JP2007248637A - Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device - Google Patents

Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device Download PDF

Info

Publication number
JP2007248637A
JP2007248637A JP2006069625A JP2006069625A JP2007248637A JP 2007248637 A JP2007248637 A JP 2007248637A JP 2006069625 A JP2006069625 A JP 2006069625A JP 2006069625 A JP2006069625 A JP 2006069625A JP 2007248637 A JP2007248637 A JP 2007248637A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
diamine
crystal alignment
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069625A
Other languages
Japanese (ja)
Other versions
JP4775796B2 (en
Inventor
Kenji Sakamoto
謙二 坂本
Shisho Shioda
資勝 潮田
Kiyoaki Usami
清章 宇佐美
Kensho Narita
憲昭 成田
Junichiro Yokota
純一郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, RIKEN Institute of Physical and Chemical Research, Chisso Corp filed Critical National Institute for Materials Science
Priority to JP2006069625A priority Critical patent/JP4775796B2/en
Priority to TW096107808A priority patent/TWI429995B/en
Priority to KR1020070024595A priority patent/KR101399532B1/en
Publication of JP2007248637A publication Critical patent/JP2007248637A/en
Application granted granted Critical
Publication of JP4775796B2 publication Critical patent/JP4775796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal aligning agent that can control alignment of a main chain by a photo-alignment process and impart any pretilt angle to a liquid crystal, and to provide a liquid crystal alignment layer formed by using the aligning agent, and a liquid crystal display device having the liquid crystal alignment layer. <P>SOLUTION: The liquid crystal aligning agent for forming a liquid crystal alignment layer of a liquid crystal display device is prepared so that such a liquid crystal alignment layer is formed by applying a polyamic acid on a substrate, irradiating the substrate with light having controlled polarization, and imidizing the polyamic acid layer to align the main chain of polyimide to a specified direction in the alignment layer and to develop a pretilt angle of a liquid crystal. The liquid crystal aligning agent is used to form the liquid crystal alignment layer. A liquid crystal display device having the liquid crystal alignment layer is manufactured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ラビング処理を施さないで、偏光を制御した光を照射してポリアミック酸膜の配向処理を施したあと、イミド化することで、ポリイミド膜におけるポリイミドの主鎖を特定方向に配向させ、液晶のプレチルト角を発現させることができる液晶配向膜、それを形成することができる液晶配向剤、及び該液晶配向膜を有する液晶表示素子に関する。   In the present invention, the main chain of polyimide in the polyimide film is oriented in a specific direction by irradiating the light with polarization controlled without performing rubbing treatment and then performing the orientation treatment of the polyamic acid film, followed by imidization. The present invention relates to a liquid crystal alignment film capable of developing a pretilt angle of liquid crystal, a liquid crystal alignment agent capable of forming the same, and a liquid crystal display element having the liquid crystal alignment film.

液晶表示素子は、ノートパソコンやデスクトップパソコンのモニターをはじめ、ビデオカメラのビューファインダー、投写型のディスプレイ等の様々な液晶表示装置に使われており、最近ではテレビにも用いられるようになってきた。さらに、光プリンターヘッド、光フーリエ変換素子、ライトバルブ等のオプトエレクトロニクス関連素子としても利用されている。従来の液晶表示素子としては、ネマティック液晶を用いた表示素子が主流であり、液晶層における一方の基板側の液晶の配向方向と他方の基板側の液晶の配向方向とが90度の角度でねじれているTN(Twisted Nematic)型液晶表示素子、前記配向方向が通常180度以上の角度でねじれているSTN(Super Twisted Nematic)型液晶表示素子、薄膜トランジスタを使用したいわゆるTFT(Thin−film−transistor)型液晶表示素子が実用化されている。   Liquid crystal display elements are used in various liquid crystal display devices such as monitors for notebook computers and desktop computers, video camera viewfinders, and projection displays. Recently, they have also been used in televisions. . Furthermore, it is also used as an optoelectronic-related element such as an optical printer head, an optical Fourier transform element, or a light valve. As a conventional liquid crystal display element, a display element using a nematic liquid crystal is mainly used, and the alignment direction of the liquid crystal on one substrate side and the alignment direction of the liquid crystal on the other substrate side in the liquid crystal layer are twisted at an angle of 90 degrees. TN (Twisted Nematic) type liquid crystal display element, STN (Super Twisted Nematic) type liquid crystal display element in which the alignment direction is twisted at an angle of usually 180 degrees or more, so-called TFT (Thin-film-transistor) using a thin film transistor Type liquid crystal display elements have been put into practical use.

しかしながら、これらの液晶表示素子は、画像が適正に視認できる視野角が狭く、斜め方向から見たときに、輝度やコントラストが低下することがあり、また中間調で輝度反転を生じることがある。近年、この視野角の問題については、光学補償フィルムを用いたTN型液晶表示素子、垂直配向と突起構造物の技術を併用したMVA(Multi−domain Vertical Alignment)型液晶表示素子、又は横電界方式のIPS(In−Plane Switching)型液晶表示素子(例えば、特許文献1〜3参照。)等の技術により改良され実用化されている。   However, these liquid crystal display elements have a narrow viewing angle at which an image can be properly viewed, and when viewed from an oblique direction, luminance and contrast may be reduced, and luminance inversion may occur in a halftone. In recent years, with respect to the problem of viewing angle, a TN liquid crystal display element using an optical compensation film, an MVA (Multi-domain Vertical Alignment) liquid crystal display element using a technique of vertical alignment and protrusion structure, or a horizontal electric field method The IPS (In-Plane Switching) type liquid crystal display element (see, for example, Patent Documents 1 to 3) has been improved and put into practical use.

液晶表示素子の技術の発展は、単にこれらの駆動方式や素子構造の改良のみならず、表示素子に使用される構成部材の改良によっても達成されている。表示素子に使用される構成部材のなかでも、特に液晶配向膜は、液晶表示素子の表示品位に係わる重要な要素の一つであり、表示素子の高品質化に伴って液晶配向膜の役割が年々重要になってきている。   The development of the technology of the liquid crystal display element has been achieved not only by improving the drive system and the element structure, but also by improving the components used for the display element. Among the constituent members used in display elements, the liquid crystal alignment film is one of the important elements related to the display quality of the liquid crystal display element, and the role of the liquid crystal alignment film is increasing as the quality of the display element increases. It has become important year after year.

このような液晶配向膜には、液晶表示素子の均一な表示特性のために液晶の分子配列を均一に制御することが必要であり、そのために基板上の液晶分子を一方向に均一に配向させ、更に基板面から一定の傾斜角(プレチルト角)を発現させることが求められる。このように、基板上の液晶分子の方向を一様に並べる液晶配向膜が、液晶表示素子の製造工程において重要かつ必要不可欠な技術となっている。   In such a liquid crystal alignment film, it is necessary to uniformly control the molecular arrangement of the liquid crystal for the uniform display characteristics of the liquid crystal display element. For this purpose, the liquid crystal molecules on the substrate are uniformly aligned in one direction. Furthermore, it is required to develop a certain tilt angle (pretilt angle) from the substrate surface. Thus, a liquid crystal alignment film that uniformly aligns the directions of liquid crystal molecules on a substrate is an important and indispensable technique in the manufacturing process of a liquid crystal display element.

液晶配向膜は、液晶配向剤より調製される。現在、主として用いられている液晶配向剤とは、ポリアミック酸もしくは可溶性のポリイミドを有機溶剤に溶解させた溶液である。このような溶液を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。ポリアミック酸以外の種々の液晶配向剤も検討されているが、耐熱性、耐薬品性(耐液晶性)、塗布性、液晶配向性、電気特性、光学特性、表示特性等の点から、ほとんど実用化されていない。   The liquid crystal alignment film is prepared from a liquid crystal aligning agent. Currently, the liquid crystal aligning agent mainly used is a solution in which polyamic acid or soluble polyimide is dissolved in an organic solvent. After applying such a solution to a substrate, a polyimide-based liquid crystal alignment film is formed by film formation by means such as heating. Various liquid crystal aligning agents other than polyamic acid are also being studied, but they are almost practical in terms of heat resistance, chemical resistance (liquid crystal resistance), coating properties, liquid crystal alignment properties, electrical properties, optical properties, display properties, etc. It has not been converted.

工業的には、簡便で大面積の高速処理が可能なラビング法が、配向処理法として広く用いられている。ラビング法は、ナイロン、レイヨン、ポリエステル等の繊維を植毛した布を用いて液晶配向膜の表面を一方向に擦る処理であり、これによって液晶分子の一様な配
向を得ることが可能になる。しかし、ラビング法による発塵、静電気の発生等の問題点が指摘されている。
Industrially, a rubbing method that is simple and capable of high-speed processing over a large area is widely used as an alignment processing method. The rubbing method is a process of rubbing the surface of the liquid crystal alignment film in one direction using a cloth in which fibers of nylon, rayon, polyester, or the like are planted, and this makes it possible to obtain uniform alignment of liquid crystal molecules. However, problems such as dust generation by static rubbing and generation of static electricity have been pointed out.

これまで、ラビング処理により配向処理を施された液晶配向膜上における液晶の配向機構として、次の2つが提案されている。
(1)ラビング処理により発生するマイクログループに起因する表面形状効果
(2)ラビング処理により一軸配向した液晶配向膜と該液晶配向膜と接する液晶単分子層との分子間相互作用
近年では(1)の表面形状効果の寄与は比較的小さく、(2)の分子間相互作用の寄与が支配的であることが確認されている。
So far, the following two have been proposed as the alignment mechanism of the liquid crystal on the liquid crystal alignment film subjected to the alignment treatment by the rubbing treatment.
(1) Surface shape effect due to microgroups generated by rubbing treatment (2) Intermolecular interaction between liquid crystal alignment film uniaxially aligned by rubbing treatment and liquid crystal monolayer in contact with the liquid crystal alignment film (1) The contribution of the surface shape effect is relatively small, and it has been confirmed that the contribution of the intermolecular interaction (2) is dominant.

一方、光を照射して配向処理を施す光配向法については、光分解法、光異性化法、光二量化法、光架橋法等多くの配向機構が提案されている(例えば、特許文献4参照。)。特に光配向法はラビング法と異なり非接触の配向方法であるので、液晶の配向機構としては(2)の分子間相互作用のみが作用すると考えられる。また、光配向処理法は、非接触であるため原理的に発塵や静電気の発生が、ラビング処理より少ない。   On the other hand, with respect to a photo-alignment method in which alignment treatment is performed by irradiating light, many alignment mechanisms such as a photolysis method, a photoisomerization method, a photodimerization method, and a photocrosslinking method have been proposed (for example, see Patent Document 4) .) In particular, since the photo-alignment method is a non-contact alignment method unlike the rubbing method, it is considered that only the intermolecular interaction (2) acts as the alignment mechanism of the liquid crystal. In addition, since the photo-alignment treatment method is non-contact, the generation of dust and static electricity is less in principle than the rubbing treatment.

したがって、特に光配向法により配向処理を施された一軸配向性の良好な液晶配向膜を用いることにより、液晶配向膜に接している液晶単分子層の分子配向状態を制御して液晶表示素子としての性能を改善することが期待できる。反面、光配向法では、広い範囲のプレチルト角の制御について検討の余地が残されている。
特公昭63−21907号公報 特開平6−160878号公報 特開平9−15650号公報 特開2005−275364号公報
Therefore, by using a liquid crystal alignment film with good uniaxial alignment that has been subjected to alignment treatment by the photo alignment method, the molecular alignment state of the liquid crystal monolayer in contact with the liquid crystal alignment film can be controlled to provide a liquid crystal display element. Can be expected to improve performance. On the other hand, in the photo-alignment method, there remains room for studying control of a wide range of pretilt angles.
Japanese Examined Patent Publication No. 63-21907 JP-A-6-160878 JP-A-9-15650 JP 2005-275364 A

本発明の課題は、光を照射して配向処理を施す光配向材料に関するものであり、塵や静電気による不良が少なく、液晶のプレチルト角の制御が容易な液晶配向剤、該液晶配向剤を用いて形成された液晶配向膜及び該液晶配向膜を有する液晶表示素子を提供することである。   An object of the present invention relates to a photo-alignment material that performs alignment treatment by irradiating light, and uses a liquid crystal aligning agent that is less susceptible to dust and static electricity and that can easily control the pretilt angle of liquid crystal. And a liquid crystal display element having the liquid crystal alignment film.

本発明者らは前記課題を解決するために鋭意検討した。その結果、特定条件で調製した液晶配向剤から得られた液晶配向膜に、偏光を制御した光を照射して配向処理を施すことにより、主鎖の配向と液晶のプレチルト角を付与することができる液晶配向膜が得られ、該液晶配向膜を用いた液晶表示素子は、工業的に安定でプレチルト角の制御が容易であることを見出し、この知見に基づいて本発明を完成した。
本発明は、下記の構成からなる。
The present inventors diligently studied to solve the above problems. As a result, the alignment of the main chain and the pretilt angle of the liquid crystal can be imparted to the liquid crystal alignment film obtained from the liquid crystal alignment agent prepared under specific conditions by irradiating light with controlled polarization. A liquid crystal alignment film was obtained, and a liquid crystal display device using the liquid crystal alignment film was found to be industrially stable and easy to control the pretilt angle, and the present invention was completed based on this finding.
The present invention has the following configuration.

[1] テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸の膜において光の照射によって所定の方向に配向したポリアミック酸をイミド化してなる液晶配向膜において、前記テトラカルボン酸二無水物及び前記ジアミンの少なくともいずれかは側鎖構造を有し、下記式1で求められる液晶配向膜におけるポリイミドの主鎖の配向指数Δが0.03〜1.00の範囲であり、液晶配向膜を含む液晶表示素子を形成したときの液晶のプレチルト角が2〜90度の範囲であることを特徴とする液晶配向膜。
Δ=(|A‖−A⊥|)/(A‖+A⊥)×d/d’ (1)
(式(1)中、A‖は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリ
イミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が平行になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表し、A⊥は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリイミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が垂直になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表し、dは液晶配向膜の膜厚を表し、d’は液晶配向膜の光配向処理された領域の実効膜厚を表す。)
[1] A liquid crystal alignment film obtained by imidizing a polyamic acid which is a reaction product of tetracarboxylic dianhydride and diamine and is aligned in a predetermined direction by light irradiation in a polyamic acid film containing an azo group in the main chain In this case, at least one of the tetracarboxylic dianhydride and the diamine has a side chain structure, and the orientation index Δ of the main chain of the polyimide in the liquid crystal alignment film obtained by the following formula 1 is 0.03 to 1.00. A liquid crystal alignment film having a pretilt angle of 2 to 90 degrees when a liquid crystal display element including a liquid crystal alignment film is formed.
Δ = (| A‖−A⊥ |) / (A‖ + A⊥) × d / d ′ (1)
(In the formula (1), A 、 represents polarized infrared light perpendicular to the surface of the liquid crystal alignment film and the polarization direction of the infrared light is parallel to the average alignment direction of the main chain of polyimide. Represents the integrated absorbance due to C—N—C stretching vibration of the imide ring near the wave number of 1360 cm −1 when incident on the liquid crystal alignment film so that A becomes the polarized infrared light of the liquid crystal alignment film. perpendicular to the surface, and the imide ring around the wave number 1360 cm -1 when is incident on the liquid crystal alignment film so that the polarization direction of the infrared light to the average orientation direction of the main chain of the polyimide is perpendicular The integrated absorbance due to C—N—C stretching vibration is represented, d represents the film thickness of the liquid crystal alignment film, and d ′ represents the effective film thickness of the liquid crystal alignment film subjected to the photo-alignment treatment.)

[2] 前記ポリアミック酸は、側鎖構造を有さないテトラカルボン酸二無水物と、二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンと、側鎖構造を有するジアミンとの反応生成物であり、前記側鎖構造を有するジアミンは前記ジアミンの全量に対して7〜90モル%の範囲で含まれることを特徴とする[1]記載の液晶配向膜。 [2] The polyamic acid includes a tetracarboxylic dianhydride having no side chain structure, a diamine having an azo group between two amino groups and having no side chain structure, and a diamine having a side chain structure. The liquid crystal alignment film according to [1], wherein the diamine having the side chain structure is contained in an amount of 7 to 90 mol% based on the total amount of the diamine.

[3] 前記二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンは4,4’−ジアミノアゾベンゼンであることを特徴とする[2]に記載の液晶配向膜。 [3] The liquid crystal alignment film according to [2], wherein the diamine containing an azo group between the two aminos and having no side chain structure is 4,4'-diaminoazobenzene.

[4] 前記テトラカルボン酸二無水物はピロメリット酸二無水物であることを特徴とする[2]に記載の液晶配向膜。 [4] The liquid crystal alignment film according to [2], wherein the tetracarboxylic dianhydride is pyromellitic dianhydride.

[5] 前記側鎖構造を有するジアミンは下記一般式(I’−11)で表される化合物であることを特徴とする[2]に記載の液晶配向膜。ただし式中、R24は炭素数1〜10のアルキル又は炭素数1〜10のアルコキシを表す。 [5] The liquid crystal alignment film according to [2], wherein the diamine having a side chain structure is a compound represented by the following general formula (I′-11). However Shikichu, R 24 represents an alkoxy having 1 to 10 carbon alkyl or a C 1 to 10 carbon atoms.

Figure 2007248637
Figure 2007248637

[6] テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸と溶剤とを含有し、前記ジアミンは側鎖構造を有するジアミンを含むことを特徴とする液晶配向剤。 [6] A reaction product of tetracarboxylic dianhydride and diamine, containing a polyamic acid containing an azo group in the main chain and a solvent, wherein the diamine contains a diamine having a side chain structure. Liquid crystal aligning agent.

[7] 前記ポリアミック酸は、側鎖構造を有さないテトラカルボン酸二無水物と、二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンと、側鎖構造を有するジアミンとの反応生成物であり、前記側鎖構造を有するジアミンは前記ジアミンの全量に対して7〜90モル%の範囲で含まれることを特徴とする[6]記載の液晶配向剤。 [7] The polyamic acid includes a tetracarboxylic dianhydride having no side chain structure, a diamine having an azo group between two amino groups and having no side chain structure, and a diamine having a side chain structure. The liquid crystal aligning agent according to [6], wherein the diamine having the side chain structure is contained in an amount of 7 to 90 mol% based on the total amount of the diamine.

[8] 対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方又は両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記一対の基板それぞれの対向している面に形成された液晶配向膜の一方又は両方が、[1]〜[5]のいずれか一項に記載の液晶配向膜であることを特徴とする液晶表示素子。 [8] A pair of substrates disposed opposite to each other, an electrode formed on one or both of the surfaces facing each other of the pair of substrates, and a surface facing each of the pair of substrates. In the liquid crystal display element having the liquid crystal alignment film and the liquid crystal layer formed between the pair of substrates, one or both of the liquid crystal alignment films formed on the opposing surfaces of the pair of substrates are [ A liquid crystal display element, which is the liquid crystal alignment film according to any one of 1] to [5].

[9] テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸の膜に光を照射して膜中のポリアミック酸を配向させる工程と、前記膜中で配向したポリアミック酸をイミド化する工程とを含み、前記ポリアミック酸をイミド化してなる液晶配向膜を製造する方法であって、前記テトラカルボン酸二無水物及び前記ジ
アミンの少なくともいずれかには側鎖構造を有する化合物を用い、膜中のポリアミック酸を配向させる工程は、
(A)前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光を前記膜に照射して膜中のポリアミック酸を膜の表面に対して垂直な方向から見たときに所定の方向に配向させる操作と、前記ポリアミック酸の膜の表面に対して斜めの方向から光を照射して、前記膜の表面に対して斜めの方向に前記ポリアミック酸を配向させる操作とを含むか、又は
(B)前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光を前記膜の表面に対して斜めの方向から前記膜に照射して、膜中のポリアミック酸を、膜の表面に対して垂直な方向から見たときに所定の方向に配向させ、かつ前記膜の表面に対して斜めの方向に配向させる操作を含むことを特徴とする方法。
[9] A step of irradiating a film of polyamic acid, which is a reaction product of tetracarboxylic dianhydride and diamine and containing an azo group in the main chain, to orient the polyamic acid in the film; A process for producing a liquid crystal alignment film obtained by imidizing the polyamic acid, wherein at least one of the tetracarboxylic dianhydride and the diamine includes a side chain. The step of orienting the polyamic acid in the film using a compound having a structure,
(A) When the film is irradiated with light that changes the geometric isomer of the azo group from an anti isomer to a syn isomer and the polyamic acid in the film is viewed from a direction perpendicular to the surface of the film, Or an operation of orienting in a direction and irradiating light from a direction oblique to the surface of the polyamic acid film to orient the polyamic acid in a direction oblique to the surface of the film, Or (B) irradiating the film with light that changes the geometric isomer of the azo group from an anti isomer to a syn isomer from an oblique direction with respect to the surface of the film, and the polyamic acid in the film is A method comprising aligning in a predetermined direction when viewed from a direction perpendicular to the surface and aligning in an oblique direction with respect to the surface of the film.

本発明によれば、発塵や静電気の問題が少なくプレチルト角の制御が容易な液晶表示素子を提供することが可能になると共に、それを可能にした液晶配向膜及び該液晶配向膜を形成することができる液晶配向剤を提供することが可能となる。   According to the present invention, it is possible to provide a liquid crystal display element with less dust generation and static electricity problems and easy control of the pretilt angle, and to form a liquid crystal alignment film and the liquid crystal alignment film that make it possible. It is possible to provide a liquid crystal aligning agent that can be used.

本発明は、偏光成分を制御した光等の特定の光を液晶配向剤の膜に照射して配向処理を施すことで任意の液晶のプレチルト角を誘起することができ、この液晶配向膜を用いることにより工業的に安定した液晶表示素子を実現するものである。   The present invention can induce a pretilt angle of an arbitrary liquid crystal by irradiating a liquid crystal aligning agent film with specific light such as light having a controlled polarization component to perform alignment treatment, and uses this liquid crystal aligning film. Thus, an industrially stable liquid crystal display element is realized.

本発明における液晶配向膜は、ポリアミック酸膜に対して光を照射することによって所定の方向に配向したポリアミック酸をイミド化して得られる。   The liquid crystal alignment film in the present invention is obtained by imidizing a polyamic acid aligned in a predetermined direction by irradiating light to the polyamic acid film.

前記ポリアミック酸は、テトラカルボン酸二無水物とジアミンとの反応生成物であるポリアミック酸(polyamic acid)とその誘導体を含む。前記ポリアミック酸とは、後述する液晶配向剤において溶剤に溶解した形態であり、後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。本発明における前記ポリアミック酸に含まれるポリアミック酸の誘導体としては、例えば可溶性ポリイミド、ポリアミック酸エステル、及びポリアミック酸アミド等が挙げられる。より具体的には1)ポリアミック酸の全てのアミノ基とカルボキシル基とが脱水閉環反応したポリイミド、2)部分的に脱水閉環反応した部分ポリイミド、3)テトラカルボン酸二無水物の一部を有機ジカルボン酸に置き換えて反応させて得られたポリアミック酸−ポリアミド共重合体、さらに4)該ポリアミック酸−ポリアミド共重合体の一部もしくは全部を脱水閉環反応させたポリアミドイミドを含む。   The polyamic acid includes polyamic acid, which is a reaction product of tetracarboxylic dianhydride and diamine, and derivatives thereof. The polyamic acid is a component dissolved in a solvent in a liquid crystal aligning agent described later, and is a component capable of forming a liquid crystal aligning film containing polyimide as a main component when a liquid crystal aligning film described later is used. Examples of the derivative of polyamic acid contained in the polyamic acid in the present invention include soluble polyimide, polyamic acid ester, and polyamic acid amide. More specifically, 1) a polyimide in which all amino groups and carboxyl groups of polyamic acid are subjected to a dehydration ring-closing reaction, 2) a partial polyimide in which a partial dehydration ring-closing reaction is performed, and 3) a part of tetracarboxylic dianhydride is organic A polyamic acid-polyamide copolymer obtained by reacting with a dicarboxylic acid, and 4) a polyamideimide obtained by subjecting a part or all of the polyamic acid-polyamide copolymer to a dehydration ring-closing reaction.

前記ポリアミック酸は主鎖にアゾ基を含む。主鎖にアゾ基を含むポリアミック酸は、二つの酸無水物基又は二つのアミノを結ぶ分子構造のうち、分岐している分子構造を除く分子構造を酸又はジアミンの主鎖としたときに、この酸又はジアミンの主鎖にアゾ基を含むテトラカルボン酸二無水物又はジアミン、又はこれらの両方を原料として用いることによって得られる。アゾ基は、テトラカルボン酸二無水物とジアミンとの両方に含まれていても良いが、一方のみに含まれていても良い。   The polyamic acid contains an azo group in the main chain. When the polyamic acid containing an azo group in the main chain is a molecular structure that connects two acid anhydride groups or two amino groups, except for a branched molecular structure, the main chain of the acid or diamine, This acid or diamine can be obtained by using a tetracarboxylic dianhydride or diamine containing an azo group in the main chain of the acid or diamine, or both as raw materials. The azo group may be contained in both tetracarboxylic dianhydride and diamine, but may be contained in only one of them.

前記テトラカルボン酸二無水物及び前記ジアミンの少なくともいずれかは、側鎖構造を有する。側鎖構造を有するテトラカルボン酸二無水物は、前記酸の主鎖から分岐する分子構造を有する。側鎖構造を有するジアミンは、このアミンの主鎖から分岐する分子構造を有する。テトラカルボン酸二無水物及びジアミンの少なくとも一方が側鎖構造を有することは、これらのテトラカルボン酸二無水物とジアミンとが反応することで、高分子主鎖に対して側鎖構造を有するポリアミック酸(分岐ポリアミック酸)を提供することができる
。側鎖構造を有するポリアミック酸を含む液晶配向剤から形成される液晶配向膜は、液晶表示素子におけるプレチルト角を大きくすることができる。
At least one of the tetracarboxylic dianhydride and the diamine has a side chain structure. The tetracarboxylic dianhydride having a side chain structure has a molecular structure branched from the main chain of the acid. A diamine having a side chain structure has a molecular structure branched from the main chain of the amine. The fact that at least one of tetracarboxylic dianhydride and diamine has a side chain structure means that these tetracarboxylic dianhydrides and diamine react to form a polyamic having a side chain structure with respect to the polymer main chain. An acid (branched polyamic acid) can be provided. A liquid crystal alignment film formed from a liquid crystal alignment agent containing a polyamic acid having a side chain structure can increase the pretilt angle in the liquid crystal display element.

前記側鎖構造には、例えば炭素数3以上の基が挙げられる。より具体的には、
1)置換基を有していてもよいフェニル、置換基を有していてもよいシクロヘキシルフェニレン、置換基を有していてもよいビス(シクロヘキシル)フェニレン、又は炭素数3以上のアルキル、アルケニルもしくはアルキニル、
2)置換基を有していてもよいフェニルオキシ、置換基を有していてもよいシクロヘキシルオキシ、置換基を有していてもよいビス(シクロヘキシル)オキシ、置換基を有していてもよいフェニルシクロヘキシルオキシ、置換基を有していてもよいシクロヘキシルフェニルオキシ、又は炭素数3以上のアルキルオキシ、アルケニルオキシもしくはアルキニルオキシ、
3)フェニルカルボニル、又は炭素数3以上のアルキルカルボニル、アルケニルカルボニルもしくはアルキニルカルボニル、
4)フェニルカルボニルオキシ、又は炭素数3以上のアルキルカルボニルオキシ、アルケニルカルボニルオキシもしくはアルキニルカルボニルオキシ、
5)置換基を有していてもよいフェニルオキシカルボニル、置換基を有していてもよいシクロヘキシルオキシカルボニル、置換基を有していてもよいビス(シクロヘキシル)オキシカルボニル、置換基を有していてもよいビス(シクロヘキシル)フェニルオキシカルボニル、置換基を有していてもよいシクロヘキシルビス(フェニル)オキシカルボニル、又は炭素数3以上のアルキルオキシカルボニル、アルケニルオキシカルボニルもしくはアルキニルオキシカルボニル、
6)フェニルアミノカルボニル、又は炭素数3以上のアルキルアミノカルボニル、アルケニルアミノカルボニルもしくはアルキニルアミノカルボニル、
7)炭素数3以上の環状アルキレン、
8)置換基を有していてもよいシクロヘキシルアルキレン、置換基を有していてもよいフェニルアルキレン、置換基を有していてもよいビス(シクロヘキシル)アルキレン、置換基を有していてもよいシクロヘキシルフェニルアルキレン、置換基を有していてもよいビス(シクロヘキシル)フェニルアルキレン、置換基を有していてもよいフェニルアルキルオキシ、アルキルフェニルオキシカルボニル、又はアルキルビフェニリルオキシカルボニル、
9)アルキル、フッ素置換アルキル、又はアルコキシによって置換されたフェニル又はシクロヘキシル、及び、
10)2個以上のベンゼン環又はシクロヘキサン環が単結合し、又は、−O−、−COO−、−OCO−、−CONH−若しくは炭素数1〜3のアルキレンを介して結合した、アルキル、フッ素置換アルキル、又はアルコキシによって置換された環集合基等が挙げられるが、これに限定されない。
Examples of the side chain structure include groups having 3 or more carbon atoms. More specifically,
1) phenyl which may have a substituent, cyclohexylphenylene which may have a substituent, bis (cyclohexyl) phenylene which may have a substituent, alkyl having 3 or more carbon atoms, alkenyl or Alkynyl,
2) phenyloxy which may have a substituent, cyclohexyloxy which may have a substituent, bis (cyclohexyl) oxy which may have a substituent, which may have a substituent Phenylcyclohexyloxy, optionally substituted cyclohexylphenyloxy, or alkyloxy, alkenyloxy or alkynyloxy having 3 or more carbon atoms,
3) Phenylcarbonyl, or alkylcarbonyl, alkenylcarbonyl or alkynylcarbonyl having 3 or more carbon atoms,
4) Phenylcarbonyloxy, or alkylcarbonyloxy, alkenylcarbonyloxy or alkynylcarbonyloxy having 3 or more carbon atoms,
5) phenyloxycarbonyl which may have a substituent, cyclohexyloxycarbonyl which may have a substituent, bis (cyclohexyl) oxycarbonyl which may have a substituent, which has a substituent Bis (cyclohexyl) phenyloxycarbonyl which may be substituted, cyclohexylbis (phenyl) oxycarbonyl which may have a substituent, or alkyloxycarbonyl having 3 or more carbon atoms, alkenyloxycarbonyl or alkynyloxycarbonyl,
6) phenylaminocarbonyl, or alkylaminocarbonyl having 3 or more carbon atoms, alkenylaminocarbonyl or alkynylaminocarbonyl,
7) Cyclic alkylene having 3 or more carbon atoms,
8) Cycloalkylalkylene which may have a substituent, phenylalkylene which may have a substituent, bis (cyclohexyl) alkylene which may have a substituent, which may have a substituent Cyclohexyl phenylalkylene, optionally substituted bis (cyclohexyl) phenylalkylene, optionally substituted phenylalkyloxy, alkylphenyloxycarbonyl, or alkylbiphenylyloxycarbonyl,
9) phenyl or cyclohexyl substituted by alkyl, fluorine-substituted alkyl, or alkoxy, and
10) Alkyl or fluorine in which two or more benzene rings or cyclohexane rings are bonded by a single bond, or bonded through —O—, —COO—, —OCO—, —CONH—, or alkylene having 1 to 3 carbon atoms. Examples thereof include, but are not limited to, substituted alkyl or a ring assembly group substituted by alkoxy.

ここで、「置換基」としては、アルキル、アルコキシ、又はアルコキシアルキル等を挙げることができる。     Here, examples of the “substituent” include alkyl, alkoxy, alkoxyalkyl and the like.

また、ビス(シクロヘキシル)、又はビス(フェニル)は、アルキレンによって中断されていてもよい。   Moreover, bis (cyclohexyl) or bis (phenyl) may be interrupted by alkylene.

なお、本明細書において、「アルキル」、「アルケニル」、「アルキニル」というときは、線状でもよいし、枝分かれでもよい。   In the present specification, the terms “alkyl”, “alkenyl”, and “alkynyl” may be linear or branched.

前記テトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。ポリアミック酸は、液晶表
示素子の電気特性の低下原因となりやすいエステルやエーテル結合等の酸素や硫黄を含まない構造のものが好ましい。したがって、テトラカルボン酸二無水物も酸素や硫黄を含まない構造のものが好ましい。しかし、そのような構造を有していても電気特性に悪影響を与えない範囲内の量であれば何ら問題とはならない。
The tetracarboxylic dianhydride includes an aromatic system (including a heteroaromatic ring system) in which a dicarboxylic acid anhydride is directly bonded to an aromatic ring, and an aliphatic system (complexed in which a dicarboxylic acid anhydride is not directly bonded to an aromatic ring. (Including a ring system). The polyamic acid preferably has a structure that does not contain oxygen or sulfur such as an ester or an ether bond that tends to cause a decrease in the electrical characteristics of the liquid crystal display element. Therefore, the tetracarboxylic dianhydride preferably has a structure containing no oxygen or sulfur. However, even if it has such a structure, there is no problem as long as the amount is within a range that does not adversely affect the electrical characteristics.

本発明で用いることのできるテトラカルボン酸二無水物の具体例は以下のとおりである。 Specific examples of the tetracarboxylic dianhydride that can be used in the present invention are as follows.

Figure 2007248637
Figure 2007248637
Figure 2007248637
Figure 2007248637
Figure 2007248637
Figure 2007248637

式1−1〜1−38の中で、式1−1、式1−2、式1−7、式1−13、式1−17、式1−18、式1−19、式1−20、式1−27、式1−28、及び式1−29で表されるテトラカルボン酸二無水物が好ましい。さらに好ましくは式1−1、式1−7、式1−13、式1−17、式1−19、式1−20、及び式1−29で表されるテトラカルボン酸二無水物である。   Among formulas 1-1 to 1-38, formula 1-1, formula 1-2, formula 1-7, formula 1-13, formula 1-17, formula 1-18, formula 1-19, formula 1-19 20, tetracarboxylic dianhydrides represented by Formula 1-27, Formula 1-28, and Formula 1-29 are preferred. More preferred are tetracarboxylic dianhydrides represented by formula 1-1, formula 1-7, formula 1-13, formula 1-17, formula 1-19, formula 1-20, and formula 1-29. .

前記テトラカルボン酸二無水物はこれらに限定されることなく、本発明の目的が達成される範囲内で他にも種々の分子構造の化合物が存在することは言うまでもない。また、これらのテトラカルボン酸二無水物は単独で、又は二種以上を組み合わせて用いることもできる。   Needless to say, the tetracarboxylic dianhydride is not limited to these, and other compounds having various molecular structures exist within the scope of achieving the object of the present invention. Moreover, these tetracarboxylic dianhydrides can also be used individually or in combination of 2 or more types.

前記ジアミンには、光異性化反応をする構造としてのアゾ基を有するジアミン、側鎖構造を有するジアミン、及び側鎖構造を有さないジアミンが含まれ得る。本発明ではこれらのジアミンを併用する事が可能である。   The diamine may include a diamine having an azo group as a structure that undergoes a photoisomerization reaction, a diamine having a side chain structure, and a diamine having no side chain structure. In the present invention, these diamines can be used in combination.

アゾ基を有するジアミンには、アミンの主鎖にアゾ基を含む種々のジアミンの一種又は二種以上を用いることができる。特に好ましくは、下記式(3)で表されるジアミンが挙げられる。   As the diamine having an azo group, one or more of various diamines containing an azo group in the main chain of the amine can be used. Particularly preferred is a diamine represented by the following formula (3).

Figure 2007248637
Figure 2007248637

側鎖構造を有するジアミンには、アミンの主鎖から分岐する側鎖構造を有する種々のジアミンの一種又は二種以上を用いることができる。側鎖構造を有するジアミンには、配向安定性、プレチルト角等の諸特性をバランス良く発現させる観点から、好ましくは、一般式(I)で表されるジアミンが挙げられる。   As the diamine having a side chain structure, one or more of various diamines having a side chain structure branched from the main chain of the amine can be used. The diamine having a side chain structure is preferably a diamine represented by the general formula (I) from the viewpoint of expressing various properties such as orientation stability and pretilt angle in a balanced manner.

Figure 2007248637
Figure 2007248637

前記一般式(I)において、2つのアミノ基はフェニル環炭素に結合しているが、好ましくは、2つのアミノ基の結合位置関係は、メタ又はパラであることが好ましい。さらに2つのアミノ基はそれぞれ、「R−R−」の結合位置を1位としたときに3位と5位、又は2位と5位に結合していることが好ましい。 In the general formula (I), the two amino groups are bonded to the phenyl ring carbon. Preferably, the bonding positional relationship between the two amino groups is meta or para. Further, each of the two amino groups is preferably bonded to the 3rd and 5th positions or the 2nd and 5th positions when the bonding position of “R 2 —R 1 —” is the 1st position.

前記一般式(I)中、Rは、単結合、−O−、−COO−、−OCO−、−CO−、−CONH−又は−(CH−であり、ここでmは1〜6の整数であり、Rは、ステロイド骨格を有する基、下記一般式(II)で表される基、又はベンゼン環に結合している2つのアミノ基の位置関係がパラのときは炭素数1〜20のアルキル、もしくは該位置関係がメタのときは炭素数1〜10のアルキル又はフェニルであり、該アルキルにおいては、独立して、任意の−CH−が−CF−、−CHF−、−O−、−CH=CH−又は−C≡C−で置き換えられていてもよく、−CHが−CHF、−CHF又は−CFで置き換えられていてもよく、該フェニルの環形成炭素に結合している水素は、独立して−F、−CH、−OCH、−OCHF、−OCHF又は−OCFと置き換えられていてもよい。 In the general formula (I), R 1 is a single bond, —O—, —COO—, —OCO—, —CO—, —CONH— or — (CH 2 ) m —, where m is 1 R 2 is an integer of -6, R 2 is a group having a steroid skeleton, a group represented by the following general formula (II), or carbon when the positional relationship between two amino groups bonded to the benzene ring is para When the positional relationship is meta, it is alkyl having 1 to 10 carbons or phenyl, and in the alkyl, any —CH 2 — is independently —CF 2 —, — CHF -, - O -, - CH = CH- or -C≡C- may be replaced by, may be -CH 3 is replaced by -CH 2 F, -CHF 2 or -CF 3, The hydrogen bonded to the ring-forming carbon of the phenyl is independently -F, -CH 3 , —OCH 3 , —OCH 2 F, —OCHF 2, or —OCF 3 may be substituted.

Figure 2007248637
Figure 2007248637

前記一般式(II)中、A及びAはそれぞれ独立して、単結合、−O−、−COO
−、−OCO−、−CONH−、−CH=CH−又は炭素数1〜20のアルキレンであり、R及びRはそれぞれ独立して、−F又は−CHであり、環Sは1,4−フェニレン、1,4−シクロヘキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,7−ジイル又はアントラセン−9,10−ジイルであり、Rは−H、−F、炭素数1〜20のアルキル、炭素数1〜20のフッ素置換アルキル、炭素数1〜20のアルコキシ、−CN、−OCHF、−OCHF又は−OCFであり、a及びbはそれぞれ独立して0〜4の整数を表し、a又はbが2〜4であるとき隣り合うA又はAは異なる基であり、c、d及びeはそれぞれ独立して0〜3の整数を表し、eが2又は3であるとき複数の環Sは同一の基であっても異なる基であってもよく、f及びgはそれぞれ独立して0〜2の整数を表し、かつc+d+e≧1である。
In the general formula (II), A 1 and A 2 are each independently a single bond, —O—, —COO.
-, -OCO-, -CONH-, -CH = CH-, or alkylene having 1 to 20 carbon atoms, R 3 and R 4 are each independently -F or -CH 3 , and ring S is 1 , 4-phenylene, 1,4-cyclohexylene, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, naphthalene-1,5-diyl, naphthalene- 2,7-diyl or anthracene-9,10-diyl, R 5 is —H, —F, alkyl having 1 to 20 carbons, fluorine-substituted alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons , —CN, —OCH 2 F, —OCHF 2 or —OCF 3 , a and b each independently represent an integer of 0 to 4, and when a or b is 2 to 4, adjacent A 1 or A 2 is a different group, c, d and e independently represents an integer of 0 to 3, and when e is 2 or 3, the plurality of rings S may be the same group or different groups, and f and g are each independently It represents an integer of 0 to 2 and c + d + e ≧ 1.

一般式(I)で表されるジアミンとしては、例えば式(I−1)〜(I−11)で表されるジアミンが挙げられる。   Examples of the diamine represented by the general formula (I) include diamines represented by the formulas (I-1) to (I-11).

Figure 2007248637
Figure 2007248637

式中、R19は炭素数3〜12のアルキル又は炭素数3〜12のアルコキシが好ましく、炭素数5〜12のアルキル又は炭素数5〜12のアルコキシがさらに好ましい。また、R20は炭素数1〜10のアルキル又は炭素数1〜10のアルコキシが好ましく、炭素数3〜10のアルキル又は炭素数3〜10のアルコキシがさらに好ましい。 In the formula, R 19 is preferably alkyl having 3 to 12 carbons or alkoxy having 3 to 12 carbons, more preferably alkyl having 5 to 12 carbons or alkoxy having 5 to 12 carbons. R 20 is preferably alkyl having 1 to 10 carbons or alkoxy having 1 to 10 carbons, more preferably alkyl having 3 to 10 carbons or alkoxy having 3 to 10 carbons.

これらのうち、より好ましくは、式(I−2)、式(I−4)、式(I−5)、式(I−6)で表されるジアミンが挙げられる。   Of these, diamines represented by formula (I-2), formula (I-4), formula (I-5), and formula (I-6) are more preferable.

本発明のジアミンは前記一般式(I)で表されるジアミンを単独で含んでいてもよく、二種以上を含んでいてもよい。   The diamine of the present invention may contain the diamine represented by the general formula (I) alone, or may contain two or more kinds.

さらに、本発明の目的を損なわない限り、前記一般式(I)で表されるジアミン以外の側鎖構造を有するジアミンを用いることができる。このような、側鎖構造を有するジアミンとしては、例えば式(I’−1)〜(I’−20)で表されるジアミンが挙げられる。   Furthermore, as long as the object of the present invention is not impaired, a diamine having a side chain structure other than the diamine represented by the general formula (I) can be used. Examples of such a diamine having a side chain structure include diamines represented by formulas (I′-1) to (I′-20).

Figure 2007248637
Figure 2007248637

式(I’−1)〜(I’−3)においてR21は炭素数4〜16のアルキルが好ましく、炭素数6〜16のアルキルがさらに好ましい。式(I’−4)においてR22は炭素数6〜20のアルキルが好ましく、炭素数8〜20のアルキルがさらに好ましい。 In the formulas (I′-1) to (I′-3), R 21 is preferably alkyl having 4 to 16 carbons, and more preferably alkyl having 6 to 16 carbons. In the formula (I′-4), R 22 is preferably an alkyl having 6 to 20 carbon atoms, more preferably an alkyl having 8 to 20 carbon atoms.

Figure 2007248637
Figure 2007248637

式中、R23は炭素数3〜12のアルキル又は炭素数3〜12のアルコキシが好ましく、炭素数5〜12のアルキル又は炭素数5〜12のアルコキシがさらに好ましい。R24は炭素数1〜10のアルキル又は炭素数1から10のアルコキシが好ましく、炭素数3〜10のアルキル又は炭素数3〜10のアルコキシがさらに好ましい。 In the formula, R 23 is preferably alkyl having 3 to 12 carbons or alkoxy having 3 to 12 carbons, more preferably alkyl having 5 to 12 carbons or alkoxy having 5 to 12 carbons. R 24 is preferably an alkoxy having 1 to 10 several alkyl or C 1 to 10 carbon atoms, more preferably an alkoxy alkyl or 3 to 10 carbon atoms having 3 to 10 carbon atoms.

Figure 2007248637
Figure 2007248637

側鎖構造を有さないジアミンには、アミンの主鎖から分岐する側鎖構造を有さずアミンの主鎖中のアゾ基を含まない種々のジアミンの一種又は二種以上を用いることができる。側鎖構造を有さないジアミンには、好ましくは、下記のジアミンが挙げられる。   As the diamine having no side chain structure, one or more of various diamines that do not have a side chain structure branched from the main chain of the amine and do not contain an azo group in the main chain of the amine can be used. . Preferably, the diamine having no side chain structure includes the following diamines.

例えば側鎖構造を有さないジアミンとしては、式(III−1)、(III−2)で表されるジアミンが挙げられる。   For example, examples of the diamine having no side chain structure include diamines represented by formulas (III-1) and (III-2).

Figure 2007248637
Figure 2007248637

また例えば側鎖構造を有さないジアミンとしては、式(IV−1)〜(IV−3)で表されるジアミンが挙げられる。   Examples of the diamine having no side chain structure include diamines represented by formulas (IV-1) to (IV-3).

Figure 2007248637
Figure 2007248637

また例えば側鎖構造を有さないジアミンとしては、式(V−1)〜(V−7)で表されるジアミンが挙げられる。   Examples of the diamine having no side chain structure include diamines represented by formulas (V-1) to (V-7).

Figure 2007248637
Figure 2007248637

また例えば側鎖構造を有さないジアミンとしては、式(VI−1)〜(VI−30)で表されるジアミンが挙げられる。   Examples of the diamine having no side chain structure include diamines represented by formulas (VI-1) to (VI-30).

Figure 2007248637
Figure 2007248637
Figure 2007248637
Figure 2007248637

また例えば側鎖構造を有さないジアミンとしては、式(VII−1)〜(VII−6)で表されるジアミンが挙げられる。   Examples of the diamine having no side chain structure include diamines represented by formulas (VII-1) to (VII-6).

Figure 2007248637
Figure 2007248637

また例えば側鎖構造を有さないジアミンとしては、式(VIII−1)〜(VIII−11)で表されるジアミンが挙げられる。   Examples of the diamine having no side chain structure include diamines represented by formulas (VIII-1) to (VIII-11).

Figure 2007248637
Figure 2007248637

これらのうち、側鎖構造を有さないジアミンとしてより好ましくは、式(V−1)〜(V−7)、式(VI−1)〜(VI−12)、式(VI−26)、式(VI−27)、式(VII−1)、式(VII−2)、式(VII−6)、式(VIII−1)〜(VIII−5)で表されるジアミンが挙げられ、最も好ましくは式(V−6)、式(V−7)、式(VI−1)〜(VI−12)で表されるジアミンが挙げられる。   Of these, diamines having no side chain structure are more preferably formulas (V-1) to (V-7), formulas (VI-1) to (VI-12), formula (VI-26), Examples include diamines represented by formula (VI-27), formula (VII-1), formula (VII-2), formula (VII-6), and formulas (VIII-1) to (VIII-5). Preferable examples include diamines represented by formula (V-6), formula (V-7), and formulas (VI-1) to (VI-12).

さらに、本発明で用いることのできる、上記のジアミンと併用することができるその他のジアミンとして、シロキサン結合を有するシロキサン系ジアミンを挙げることができる。該シロキサン系ジアミンは特に限定されるものではないが、一般式(4)で表されるものが本発明において好ましく使用することができる。   Furthermore, the siloxane type diamine which has a siloxane bond can be mentioned as another diamine which can be used with this invention and can be used together with said diamine. Although this siloxane type diamine is not specifically limited, What is represented by General formula (4) can be preferably used in this invention.

Figure 2007248637
Figure 2007248637

一般式(4)中、R及びRは独立して炭素数1〜3のアルキル又はフェニルであり、Rはメチレン、フェニレン又はアルキル置換されたフェニレンである。xは1〜6の整数であり、yは1〜10の整数である。 In the general formula (4), R 6 and R 7 are each independently alkyl or phenyl having 1 to 3 carbon atoms, and R 8 is methylene, phenylene or alkyl-substituted phenylene. x is an integer of 1-6, and y is an integer of 1-10.

本発明で用いることのできるジアミンはこれらに限定されることなく、本発明の目的が達成される範囲内で他にも種々の分子構造の化合物が存在することはいうまでもない。また、これらのジアミンは単独で、又は二種以上を組み合わせて用いることができる。   The diamine that can be used in the present invention is not limited to these, and it goes without saying that other compounds having various molecular structures exist within the range in which the object of the present invention is achieved. These diamines can be used alone or in combination of two or more.

一方、本発明で用いることのできるジアミンについても前述したテトラカルボン酸二無水物と同様に、芳香環に直接アミノ基が結合した芳香族系(複素芳香環系を含む)、芳香環に直接アミノ基が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。中でも環構造を有する芳香族及び環構造を有する脂肪族のジアミンは、液晶の配向性を良好に保つため好ましい。さらに、液晶表示素子の電気特性の低下原因となりやすいエステルやエーテル結合等の酸素や硫黄を含まない構造のものが好ましい。しかし、そのような構造を有していても電気特性に悪影響を与えない範囲内の量であれば何ら問題とはならない。   On the other hand, diamines that can be used in the present invention are also aromatic systems (including heteroaromatic ring systems) in which an amino group is directly bonded to an aromatic ring, as well as the tetracarboxylic dianhydrides described above. It may belong to any group of an aliphatic system (including a heterocyclic system) to which no group is bonded. Among them, aromatic diamines having a ring structure and aliphatic diamines having a ring structure are preferable because the orientation of liquid crystals is kept good. Furthermore, the thing of the structure which does not contain oxygen and sulfur, such as an ester and an ether bond which tends to cause the electrical characteristic of a liquid crystal display element to fall is preferable. However, even if it has such a structure, there is no problem as long as the amount is within a range that does not adversely affect the electrical characteristics.

さらに、これらのテトラカルボン酸二無水物及びジアミン以外にポリアミック酸の反応末端を形成する、モノアミン、又は/及びモノカルボン酸無水物を併用することも可能である。基板への密着性をよくするために、アミノシリコーン化合物を導入することもできる。   Furthermore, in addition to these tetracarboxylic dianhydrides and diamines, monoamines and / or monocarboxylic anhydrides that form reaction ends of polyamic acids can be used in combination. In order to improve the adhesion to the substrate, an aminosilicone compound can be introduced.

アミノシリコーン化合物には、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン等が挙げられる。   Examples of aminosilicone compounds include paraaminophenyltrimethoxysilane, paraaminophenyltriethoxysilane, metaaminophenyltrimethoxysilane, metaaminophenyltriethoxysilane, aminopropyltrimethoxysilane, and aminopropyltriethoxysilane.

側鎖構造を有するジアミンと側鎖構造を有さないジアミンとの割合は、電気特性やプレチルト角に合わせて任意に選定できる。全ジアミンに対する側鎖構造を有するジアミンの割合が7〜90モル%の範囲であることが好ましく、10〜70モル%であることがより好ましい。該側鎖構造を有するジアミンの割合が、7モル%以上で良好な液晶のプレチルト角が得られ、90モル%以下でポリイミド主鎖の良好な配向が得られる。   The ratio of the diamine having a side chain structure to the diamine having no side chain structure can be arbitrarily selected according to the electrical characteristics and the pretilt angle. The ratio of the diamine having a side chain structure to the total diamine is preferably in the range of 7 to 90 mol%, more preferably 10 to 70 mol%. When the ratio of the diamine having the side chain structure is 7 mol% or more, a good liquid crystal pretilt angle is obtained, and when the ratio is 90 mol% or less, a good orientation of the polyimide main chain is obtained.

本発明における液晶配向膜は、下記式1で求められる液晶配向膜におけるポリイミドの主鎖の配向指数Δが0.03〜1.00の範囲である。   In the liquid crystal alignment film of the present invention, the orientation index Δ of the main chain of the polyimide in the liquid crystal alignment film obtained by the following formula 1 is in the range of 0.03 to 1.00.

ポリイミド主鎖の配向(Δ)は、偏光赤外光を用いた赤外線吸収分光法により評価することができる。この方法は、試料に直交する2つの直線偏光赤外光を入射したときの赤外線吸収量が分子配向方位によって違うという赤外二色性を検出して、分子配向を評価するものである。   The orientation (Δ) of the polyimide main chain can be evaluated by infrared absorption spectroscopy using polarized infrared light. This method evaluates the molecular orientation by detecting infrared dichroism that the amount of infrared absorption when two linearly polarized infrared rays orthogonal to the sample are incident differs depending on the molecular orientation.

すなわち、赤外線分光光度計(好ましくはFT−IR)の光源とポリイミド液晶配向膜
を有する試料を保持する試料ホルダーとの間に偏光子を配置し、液晶配向膜の表面に平行な方向へのポリイミドの主鎖の平均配向方向が偏光子の偏光方向と平行になるようにかつ、赤外光が試料表面に対して垂直に入射するようにして試料ホルダーに前記試料を固定し、赤外吸光度を測定する。次に、試料を試料ホルダーに固定した状態で偏光子を90度回転させて、偏光子を通過した赤外光の偏光方向が液晶配向膜の表面に平行な方向へのポリイミドの主鎖の平均配向方向と垂直になるようにして赤外吸光度を測定する。このようにして得られた赤外吸光度において、ポリイミド主鎖の分子軸に平行に分極した分子振動に起因する吸収バンドのピーク値又は積分値からΔが算出される。
That is, a polarizer is disposed between a light source of an infrared spectrophotometer (preferably FT-IR) and a sample holder holding a sample having a polyimide liquid crystal alignment film, and polyimide in a direction parallel to the surface of the liquid crystal alignment film The sample is fixed to the sample holder so that the average orientation direction of the main chain is parallel to the polarization direction of the polarizer and the infrared light is incident perpendicular to the sample surface, and the infrared absorbance is measured. taking measurement. Next, the polarizer is rotated 90 degrees with the sample fixed to the sample holder, and the average of the main chain of polyimide in the direction in which the polarization direction of the infrared light passing through the polarizer is parallel to the surface of the liquid crystal alignment film The infrared absorbance is measured so as to be perpendicular to the orientation direction. In the infrared absorbance thus obtained, Δ is calculated from the peak value or integral value of the absorption band caused by molecular vibration polarized parallel to the molecular axis of the polyimide main chain.

なお、この方法では、シリコンやフッ化カルシウム(ホタル石:CaF)等赤外光が透過する基板上に作製された試料が用いられる。 In this method, a sample made on a substrate that transmits infrared light, such as silicon or calcium fluoride (fluorite: CaF 2 ), is used.

本発明において、ポリイミドの主鎖の平均配向方向とは、液晶配向膜の表面に対して垂直な方向から液晶配向膜を見たときにポリイミド主鎖が平均して配向している方向を言う。即ち、前述測定配置において偏光子を適宜回転して赤外吸光スペクトルを測定したとき、ポリイミド主鎖の分子軸に平行に分極した分子振動に起因する吸収バンドのピーク値又は積分値が最大を示すときの偏光子による偏光方向がポリイミドの主鎖の平均配向方向である。   In the present invention, the average orientation direction of the main chain of the polyimide refers to the direction in which the polyimide main chain is averaged when viewed from the direction perpendicular to the surface of the liquid crystal alignment film. That is, when the infrared absorption spectrum is measured by appropriately rotating the polarizer in the measurement arrangement described above, the peak value or integral value of the absorption band due to molecular vibration polarized parallel to the molecular axis of the polyimide main chain shows the maximum. The polarization direction by the polarizer is the average orientation direction of the main chain of the polyimide.

本発明におけるポリイミドの特性基振動数は、ポリイミドの強い赤外吸収ピークとして1360cm−1付近(イミド環のC−N−C伸縮振動)、1510cm−1付近(フェニルのC−C伸縮振動)及び1720cm−1付近(イミド基のC=O伸縮振動)等に現れる。どの赤外吸収ピークを用いてもよいが、分子振動によって生じる分極の方向がポリイミド主鎖に沿っていて、ポリイミド組成による赤外吸収ピークの変化が比較的少ない1360cm−1付近(イミド環のC−N−C伸縮振動)を特に好ましく用いることができる。さらに、赤外二色比は、液晶配向膜の膜厚により異なる場合があるので、膜厚の影響を除去した赤外二色差を用いてポリイミド主鎖の配向を評価する方が好ましい。 The characteristic base frequency of the polyimide in the present invention is 1360 cm −1 (C—N—C stretching vibration of imide ring), 1510 cm −1 (C—C stretching vibration of phenyl) as a strong infrared absorption peak of polyimide, and Appears in the vicinity of 1720 cm −1 (C═O stretching vibration of imide group). Any infrared absorption peak may be used, but the direction of polarization caused by molecular vibration is along the polyimide main chain, and the change of the infrared absorption peak due to the polyimide composition is relatively small (around 1360 cm −1. -N-C stretching vibration) can be used particularly preferably. Furthermore, since the infrared dichroic ratio may differ depending on the film thickness of the liquid crystal alignment film, it is preferable to evaluate the alignment of the polyimide main chain using the infrared dichroic difference from which the influence of the film thickness has been removed.

以上のことから、本発明においては1360cm−1付近(イミド環のC−N−C伸縮振動)の赤外二色差により液晶配向膜の配向の液晶配向膜の表面に平行な方向への異方性を評価する。なお、本発明における1360cm−1付近の吸光度とは、イミド環のC−N−C伸縮振動に帰属されるバンドの積分値(1330から1430cm−1)を示すものとする。さらに、膜厚の影響を補正するために液晶配向膜の膜厚、光配向処理に用いる光の波長での吸収係数αを測定する。 From the above, in the present invention, the anisotropic orientation of the liquid crystal alignment film in the direction parallel to the surface of the liquid crystal alignment film due to the infrared dichroism near 1360 cm −1 (C—N—C stretching vibration of the imide ring). Assess sex. Note that the absorbance around 1360 cm -1 in the present invention (from 1330 1430 cm -1) the integral value of the band attributed to a C-N-C stretching vibration of an imide ring as indicating. Further, in order to correct the influence of the film thickness, the film thickness of the liquid crystal alignment film and the absorption coefficient α at the wavelength of light used for the photo-alignment treatment are measured.

本発明においては、次式(1)で示される配向処理後の液晶配向膜の配向指数Δによりポリイミド主鎖の配向を評価した。
Δ=(|A‖−A⊥|)/(A‖+A⊥)×d/d’ (1)
In the present invention, the orientation of the polyimide main chain was evaluated by the orientation index Δ of the liquid crystal orientation film after the orientation treatment represented by the following formula (1).
Δ = (| A‖−A⊥ |) / (A‖ + A⊥) × d / d ′ (1)

式(1)中、A‖は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリイミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が平行になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表し、A⊥は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリイミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が垂直になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表す。dは液晶配向膜の膜厚を表す。d’は液晶配向膜の光配向処理された領域の実効膜厚を表す。 In Formula (1), A‖ represents polarized infrared light perpendicular to the surface of the liquid crystal alignment film, and the polarization direction of the infrared light is parallel to the average orientation direction of the main chain of polyimide. Represents the integrated absorbance due to C—N—C stretching vibration of the imide ring near the wave number of 1360 cm −1 when being incident on the liquid crystal alignment film, and A⊥ represents polarized infrared light on the surface of the liquid crystal alignment film. C of the imide ring near a wave number of 1360 cm −1 when incident on the liquid crystal alignment film so that the polarization direction of the infrared light is perpendicular to the average alignment direction of the main chain of the polyimide -Indicates the integrated absorbance due to N-C stretching vibration. d represents the film thickness of the liquid crystal alignment film. d ′ represents the effective film thickness of the region of the liquid crystal alignment film that has been subjected to photo-alignment treatment.

液晶配向膜の光配向処理される領域の実効膜厚d’は、次式(2)より求まる。
d’=(1/α)×γ (2)
The effective film thickness d ′ of the region of the liquid crystal alignment film that is subjected to the photo-alignment treatment is obtained from the following formula (2).
d ′ = (1 / α) × γ (2)

式(2)中、αは、光配向処理に用いる光の波長における、光配向処理していないポリアミック酸膜の吸収係数である。γはイミド化による液晶配向膜の厚さの補正係数で、イミド化前のポリアミック酸膜の膜厚をdPAAとするとd/dPAAで与えられる。dがd’より小さい場合はd’=dとする。なお、イミド化前のポリアミック酸膜の膜厚はエリプソメトリーや接触段差計などによって測定することができる。 In formula (2), α is the absorption coefficient of the polyamic acid film not subjected to photo-alignment treatment at the wavelength of light used for the photo-alignment treatment. γ is a correction coefficient for the thickness of the liquid crystal alignment film by imidization, and is given by d / d PAA where the film thickness of the polyamic acid film before imidization is d PAA . If d is smaller than d ′, d ′ = d. In addition, the film thickness of the polyamic acid film before imidation can be measured by ellipsometry or a contact step meter.

吸収係数αは、段差計又はエリプソメーター等によって測定した膜厚dPAAのポリアミック酸膜の紫外−可視光領域の透過スペクトルを、光配向処理前に紫外−可視分光光度計によって測定することにより決定される。光配向処理に用いる光の波長における、ポリアミック酸膜が塗布された基板の透過率をTsample、基板のみの透過率をTsubとすると吸収係数αは、次式(3)で与えられる。
α=(1/dPAA)×ln(Tsub/Tsample) (3)
The absorption coefficient α is determined by measuring the transmission spectrum in the ultraviolet-visible light region of the polyamic acid film having a film thickness d PAA measured by a step gauge or an ellipsometer by using an ultraviolet-visible spectrophotometer before the photo-alignment treatment. Is done. At the wavelength of the light used for optical alignment treatment, the transmittance T sample substrate polyamic acid film is applied, the α absorption coefficient and the transmissivity of the substrate only the T sub, is given by the following equation (3).
α = (1 / d PAA ) × ln (T sub / T sample ) (3)

本発明における液晶配向膜は、配向指数Δが0.03以上1.00以下の範囲のものであり、Δが0.10以上0.95以下であることが好ましく、Δが0.20以上0.90以下であることがより好ましい。配向指数Δが0.03以上であればポリイミドの主鎖の配向が充分であり、安定した液晶表示素子が得られる。   The liquid crystal alignment film of the present invention has an orientation index Δ in the range of 0.03 to 1.00, Δ is preferably 0.10 to 0.95, and Δ is 0.20 to 0. More preferably, it is 90 or less. When the orientation index Δ is 0.03 or more, the orientation of the main chain of the polyimide is sufficient, and a stable liquid crystal display element can be obtained.

本発明における液晶配向膜は、液晶表示素子を形成したときの液晶のプレチルト角が2〜90度の範囲である。前記プレチルト角は、3〜90度であることが好ましい。   In the liquid crystal alignment film in the present invention, the pretilt angle of the liquid crystal when the liquid crystal display element is formed is in the range of 2 to 90 degrees. The pretilt angle is preferably 3 to 90 degrees.

前記プレチルト角は、例えば中央精機製液晶特性評価装置OMS−CA3型を用いて、Journal of Applied Physics, Vol.48, No.5, p.1783−1792 (1977)に記載されているクリスタルローテーション法によって測定することができる。又は前記プレチルト角は、Mol. Cryst. Liq. Cryst. 241 (1994) 147.に記載されているクリスタルローテーション法によって測定することができる。   The pretilt angle can be determined by using, for example, Chuo Seiki liquid crystal characteristic evaluation apparatus OMS-CA3 type, Journal of Applied Physics, Vol. 48, no. 5, p. 1783-1792 (1977), and can be measured by the crystal rotation method. Alternatively, the pretilt angle can be measured by a crystal rotation method described in Mol. Cryst. Liq. Cryst. 241 (1994) 147.

本発明における液晶配向膜の膜厚は、膜の厚みの均一性と機械的、光学的、電気特性の観点から、通常5〜500nmである。液晶配向膜の膜厚は、5〜200nmであることが好ましく、5〜150nmであることがより好ましい。   The film thickness of the liquid crystal alignment film in the present invention is usually from 5 to 500 nm from the viewpoints of film thickness uniformity and mechanical, optical, and electrical characteristics. The film thickness of the liquid crystal alignment film is preferably 5 to 200 nm, more preferably 5 to 150 nm.

液晶配向膜の膜厚は、エリプソメトリーや接触式段差計によって測定することができる。また、液晶配向膜の膜厚は、液晶配向剤の濃度、粘度や液晶配向剤の塗布条件によって調整することができる。   The film thickness of the liquid crystal alignment film can be measured by ellipsometry or a contact step meter. Moreover, the film thickness of a liquid crystal aligning film can be adjusted with the density | concentration of a liquid crystal aligning agent, a viscosity, and the application conditions of a liquid crystal aligning agent.

本発明における液晶配向膜の形成には、液晶配向剤が用いられる。この液晶配向剤は、前述した主鎖にアゾ基を含み、かつ主鎖に側鎖構造を有するポリアミック酸を溶剤に溶解した状態のワニスである。この液晶配向剤を基板上に塗布し、溶剤を乾燥したのち配向処理を施すことにより本発明における液晶配向膜が形成される。該ポリアミック酸は、ランダム共重合体、ブロック共重合体等の共重合体であってもよく、複数種の前記ポリアミック酸が含まれていてもよい。   A liquid crystal aligning agent is used for forming the liquid crystal alignment film in the present invention. This liquid crystal aligning agent is a varnish in which a polyamic acid containing an azo group in the main chain and having a side chain structure in the main chain is dissolved in a solvent. The liquid crystal aligning film in the present invention is formed by applying this liquid crystal aligning agent on the substrate, drying the solvent, and applying an alignment treatment. The polyamic acid may be a copolymer such as a random copolymer or a block copolymer, and a plurality of types of the polyamic acid may be contained.

本発明で用いられる液晶配向剤は、ジアミンとテトラカルボン酸二無水物とを反応させて得られるポリアミック酸を含有することを特徴とする液晶配向剤であり、側鎖構造を有するジアミン及びテトラカルボン酸二無水物の少なくとも一種類と、主鎖にアゾ基を含むジアミン及びテトラカルボン酸二無水物の少なくとも一種類とを用いたポリアミック酸を含有する。さらに好ましくは前記ジアミンとして、側鎖構造を有するジアミンを含むジアミンと、主鎖にアゾ基を含み側鎖構造を有さないジアミンとを用いたポリアミック酸を含
有する。本発明における液晶配向剤には、液晶配向膜において前述したテトラカルボン酸二無水物とジアミンとが用いられる。
The liquid crystal aligning agent used in the present invention is a liquid crystal aligning agent characterized by containing a polyamic acid obtained by reacting a diamine with tetracarboxylic dianhydride. It contains a polyamic acid using at least one kind of acid dianhydride and at least one kind of diamine having an azo group in the main chain and tetracarboxylic dianhydride. More preferably, the diamine contains a polyamic acid using a diamine containing a diamine having a side chain structure and a diamine having an azo group in the main chain and no side chain structure. For the liquid crystal aligning agent in the present invention, the tetracarboxylic dianhydride and diamine described above in the liquid crystal aligning film are used.

本発明における液晶配向剤は、側鎖構造を有するジアミンをジアミンの全量に対して7〜90モル%含むことが、前述したように、液晶表示素子における良好な液晶のプレチルト角と液晶配向膜におけるポリイミドの主鎖の良好な配向とを得る観点から好ましい。   As described above, the liquid crystal aligning agent in the present invention contains a diamine having a side chain structure in an amount of 7 to 90 mol% based on the total amount of the diamine. From the viewpoint of obtaining good orientation of the main chain of the polyimide.

本発明における液晶配向剤中のポリアミック酸の濃度は特に限定されないが、0.1〜40質量%であることが好ましい。該液晶配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。ポリアミック酸の濃度が40質量%以下であると、液晶配向剤の粘度は好ましいものとなり、膜厚の調整のために液晶配向剤を希釈する必要があるときに、液晶配向剤に対して溶剤を容易に混合できるため好ましい。   Although the density | concentration of the polyamic acid in the liquid crystal aligning agent in this invention is not specifically limited, It is preferable that it is 0.1-40 mass%. When the liquid crystal aligning agent is applied to the substrate, an operation of diluting the contained polyamic acid with a solvent in advance may be required to adjust the film thickness. When the concentration of the polyamic acid is 40% by mass or less, the viscosity of the liquid crystal aligning agent becomes preferable. When the liquid crystal aligning agent needs to be diluted to adjust the film thickness, a solvent is added to the liquid crystal aligning agent. This is preferable because it can be easily mixed.

スピンナー法や印刷法等の塗布方法のときには膜厚を良好に保つために、通常10質量%以下とすることが多い。その他の塗布方法、例えばディッピング法やインクジェット法ではさらに低濃度とすることもあり得る。一方、ポリアミック酸の濃度が0.1質量%以上であると、得られる液晶配向膜の膜厚が好ましいものとなり易い。従ってポリアミック酸の濃度は、通常のスピンナー法や印刷法等の塗布方法では0.1質量%以上、好ましくは0.5〜10質量%である。しかしながら、該液晶配向剤の塗布方法によっては、さらに希薄な濃度で使用してもよい。   In the case of a coating method such as a spinner method or a printing method, the amount is usually 10% by mass or less in order to maintain a good film thickness. Other coating methods such as a dipping method or an ink jet method may further reduce the concentration. On the other hand, when the concentration of the polyamic acid is 0.1% by mass or more, the thickness of the obtained liquid crystal alignment film tends to be preferable. Accordingly, the concentration of the polyamic acid is 0.1% by mass or more, preferably 0.5 to 10% by mass in a coating method such as a normal spinner method or printing method. However, depending on the application method of the liquid crystal aligning agent, it may be used at a dilute concentration.

本発明における液晶配向剤において前記ポリアミック酸と共に用いられる溶剤は、ポリアミック酸を溶解する能力を持った溶剤であれば格別制限なく適用可能である。かかる溶剤は、ポリアミック酸の製造や使用で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。これらの溶剤を例示すれば以下のとおりである。   The solvent used together with the polyamic acid in the liquid crystal aligning agent in the present invention can be applied without particular limitation as long as it is a solvent having the ability to dissolve the polyamic acid. Such solvents widely include solvents usually used in the production and use of polyamic acid, and can be appropriately selected according to the purpose of use. Examples of these solvents are as follows.

ポリアミック酸に対し良溶剤である非プロトン性極性有機溶剤の例としては、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、及びγ−ブチロラクトン等のラクトンを挙げることができる。   Examples of aprotic polar organic solvents that are good solvents for polyamic acids include N-methyl-2-pyrrolidone, dimethylimidazolidinone, N-methylcaprolactam, N-methylpropionamide, N, N-dimethylacetamide, Examples include lactones such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide, and γ-butyrolactone.

上記の溶剤以外の溶剤であって、塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキル及びフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、並びにこれらグリコールモノエーテル類等のエステル化合物を挙げることができる。   Examples of other solvents other than the above-mentioned solvents for the purpose of improving coatability include ethylene glycol such as alkyl lactate, 3-methyl-3-methoxybutanol, tetralin, isophorone, ethylene glycol monobutyl ether, etc. Monoalkyl ether, diethylene glycol monoalkyl ether such as diethylene glycol monoethyl ether, ethylene glycol monoalkyl and phenyl acetate, propylene glycol monoalkyl ether such as triethylene glycol monoalkyl ether, propylene glycol monobutyl ether, dialkyl malonate such as diethyl malonate Dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, and ethers such as these glycol monoethers It can be exemplified ether compound.

これらの中で、前記溶剤には、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等を特に好ましく用いることができる。   Among these, the solvent particularly includes N-methyl-2-pyrrolidone, dimethylimidazolidinone, γ-butyrolactone, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and the like. It can be preferably used.

本発明における液晶配向剤は、必要により各種の添加剤を含むことができる。例えば、塗布性の向上を望むときにはかかる目的に沿った界面活性剤を、帯電防止の向上を必要と
するときは帯電防止剤を、また基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤を適量配合してもよい。
The liquid crystal aligning agent in this invention can contain various additives as needed. For example, when it is desired to improve the coating property, a surfactant according to such purpose, an antistatic agent when it is necessary to improve the antistatic property, and a silane coupling agent or the like when it is desired to improve the adhesion to the substrate. An appropriate amount of a titanium coupling agent may be blended.

本発明に係わる液晶表示素子は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方又は両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する。本発明における液晶表示素子は、液晶配向膜を除いて従来の液晶表示素子と同様に構成することができる。前記一対の基板それぞれの対向している面に形成された液晶配向膜の一方又は両方に、前述した本発明における液晶配向膜が用いられる。   A liquid crystal display element according to the present invention includes a pair of substrates disposed opposite to each other, electrodes formed on one or both of the surfaces opposed to each of the pair of substrates, and the pair of substrates opposed to each other. And a liquid crystal layer formed between the pair of substrates. The liquid crystal display element in the present invention can be configured in the same manner as the conventional liquid crystal display element except for the liquid crystal alignment film. The liquid crystal alignment film of the present invention described above is used for one or both of the liquid crystal alignment films formed on the opposing surfaces of the pair of substrates.

前記基板は、その用途に応じて適当な基板が用いられる。前記基板は、表示の観点によれば、ガラス等の透明の基板が好ましく、液晶配向膜の配向指数Δを確認する観点によれば、シリコンやフッ化カルシウム等の赤外光を透過する基板が好ましい。   As the substrate, an appropriate substrate is used according to the application. From the viewpoint of display, the substrate is preferably a transparent substrate such as glass, and from the viewpoint of confirming the orientation index Δ of the liquid crystal alignment film, a substrate that transmits infrared light such as silicon or calcium fluoride is used. preferable.

前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていても良いし、例えばパターン化されている所望の形状に形成されていても良い。電極の前記所望の形状には、例えば櫛型又はジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていても良いし、両方の基板に形成されていても良い。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板又は電極の上に前記液晶配向膜が形成される。   The electrode is not particularly limited as long as it is an electrode formed on one surface of the substrate. Examples of such electrodes include ITO and metal vapor deposition films. Further, the electrode may be formed on the entire surface of one surface of the substrate, or may be formed in a desired shape that is patterned, for example. Examples of the desired shape of the electrode include a comb shape or a zigzag structure. The electrode may be formed on one of the pair of substrates, or may be formed on both substrates. The form of electrode formation varies depending on the type of liquid crystal display element. For example, in the case of an IPS liquid crystal display element, an electrode is disposed on one of the pair of substrates, and in the case of other liquid crystal display elements, the electrodes of the pair of substrates are arranged. Electrodes are arranged on both sides. The liquid crystal alignment film is formed on the substrate or electrode.

前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。   The liquid crystal layer is formed in such a manner that the liquid crystal composition is sandwiched between the pair of substrates facing each other on which the liquid crystal alignment film is formed. In the formation of the liquid crystal layer, a spacer such as fine particles or a resin sheet that is interposed between the pair of substrates to form an appropriate interval can be used as necessary.

本発明の液晶表示素子において用いられる液晶組成物は、特に制限はなく、誘電率異方性が正の各種の液晶組成物を用いることができる。好ましい液晶組成物の例は、特許第3086228号公報、特許第2635435号公報、特表平5−501735号公報、特開平8−157826号公報、特開平8−231960号公報、特開平9−241644号公報(EP885272A1明細書)、特開平9−302346号公報(EP806466A1明細書)、特開平8−199168号公報(EP722998A1明細書)、特開平9−235552号公報、特開平9−255956号公報、特開平9−241643号公報(EP885271A1明細書)、特開平10−204016号公報(EP844229A1明細書)、特開平10−204436号公報、特開平10−231482号公報、特開2000−087040号公報、特開2001−48822号公報等に開示されている。   The liquid crystal composition used in the liquid crystal display element of the present invention is not particularly limited, and various liquid crystal compositions having positive dielectric anisotropy can be used. Examples of preferred liquid crystal compositions include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Japanese Patent Laid-Open No. 5-501735, Japanese Patent Laid-Open No. 8-157826, Japanese Patent Laid-Open No. 8-231960, and Japanese Patent Laid-Open No. 9-241644. (EP885272A1 specification), JP-A-9-302346 (EP806466A1 specification), JP-A-8-199168 (EP722998A1 specification), JP-A-9-235552, JP-A-9-255958, JP-A-9-241463 (EP885271A1 specification), JP-A-10-204016 (EP844229A1 specification), JP-A-10-204436, JP-A-10-231482, JP-A-2000-087040, In JP 2001-48822 A, etc. It is shown.

誘電率異方性が負の各種の液晶組成物を用いることができる。好ましい液晶組成物の例は、特開昭57−114532号公報、特開平2−4725号公報、特開平4−224885号公報、特開平8−40953号公報、特開平8−104869号公報、特開平10−168076号公報、特開平10−168453号公報、特開平10−236989号公報、特開平10−236990号公報、特開平10−236992号公報、特開平10−236993号公報、特開平10−236994号公報、特開平10−237000号公報、特開平10−237004号公報、特開平10−237024号公報、特開平10−237035号公報、特開平10−237075号公報、特開平10−237076号公報、特開平10−237448号公報(EP967261A1明細書)、特開平10−
287874号公報、特開平10−287875号公報、特開平10−291945号公報、特開平11−029581号公報、特開平11−080049号公報、特開2000−256307号公報、特開2001−019965号公報、特開2001−072626号公報、特開2001−192657号公報等に開示されている。
Various liquid crystal compositions having a negative dielectric anisotropy can be used. Examples of preferred liquid crystal compositions include JP-A-57-141432, JP-A-2-4725, JP-A-4-224858, JP-A-8-40953, JP-A-8-104869, Japanese Laid-Open Patent Publication No. 10-168076, Japanese Laid-Open Patent Publication No. 10-168453, Japanese Laid-Open Patent Publication No. 10-236989, Japanese Laid-Open Patent Publication No. 10-236990, Japanese Laid-Open Patent Publication No. 10-236992, Japanese Laid-Open Patent Publication No. 10-236993, Japanese Laid-open Patent Publication No. -236994, JP-A-10-237000, JP-A-10-237004, JP-A-10-237024, JP-A-10-237035, JP-A-10-237075, JP-A-10-237076 JP, 10-237448, (EP967261A1 specification), JP 10-10
No. 287874, JP-A-10-287875, JP-A-10-291945, JP-A-11-029581, JP-A-11-080049, JP-A-2000-256307, JP-A-2001-019965 This is disclosed in Japanese Patent Laid-Open No. 2001-072626, Japanese Patent Laid-Open No. 2001-192657, and the like.

前記誘電率異方性が正又は負の液晶組成物に一種以上の光学活性化合物を添加して使用することも何ら差し支えない。   One or more optically active compounds may be added to the liquid crystal composition having a positive or negative dielectric anisotropy.

本発明における液晶表示素子では、一対の基板は、液晶表示素子の種類に応じて、それぞれの基板上の液晶配向膜におけるポリイミドの主鎖の平均配向方向が特定の向きになるように対向する。例えば液晶表示素子がTN型液晶表示素子の場合、それぞれの基板の液晶配向膜におけるポリイミドの主鎖の平均配向方向が90度で交差するように、一対の基板は電極や液晶配向膜が形成されている面を内側に向けて対向する。また、液晶表示素子がSTN型液晶表示素子の場合、それぞれの基板の液晶配向膜におけるポリイミドの主鎖の平均配向方向が、通常、逆方向すなわち180度、となるか、それ以上の角度で交差するように、一対の基板は電極や液晶配向膜が形成されている面を内側に向けて対向する。   In the liquid crystal display element according to the present invention, the pair of substrates face each other so that the average alignment direction of the main chain of polyimide in the liquid crystal alignment film on each substrate is a specific direction according to the type of the liquid crystal display element. For example, when the liquid crystal display element is a TN liquid crystal display element, electrodes and a liquid crystal alignment film are formed on the pair of substrates so that the average alignment direction of the main chain of polyimide in the liquid crystal alignment film of each substrate intersects at 90 degrees. Facing each other facing inward. When the liquid crystal display element is an STN type liquid crystal display element, the average orientation direction of the main chain of the polyimide in the liquid crystal alignment film of each substrate is usually the reverse direction, that is, 180 degrees, or intersects at an angle larger than that. As described above, the pair of substrates face each other with the surfaces on which the electrodes and the liquid crystal alignment film are formed facing inward.

また本発明における液晶表示素子は、液晶表示素子の種類に応じてさらなる他の部材を有していても良い。例えば、薄膜トランジスタを使用したカラー表示のTFT型液晶素子においては、第1の透明基板上には薄膜トランジスタ、絶縁膜、保護膜及び画素電極等が形成されており、第2の透明基板上には画素領域以外の光を遮断するブラックマトリクス、カラーフィルター、平坦化膜及び画素電極等を有する。   Moreover, the liquid crystal display element in this invention may have another other member according to the kind of liquid crystal display element. For example, in a color display TFT liquid crystal element using a thin film transistor, a thin film transistor, an insulating film, a protective film, a pixel electrode, and the like are formed on a first transparent substrate, and a pixel is formed on a second transparent substrate. A black matrix, a color filter, a planarization film, a pixel electrode, and the like that block light outside the region are included.

また、IPS型液晶表示素子においては、薄膜トランジスタが形成された第1の透明基板、対向する第2の透明基板及びそれらの基板間に液晶が狭持される。第1の透明基板は、交互に櫛歯が延びるように形成された画素電極及び共通電極を有する。従来の液晶表示素子と同様に第2の透明基板は、画素領域以外の光を遮断するブラックマトリクス、カラーフィルター、平坦化膜等を有する。櫛歯状の電極は、例えばガラス等の透明基板上にCr等の金属のスパッタリング法等を用いて堆積した後、所定の形状のレジストパターンをマスクとしてエッチングを行って形成される。   In the IPS liquid crystal display element, a liquid crystal is sandwiched between a first transparent substrate on which a thin film transistor is formed, a second transparent substrate facing the thin film transistor, and the substrates. The first transparent substrate has pixel electrodes and common electrodes formed so that comb teeth alternately extend. Similar to the conventional liquid crystal display element, the second transparent substrate has a black matrix, a color filter, a flattening film, and the like that block light outside the pixel region. The comb-like electrode is formed, for example, by depositing a transparent substrate such as glass using a metal sputtering method such as Cr and then performing etching using a resist pattern having a predetermined shape as a mask.

さらに、MVA型液晶表示素子においては、透明基板上に微小な突起物が形成されている場合、又は、マスキング工程を経て光照射処理によるマルチドメイン化が実施される場合がある。   Further, in the MVA type liquid crystal display element, there are cases where a minute projection is formed on a transparent substrate, or multi-domain formation is performed by a light irradiation process through a masking process.

本発明における液晶配向膜は、テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸の膜に光を照射して膜中のポリアミック酸を配向させる工程と、前記膜中で配向したポリアミック酸をイミド化する工程とを含む方法によって製造することができる。前記テトラカルボン酸二無水物及び前記ジアミンの少なくともいずれかには、側鎖構造を有する化合物が用いられる。   The liquid crystal alignment film in the present invention is a reaction product of tetracarboxylic dianhydride and diamine, and irradiates light to a polyamic acid film containing an azo group in the main chain to align the polyamic acid in the film; And imidating the polyamic acid oriented in the film. A compound having a side chain structure is used for at least one of the tetracarboxylic dianhydride and the diamine.

ポリアミック酸の膜は、例えば基板又は電極上に前述した本発明における液晶配向剤を塗布することによって形成することができる。液晶配向剤の塗布方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。   The polyamic acid film can be formed, for example, by applying the above-described liquid crystal aligning agent in the present invention on a substrate or an electrode. As a method for applying the liquid crystal aligning agent, a spinner method, a printing method, a dipping method, a dropping method, an ink jet method and the like are generally known. These methods are similarly applicable in the present invention.

ポリアミック酸の骨格構造に含まれるアゾ基は、シンとアンチの二つの幾何異性体を通常とりうる。通常はアンチ異性体が安定であるが、適当なエネルギーの光をポリアミック酸に照射すると光が吸収され、アゾ基はシン異性体に変化する。シン異性体はアンチ異性体に比べて安定性が低いので、アゾ基はアンチ異性体に戻るが、シン異性体から戻ったア
ンチ異性体はランダムな方向を向く。このとき特定の方向に偏光した光を照射すると、特定の方向を向いているアンチ異性体が選択的にシン異性体に変化し、そのシン異性体はランダムな配向変化を伴ってアンチ異性体に戻る。光吸収が起こらなくなるまで前記アンチ−シン光異性化反応が繰り返されるので、十分な光照射の後、アンチ異性体は光の偏光方向に垂直になるように配向する。本発明では、このような光異性化反応をポリアミック酸の配向制御に利用している。
The azo group contained in the skeleton structure of polyamic acid can usually take two geometric isomers of syn and anti. Usually, the anti isomer is stable, but when the polyamic acid is irradiated with light of an appropriate energy, the light is absorbed and the azo group changes to the syn isomer. Since the syn isomer is less stable than the anti isomer, the azo group returns to the anti isomer, but the anti isomer returned from the syn isomer points in a random direction. At this time, when light polarized in a specific direction is irradiated, the anti isomer pointing in the specific direction is selectively changed to the syn isomer, and the syn isomer is converted into the anti isomer with a random orientation change. Return. Since the anti-syn photoisomerization reaction is repeated until no light absorption occurs, after sufficient light irradiation, the anti isomer is oriented so as to be perpendicular to the polarization direction of the light. In the present invention, such a photoisomerization reaction is used to control the orientation of the polyamic acid.

膜中のポリアミック酸を配向させる工程では、光の照射によってポリアミック酸の主鎖を配向させる。このような光配向処理条件は、本発明の目的が達成される範囲内である限り、どのようなものであってもよい。光配向処理に用いる光源としては、低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、Deep UVランプ、エキシマーレーザー等を使用できる。   In the step of aligning the polyamic acid in the film, the main chain of the polyamic acid is aligned by light irradiation. Such photo-alignment treatment conditions may be any as long as the object of the present invention is achieved. As a light source used for the photo-alignment treatment, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, a deep UV lamp, an excimer laser, or the like can be used.

アゾ基の光異性化反応を利用する本発明の場合では、光配向処理に用いる光の波長は300〜600nm、より好ましくは340〜500nmである。300nm以上の波長の光では塗膜の光分解が生じ難くなり、600nm以下の波長の光では光異性化反応が進み易くなるためである。また、長波長透過フィルター又はバンドパスフィルター等を用いて低波長の光を除去することが好ましい。なお、紫外・可視の連続光源とバンドパスフィルターを併用し、紫外光と可視光を同時に照射する方が好ましい。   In the case of the present invention using the photoisomerization reaction of an azo group, the wavelength of light used for the photo-alignment treatment is 300 to 600 nm, more preferably 340 to 500 nm. This is because light having a wavelength of 300 nm or more hardly causes photodecomposition of the coating film, and light having a wavelength of 600 nm or less facilitates the photoisomerization reaction. Moreover, it is preferable to remove low-wavelength light using a long-wavelength transmission filter or a band-pass filter. Note that it is preferable to use an ultraviolet / visible continuous light source and a bandpass filter in combination, and simultaneously irradiate ultraviolet light and visible light.

液晶配向膜の表面に平行な方向へのポリアミック酸の配向処理に用いる光の照射光量は、用いる液晶配向剤の種類、光源の波長、照射条件に依存するが、照射量が大きくなるほど、光配向処理が強くなり高い配向指数Δが得られる。目安としては、Deep UVランプと340〜500nmのバンドパスフィルターを用いて配向処理を行う場合の光照射量は、2J/cm以上であり、好ましくは30J/cm以上であり、より好ましくは100J/cm以上である。光照射量は、特に上限はないが、液晶配向膜の劣化を避けるためには、2,000J/cm以下であることが好ましく、設備及び処理に係るコスト等の経済性を考慮すると300J/cm以下であることが好ましい。 The amount of light used for the alignment treatment of the polyamic acid in the direction parallel to the surface of the liquid crystal alignment film depends on the type of the liquid crystal aligning agent used, the wavelength of the light source, and the irradiation conditions. The treatment becomes stronger and a high orientation index Δ is obtained. As a guide, the amount of light irradiation when performing alignment treatment using a Deep UV lamp and a bandpass filter of 340 to 500 nm is 2 J / cm 2 or more, preferably 30 J / cm 2 or more, more preferably 100 J / cm 2 or more. Light irradiation amount is particularly no upper limit, in order to avoid deterioration of the liquid crystal alignment film is preferably 2,000 J / cm 2 or less, in consideration of the economics of cost and the like according to the equipment and process 300 J / It is preferable that it is cm 2 or less.

膜中のポリアミック酸の主鎖は、偏光が制御された光を前記膜に照射することによって所定の方向に配向させることができる。ポリアミック酸の主鎖は、照射される光の偏光方向に対して垂直な方向に配向する。偏光が制御された光には、例えば直線偏光、円偏光、楕円偏光等が挙げられる。ここでは、非偏光もランダムな偏光を有する光として、偏光を制御した光として含む。偏光の制御は、偏光フィルターや偏光プリズムで行うことができる。又は光を、斜めにおいたガラス板を透過させることによってもできる。   The main chain of the polyamic acid in the film can be oriented in a predetermined direction by irradiating the film with light whose polarization is controlled. The main chain of the polyamic acid is oriented in a direction perpendicular to the polarization direction of the irradiated light. Examples of the light whose polarization is controlled include linearly polarized light, circularly polarized light, and elliptically polarized light. Here, non-polarized light is also included as light having random polarization as light with controlled polarization. The polarization can be controlled by a polarizing filter or a polarizing prism. Alternatively, light can be transmitted through an obliquely placed glass plate.

ポリアミック酸を膜の表面に対して垂直な方向から見たときに所定の方向に配向させるには、前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光として、前記の偏光が制御された光を用いることができる。ポリアミック酸の膜の表面に対して斜めの方向に配向させるには、前記ポリアミック酸の膜の表面に対して斜めの方向から光を照射する。   In order to orient the polyamic acid in a predetermined direction when viewed from a direction perpendicular to the film surface, the polarized light is used as light for changing the geometric isomer by the azo group from the anti isomer to the syn isomer. Controlled light can be used. In order to align the surface of the polyamic acid film in an oblique direction, light is applied to the surface of the polyamic acid film from an oblique direction.

前記ポリアミック酸の膜の表面に対して斜めの方向から照射する光は、目的のポリイミド主鎖の配向と液晶のプレチルト角を得るために変更することが可能である。   The light irradiated from the oblique direction with respect to the surface of the polyamic acid film can be changed in order to obtain the target polyimide main chain orientation and liquid crystal pretilt angle.

膜の表面に対して斜めの方向から光を照射する際の照射角度は、特に限定されるものではないが、任意のプレチルト角を得るためには、液晶配向膜の表面又は基板面に対して20〜70度であることが好ましく、さらには30〜60度であることが、良好なポリイミド主鎖の配向と液晶のプレチルト角とを得る観点からより好ましい。   The irradiation angle when irradiating light from an oblique direction with respect to the surface of the film is not particularly limited, but in order to obtain an arbitrary pretilt angle, the surface of the liquid crystal alignment film or the substrate surface is used. It is preferably 20 to 70 degrees, and more preferably 30 to 60 degrees, from the viewpoint of obtaining good polyimide main chain alignment and liquid crystal pretilt angle.

本発明では、前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光を前記膜の表面(基板面)に対して斜めの角度から照射することによって、膜の表面に平行な方向における膜中のポリアミック酸の配向(平均配向方向)と光の入射面におけるポリアミック酸の配向(基板面に対する傾斜角)との両方を制御することが可能である。本発明において膜中におけるポリアミック酸の配向を制御する好ましい方法は、膜の表面(基板面)に対して垂直方向から直線偏光した光を照射した後、更に、その直線偏光の偏光方向に垂直な面を入射面として前記照射角度で無偏光を照射することである。これによりポリイミドの主鎖の配向の程度(配向指数Δ)を高くすることができ、一様でプレチルト角を有する液晶の配向を得ることができる。   In the present invention, light that changes the geometric isomer of the azo group from an anti isomer to a syn isomer is irradiated from an oblique angle with respect to the surface (substrate surface) of the film, thereby causing a direction parallel to the surface of the film. It is possible to control both the orientation of polyamic acid in the film (average orientation direction) and the orientation of polyamic acid on the light incident surface (inclination angle with respect to the substrate surface). In the present invention, a preferred method for controlling the orientation of the polyamic acid in the film is to irradiate linearly polarized light from a direction perpendicular to the film surface (substrate surface), and then to obtain a direction perpendicular to the polarization direction of the linearly polarized light. It is to irradiate non-polarized light with the irradiation angle as a plane of incidence. As a result, the degree of orientation of the main chain of the polyimide (orientation index Δ) can be increased, and a liquid crystal orientation having a uniform pretilt angle can be obtained.

液晶配向膜の製造では、透明基板上に得られた液晶配向剤の膜を乾燥させる工程をさらに施すことが好ましい。乾燥工程は前述した光配向処理の前に行うことが好ましく、乾燥工程としては、オーブン又は赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。乾燥工程は溶剤の蒸発が可能な範囲内の比較的低温で実施することが好ましい。   In the production of the liquid crystal alignment film, it is preferable to further perform a step of drying the liquid crystal aligning agent film obtained on the transparent substrate. The drying step is preferably performed before the above-described photo-alignment treatment. As the drying step, a method of heat treatment in an oven or an infrared furnace, a method of heat treatment on a hot plate, and the like are generally known. These methods are equally applicable in the present invention. The drying step is preferably performed at a relatively low temperature within a range where the solvent can be evaporated.

前記膜中で配向したポリアミック酸のイミド化は、通常、加熱によって行われる。本発明においても加熱処理を配向後のポリアミック酸のイミド化に適用することができる。加熱処理工程の方法としては、前述した乾燥工程と同じ手法が適用可能である。加熱処理工程は一般に150〜300℃程度の温度で行うことが好ましい。   The imidization of the polyamic acid oriented in the film is usually performed by heating. Also in the present invention, the heat treatment can be applied to imidation of the polyamic acid after orientation. As a method for the heat treatment process, the same technique as that for the drying process described above can be applied. In general, the heat treatment step is preferably performed at a temperature of about 150 to 300 ° C.

本発明における液晶表示素子は、上記のように基板上に液晶配向膜を作製し、次いでスペーサを介して該基板を対向させて組み立てる工程、液晶組成物を封入する工程及び偏光フィルムを貼り付ける工程等の工程を経て製造される。   The liquid crystal display element in the present invention is a process for producing a liquid crystal alignment film on a substrate as described above, and then assembling the substrate with the substrate facing each other through a spacer, a process for encapsulating a liquid crystal composition, and a process for attaching a polarizing film It is manufactured through such processes.

本発明における液晶表示素子は、洗浄液による洗浄処理を行うこともできる。洗浄方法としては、ジェットスプレー、蒸気洗浄又は超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水、メチルアルコール、エチルアルコール若しくはイソプロピルアルコール等のアルコール類、ベンゼン、トルエン若しくはキシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン化炭化水素、又はアセトン若しくはメチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。   The liquid crystal display element in the present invention can be subjected to a cleaning treatment with a cleaning liquid. Examples of the cleaning method include jet spray, steam cleaning, and ultrasonic cleaning. These methods may be performed alone or in combination. The cleaning liquid is pure water, alcohols such as methyl alcohol, ethyl alcohol or isopropyl alcohol, aromatic hydrocarbons such as benzene, toluene or xylene, halogenated hydrocarbons such as methylene chloride, or ketones such as acetone or methyl ethyl ketone. Although it can be used, it is not limited to these. Of course, these cleaning liquids are sufficiently purified and have few impurities.

本発明で用いられる光異性化構造を有するテトラカルボン酸二無水物及び/又はジアミンの全モノマーに対する割合は、10〜90モル%である必要があり、好ましくは15〜80モル%、更に好ましくは20〜70モル%である必要がある。光異性化構造を有するテトラカルボン酸二無水物及び/又はジアミンの該割合が10モル%以上では光異性化によってポリマー主鎖の配向が良好になり、光異性化構造を有するテトラカルボン酸二無水物及び/又はジアミンの該割合が90モル%以下であるとプレチルト角が良好になる。   The ratio of the tetracarboxylic dianhydride having a photoisomerization structure and / or diamine used in the present invention to the total monomers needs to be 10 to 90 mol%, preferably 15 to 80 mol%, more preferably. It needs to be 20-70 mol%. When the proportion of tetracarboxylic dianhydride having a photoisomerization structure and / or diamine is 10 mol% or more, the orientation of the polymer main chain is improved by photoisomerization, and the tetracarboxylic dianhydride having a photoisomerization structure is obtained. When the ratio of the product and / or diamine is 90 mol% or less, the pretilt angle becomes good.

以下、本発明を実施例及び比較例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例で用いるテトラカルボン酸二無水物、ジアミン及び溶剤の名称を略号で示す。以降の記述にはこの略号を使用することがある。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited to these Examples. In addition, the name of the tetracarboxylic dianhydride, diamine, and solvent which are used by an Example and a comparative example is shown by an abbreviation. This abbreviation may be used in the following description.

テトラカルボン酸二無水物
ピロメリット酸二無水物 :PMDA
ジアミン
4,4’−ジアミノアゾベンゼン :DAZ
側鎖構造を有するジアミン
下記構造式1の化合物 :T1
下記構造式2の化合物 :T2
溶剤
N−メチル−2−ピロリドン :NMP
Tetracarboxylic acid dianhydride pyromellitic dianhydride: PMDA
Diamine 4,4'-Diaminoazobenzene: DAZ
Diamine having side chain structure Compound of the following structural formula 1: T1
Compound of the following structural formula 2: T2
Solvent N-methyl-2-pyrrolidone: NMP

Figure 2007248637
Figure 2007248637

Figure 2007248637
Figure 2007248637

実施例1
1)液晶配向剤A1の調製
温度計、攪拌機、原料投入仕込み口及び窒素ガス導入口を備えた200mLの四つ口フラスコにDAZとT1をそれぞれ2.1104gと0.4802g、脱水NMPを30.00g導入し、乾燥窒素気流下攪拌溶解した。反応系の温度を5℃に保ちながらPMDAを2.4096g添加し、30時間反応させた後、脱水NMPを65.00g加えて高分子成分の濃度が5質量%のポリアミック酸の液晶配向剤を調製した。原料の反応中に反応熱により温度が上昇するときは、反応温度を約70℃以下に抑えて反応させた。
Example 1
1) Preparation of liquid crystal aligning agent A1 In a 200 mL four-necked flask equipped with a thermometer, stirrer, raw material charging inlet and nitrogen gas inlet, DAZ and T1 were 2.1104 g and 0.4802 g, respectively, and dehydrated NMP was 30. 00 g was introduced and dissolved by stirring under a dry nitrogen stream. While keeping the temperature of the reaction system at 5 ° C., 2.4096 g of PMDA was added and reacted for 30 hours, and then 65.00 g of dehydrated NMP was added to prepare a liquid crystal aligning agent of polyamic acid having a polymer component concentration of 5 mass%. Prepared. When the temperature rose due to reaction heat during the reaction of the raw materials, the reaction was carried out while keeping the reaction temperature at about 70 ° C. or lower.

2)赤外光の吸光度、液晶配向膜の膜厚の測定及び配向指数Δの算出
得られたPMDA/DAZ/T1(原料モル比=50/45/5)の液晶配向剤A1をNMPで希釈して1.34質量%とした後、CaF基板(厚さ2mm)上にスピンナーにて塗布した。塗布条件は3,000rpm、60秒であった。塗膜後、ウシオ電機株式会社製の500W Deep UVランプ(UXM−501MD)を光源とし、光照射を行った。照射した光の波長領域は透過波長域340〜500nmのバンドパスフィルター(朝日分光株式会社製)を透過させることにより340〜500nmとした。
2) Measurement of the absorbance of infrared light, the thickness of the liquid crystal alignment film, and the calculation of the orientation index Δ The obtained PMDA / DAZ / T1 (raw material molar ratio = 50/45/5) liquid crystal aligning agent A1 was diluted with NMP. After being 1.34% by mass, it was coated on a CaF 2 substrate (thickness 2 mm) with a spinner. The coating conditions were 3,000 rpm and 60 seconds. After the coating, light irradiation was performed using a 500 W Deep UV lamp (UXM-501MD) manufactured by USHIO INC. As a light source. The wavelength range of the irradiated light was set to 340 to 500 nm by transmitting through a bandpass filter (manufactured by Asahi Spectroscopic Co., Ltd.) having a transmission wavelength range of 340 to 500 nm.

はじめにグランテーラー偏光プリズムを通して直線偏光とした光を、基板面に対して垂直方向から照射した。その照射量は156J/cmであった。次に、1回目の直線偏光の照射における光の偏光方向に垂直な面を入射面とし、入射角(基板法線から定義)45度で無偏光の光の照射を行った。その照射量は221J/cmであった。その後、光照射された試料を窒素雰囲気中250℃にて60分間加熱処理を行って液晶配向膜を形成した。 First, light that was linearly polarized through a Grand Taylor polarizing prism was irradiated from a direction perpendicular to the substrate surface. The irradiation amount was 156 J / cm 2 . Next, the surface perpendicular to the polarization direction of light in the first irradiation with linearly polarized light was used as the incident surface, and non-polarized light was irradiated at an incident angle (defined from the substrate normal) of 45 degrees. The irradiation amount was 221 J / cm 2 . Thereafter, the sample irradiated with light was heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere to form a liquid crystal alignment film.

イミド化前のポリアミック酸膜の膜厚dPAAと液晶配向膜の膜厚dは、光照射をしない以外は同一の工程で作製したポリイミド膜の厚さを、株式会社島津製作所製の自動偏光解析装置(APE−100)を用いて、測定波長632.8nm(He−Neレーザー)、入射角62.5度で測定して決定したところ、それぞれdPAA=19nm、d=11nmであった。イミド化前後の膜厚の比から、イミド化による液晶配向膜の厚さの補正係数γは、0.58であった。 The film thickness d of the polyamic acid film before imidization The film thickness d of the PAA and the liquid crystal alignment film is the thickness of the polyimide film produced in the same process except that no light irradiation is performed. Using an apparatus (APE-100), measurement was performed at a measurement wavelength of 632.8 nm (He-Ne laser) and an incident angle of 62.5 degrees, and d PAA = 19 nm and d = 11 nm, respectively. From the ratio of the film thickness before and after imidization, the correction coefficient γ for the thickness of the liquid crystal alignment film by imidization was 0.58.

得られた液晶配向膜の赤外線吸収スペクトルの測定は、FT−IR装置(分光器:Mattson Galaxy 3020、検出器:mercury cadmium telluride)を用いて、測定温度32℃、積算400回の条件で測定した。   The infrared absorption spectrum of the obtained liquid crystal alignment film was measured using a FT-IR apparatus (spectrometer: Mattson Galaxy 3020, detector: mercury cadmium telluride) at a measurement temperature of 32 ° C. and a total of 400 times. .

偏光子を透過した赤外光を液晶配向膜の基板面垂直方向から照射した。サンプルの平均配向方向と偏光方向とが平行で測定したときの赤外光スペクトル及び垂直で測定したときの赤外光スペクトルを測定した。平行と垂直で測定した赤外光スペクトルのC−N−C伸縮振動に帰属される1360cm-1付近の吸収バンドの積分値を用いて、液晶配向膜の吸光度の差(|A‖−A⊥|)及び液晶配向膜の吸光度の和(A⊥+A‖)を算出した。 Infrared light transmitted through the polarizer was irradiated from the direction perpendicular to the substrate surface of the liquid crystal alignment film. The infrared light spectrum was measured when the average orientation direction and the polarization direction of the sample were measured in parallel, and the infrared light spectrum when measured in the vertical direction. Using the integral value of the absorption band near 1360 cm −1 attributed to the C—N—C stretching vibration of the infrared light spectrum measured in parallel and perpendicular, the difference in absorbance of the liquid crystal alignment film (| A‖−A⊥) |) And the sum of the absorbance of the liquid crystal alignment film (A⊥ + A‖).

イミド化前のポリアミック酸膜の吸収係数αを求めるために、2.00質量%のポリアミック酸溶液を、CaF基板(厚さ2mm)上にスピンナーにて塗布した。塗布条件は3,000rpm、60秒であった。光照射を施さないポリアミック酸膜の膜厚を測定したところ、36nmであった。垂直透過配置で前記のイミド化前のポリアミック酸膜の紫外・可視吸収スペクトルを測定したところ、波長364nmの吸光度(=log(Tsub/Tsample))は0.36であった。式(3)より、イミド化前のポリアミック酸膜の吸収係数αは0.023と求まる。紫外・可視吸収スペクトルは、例えば紫外・可視分光光度計(島津MPS−2000)などで測定できる。 In order to obtain the absorption coefficient α of the polyamic acid film before imidization, a 2.00% by mass polyamic acid solution was applied onto a CaF 2 substrate (thickness 2 mm) with a spinner. The coating conditions were 3,000 rpm and 60 seconds. The thickness of the polyamic acid film not subjected to light irradiation was measured and found to be 36 nm. When the ultraviolet / visible absorption spectrum of the polyamic acid film before imidization was measured in a vertical transmission configuration, the absorbance at a wavelength of 364 nm (= log (T sub / T sample )) was 0.36. From equation (3), the absorption coefficient α of the polyamic acid film before imidation is determined to be 0.023. The ultraviolet / visible absorption spectrum can be measured by, for example, an ultraviolet / visible spectrophotometer (Shimadzu MPS-2000).

α=0.023、γ=0.58から、該液晶配向膜の光配向処理された領域の実効膜厚d’は25nmであった。膜厚が11nmの場合、d<d’であるからd/d’=1とすることができるので、得られた(|A‖−A⊥|)及び(A⊥+A‖)の値より計算すると、液晶配向膜のポリイミド主鎖の配向指数Δは0.28であった。   From α = 0.024 and γ = 0.58, the effective film thickness d ′ of the region subjected to the photo-alignment treatment of the liquid crystal alignment film was 25 nm. When the film thickness is 11 nm, since d <d ′, d / d ′ = 1 can be set, and calculation is performed from the obtained values (| A | −A⊥ |) and (A⊥ + A‖). Then, the orientation index Δ of the polyimide main chain of the liquid crystal alignment film was 0.28.

3)液晶のプレチルト角の測定
同じ条件で液晶配向膜を作製した一対のCaF基板を、厚さ25μmのポリエステルフィルムをスペーサとして挟持するように、液晶配向膜を形成した面を内側にして対向させ、アンチパラレルセルを作製した。ここでいうアンチパラレルセルとは、基板に塗布されたポリアミック酸の膜に光配向処理を行ったときの無偏光の光の照射方向が平行かつ反対になるように組んだセルを意味する。
3) Measurement of the pretilt angle of the liquid crystal A pair of CaF 2 substrates on which the liquid crystal alignment film was produced under the same conditions are opposed to each other with the surface on which the liquid crystal alignment film is formed sandwiched as a 25 μm thick polyester film as a spacer. An anti-parallel cell was produced. The anti-parallel cell here means a cell assembled so that the irradiation directions of non-polarized light are parallel and opposite when the photo-alignment treatment is performed on the polyamic acid film applied to the substrate.

前記セルに下記構造式(5)で表されるシアノビフェニル液晶(5CB)を80℃で注入し、室温まで徐冷してプレチルト角測定用セル(液晶表示素子)を作製した。作製したプレチルト角測定用セルの液晶のプレチルト角を測定したところ、プレチルト角は3.3度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。プレチルト角はクリスタルローテーション法でHe−Neレーザー(発振波長632.8nm)を用いて測定した。プレチルト角の測定時の温度は25℃であった。5CBのNI点(ネマティック・等方相転移温度)は35℃であり、波長632.8nmでの屈折率はne=1.706(異常光),no=1.530(常光)であった。 A cyanobiphenyl liquid crystal (5CB) represented by the following structural formula (5) was injected into the cell at 80 ° C. and slowly cooled to room temperature to prepare a pretilt angle measurement cell (liquid crystal display element). When the pretilt angle of the liquid crystal of the prepared pretilt angle measurement cell was measured, the pretilt angle was 3.3 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light. The pretilt angle was measured by a crystal rotation method using a He—Ne laser (oscillation wavelength 632.8 nm). The temperature at the time of measuring the pretilt angle was 25 ° C. NI point of 5CB (nematic isotropic phase transition temperature) is 35 ° C., the refractive index at a wavelength of 632.8nm is n e = 1.706 (extraordinary light), n o = 1.530 (ordinary) met It was.

Figure 2007248637
Figure 2007248637

実施例2
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T2(原料モル比=50/37.5/12.5)の液晶配向剤A2を調製した。得られた液晶配向剤A2を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚9nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは18nm
であり、イミド化による液晶配向膜の厚さの補正係数γは、0.50であった。イミド化前のポリアミック酸膜の吸収係数αは0.015であり、液晶配向膜の実効膜厚d’は33nmであった。
Example 2
Instead of liquid crystal aligning agent A1 in Example 1, PMDA / DAZ / T2 (raw material molar ratio = 50 / 37.5 / 12.5) liquid crystal aligning agent A2 was prepared. The obtained liquid crystal aligning agent A2 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a 9 nm-thick liquid crystal aligning film. The film thickness d PAA of the polyamic acid film before imidation is 18 nm.
The correction coefficient γ for the thickness of the liquid crystal alignment film by imidization was 0.50. The absorption coefficient α of the polyamic acid film before imidization was 0.015, and the effective film thickness d ′ of the liquid crystal alignment film was 33 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.17であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ71.3度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the alignment index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.17. Furthermore, an antiparallel cell was produced by the method according to Example 1 and the pretilt angle was measured to be 71.3 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

実施例3
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T2(原料モル比=50/25/25)の液晶配向剤A3を調製した。得られた液晶配向剤A3を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚11nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは19nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.58であった。イミド化前のポリアミック酸膜の吸収係数αは0.009であり、液晶配向膜の実効膜厚d’は64nmであった。
Example 3
Instead of the liquid crystal aligning agent A1 in Example 1, PMDA / DAZ / T2 (raw material molar ratio = 50/25/25) liquid crystal aligning agent A3 was prepared. The obtained liquid crystal aligning agent A3 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal alignment film having a thickness of 11 nm. The film thickness d PAA of the polyamic acid film before imidization was 19 nm, and the correction coefficient γ for the thickness of the liquid crystal alignment film by imidization was 0.58. The absorption coefficient α of the polyamic acid film before imidization was 0.009, and the effective film thickness d ′ of the liquid crystal alignment film was 64 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.06であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ89.6度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Next, when the orientation index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.06. Furthermore, an antiparallel cell was produced by the method according to Example 1 and the pretilt angle was measured to be 89.6 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

実施例4
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T1(原料モル比=50/43.75/6.25)の液晶配向剤A4を調製した。得られた液晶配向剤A4を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚12nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは20nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.60であった。イミド化前のポリアミック酸膜の吸収係数αは0.022であり、液晶配向膜の実効膜厚d’は27nmであった。
Example 4
Instead of liquid crystal aligning agent A1 in Example 1, liquid crystal aligning agent A4 of PMDA / DAZ / T1 (raw material molar ratio = 50 / 43.75 / 6.25) was prepared. The obtained liquid crystal aligning agent A4 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal aligning film having a thickness of 12 nm. The film thickness d PAA of the polyamic acid film before imidization was 20 nm, and the correction coefficient γ of the thickness of the liquid crystal alignment film by imidization was 0.60. The absorption coefficient α of the polyamic acid film before imidization was 0.022, and the effective film thickness d ′ of the liquid crystal alignment film was 27 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.27であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ4.8度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the alignment index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.27. Furthermore, an antiparallel cell was produced by a method according to Example 1, and the pretilt angle was measured to be 4.8 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

実施例5
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T1(原料モル比=50/42.5/7.5)の液晶配向剤A5を調製した。得られた液晶配向剤A5を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚10nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは17nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.59であった。イミド化前のポリアミック酸膜の吸収係数αは0.020であり、液晶配向膜の実効膜厚d’は30nmであった。
Example 5
Instead of the liquid crystal aligning agent A1 in Example 1, PMDA / DAZ / T1 (raw material molar ratio = 50 / 42.5 / 7.5) liquid crystal aligning agent A5 was prepared. The obtained liquid crystal aligning agent A5 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal aligning film having a thickness of 10 nm. The film thickness d PAA of the polyamic acid film before imidization was 17 nm, and the correction coefficient γ for the thickness of the liquid crystal alignment film by imidization was 0.59. The absorption coefficient α of the polyamic acid film before imidization was 0.020, and the effective film thickness d ′ of the liquid crystal alignment film was 30 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.25であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ5.8度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the orientation index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.25. Furthermore, an antiparallel cell was produced by a method according to Example 1 and the pretilt angle was measured to be 5.8 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

実施例6
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T1(原料モル比=50/37.5/12.5)の液晶配向剤A6を調製した。得られた液晶配向剤A6を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚10nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは15nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.66であった。イミド化前のポリアミック酸膜の吸収係数αは0.020であり、液晶配向膜の実効膜厚d’は33nmであった。
Example 6
Instead of the liquid crystal aligning agent A1 in Example 1, a liquid crystal aligning agent A6 of PMDA / DAZ / T1 (raw material molar ratio = 50 / 37.5 / 12.5) was prepared. The obtained liquid crystal aligning agent A6 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal alignment film having a thickness of 10 nm. The film thickness d PAA of the polyamic acid film before imidization was 15 nm, and the correction coefficient γ of the thickness of the liquid crystal alignment film by imidization was 0.66. The absorption coefficient α of the polyamic acid film before imidization was 0.020, and the effective film thickness d ′ of the liquid crystal alignment film was 33 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.20であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ75.4度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the alignment index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.20. Furthermore, an antiparallel cell was produced by the method according to Example 1, and the pretilt angle was measured to be 75.4 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

比較例1
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ(原料モル比=50/50)の液晶配向剤B1を調製した。得られた液晶配向剤B1を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚10nmの液晶配向膜を形成した。但し、焼成時間は120分で行った。イミド化前のポリアミック酸膜の膜厚dPAAは16nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.63であった。イミド化前のポリアミック酸膜の吸収係数αは0.028であり、液晶配向膜の実効膜厚d’は23nmであった。
Comparative Example 1
Instead of the liquid crystal aligning agent A1 in Example 1, PMDA / DAZ (raw material molar ratio = 50/50) liquid crystal aligning agent B1 was prepared. The obtained liquid crystal aligning agent B1 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal aligning film having a thickness of 10 nm. However, the firing time was 120 minutes. The film thickness d PAA of the polyamic acid film before imidization was 16 nm, and the correction coefficient γ of the thickness of the liquid crystal alignment film by imidization was 0.63. The absorption coefficient α of the polyamic acid film before imidization was 0.028, and the effective film thickness d ′ of the liquid crystal alignment film was 23 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.27であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ1.4度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the alignment index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.27. Furthermore, an antiparallel cell was produced by the method according to Example 1 and the pretilt angle was measured to be 1.4 degrees. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

比較例2
実施例1における液晶配向剤A1の代わりに、PMDA/DAZ/T1(原料モル比=50/47.5/2.5)の液晶配向剤B2を調製した。得られた液晶配向剤B2を、実施例1に準じた方法でCaF基板上にスピンナーにて塗布、光照射、焼成し、膜厚12nmの液晶配向膜を形成した。イミド化前のポリアミック酸膜の膜厚dPAAは18nmであり、イミド化による液晶配向膜の厚さの補正係数γは、0.67であった。イミド化前のポリアミック酸膜の吸収係数αは0.026であり、液晶配向膜の実効膜厚d’は26nmであった。
Comparative Example 2
Instead of liquid crystal aligning agent A1 in Example 1, PMDA / DAZ / T1 (raw material molar ratio = 50 / 47.5 / 2.5) liquid crystal aligning agent B2 was prepared. The obtained liquid crystal aligning agent B2 was applied onto a CaF 2 substrate with a spinner by the method according to Example 1, irradiated with light, and baked to form a liquid crystal aligning film having a thickness of 12 nm. The film thickness d PAA of the polyamic acid film before imidization was 18 nm, and the correction coefficient γ for the thickness of the liquid crystal alignment film by imidization was 0.67. The absorption coefficient α of the polyamic acid film before imidization was 0.026, and the effective film thickness d ′ of the liquid crystal alignment film was 26 nm.

次いで、実施例1に準じた方法で液晶配向膜のポリイミド主鎖の配向指数Δを評価したところ0.33であった。さらに、実施例1に準じた方法でアンチパラレルセルを作製し、プレチルト角を測定したところ1.0度であった。液晶が傾斜する方向は無偏光の光の照射方向であった。   Subsequently, when the alignment index Δ of the polyimide main chain of the liquid crystal alignment film was evaluated by the method according to Example 1, it was 0.33. Furthermore, an antiparallel cell was produced by a method according to Example 1 and the pretilt angle was measured to be 1.0 degree. The direction in which the liquid crystal is tilted is the direction of irradiation with non-polarized light.

比較例3
窒素雰囲気中250℃にて60分間加熱処理を行った後に直線偏光とした光を基板面に対して垂直方向から照射する以外は、すなわちポリアミック酸膜を熱によってイミド化した後に直線偏光の紫外光を照射する以外は、実施例1に準じた方法で一対の液晶配向膜を形成した。
Comparative Example 3
Except for irradiating linearly polarized light from a direction perpendicular to the substrate surface after heat treatment at 250 ° C. for 60 minutes in a nitrogen atmosphere, that is, linearly polarized ultraviolet light after imidizing the polyamic acid film with heat A pair of liquid crystal alignment films was formed by the method according to Example 1 except that irradiation was performed.

次いで、実験例1に準じた方法で、プレチルト角を測定しようとしたが、配向不良のた
め、プレチルト角と配向指数Δの測定を実施しなかった。
Next, an attempt was made to measure the pretilt angle by a method according to Experimental Example 1, but the pretilt angle and the orientation index Δ were not measured due to poor alignment.

各実施例及び各比較例の液晶配向剤の原料モル%を表1に示した。   Table 1 shows the raw material mol% of the liquid crystal aligning agent of each Example and each Comparative Example.

Figure 2007248637
Figure 2007248637

各実施例及び各比較例の液晶配向膜の膜厚、ポリイミド主鎖の配向指数Δ及びプレチルト角の測定結果を表2に示した。   Table 2 shows the measurement results of the film thickness of the liquid crystal alignment film, the orientation index Δ of the polyimide main chain, and the pretilt angle of each example and each comparative example.

Figure 2007248637
Figure 2007248637

実施例1、2、3、4、5、6及び比較例1、2、3の結果から、全ジアミンに対する側鎖構造ジアミンの含有率を変えて、偏光を制御した光を照射して配向処理をした液晶配向膜を用いることで、広い範囲の液晶プレチルト角を有する液晶表示素子が得られることがわかる。   From the results of Examples 1, 2, 3, 4, 5, and 6 and Comparative Examples 1, 2, and 3, the content of the side chain structure diamine with respect to the total diamine was changed, and the alignment treatment was performed by irradiating light with controlled polarization It can be seen that a liquid crystal display element having a wide range of liquid crystal pretilt angles can be obtained by using the liquid crystal alignment film having the above-described properties.

特に、側鎖構造ジアミンを全ジアミンに対するモル比で少なくとも10%以上導入した液晶配向剤を塗布した基板に、偏光を制御した光を照射して配向処理をすることにより、側鎖構造ジアミンを含まない液晶配向剤B1を用いて同様に作製した液晶配向膜によって発生するプレチルト角より大きなプレチルト角を発生させることができることがわかる。   In particular, the side chain structure diamine is included by irradiating the substrate with a liquid crystal alignment agent into which at least 10% of the side chain structure diamine is introduced in a molar ratio with respect to the total diamine, by applying light with controlled polarization. It can be seen that a pretilt angle larger than the pretilt angle generated by the liquid crystal alignment film similarly produced using the liquid crystal aligning agent B1 can be generated.

Claims (9)

テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸の膜において光の照射によって所定の方向に配向したポリアミック酸をイミド化してなる液晶配向膜において、
前記テトラカルボン酸二無水物及び前記ジアミンの少なくともいずれかは側鎖構造を有し、
下記式1で求められる液晶配向膜におけるポリイミドの主鎖の配向指数Δが0.03〜1.00の範囲であり、
液晶配向膜を含む液晶表示素子を形成したときの液晶のプレチルト角が2〜90度の範囲であることを特徴とする液晶配向膜。
Δ=(|A‖−A⊥|)/(A‖+A⊥)×d/d’ (1)
(式(1)中、A‖は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリイミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が平行になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表し、A⊥は、偏光した赤外光を、液晶配向膜の表面に対して垂直に、かつポリイミドの主鎖の平均配向方向に対して前記赤外光の偏光方向が垂直になるように液晶配向膜に入射させた際の波数1360cm−1付近のイミド環のC−N−C伸縮振動による積分吸光度を表し、dは液晶配向膜の膜厚を表し、d’は液晶配向膜の光配向処理された領域の実効膜厚を表す。)
In a liquid crystal alignment film formed by imidizing a polyamic acid that is a reaction product of tetracarboxylic dianhydride and a diamine and that is a polyamic acid film containing an azo group in the main chain and aligned in a predetermined direction by light irradiation,
At least one of the tetracarboxylic dianhydride and the diamine has a side chain structure,
The orientation index Δ of the main chain of the polyimide in the liquid crystal alignment film obtained by the following formula 1 is in the range of 0.03 to 1.00,
A liquid crystal alignment film having a pretilt angle of 2 to 90 degrees when a liquid crystal display element including the liquid crystal alignment film is formed.
Δ = (| A‖−A⊥ |) / (A‖ + A⊥) × d / d ′ (1)
(In the formula (1), A 、 represents polarized infrared light perpendicular to the surface of the liquid crystal alignment film and the polarization direction of the infrared light is parallel to the average alignment direction of the main chain of polyimide. to become so represents the integrated absorbance by C-N-C stretching vibration of an imide ring around wave number 1360 cm -1 when is incident on the liquid crystal alignment film, A⊥ is polarized infrared light, the liquid crystal alignment film Of the imide ring near the wave number of 1360 cm −1 when incident on the liquid crystal alignment film so that the polarization direction of the infrared light is perpendicular to the surface and to the average alignment direction of the main chain of the polyimide. The integrated absorbance due to C—N—C stretching vibration is represented, d represents the film thickness of the liquid crystal alignment film, and d ′ represents the effective film thickness of the liquid crystal alignment film subjected to the photo-alignment treatment.)
前記ポリアミック酸は、側鎖構造を有さないテトラカルボン酸二無水物と、二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンと、側鎖構造を有するジアミンとの反応生成物であり、
前記側鎖構造を有するジアミンは前記ジアミンの全量に対して7〜90モル%の範囲で含まれることを特徴とする請求項1記載の液晶配向膜。
The polyamic acid is a reaction product of a tetracarboxylic dianhydride having no side chain structure, a diamine having an azo group between two amino groups and having no side chain structure, and a diamine having a side chain structure. Is a thing,
2. The liquid crystal alignment film according to claim 1, wherein the diamine having the side chain structure is contained in a range of 7 to 90 mol% with respect to the total amount of the diamine.
前記二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンは4,4’−ジアミノアゾベンゼンであることを特徴とする請求項2に記載の液晶配向膜。   The liquid crystal alignment film according to claim 2, wherein the diamine having an azo group between the two amino groups and having no side chain structure is 4,4′-diaminoazobenzene. 前記テトラカルボン酸二無水物はピロメリット酸二無水物であることを特徴とする請求項2に記載の液晶配向膜。   The liquid crystal alignment film according to claim 2, wherein the tetracarboxylic dianhydride is pyromellitic dianhydride. 前記側鎖構造を有するジアミンは下記一般式(I’−11)で表される化合物であることを特徴とする請求項2に記載の液晶配向膜。
Figure 2007248637
(式中、R24は炭素数1〜10のアルキル又は炭素数1〜10のアルコキシを表す。)
The liquid crystal alignment film according to claim 2, wherein the diamine having a side chain structure is a compound represented by the following general formula (I'-11).
Figure 2007248637
(In the formula, R 24 represents alkyl having 1 to 10 carbons or alkoxy having 1 to 10 carbons.)
テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸と溶剤とを含有し、前記ジアミンは側鎖構造を有するジアミンを含むことを特徴とする液晶配向剤。   A liquid crystal aligning agent characterized in that it is a reaction product of a tetracarboxylic dianhydride and a diamine, contains a polyamic acid containing an azo group in the main chain and a solvent, and the diamine contains a diamine having a side chain structure. . 前記ポリアミック酸は、側鎖構造を有さないテトラカルボン酸二無水物と、二つのアミノの間にアゾ基を含み側鎖構造を有さないジアミンと、側鎖構造を有するジアミンとの反応生成物であり、
前記側鎖構造を有するジアミンは前記ジアミンの全量に対して7〜90モル%の範囲で含まれることを特徴とする請求項6記載の液晶配向剤。
The polyamic acid is a reaction product of a tetracarboxylic dianhydride having no side chain structure, a diamine having an azo group between two amino groups and having no side chain structure, and a diamine having a side chain structure. Is a thing,
The liquid crystal aligning agent according to claim 6, wherein the diamine having a side chain structure is contained in a range of 7 to 90 mol% with respect to the total amount of the diamine.
対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方又は両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記一対の基板それぞれの対向している面に形成された液晶配向膜の一方又は両方が、請求項1〜5のいずれか一項に記載の液晶配向膜であることを特徴とする液晶表示素子。   A pair of substrates arranged opposite to each other, electrodes formed on one or both of the opposed surfaces of each of the pair of substrates, and liquid crystal alignment formed on the opposed surfaces of each of the pair of substrates In a liquid crystal display element having a film and a liquid crystal layer formed between the pair of substrates, one or both of the liquid crystal alignment films formed on the opposing surfaces of the pair of substrates are defined in claims 1 to 2. A liquid crystal display element, which is the liquid crystal alignment film according to claim 5. テトラカルボン酸二無水物とジアミンとの反応生成物であり主鎖にアゾ基を含むポリアミック酸の膜に光を照射して膜中のポリアミック酸を配向させる工程と、前記膜中で配向したポリアミック酸をイミド化する工程とを含み、前記ポリアミック酸をイミド化してなる液晶配向膜を製造する方法であって、
前記テトラカルボン酸二無水物及び前記ジアミンの少なくともいずれかには側鎖構造を有する化合物を用い、
膜中のポリアミック酸を配向させる工程は、
(A)前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光を前記膜に照射して膜中のポリアミック酸を膜の表面に対して垂直な方向から見たときに所定の方向に配向させる操作と、
前記ポリアミック酸の膜の表面に対して斜めの方向から光を照射して、前記膜の表面に対して斜めの方向に前記ポリアミック酸を配向させる操作とを含むか、又は
(B)前記アゾ基による幾何異性体をアンチ異性体からシン異性体に変える光を前記膜の表面に対して斜めの方向から前記膜に照射して、膜中のポリアミック酸を、膜の表面に対して垂直な方向から見たときに所定の方向に配向させ、かつ前記膜の表面に対して斜めの方向に配向させる操作を含むことを特徴とする方法。
Irradiating light to a polyamic acid film, which is a reaction product of tetracarboxylic dianhydride and diamine and containing an azo group in the main chain, to align the polyamic acid in the film, and a polyamic aligned in the film Including a step of imidizing an acid, and a method of producing a liquid crystal alignment film formed by imidizing the polyamic acid,
A compound having a side chain structure is used for at least one of the tetracarboxylic dianhydride and the diamine,
The step of orienting the polyamic acid in the film is as follows:
(A) When the film is irradiated with light that changes the geometric isomer of the azo group from an anti isomer to a syn isomer and the polyamic acid in the film is viewed from a direction perpendicular to the surface of the film, Operation to orient in the direction;
Irradiating light from a direction oblique to the surface of the polyamic acid film and orienting the polyamic acid in a direction oblique to the surface of the film, or (B) the azo group The film is irradiated with light that changes the geometric isomer from anti isomer to syn isomer from an oblique direction with respect to the surface of the film, and the polyamic acid in the film is perpendicular to the surface of the film. A method of aligning in a predetermined direction when viewed from above and aligning in an oblique direction with respect to the surface of the film.
JP2006069625A 2006-03-14 2006-03-14 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element Expired - Fee Related JP4775796B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006069625A JP4775796B2 (en) 2006-03-14 2006-03-14 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
TW096107808A TWI429995B (en) 2006-03-14 2007-03-07 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
KR1020070024595A KR101399532B1 (en) 2006-03-14 2007-03-13 Liquid crystal aligning film, liquid crystal aligning agent, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069625A JP4775796B2 (en) 2006-03-14 2006-03-14 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2007248637A true JP2007248637A (en) 2007-09-27
JP4775796B2 JP4775796B2 (en) 2011-09-21

Family

ID=38593039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069625A Expired - Fee Related JP4775796B2 (en) 2006-03-14 2006-03-14 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP4775796B2 (en)
KR (1) KR101399532B1 (en)
TW (1) TWI429995B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088046A1 (en) * 2008-01-11 2009-07-16 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent and liquid crystal display device using the same
JP2009173792A (en) * 2008-01-25 2009-08-06 Chisso Corp Alignment film, liquid crystal display element having the same, and composition for alignment layer
WO2009099227A1 (en) * 2008-02-07 2009-08-13 Ricoh Company, Ltd. Laminated structure, method of manufacturing a laminated structure, electronic element, electronic element array, image displaying medium, and image displaying device
JP2010002880A (en) * 2008-03-18 2010-01-07 Jsr Corp Liquid crystal alignment agent and liquid crystal display element
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2011008218A (en) * 2009-05-22 2011-01-13 Chisso Corp Optically anisotropic substance
CN102020995A (en) * 2009-09-15 2011-04-20 智索株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN102778786A (en) * 2011-05-13 2012-11-14 奇美实业股份有限公司 Liquid crystal alignment film and liquid crystal display device
JP2013200511A (en) * 2012-03-26 2013-10-03 Jnc Corp Optical orientation film providing high orientation and high pretilt angle, and liquid crystal display element using the same
KR20130121018A (en) 2012-04-26 2013-11-05 제이엔씨 주식회사 Liquid crystal aliigning agents for forming photo-aligning liquid crystal alignment layers, liquid crystal alignment layers and liquid crystal display devices using the same
US8608976B2 (en) 2008-04-15 2013-12-17 Samsung Display Co., Ltd. Photo alignment material and method of manufacturing display substrate using the same
JP2014129348A (en) * 2014-01-15 2014-07-10 Jnc Corp Liquid crystal orientation agent, liquid crystal orientation membrane and liquid crystal display
KR20140114798A (en) 2013-03-19 2014-09-29 제이엔씨 주식회사 Photosensitive diamines, liquid crystal aligning agents and liquid crystal display devices
KR20150003759A (en) 2012-04-24 2015-01-09 제이엔씨 주식회사 Liquid-crystal-orienting agent for forming liquid-crystal-oriented film for photoalignment, liquid-crystal-oriented film, and liquid-crystal display element using liquid-crystal-oriented film
KR20160021021A (en) 2014-08-14 2016-02-24 제이엔씨 주식회사 Triazole-containing tetracaboxylic acid dianhydrides, liquid crystal aligning agents, liquid crystal alignment layers, and liquid crystal display devices using the same
KR20160146520A (en) 2015-06-11 2016-12-21 제이엔씨 주식회사 Liquid crystal aligning agents for forming liquid crystal alignment layer for photoalignment, liquid crystal alignment layers, and liquid crystal display devices using the same
US9796927B2 (en) 2012-04-16 2017-10-24 Jnc Corporation Liquid crystal aligning agents for forming photo-aligning liquid crystal alignment layers, liquid crystal alignment layers and liquid crystal display devices using the same
CN105452948B (en) * 2013-07-30 2018-11-13 夏普株式会社 The manufacturing method of liquid crystal display device
KR20190028344A (en) 2017-09-08 2019-03-18 제이엔씨 주식회사 Liquid crystal photo-aligning agents, liquid crystal photo-alignment layers, and liquid crystal displays using the same
KR20190028287A (en) 2017-09-08 2019-03-18 제이엔씨 주식회사 Liquid crystal aligning agents for forming optical orientation type liquid crystal alignment films, liquid crystal alignment films, liquid crystal display elements using the same, polymers, and diamines
KR20190049560A (en) 2017-10-31 2019-05-09 제이엔씨 주식회사 Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using the same, and diamine and polymer
KR20190137712A (en) 2018-06-01 2019-12-11 제이엔씨 주식회사 Liquid crystal alignment agent for photo alignment, liquid crystal alignment film and liquid crystal display device using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527538B2 (en) * 2009-10-06 2014-06-18 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
TWI427104B (en) 2010-10-26 2014-02-21 Chi Mei Corp Liquid crystal alignment agent, liquid crystal alignment film and a liquid crystal display comprising said liquid crystal alignment film
TWI809128B (en) * 2018-07-03 2023-07-21 日商Dic股份有限公司 Alignment aid, liquid crystal composition and liquid crystal display element

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321907A (en) * 1986-06-26 1988-01-29 シニサロ スポルト オサケイフテイオ Protective clothing
JPH06160878A (en) * 1992-09-18 1994-06-07 Hitachi Ltd Liquid crystal display device
JPH0915650A (en) * 1995-04-28 1997-01-17 Hitachi Ltd Liquid crystal display device
JPH10170923A (en) * 1996-05-08 1998-06-26 Hitachi Ltd Active matrix type liquid crystal display device
JPH10253963A (en) * 1997-03-07 1998-09-25 Hitachi Chem Co Ltd Liquid crystal-oriented film, method for imparting liquid crystal-orienting capability, liquid crystal-holding substrate, production of liquid crystal-holding substrate, liquid crystal display element, production of liquid crystal display element, and material for liquid crystal-oriented film
JP2001517317A (en) * 1996-03-29 2001-10-02 エルシコン・インコーポレーテッド Method and material for inducing pretilt in liquid crystal and liquid crystal display
JP2001305549A (en) * 2000-04-24 2001-10-31 Jsr Corp Aligning agent for liquid crystal
JP2003096034A (en) * 2001-09-27 2003-04-03 Chisso Corp Phenylenediamine derivative, liquid crystal aligned film and liquid crystal display element
JP2003270638A (en) * 2002-03-14 2003-09-25 Dainippon Ink & Chem Inc Composition for photo-alignment layer, and method for manufacturing photo-alignment layer using the same
JP2004083810A (en) * 2002-08-28 2004-03-18 Dainippon Ink & Chem Inc Composition for vertically aligned membrane and method for producing vertically aligned membrane
JP2005049835A (en) * 2003-07-14 2005-02-24 Chisso Corp Polyimide-based varnish capable of forming alignment layer for liquid crystal display element of horizontal electric field system, alignment layer, and liquid crystal display element of horizontal electric field system having the alignment layer
JP2005120343A (en) * 2003-09-26 2005-05-12 Chisso Corp Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
WO2006003893A1 (en) * 2004-06-30 2006-01-12 Dainippon Ink And Chemicals, Inc. Azo compound, composition for optical alignment film using same, and method for producing optical alignment film
JP2006018106A (en) * 2004-07-02 2006-01-19 Hong Kong Univ Of Science & Technology Manufacturing methods of optical alignment layer for liquid crystal display element and of liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111059A (en) * 1996-02-15 2000-08-29 Nissan Chemical Industries, Ltd. Diaminobenzene derivatives, polyimides prepared therefrom, and alignment film for liquid crystals
TW438986B (en) * 1998-01-30 2001-06-07 Hitachi Ltd Liquid crystal display device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321907A (en) * 1986-06-26 1988-01-29 シニサロ スポルト オサケイフテイオ Protective clothing
JPH06160878A (en) * 1992-09-18 1994-06-07 Hitachi Ltd Liquid crystal display device
JPH0915650A (en) * 1995-04-28 1997-01-17 Hitachi Ltd Liquid crystal display device
JP2001517317A (en) * 1996-03-29 2001-10-02 エルシコン・インコーポレーテッド Method and material for inducing pretilt in liquid crystal and liquid crystal display
JPH10170923A (en) * 1996-05-08 1998-06-26 Hitachi Ltd Active matrix type liquid crystal display device
JPH10253963A (en) * 1997-03-07 1998-09-25 Hitachi Chem Co Ltd Liquid crystal-oriented film, method for imparting liquid crystal-orienting capability, liquid crystal-holding substrate, production of liquid crystal-holding substrate, liquid crystal display element, production of liquid crystal display element, and material for liquid crystal-oriented film
JP2001305549A (en) * 2000-04-24 2001-10-31 Jsr Corp Aligning agent for liquid crystal
JP2003096034A (en) * 2001-09-27 2003-04-03 Chisso Corp Phenylenediamine derivative, liquid crystal aligned film and liquid crystal display element
JP2003270638A (en) * 2002-03-14 2003-09-25 Dainippon Ink & Chem Inc Composition for photo-alignment layer, and method for manufacturing photo-alignment layer using the same
JP2004083810A (en) * 2002-08-28 2004-03-18 Dainippon Ink & Chem Inc Composition for vertically aligned membrane and method for producing vertically aligned membrane
JP2005049835A (en) * 2003-07-14 2005-02-24 Chisso Corp Polyimide-based varnish capable of forming alignment layer for liquid crystal display element of horizontal electric field system, alignment layer, and liquid crystal display element of horizontal electric field system having the alignment layer
JP2005120343A (en) * 2003-09-26 2005-05-12 Chisso Corp Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
WO2006003893A1 (en) * 2004-06-30 2006-01-12 Dainippon Ink And Chemicals, Inc. Azo compound, composition for optical alignment film using same, and method for producing optical alignment film
JP2006018106A (en) * 2004-07-02 2006-01-19 Hong Kong Univ Of Science & Technology Manufacturing methods of optical alignment layer for liquid crystal display element and of liquid crystal display element

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088046A1 (en) * 2008-01-11 2009-07-16 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent and liquid crystal display device using the same
JP5229236B2 (en) * 2008-01-11 2013-07-03 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
JP2009173792A (en) * 2008-01-25 2009-08-06 Chisso Corp Alignment film, liquid crystal display element having the same, and composition for alignment layer
WO2009099227A1 (en) * 2008-02-07 2009-08-13 Ricoh Company, Ltd. Laminated structure, method of manufacturing a laminated structure, electronic element, electronic element array, image displaying medium, and image displaying device
US8502203B2 (en) 2008-02-07 2013-08-06 Ricoh Company, Ltd. Laminated structure, method of manufacturing a laminated structure, electronic element, electronic element array, image displaying medium, and image displaying device
JP2010002880A (en) * 2008-03-18 2010-01-07 Jsr Corp Liquid crystal alignment agent and liquid crystal display element
US8608976B2 (en) 2008-04-15 2013-12-17 Samsung Display Co., Ltd. Photo alignment material and method of manufacturing display substrate using the same
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2011008218A (en) * 2009-05-22 2011-01-13 Chisso Corp Optically anisotropic substance
TWI633127B (en) * 2009-05-22 2018-08-21 捷恩智股份有限公司 Optical anisotropic body
CN102020995A (en) * 2009-09-15 2011-04-20 智索株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN102778786A (en) * 2011-05-13 2012-11-14 奇美实业股份有限公司 Liquid crystal alignment film and liquid crystal display device
TWI448790B (en) * 2011-05-13 2014-08-11 Chi Mei Corp Liquid crystal alignment film and liguid crystal display element
JP2013200511A (en) * 2012-03-26 2013-10-03 Jnc Corp Optical orientation film providing high orientation and high pretilt angle, and liquid crystal display element using the same
US9796927B2 (en) 2012-04-16 2017-10-24 Jnc Corporation Liquid crystal aligning agents for forming photo-aligning liquid crystal alignment layers, liquid crystal alignment layers and liquid crystal display devices using the same
US9909065B2 (en) 2012-04-24 2018-03-06 Jnc Corporation Liquid crystal aligning agents for forming photo-aligning liquid crystal alignment layers, liquid crystal alignment layers and liquid crystal display devices using the same
KR20190109578A (en) 2012-04-24 2019-09-25 제이엔씨 주식회사 Liquid-crystal-orienting agent for forming liquid-crystal-oriented film for photoalignment, liquid-crystal-oriented film, and liquid-crystal display element using liquid-crystal-oriented film
KR20150003759A (en) 2012-04-24 2015-01-09 제이엔씨 주식회사 Liquid-crystal-orienting agent for forming liquid-crystal-oriented film for photoalignment, liquid-crystal-oriented film, and liquid-crystal display element using liquid-crystal-oriented film
KR20130121018A (en) 2012-04-26 2013-11-05 제이엔씨 주식회사 Liquid crystal aliigning agents for forming photo-aligning liquid crystal alignment layers, liquid crystal alignment layers and liquid crystal display devices using the same
KR20140114798A (en) 2013-03-19 2014-09-29 제이엔씨 주식회사 Photosensitive diamines, liquid crystal aligning agents and liquid crystal display devices
CN105452948B (en) * 2013-07-30 2018-11-13 夏普株式会社 The manufacturing method of liquid crystal display device
JP2014129348A (en) * 2014-01-15 2014-07-10 Jnc Corp Liquid crystal orientation agent, liquid crystal orientation membrane and liquid crystal display
KR20160021021A (en) 2014-08-14 2016-02-24 제이엔씨 주식회사 Triazole-containing tetracaboxylic acid dianhydrides, liquid crystal aligning agents, liquid crystal alignment layers, and liquid crystal display devices using the same
KR20160146520A (en) 2015-06-11 2016-12-21 제이엔씨 주식회사 Liquid crystal aligning agents for forming liquid crystal alignment layer for photoalignment, liquid crystal alignment layers, and liquid crystal display devices using the same
KR20190028344A (en) 2017-09-08 2019-03-18 제이엔씨 주식회사 Liquid crystal photo-aligning agents, liquid crystal photo-alignment layers, and liquid crystal displays using the same
KR20190028287A (en) 2017-09-08 2019-03-18 제이엔씨 주식회사 Liquid crystal aligning agents for forming optical orientation type liquid crystal alignment films, liquid crystal alignment films, liquid crystal display elements using the same, polymers, and diamines
KR20190049560A (en) 2017-10-31 2019-05-09 제이엔씨 주식회사 Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using the same, and diamine and polymer
US10968392B2 (en) 2017-10-31 2021-04-06 Jnc Corporation Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using it, and diamine and polymer
KR20190137712A (en) 2018-06-01 2019-12-11 제이엔씨 주식회사 Liquid crystal alignment agent for photo alignment, liquid crystal alignment film and liquid crystal display device using the same

Also Published As

Publication number Publication date
TW200745697A (en) 2007-12-16
JP4775796B2 (en) 2011-09-21
TWI429995B (en) 2014-03-11
KR101399532B1 (en) 2014-05-26
KR20070093867A (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP4775796B2 (en) Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP5156894B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP4620438B2 (en) Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP5407394B2 (en) Photo-alignment agent, alignment film, and liquid crystal display device using the same
JP5034977B2 (en) Composition for alignment film
JP4645213B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, liquid crystal sandwich substrate, and liquid crystal display element
JP5671797B2 (en) Alignment agent and liquid crystalline polyimide used therefor
JP5293943B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US8730435B2 (en) Liquid crystal display device having retardation film formed of liquid crystalline polyimide having photoreactive group
JP5481771B2 (en) Photo-alignment film and liquid crystal display element
JP2014024846A (en) Optical alignment film, and liquid crystal display element
JP5194342B2 (en) Liquid crystal aligning agent and vertical alignment liquid crystal display element for vertical alignment liquid crystal display element
JP2006267823A (en) Liquid crystal alignment agent for vertical alignment liquid crystal display element and vertical alignment liquid crystal display element
JP4599904B2 (en) Polyimide varnish for forming an alignment film for a horizontal electric field type liquid crystal display element, an alignment film, and a horizontal electric field type liquid crystal display element having the alignment film
JP4586503B2 (en) Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film
JP4894237B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP2007140156A (en) Liquid crystal alignment agent and liquid crystal display element
JP5995055B2 (en) Photo-alignment film providing high alignment and high pretilt angle, and method of manufacturing liquid crystal display device using the same
JP2010101999A (en) Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
KR101039352B1 (en) Liquid crystal aligning agents, alining layers and liquid drystal display devices having the aligning layers
JP2005120343A (en) Polyimide-based varnish for forming alignment layer for liquid crystal display element, the alignment layer, and the liquid crystal display element with the alignment layer
JP7167781B2 (en) Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element using the same
KR101084499B1 (en) Polyimide type varnish, liquid crystal alignment film, and in-plane electric field liquid crystal display element
KR101059138B1 (en) Photoaligning agent, a liquid crystal aligning film, the liquid crystal display element using this, and the manufacturing method of a liquid crystal aligning film
KR101050238B1 (en) A liquid crystal display device having a polyimide-based varnish, an alignment film, and the alignment film for forming an alignment film for liquid crystal display devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4775796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees