the viewpoint that precipitation of the polymer hardly occurs and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be manufactured from tetracarboxylic-acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
  • the organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration in the organic solvent at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained.
  • the organic solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent contamination of the outside air. .
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be manufactured.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the organic solvent include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide and the like.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
  • the production method of (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent. Imidization is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester in the presence of a basic catalyst in an organic solvent.
  • a basic catalyst examples include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • a specific polymer can be obtained by imidating a polyamic acid ester as mentioned above and adjusting the imidation rate in that case.
  • the specific polymer of the present invention can be used for various applications, but is preferably used as a liquid crystal aligning agent in view of its high solubility, excellent properties of the resulting film, and the like.
  • the liquid crystal aligning agent has a form of a solution in which a specific polymer is dissolved in an organic solvent.
  • the molecular weight of the specific polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. .
  • the number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
  • the concentration of the specific polymer in the liquid crystal aligning agent can be appropriately changed depending on the thickness of the coating film to be formed, but is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film. From the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • N-dimethylformamide N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2 -Pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the specific polymer component.
  • a solvent is generally a solvent having a lower surface tension than that of the organic solvent and is a poor solvent having a low solubility.
  • the specific polymer of the present invention has a high solubility in these solvents. Is also advantageously used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2- Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene Glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate Amyl ester, and the like. Two or more of these solvents may
  • the liquid crystal aligning agent includes a polymer other than the specific polymer, a dielectric or conductive material for changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film, and adhesion between the liquid crystal aligning film and the substrate.
  • Silane coupling agent for the purpose of improving the properties
  • crosslinkable compounds for the purpose of increasing the hardness and density of the liquid crystal alignment film
  • imidization of polyamic acid when the coating film is baked efficiently A target imidization accelerator may be added.
  • the liquid crystal alignment film is a film obtained by applying a liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • a method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent.
  • the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • the method for aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent is not particularly limited.
  • an existing rubbing method or apparatus can be used.
  • the material of the rubbing cloth include cotton, rayon, nylon, and polyester.
  • a liquid crystal alignment substrate in which an alignment film is applied on a transparent electrode substrate is used, and the rubbing cloth is attached to a roller on the alignment film surface.
  • a method of obtaining uniform liquid crystal alignment by rubbing with a rubbing machine is widely used as a rubbing method.
  • the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. And a method of imparting a function).
  • the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C.
  • the radiation dose is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable.
  • the liquid crystal alignment film thus prepared can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • the solvent may be used alone or in combination of two or more.
  • Examples of the above-described contact treatment that is, treatment of water or a solvent on the liquid crystal alignment film irradiated with polarized radiation includes immersion treatment and spray treatment (also referred to as spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation.
  • the immersion treatment is preferably performed for 1 minute to 30 minutes.
  • the solvent used in the contact treatment may be warmed at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing also referred to as rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
  • baking of the liquid crystal alignment film is preferably performed.
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
  • the firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, the temperature is 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes. Among these, 1 to 10 minutes is preferable.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for liquid crystal display elements of various alignment methods such as a PSA method, an IPS method, and an FFS method.
  • the liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlaid on one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • a liquid crystal alignment film that suppresses afterimages due to alternating current driving and has both adhesiveness with the sealant and the base substrate.
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid that appears in the vicinity of 9.0 to 11.0 ppm. It calculated
  • Imidation ratio (%) (1 ⁇ ⁇ x / y) ⁇ 100 (1)
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
  • the IR spectrum of the polyimide powder is measured by the KBR method.
  • the absorption peak (benzene ring) height (a1) near 1500 cm ⁇ 1 and the absorption peak (imide ring) height (b1) near 1380 cm ⁇ 1 are measured, and b1 / a1 is calculated.
  • the IR spectrum of the specific polymer powder was measured by the KBR method, and the absorption peak (benzene ring) height (a2) near 1500 cm ⁇ 1 and the absorption peak (imide ring) height (b2) near 1380 cm ⁇ 1. And b2 / a2 is calculated.
  • the imidation ratio, esterification ratio, and amide ratio of the specific polymer were determined by the following mathematical formulas (1) to (3).
  • is the imidization ratio (%) of the polyimide powder.
  • Imidization rate (%) ((b2 / a2) / (b1 / a1)) ⁇ ⁇ (1)
  • Esterification rate (%) ⁇ ⁇ ((b2 / a2) / (b1 / a1) ⁇ ⁇ ) (2)
  • Amide ratio (%) 100- ⁇ (3)
  • the imidation ratio, esterification ratio, and amide ratio of the specific polymer indicate, in other words, the content of the polyimide repeating unit, the polyamic acid ester repeating unit, and the polyamic acid repeating unit in the specific polymer. Is.
  • the obtained polyimide powder was reprecipitated in methanol and stirred at 60 ° C. for 20 hours.
  • the precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder.
  • the imidation ratio of this specific polymer was 33%, the esterification ratio was 42%, the amide ratio was 25%, the number average molecular weight was 8314, and the weight average molecular weight was 18060.
  • Example 2 The polyimide powder obtained in Example 1 was reprecipitated in methanol and stirred at 60 ° C. for 40 hours. The precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder. The imidation ratio of this specific polymer was 27%, the esterification ratio was 48%, the amide ratio was 25%, the number average molecular weight was 9171, and the weight average molecular weight was 24207.
  • Example 3 The polyimide powder obtained in Example 1 was reprecipitated in methanol and stirred at 60 ° C. for 70 hours. The precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder. The imidation ratio of this specific polymer was 19%, the esterification ratio was 56%, the amide ratio was 25%, the number average molecular weight was 8366, and the weight average molecular weight was 20488.
  • Comparative Example 1 The polymer constituting the polyimide powder that was an intermediate polymer in Example 1 and used as a raw material for esterification was referred to as Comparative Example 1.
  • Comparative Example 2 The polyamic acid polymer contained in the polyamic acid solution that was the intermediate polymer in Example 1 and was the raw material for imidization was referred to as Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Provided is a polymer which is highly soluble in organic solvents so that various solvents can be selected therefor and from which a filmy substance having excellent characteristics as a liquid crystal alignment agent, etc. can be obtained. The polymer comprises a repeating unit of a polyamic acid ester, a repeating unit of a polyimide and a repeating unit of a polyamic acid and has a basic group in any of the repeating units. [In formulae: X1 to X3 independently represent a tetravalent organic group derived from a tetracarboxylic acid; Y1 to Y3 independently represent a divalent organic group derived from a diamine, provided that at least one of Y to Y3 has a basic group; and R1 represents an alkyl group having 1-5 carbon atoms.]

Description

重合体及びそれを用いた液晶配向剤Polymer and liquid crystal aligning agent using the same
 本発明は、例えば液晶配向剤に好適な新規な重合体及びそれを用いた液晶配向剤に関する。 The present invention relates to a novel polymer suitable for, for example, a liquid crystal aligning agent and a liquid crystal aligning agent using the same.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している液晶配向膜には、その高い信頼性、液晶配向性等の観点から、ポリアミック酸、ポリアミック酸エステル及びポリイミドから選ばれる少なくとも1種の重合体が用いられている。
In a liquid crystal display element used for a liquid crystal television, a liquid crystal display, and the like, a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
Currently, at least one polymer selected from polyamic acid, polyamic acid ester, and polyimide is used for the liquid crystal alignment film that is most widely used industrially from the viewpoint of its high reliability, liquid crystal alignment, and the like. Yes.
 液晶配向膜は、上記のような重合体を有機溶媒に溶解させた液晶配向剤を基板上に塗布し、焼成することで形成させることができる。
 しかし、これらの重合体を充分に溶解させる溶媒は少ない。そのため、液晶配向剤を低温で保存する際に重合体が析出するという問題がある。また、基板への塗布性が悪く、均一な液晶配向膜が得られない結果、液晶表示素子の特性に悪影響を与えるという問題もある。
 これらの問題に対し、有機溶媒への溶解性の高い構造を導入し、印刷性に優れた液晶配向剤等がこれまでに提案されている(特許文献1、特許文献2参照)。
The liquid crystal alignment film can be formed by applying a liquid crystal aligning agent in which a polymer as described above is dissolved in an organic solvent on a substrate and baking it.
However, there are few solvents that can sufficiently dissolve these polymers. Therefore, there exists a problem that a polymer precipitates when storing a liquid crystal aligning agent at low temperature. In addition, there is a problem in that the properties of the liquid crystal display element are adversely affected as a result of poor applicability to the substrate and inability to obtain a uniform liquid crystal alignment film.
In order to solve these problems, a liquid crystal aligning agent or the like having a high solubility in an organic solvent and excellent printability has been proposed (see Patent Document 1 and Patent Document 2).
WO2008/062877号公報WO 2008/062877 WO2014/034790号公報WO2014 / 034790
 本発明は、有機溶媒への溶解性が高いため、種々の溶媒を選択可能であり、その結果として、得られる膜状物が液晶配向剤として優れた特性を有する重合体を提供することを目的とする。 An object of the present invention is to provide a polymer in which various solvents can be selected because of its high solubility in organic solvents, and as a result, the obtained film-like product has excellent characteristics as a liquid crystal aligning agent. And
 本発明者らは、上記の目的の達成のため、鋭意検討を重ねた結果、ポリアミック酸エステルの繰り返し単位とポリイミドの繰り返し単位とを有する重合体により、上記の目的を達成し得ることを見出した。
 即ち、本発明の要旨は、下記のとおりである。
(1)ポリアミック酸エステルの繰り返し単位、ポリイミドの繰り返し単位及びポリアミック酸の繰り返し単位を有し、かつ前記繰り返し単位のいずれかに塩基性基を有する重合体。
(2)前記ポリアミック酸エステルの繰り返し単位が下記式(1)で表され、前記ポリイミドの繰り返し単位が下記式(2)で表され、かつ前記ポリアミック酸の繰り返し単位が下記式(3)で表される、上記(1)に記載の重合体。
Figure JPOXMLDOC01-appb-C000004

(上記式(1)~(3)中、X、X及びXは、それぞれ独立して、テトラカルボン酸成分に由来する4価の有機基である。Y、Y及びYは、それぞれ独立して、ジアミンに由来する2価の有機基であり、Y、Y、Yの少なくとも1つは、塩基性基を有する。Rは炭素数1~5のアルキル基である。)
As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by a polymer having a repeating unit of polyamic acid ester and a repeating unit of polyimide. .
That is, the gist of the present invention is as follows.
(1) A polymer having a repeating unit of polyamic acid ester, a repeating unit of polyimide, and a repeating unit of polyamic acid, and having a basic group in any of the repeating units.
(2) The repeating unit of the polyamic acid ester is represented by the following formula (1), the repeating unit of the polyimide is represented by the following formula (2), and the repeating unit of the polyamic acid is represented by the following formula (3). The polymer according to (1) above.
Figure JPOXMLDOC01-appb-C000004

(In the above formulas (1) to (3), X 1 , X 2 and X 3 are each independently a tetravalent organic group derived from a tetracarboxylic acid component. Y 1 , Y 2 and Y 3 Are each independently a divalent organic group derived from a diamine, and at least one of Y 1 , Y 2 , and Y 3 has a basic group, and R 1 is an alkyl group having 1 to 5 carbon atoms. .)
(3)前記ポリアミック酸エステルの繰り返し単位、前記ポリイミドの繰り返し単位、及び前記ポリアミック酸の繰り返し単位の含有量が、それぞれ、10~90モル%、9~89モル%、1~81モル%を有する、上記(1)又は(2)に記載の重合体。
(4)前記塩基性基が、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピペリジン環又はピペラジン環である、上記(1)~(3)のいずれか1項に記載の重合体。
(5)前記塩基性基を有するY、Y及びYが、全てのY、Y及びYに対して、5~90モル%である、上記(2)~(4)のいずれか1項に記載の重合体。
(6)前記塩基性基を有するY、Y及びYが、下記式で表される構造からなる群から選ばれる少なくとも1種である、上記(2)~(5)のいずれか1項に記載の重合体。
Figure JPOXMLDOC01-appb-C000005
(3) The content of the repeating unit of the polyamic acid ester, the repeating unit of the polyimide, and the repeating unit of the polyamic acid has 10 to 90 mol%, 9 to 89 mol%, and 1 to 81 mol%, respectively. The polymer according to (1) or (2) above.
(4) The polymer according to any one of (1) to (3) above, wherein the basic group is a pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, piperidine ring or piperazine ring. .
(5) The above-mentioned (2) to (4), wherein Y 1 , Y 2 and Y 3 having the basic group are 5 to 90 mol% with respect to all of Y 1 , Y 2 and Y 3 The polymer according to any one of the above.
(6) Any one of the above (2) to (5), wherein Y 1 , Y 2 and Y 3 having the basic group are at least one selected from the group consisting of structures represented by the following formulae: The polymer according to item.
Figure JPOXMLDOC01-appb-C000005
(7)式(1)~(3)におけるX1~X3が下記式で表される構造からなる群から選ばれる少なくとも1種である、上記(2)~(6)のいずれか1項に記載の重合体。
Figure JPOXMLDOC01-appb-C000006

(式中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。)
(8)上記(1)~(7)のいずれか1項に記載の重合体を含有する液晶配向剤。
(9)上記(8)に記載の液晶配向剤から得られる液晶配向膜。
(10)上記(9)に記載の液晶配向膜を具備する液晶表示素子。
(7) In any one of the above (2) to (6), X1 to X3 in the formulas (1) to (3) are at least one selected from the group consisting of structures represented by the following formulas: Polymer.
Figure JPOXMLDOC01-appb-C000006

(Wherein R 3 to R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom) And a monovalent organic group having 1 to 6 carbon atoms or a phenyl group.)
(8) A liquid crystal aligning agent containing the polymer described in any one of (1) to (7) above.
(9) The liquid crystal aligning film obtained from the liquid crystal aligning agent as described in said (8).
(10) A liquid crystal display device comprising the liquid crystal alignment film according to (9).
 本発明によれば、その高い溶解性の為、種々の溶媒を選択可能であり、その結果として、基板などへの印刷性が高い重合体溶液を与えることのできる重合体が得られる。その高い溶解性及び得られる重合体溶液の基板への印刷性から、本発明の重合体は、液晶の配向を制御する液晶配向膜を与える液晶配向剤への使用が特に好ましい。 According to the present invention, various solvents can be selected because of its high solubility, and as a result, a polymer capable of giving a polymer solution having high printability on a substrate or the like can be obtained. The polymer of the present invention is particularly preferably used for a liquid crystal alignment agent that gives a liquid crystal alignment film for controlling the alignment of liquid crystal because of its high solubility and printability of the resulting polymer solution on a substrate.
 本発明の重合体は、ポリアミック酸エステルの繰り返し単位、ポリイミドの繰り返し単位、及びポリアミック酸の繰り返し単位を有し、かつ繰り返し単位中に塩基性基を有する重合体(以下、特定重合体ともいう。)である。
 特定重合体に含有されるポリアミック酸エステルの繰り返し単位、ポリイミドの繰り返し単位、及びポリアミック酸の繰り返し単位は、それぞれ、下記式(1)~(3)で表わすことができる。
The polymer of the present invention has a repeating unit of polyamic acid ester, a repeating unit of polyimide, and a repeating unit of polyamic acid, and has a basic group in the repeating unit (hereinafter also referred to as a specific polymer). ).
The repeating unit of polyamic acid ester, the repeating unit of polyimide, and the repeating unit of polyamic acid contained in the specific polymer can be represented by the following formulas (1) to (3), respectively.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)~(3)において、X、X及びXはテトラカルボン酸誘導体に由来する4価の有機基であり、Y、Y及びYはジアミンに由来する2価の有機基であり、Y、Y、Yの少なくとも1つは塩基性基を有し、Rは炭素数1~5のアルキル基である。なお、X、X、X及びY、Y、Y3、更には2つのRは同一でも異なっていてもよい。
 本発明によれば、特定重合体における、ポリアミック酸エステルの繰り返し単位、前記ポリイミドの繰り返し単位、及び前記ポリアミック酸の繰り返し単位の含有量については種々のものが提供できる。なかでも、高い溶解性が得られることから、ポリアミック酸エステルの繰り返し単位、前記ポリイミドの繰り返し単位、及び前記ポリアミック酸の繰り返し単位のそれぞれの含有量は、10~90モル%、9~89モル%、1~81モル%であるものが好ましく、更には、それぞれ、40~90モル%、9~59モル%、1~51モル%であるものがより好ましい。
 以下、特定重合体を形成する重合体やそれらの原料について詳述する。
In the above formulas (1) to (3), X 1 , X 2 and X 3 are tetravalent organic groups derived from a tetracarboxylic acid derivative, and Y 1 , Y 2 and Y 3 are divalent derived from a diamine. Wherein at least one of Y 1 , Y 2 and Y 3 has a basic group, and R 1 is an alkyl group having 1 to 5 carbon atoms. X 1 , X 2 , X 3 and Y 1 , Y 2 , Y 3, and two R 1 may be the same or different.
According to this invention, various things can be provided about content of the repeating unit of the polyamic acid ester in the specific polymer, the repeating unit of the said polyimide, and the repeating unit of the said polyamic acid. Among them, since high solubility is obtained, the content of each of the repeating unit of polyamic acid ester, the repeating unit of polyimide, and the repeating unit of polyamic acid is 10 to 90 mol%, 9 to 89 mol%. The content is preferably 1 to 81 mol%, more preferably 40 to 90 mol%, 9 to 59 mol%, and 1 to 51 mol%, respectively.
Hereinafter, the polymer which forms a specific polymer, and those raw materials are explained in full detail.
<テトラカルボン酸成分>
 特定重合体を得るためのテトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分ともいう。その中でも、特定重合体を製造する原料としては、テトラカルボン酸二無水物を用いることが好ましい。
<Tetracarboxylic acid component>
Examples of the tetracarboxylic acid component for obtaining the specific polymer include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Then, these are also collectively referred to as a tetracarboxylic acid component. Among them, it is preferable to use tetracarboxylic dianhydride as a raw material for producing the specific polymer.
<テトラカルボン酸二無水物>
 テトラカルボン酸二無水物としては、例えば、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げられ、下記の一般式で表すことができる。
Figure JPOXMLDOC01-appb-C000008
<Tetracarboxylic dianhydride>
Examples of the tetracarboxylic dianhydride include an aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, and the like. Can do.
Figure JPOXMLDOC01-appb-C000008
 式中、Xの構造は特に限定されず、これらは、上記式(1)~(3)の繰り返し単位におけるX、X及びXの定義と同じである。具体的な例としては、下記式(X1-1)~(X1-46)が例示されるがこれらに限定されない。 In the formula, the structure of X is not particularly limited, and these are the same as the definitions of X 1 , X 2 and X 3 in the repeating units of the above formulas (1) to (3). Specific examples include, but are not limited to, the following formulas (X1-1) to (X1-46).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式中、R~R23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。
 式(X1-1)中のR~Rは、液晶配向剤の場合、液晶配向性の観点から、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子又はメチル基がより好ましい。式(X1-1)は、下記式(X1-11)又は(X1-12)が好ましい。
In the above formula, R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom And a monovalent organic group having 1 to 6 carbon atoms or a phenyl group.
In the case of a liquid crystal aligning agent, R 3 to R 6 in formula (X1-1) are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of liquid crystal alignment. preferable. In the formula (X1-1), the following formula (X1-11) or (X1-12) is preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 なお、上記テトラカルボン酸二無水物は、1種を単独又は2種以上組み合わせて使用することができる。 In addition, the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
<ジアミン成分>
本発明の特定重合体を得るためのジアミン成分は、以下の式[2]で表される。
Figure JPOXMLDOC01-appb-C000015
<Diamine component>
The diamine component for obtaining the specific polymer of the present invention is represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000015
 上記式中、A及びAは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向剤の場合、液晶配向性の観点から、A及びAは水素原子又はメチル基が好ましい。Yの構造は上記式(1)~(3)の繰り返し単位におけるY、Y及びYの定義と同じである。具体例を例示すると、以下の通りであるがこれらに限定されない。 In the above formula, A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. In the case of a liquid crystal aligning agent, A 1 and A 2 are preferably a hydrogen atom or a methyl group from the viewpoint of liquid crystal alignment. The structure of Y is the same as the definition of Y 1 , Y 2 and Y 3 in the repeating units of the above formulas (1) to (3). Specific examples are as follows, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 上記式中、nは、1~6の整数であり、Meはメチル基であり、Bocは、tert-ブトキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000036
In the above formula, n is an integer of 1 to 6, Me is a methyl group, and Boc represents a tert-butoxycarbonyl group.
<塩基性基を有するジアミン>
 本発明の特定重合体を製造する際の反応が進みやすい点から、特定重合体の製造には、塩基性基を有するジアミンが用いられる。塩基性基の具体例としては、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピぺリジン環又はピペラジン環が好ましい。塩基性基は、ジアミンの主鎖に含まれていても、側鎖に含まれていてもよい。
 塩基性基を有するジアミンは、上記に例示するY-71,Y-73,Y-96、Y-76,Y-77、Y-163、Y-164、Y-165又はY-172の構造を含有するジアミンが好ましい。これらのジアミン由来の構造は、上記式(1)~(3)中、いずれの繰り返し単位に含有されていても良く、複数の繰り返し単位中に含有されていてもよい。
 前記、塩基性基を有するジアミンの好ましい含有量は、本発明の特定重合体の製造に用いるジアミン成分全体の5~90モル%が好ましく、10~70モル%がより好ましい。
<Diamine having basic group>
A diamine having a basic group is used for producing the specific polymer because the reaction at the time of producing the specific polymer of the present invention is easy to proceed. Specific examples of the basic group are preferably a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a piperidine ring, or a piperazine ring. The basic group may be contained in the main chain of the diamine or in the side chain.
The diamine having a basic group has the structure of Y-71, Y-73, Y-96, Y-76, Y-77, Y-163, Y-164, Y-165 or Y-172 exemplified above. The diamine to contain is preferable. These diamine-derived structures may be contained in any of the repeating units in the above formulas (1) to (3), and may be contained in a plurality of repeating units.
The preferred content of the diamine having a basic group is preferably from 5 to 90 mol%, more preferably from 10 to 70 mol%, based on the total diamine component used in the production of the specific polymer of the present invention.
<ポリアミック酸の製造方法>
 特定重合体の製造に用いられるポリアミック酸は、以下の方法により製造できる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって製造できる。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
<Method for producing polyamic acid>
The polyamic acid used for the production of the specific polymer can be produced by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be manufactured.
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. May be used.
 重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
<ポリイミドの製造方法>
 特定重合体の製造に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。また、ポリアミック酸エステルのイミド化によってもポリイミドを製造できる。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量の低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used for the production of the specific polymer can be produced by imidizing the polyamic acid. A polyimide can also be produced by imidation of a polyamic acid ester.
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、ポリアミック酸を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。 Chemical imidization can be performed by stirring polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
Since the added catalyst and the like remain in the solution after the imidization reaction of the polyamic acid, the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. It is preferable to use a liquid crystal aligning agent.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたイミド化重合体の粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, an imidized polymer powder purified by drying at normal temperature or by heating can be obtained.
Examples of the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
<ポリアミック酸を経由する特定重合体の製造>
 本発明の特定重合体は、上記で得られたポリアミック酸を部分イミド化したイミド化重合体の粉末、或いは上記イミド化重合体を有機溶剤に溶解させた重合体溶液と、アルコールと反応させてエステル化することによって得られる。
 具体的には、上記で得られたイミド化重合体の粉末を、アルコール中に浸漬させるか又はアルコール中で撹拌することによって得られる。アルコール中に、15~100時間、好ましくは、15~50時間浸漬することにより、特定重合体の粉末を得ることができる。反応の際の温度は20~60℃が好ましい。アルコール中で撹拌する場合、5~100時間、好ましくは20~70時間で、特定重合体の粉末を得ることができる。
<Production of specific polymer via polyamic acid>
The specific polymer of the present invention is obtained by reacting an imidized polymer powder obtained by partially imidizing the polyamic acid obtained above or a polymer solution obtained by dissolving the imidized polymer in an organic solvent with an alcohol. Obtained by esterification.
Specifically, it is obtained by immersing the imidized polymer powder obtained above in alcohol or stirring it in alcohol. By immersing in alcohol for 15 to 100 hours, preferably 15 to 50 hours, a powder of a specific polymer can be obtained. The temperature during the reaction is preferably 20 to 60 ° C. When stirring in alcohol, the powder of the specific polymer can be obtained in 5 to 100 hours, preferably 20 to 70 hours.
 上記で得られたイミド化重合体の粉末を有機溶剤で溶解させて得られた重合体溶液とアルコールを添加し反応させる場合、20~100時間で特定重合体の粉末を得ることができる。好ましくは20~70時間である。反応の際の温度は20~60℃が好ましい。
 本発明では、ポリアミック酸のイミド化率を任意に調整し、かつイミド化物のエステル化率を任意に調整することにより、ポリアミック酸の繰り返し単位、ポリイミドの繰り返し単位、及びポリアミック酸エステルの繰り返し単位を任意の割合で含有する特定重合体を得ることができる。
When the polymer solution obtained by dissolving the imidized polymer powder obtained above in an organic solvent and an alcohol are added and reacted, the powder of the specific polymer can be obtained in 20 to 100 hours. Preferably it is 20 to 70 hours. The temperature during the reaction is preferably 20 to 60 ° C.
In the present invention, the polyamic acid repeating unit, the polyimide repeating unit, and the polyamic acid ester repeating unit can be adjusted by arbitrarily adjusting the imidation rate of the polyamic acid and by arbitrarily adjusting the esterification rate of the imidized product. A specific polymer contained in an arbitrary ratio can be obtained.
<ポリアミック酸エステルを経由する特定重合体の製造>
 本発明の特定重合体は、先に、ポリアミック酸エステルを製造し、これをイミド化することによっても得ることができる。ポリアミック酸エステルは、以下の(1)~(3)の方法で製造できる。
<Production of specific polymer via polyamic acid ester>
The specific polymer of the present invention can also be obtained by first producing a polyamic acid ester and imidizing it. The polyamic acid ester can be produced by the following methods (1) to (3).
(1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。反応条件により、ポリアミック酸とポリアミック酸エステルの繰り返し単位を同時に有する重合体を製造出来、そのイミド化により、ポリアミック酸、ポリイミド及びポリアミック酸エステルの繰り返し単位を同時に有する重合体も製造できる。
(1) When manufacturing from polyamic acid Polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to. Depending on the reaction conditions, a polymer having a repeating unit of polyamic acid and polyamic acid ester can be produced at the same time, and a polymer having a repeating unit of polyamic acid, polyimide and polyamic acid ester can also be produced by imidization thereof.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~4モル当量がより好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる有機溶媒は、重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時における有機溶媒中の重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be. The concentration of the polymer in the organic solvent at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass from the viewpoint that precipitation of the polymer hardly occurs and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造できる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。
(2) When manufacturing by reaction of tetracarboxylic-acid diester dichloride and diamine Polyamic acid ester can be manufactured from tetracarboxylic-acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時における有機溶媒中の重合体濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる有機溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。 The organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, γ-butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration in the organic solvent at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the organic solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent contamination of the outside air. .
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造できる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶媒の存在下で0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましく、2~2.5倍モルがより好ましい。
(3) When manufacturing from tetracarboxylic-acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be manufactured.
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。
 前記有機溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミドなどが挙げられる。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、2.0~3.0倍モルがより好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight.
Examples of the organic solvent include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide and the like.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製造法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。 上記貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
 かくして得られるポリアミック酸エステルをイミド化して特定重合体を製造する場合、ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
Among the methods for producing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the production method of (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
When a specific polymer is produced by imidizing the polyamic acid ester thus obtained, a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent. Imidization is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、ポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30倍モル、好ましくは2~20倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 上記のようにしてポリアミック酸エステルをイミド化し、その際のイミド化率を調整することにより、特定重合体をえることができる。
Chemical imidation can be performed by stirring the polyamic acid ester in the presence of a basic catalyst in an organic solvent. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
A specific polymer can be obtained by imidating a polyamic acid ester as mentioned above and adjusting the imidation rate in that case.
<液晶配向剤>
 本発明の特定重合体は、種々の用途に使用が可能であるが、その高い溶解性、得られる膜の優れた特性等を考慮すると、液晶配向剤としての使用が好ましい。
 液晶配向剤は、特定重合体が有機溶媒中に溶解された溶液の形態を有する。特定重合体の分子量は、重量平均分子量(Mw)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量(Mn)は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The specific polymer of the present invention can be used for various applications, but is preferably used as a liquid crystal aligning agent in view of its high solubility, excellent properties of the resulting film, and the like.
The liquid crystal aligning agent has a form of a solution in which a specific polymer is dissolved in an organic solvent. The molecular weight of the specific polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. . The number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
 液晶配向剤における特定重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
The concentration of the specific polymer in the liquid crystal aligning agent can be appropriately changed depending on the thickness of the coating film to be formed, but is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film. From the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2 -Pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 液晶配向剤は、特定重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒であり、また、溶解性が小さい貧溶媒であるが、本発明の特定重合体は、その高い溶解性のためにこれらの溶媒に対しても有利に用いられる。これらの具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。 The liquid crystal aligning agent may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the specific polymer component. Such a solvent is generally a solvent having a lower surface tension than that of the organic solvent and is a poor solvent having a low solubility. However, the specific polymer of the present invention has a high solubility in these solvents. Is also advantageously used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2- Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene Glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate Amyl ester, and the like. Two or more of these solvents may be used in combination.
 液晶配向剤には、上記の他、特定重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加してもよい。 In addition to the above, the liquid crystal aligning agent includes a polymer other than the specific polymer, a dielectric or conductive material for changing electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film, and adhesion between the liquid crystal aligning film and the substrate. Silane coupling agent for the purpose of improving the properties, crosslinkable compounds for the purpose of increasing the hardness and density of the liquid crystal alignment film, and the imidization of polyamic acid when the coating film is baked efficiently A target imidization accelerator may be added.
 液晶配向膜は、液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
The liquid crystal alignment film is a film obtained by applying a liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
A method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 After the liquid crystal aligning agent is applied on the substrate, the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent. If the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
 液晶配向剤から得られる液晶配向膜を配向処理する方法は特に限定されない。ラビング処理法としては、既存のラビング法や装置を使用することができる。ラビング布の材質としては、コットン、レーヨン、ナイロン、ポリエステルなどが挙げられる。例えば、特開昭55-143525号公報に示されるように、液晶配向基板として、配向膜を透明電極基板上に塗布したものを用い、この配向膜面上を、上記ラビング布をローラーに貼り付けたラビングマシンによって擦ることにより、均一な液晶配向を得る方法が、ラビング法として広く用いられている。 The method for aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent is not particularly limited. As the rubbing treatment method, an existing rubbing method or apparatus can be used. Examples of the material of the rubbing cloth include cotton, rayon, nylon, and polyester. For example, as disclosed in JP-A-55-143525, a liquid crystal alignment substrate in which an alignment film is applied on a transparent electrode substrate is used, and the rubbing cloth is attached to a roller on the alignment film surface. A method of obtaining uniform liquid crystal alignment by rubbing with a rubbing machine is widely used as a rubbing method.
 光配向処理法の場合、前記液晶配向膜の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
 また、液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、放射線を照射してもよい。また、前記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
In the case of the photo-alignment treatment method, the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, heat treatment is performed at a temperature of 150 to 250 ° C. And a method of imparting a function). As the radiation, ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
Further, in order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C. The radiation dose is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable. The liquid crystal alignment film thus prepared can stably align liquid crystal molecules in a certain direction.
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。更に、前記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理をすることもできる。 A higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more. Further, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method.
 上記接触処理に使用する溶媒としては、放射線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate. Of these, water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate. The solvent may be used alone or in combination of two or more.
 上記の接触処理、すなわち、偏光された放射線を照射した液晶配向膜に水や溶媒を処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1分~30分間浸漬処理をすることが好ましい。また、前記接触処理時の溶媒は、常温でも加温してもよいが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理などを行ってもよい。 Examples of the above-described contact treatment, that is, treatment of water or a solvent on the liquid crystal alignment film irradiated with polarized radiation includes immersion treatment and spray treatment (also referred to as spray treatment). The treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation. In particular, the immersion treatment is preferably performed for 1 minute to 30 minutes. The solvent used in the contact treatment may be warmed at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable. In addition, from the viewpoint of the solubility of the decomposition product, ultrasonic treatment or the like may be performed as necessary.
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンなどの低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行ってもよい。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。
 本発明の液晶配向膜は、PSA方式、IPS方式やFFS方式など各種配向方式の液晶表示素子の液晶配向膜として好適である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。
After the contact treatment, rinsing (also referred to as rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone, or baking of the liquid crystal alignment film is preferably performed. At that time, either one of rinsing and firing, or both may be performed. The firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, the temperature is 200 to 230 ° C. The firing time is preferably 10 seconds to 30 minutes. Among these, 1 to 10 minutes is preferable.
The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for liquid crystal display elements of various alignment methods such as a PSA method, an IPS method, and an FFS method. The liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
 上記のようにして、交流駆動による残像を抑制し、かつ、シール剤及び下地基板との密着性を両立する液晶配向膜を得ることができる。特に、偏光された放射線を照射して得られる液晶配向膜に対して有用である。
Next, a liquid crystal alignment film is formed on each substrate, the other substrate is overlaid on one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided. A part of the sealant is provided with an opening that can be filled with liquid crystal from the outside. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. As the liquid crystal material, either a positive liquid crystal material or a negative liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
As described above, it is possible to obtain a liquid crystal alignment film that suppresses afterimages due to alternating current driving and has both adhesiveness with the sealant and the base substrate. In particular, it is useful for a liquid crystal alignment film obtained by irradiating polarized radiation.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
<テトラカルボン酸二無水物>
CBDA:1,2,3,4,-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
Examples Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The following are the abbreviations of the compounds and the measurement methods of the respective properties.
<Tetracarboxylic dianhydride>
CBDA: 1,2,3,4, -cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
<ジアミン>
3-AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
p-PDA:パラフェニレンジアミン
PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ〕ベンゼン
<有機溶媒>
MP:N-メチル-2-ピロリドン  BCS:ブチルセロソルブ 
<Diamine>
3-AMPDA: 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide p-PDA: paraphenylenediamine PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) Phenoxy] benzene <organic solvent>
MP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
<分子量測定>
 昭和電工社製  常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用いた。測定条件は、以下の通りである。
 カラム温度:50℃、
 溶離液:N,N’-ジメチルホルムアミド(添加剤:臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分、
 検量線作成用標準サンプル:東ソー社製TSK、標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及びポリマーラボラトリー社製ポリエチレングリコール(分子量  約12,000、4,000、1,000)。
<Molecular weight measurement>
A normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column manufactured by Shodex (KD-803, KD-805) were used. The measurement conditions are as follows.
Column temperature: 50 ° C.
Eluent: N, N′-dimethylformamide (additive: lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L), flow rate: 1.0 ml / min,
Standard samples for preparing calibration curves: TSK manufactured by Tosoh Corporation, standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000), and polyethylene glycol manufactured by Polymer Laboratories (molecular weight: about 12,000, 4) 1,000, 1,000).
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製、NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液について、日本電子データム社製NMR測定器(JNW-ECA500)を用いて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.0から11.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い、以下の数式(1)によって求めた。 
  イミド化率(%)=(1-α・x/y)×100  ・・・(1)
 上記式(1)において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
Add 20 mg of polyimide powder to an NMR sample tube (Kusano Kagaku, NMR sampling tube standard φ5), and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) Then, it was completely dissolved by applying ultrasonic waves. With respect to this solution, proton NMR at 500 MHz was measured using an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of amic acid that appears in the vicinity of 9.0 to 11.0 ppm. It calculated | required by the following Numerical formula (1) using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100 (1)
In the above formula (1), x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one proton.
<特定重合体のイミド化率、エステル化率、アミド率の測定>
 ポリイミド粉末をKBR法にてIRスペクトルを測定する。1500cm-1付近の吸収ピーク(ベンゼン環)高さ(a1)と1380cm-1付近の吸収ピーク(イミド環)高さ(b1)を測定し、b1/a1を算出する。次に特定重合体粉末をKBR法にてIRスペクトルを測定し、1500cm-1付近の吸収ピーク(ベンゼン環)高さ(a2)と1380cm-1付近の吸収ピーク(イミド環)高さ(b2)を測定し、b2/a2を算出する。
 特定重合体のイミド化率、エステル化率、アミド率を以下の数式(1)~(3)によって求めた。下記式(1)中、βはポリイミド粉末のイミド化率(%)である。
  イミド化率(%) =((b2/a2)/(b1/a1))×β・・・(1)
  エステル化率(%)=β-((b2/a2)/(b1/a1)×β)・・・(2)
  アミド率(%)  =100‐β・・(3)
 なお、特定重合体のイミド化率、エステル化率及びアミド率は、換言すれば、特定重合体における、ポリイミドの繰り返し単位、ポリアミック酸エステルの繰り返し単位、及びポリアミック酸の繰り返し単位の含有量を示すものである。
<Measurement of imidization rate, esterification rate, amide rate of specific polymer>
The IR spectrum of the polyimide powder is measured by the KBR method. The absorption peak (benzene ring) height (a1) near 1500 cm −1 and the absorption peak (imide ring) height (b1) near 1380 cm −1 are measured, and b1 / a1 is calculated. Next, the IR spectrum of the specific polymer powder was measured by the KBR method, and the absorption peak (benzene ring) height (a2) near 1500 cm −1 and the absorption peak (imide ring) height (b2) near 1380 cm −1. And b2 / a2 is calculated.
The imidation ratio, esterification ratio, and amide ratio of the specific polymer were determined by the following mathematical formulas (1) to (3). In the following formula (1), β is the imidization ratio (%) of the polyimide powder.
Imidization rate (%) = ((b2 / a2) / (b1 / a1)) × β (1)
Esterification rate (%) = β − ((b2 / a2) / (b1 / a1) × β) (2)
Amide ratio (%) = 100-β (3)
In addition, the imidation ratio, esterification ratio, and amide ratio of the specific polymer indicate, in other words, the content of the polyimide repeating unit, the polyamic acid ester repeating unit, and the polyamic acid repeating unit in the specific polymer. Is.
<実施例1>
 BODA(2.50g,10mmol)、PCH7DAB(3.81g,10mmol)、3-AMPDA(4.85g,20mmol)、p-PDA(2.16g,20mmol)をNMP(75.46g)中で混合し、80℃で5時間反応させた後、CBDA(7.75g,39.5mmol)とNMP(8.79g)を加え、40℃で6時間反応させポリアミック酸溶液を得た。 
<Example 1>
BODA (2.50 g, 10 mmol), PCH7DAB (3.81 g, 10 mmol), 3-AMPDA (4.85 g, 20 mmol), p-PDA (2.16 g, 20 mmol) were mixed in NMP (75.46 g). Then, CBDA (7.75 g, 39.5 mmol) and NMP (8.79 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(20.0g)にNMPを加えてポリアミック酸の含有量が10質量%になるように希釈した後、イミド化触媒として無水酢酸(2.42g)、及びピリジン(0.62g)を加え、60℃で3.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は75%であり、数平均分子量は9651、重量平均分子量は23793であった。
 得られたポリイミド粉末をメタノール中に再沈殿し、60℃で20時間撹拌した。沈殿物を濾別し100℃で減圧乾燥し、特定重合体粉末を得た。この特定重合体のイミド化率は、33%、エステル化率は42%、アミド率は25%であり、数平均分子量は8314、重量平均分子量は18060であった。
After adding NMP to this polyamic acid solution (20.0 g) to dilute the polyamic acid content to 10% by mass, acetic anhydride (2.42 g) and pyridine (0.62 g) are used as imidization catalysts. And reacted at 60 ° C. for 3.5 hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 75%, the number average molecular weight was 9651, and the weight average molecular weight was 23793.
The obtained polyimide powder was reprecipitated in methanol and stirred at 60 ° C. for 20 hours. The precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder. The imidation ratio of this specific polymer was 33%, the esterification ratio was 42%, the amide ratio was 25%, the number average molecular weight was 8314, and the weight average molecular weight was 18060.
<実施例2>
 実施例1で得られたポリイミド粉末をメタノール中に再沈殿し、60℃で40時間撹拌した。沈殿物を濾別し100℃で減圧乾燥し、特定重合体粉末を得た。この特定重合体のイミド化率は、27%、エステル化率は48%、アミド率は25%であり、数平均分子量は9171、重量平均分子量は24207であった。
<Example 2>
The polyimide powder obtained in Example 1 was reprecipitated in methanol and stirred at 60 ° C. for 40 hours. The precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder. The imidation ratio of this specific polymer was 27%, the esterification ratio was 48%, the amide ratio was 25%, the number average molecular weight was 9171, and the weight average molecular weight was 24207.
<実施例3>
 実施例1で得られたポリイミド粉末をメタノール中に再沈殿し、60℃で70時間撹拌した。沈殿物を濾別し100℃で減圧乾燥し、特定重合体粉末を得た。この特定重合体のイミド化率は、19%、エステル化率は56%、アミド率は25%であり、数平均分子量は8366、重量平均分子量は20488であった。
<Example 3>
The polyimide powder obtained in Example 1 was reprecipitated in methanol and stirred at 60 ° C. for 70 hours. The precipitate was filtered off and dried under reduced pressure at 100 ° C. to obtain a specific polymer powder. The imidation ratio of this specific polymer was 19%, the esterification ratio was 56%, the amide ratio was 25%, the number average molecular weight was 8366, and the weight average molecular weight was 20488.
<比較例1>
 実施例1における中間重合体であり、エステル化の原料になったポリイミド粉末を構成する重合体を比較例1とした。
<比較例2>
 実施例1における中間重合体であり、イミド化の原料になったポリアミック酸溶液に含まれるポリアミック酸重合体を比較例2とした。
<Comparative Example 1>
The polymer constituting the polyimide powder that was an intermediate polymer in Example 1 and used as a raw material for esterification was referred to as Comparative Example 1.
<Comparative example 2>
The polyamic acid polymer contained in the polyamic acid solution that was the intermediate polymer in Example 1 and was the raw material for imidization was referred to as Comparative Example 2.
<特定重合体の溶解性試験>
 特定重合体粉末及びポリイミド粉末、ポリアミック酸溶液へNMPを加えて溶解させ、濁りや析出物のない重合体濃度10%の重合体液を得た。上記の重合体液に濁り或いは析出物が生じるまで貧溶媒であるBCS(ブチルセロソルブ)を添加し、BCSこの添加量から各重合体の溶解性を評価した。その結果を下記の表に示す。
 本発明の特定重合体は、ポリイミド或いはポリアミック酸と比較して、貧溶媒の添加導入量が多いことからして、重合体の溶解性が高いことを確認した。
<Solubility test of specific polymer>
NMP was added to and dissolved in the specific polymer powder, polyimide powder, and polyamic acid solution to obtain a polymer solution having a polymer concentration of 10% without turbidity and precipitates. BCS (butyl cellosolve), which is a poor solvent, was added until turbidity or precipitates were formed in the polymer solution, and the solubility of each polymer was evaluated from the amount of BCS added. The results are shown in the table below.
The specific polymer of the present invention was confirmed to have a high solubility of the polymer because the addition amount of the poor solvent was larger than that of the polyimide or polyamic acid.
Figure JPOXMLDOC01-appb-T000037
〇:重合体液に濁り或いは析出物が観察されない。
×:重合体液に濁り或いは析出物が観察される。
Figure JPOXMLDOC01-appb-T000037
◯: No turbidity or precipitate is observed in the polymer liquid.
X: Turbidity or precipitates are observed in the polymer liquid.
 本発明による特定重合体は、液晶配合剤用を始め種々の分野に使用できる。
 なお、2017年3月22日に出願された日本特許出願2017-056384号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The specific polymer according to the present invention can be used in various fields including liquid crystal compounding agents.
It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-056384 filed on March 22, 2017 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (10)

  1.  ポリアミック酸エステルの繰り返し単位、ポリイミドの繰り返し単位、及びポリアミック酸の繰り返し単位を有し、かつ前記繰り返し単位のいずれかに塩基性基を有する重合体。 Polymer having a repeating unit of polyamic acid ester, a repeating unit of polyimide, and a repeating unit of polyamic acid, and having a basic group in any of the repeating units.
  2.  前記ポリアミック酸エステルの繰り返し単位が下記式(1)で表され、前記ポリイミドの繰り返し単位が下記式(2)で表され、かつ前記ポリアミック酸の繰り返し単位が下記式(3)で表される、請求項1に記載の重合体。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)~(3)中、X、X及びXは、それぞれ独立して、テトラカルボン酸成分に由来する4価の有機基である。Y、Y及びYは、それぞれ独立して、ジアミンに由来する2価の有機基であり、Y、Y、Yの少なくとも1つは、塩基性基を有する。Rは炭素数1~5のアルキル基である。)
    The repeating unit of the polyamic acid ester is represented by the following formula (1), the repeating unit of the polyimide is represented by the following formula (2), and the repeating unit of the polyamic acid is represented by the following formula (3). The polymer according to claim 1.
    Figure JPOXMLDOC01-appb-C000001
    (In the formulas (1) to (3), X 1 , X 2 and X 3 are each independently a tetravalent organic group derived from a tetracarboxylic acid component. Y 1 , Y 2 and Y 3 are Each independently is a divalent organic group derived from diamine, and at least one of Y 1 , Y 2 and Y 3 has a basic group, R 1 is an alkyl group having 1 to 5 carbon atoms is there.)
  3.  前記ポリアミック酸エステルの繰り返し単位、前記ポリイミドの繰り返し単位、及び前記ポリアミック酸の繰り返し単位の含有量が、それぞれ、10~90モル%、9~89モル%、 1~81モル%を有する、請求項1又は2に記載の重合体。 The content of the repeating unit of the polyamic acid ester, the repeating unit of the polyimide, and the repeating unit of the polyamic acid has 10 to 90 mol%, 9 to 89 mol%, and 1 to 81 mol%, respectively. The polymer according to 1 or 2.
  4.  前記塩基性基が、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピペリジン環又はピペラジン環である、請求項1~3のいずれか1項に記載の重合体。 The polymer according to any one of claims 1 to 3, wherein the basic group is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a piperidine ring or a piperazine ring.
  5.  前記塩基性基を有するY、Y及びYが、全てのY、Y及びYに対して、5~90モル%である、請求項2~4のいずれか1項に記載の重合体。 The Y 1 , Y 2 and Y 3 having the basic group are 5 to 90 mol% with respect to all of the Y 1 , Y 2 and Y 3 . Polymer.
  6.  前記塩基性基を有するY、Y及びYが、下記式で表される構造からなる群から選ばれる少なくとも1種である、請求項2~5のいずれか1項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000002
    The polymer according to any one of claims 2 to 5, wherein Y 1 , Y 2 and Y 3 having the basic group are at least one selected from the group consisting of structures represented by the following formulas. .
    Figure JPOXMLDOC01-appb-C000002
  7.  式(1)~(3)におけるX1~X3が下記式で表される構造からなる群から選ばれる少なくとも1種である、請求項2~6のいずれか1項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000003

    (上記式中、R3~R6はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。
    The polymer according to any one of claims 2 to 6, wherein X1 to X3 in the formulas (1) to (3) are at least one selected from the group consisting of structures represented by the following formulas.
    Figure JPOXMLDOC01-appb-C000003

    (In the above formula, R3 to R6 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group.
  8.  請求項1~7のいずれか1項に記載の重合体を含有する液晶配向剤。 A liquid crystal aligning agent containing the polymer according to any one of claims 1 to 7.
  9.  請求項8に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to claim 8.
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 9.
PCT/JP2018/011182 2017-03-22 2018-03-20 Polymer and liquid crystal alignment agent using same WO2018174091A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197029948A KR102505385B1 (en) 2017-03-22 2018-03-20 Polymer and liquid crystal aligning agent using the same
JP2019507708A JP7078033B2 (en) 2017-03-22 2018-03-20 Polymer and liquid crystal alignment agent using it
CN201880018861.9A CN110475805B (en) 2017-03-22 2018-03-20 Polymer and liquid crystal aligning agent using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056384 2017-03-22
JP2017056384 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018174091A1 true WO2018174091A1 (en) 2018-09-27

Family

ID=63584528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011182 WO2018174091A1 (en) 2017-03-22 2018-03-20 Polymer and liquid crystal alignment agent using same

Country Status (5)

Country Link
JP (1) JP7078033B2 (en)
KR (1) KR102505385B1 (en)
CN (1) CN110475805B (en)
TW (1) TWI839328B (en)
WO (1) WO2018174091A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125459A (en) * 2017-03-22 2019-11-06 닛산 가가쿠 가부시키가이샤 Polymer and liquid crystal aligning agent using the same
JP2020002325A (en) * 2018-07-02 2020-01-09 東レ株式会社 Resin composition
CN113396359A (en) * 2019-02-05 2021-09-14 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712028A (en) * 1980-06-26 1982-01-21 Mitsubishi Electric Corp Production of poly imide-amidate ester
JP2003238683A (en) * 2002-02-20 2003-08-27 Kanegafuchi Chem Ind Co Ltd Positive photosensitive resin composition
JP2011256351A (en) * 2010-06-11 2011-12-22 Nissan Chem Ind Ltd Process of producing polyamic acid ester having alicyclic structure
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015152174A1 (en) * 2014-04-03 2015-10-08 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650982B2 (en) * 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP3426531B2 (en) * 1998-10-30 2003-07-14 日立化成デュポンマイクロシステムズ株式会社 Photosensitive polymer composition, method for producing relief pattern, and electronic component
JP4529252B2 (en) * 1999-09-28 2010-08-25 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin composition, pattern manufacturing method, and electronic component
CN101548228B (en) 2006-11-24 2011-11-16 日产化学工业株式会社 Liquid crystal orientation treatment agent and liquid crystal display element produced by using the same
JP5609651B2 (en) * 2009-02-12 2014-10-22 日産化学工業株式会社 Tetracarboxylic acid derivative, method for producing the same, and liquid crystal aligning agent
JP5598466B2 (en) * 2009-04-02 2014-10-01 日産化学工業株式会社 Polyimide precursor composition containing polyamic acid alkyl ester
JP6233309B2 (en) 2012-08-29 2017-11-22 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6361168B2 (en) * 2013-06-17 2018-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for producing liquid crystal display element, polymer and compound
CN105683827B (en) * 2013-10-23 2019-11-05 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal aligning element
KR102505385B1 (en) 2017-03-22 2023-03-02 닛산 가가쿠 가부시키가이샤 Polymer and liquid crystal aligning agent using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712028A (en) * 1980-06-26 1982-01-21 Mitsubishi Electric Corp Production of poly imide-amidate ester
JP2003238683A (en) * 2002-02-20 2003-08-27 Kanegafuchi Chem Ind Co Ltd Positive photosensitive resin composition
JP2011256351A (en) * 2010-06-11 2011-12-22 Nissan Chem Ind Ltd Process of producing polyamic acid ester having alicyclic structure
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015152174A1 (en) * 2014-04-03 2015-10-08 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125459A (en) * 2017-03-22 2019-11-06 닛산 가가쿠 가부시키가이샤 Polymer and liquid crystal aligning agent using the same
KR102505385B1 (en) 2017-03-22 2023-03-02 닛산 가가쿠 가부시키가이샤 Polymer and liquid crystal aligning agent using the same
JP2020002325A (en) * 2018-07-02 2020-01-09 東レ株式会社 Resin composition
JP7131133B2 (en) 2018-07-02 2022-09-06 東レ株式会社 resin composition
CN113396359A (en) * 2019-02-05 2021-09-14 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7468365B2 (en) 2019-02-05 2024-04-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Also Published As

Publication number Publication date
KR102505385B1 (en) 2023-03-02
CN110475805B (en) 2022-09-30
CN110475805A (en) 2019-11-19
JP7078033B2 (en) 2022-05-31
TWI839328B (en) 2024-04-21
TW201841950A (en) 2018-12-01
KR20190125459A (en) 2019-11-06
JPWO2018174091A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP4404090B2 (en) Liquid crystal aligning agent for photo-alignment and liquid crystal display device using the same
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP7392646B2 (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
JP2012093642A (en) Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI820011B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7078033B2 (en) Polymer and liquid crystal alignment agent using it
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
WO2018038160A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2019065646A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JP7375759B2 (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
JPWO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029948

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18771136

Country of ref document: EP

Kind code of ref document: A1