JP2006018106A - Manufacturing methods of optical alignment layer for liquid crystal display element and of liquid crystal display element - Google Patents

Manufacturing methods of optical alignment layer for liquid crystal display element and of liquid crystal display element Download PDF

Info

Publication number
JP2006018106A
JP2006018106A JP2004197095A JP2004197095A JP2006018106A JP 2006018106 A JP2006018106 A JP 2006018106A JP 2004197095 A JP2004197095 A JP 2004197095A JP 2004197095 A JP2004197095 A JP 2004197095A JP 2006018106 A JP2006018106 A JP 2006018106A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
photo
alignment film
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004197095A
Other languages
Japanese (ja)
Other versions
JP4689201B2 (en
Inventor
Dan Ding Huang
ダンジン・ハン
Vladimir M Kozenkov
ブラディミアー・マルコビッチ・コゼンコフ
Vladimir G Chigrinov
ブラディミアー・グリゴリエビッチ・チグリノフ
Hoi Sing Kwok
ホイシン・コク
Hirokazu Takada
宏和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong University of Science and Technology HKUST
DIC Corp
Original Assignee
Hong Kong University of Science and Technology HKUST
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong University of Science and Technology HKUST, Dainippon Ink and Chemicals Co Ltd filed Critical Hong Kong University of Science and Technology HKUST
Priority to JP2004197095A priority Critical patent/JP4689201B2/en
Publication of JP2006018106A publication Critical patent/JP2006018106A/en
Application granted granted Critical
Publication of JP4689201B2 publication Critical patent/JP4689201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical alignment layer for a liquid crystal display element having excellent practicality, wherein time for optical alignment treatment is reduced, and to provide a manufacturing method of the liquid crystal display element using substrates provided with the alignment layer obtained by the manufacturing method. <P>SOLUTION: In the manufacturing method of the optical alignment layer for the liquid crystal display element, an optical alignment layer containing a dichroic compound is formed on electrodes respectively provided on the substrates, the two substrates are opposed to each other at a fixed interval so that surfaces on which the optical alignment layer is formed are opposed to each other and the dichroic compound is aligned by irradiating surfaces of the substrates with non-polarized light from a direction oblique. In the manufacturing method of the liquid crystal display element, a liquid crystal material is injected into a gap between the two substrates provided with the optical alignment layer manufactured by the manufacturing method of the optical alignment layer for the liquid crystal display element, the liquid crystal material is sealed and then the liquid crystal material is aligned by heating the liquid crystal material up to a temperature at which the liquid crystal material shows isotropy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶素子用の光配向膜の製造方法及び液晶表示素子の製造方法に関し、さらに詳しくは、光配向膜の配向処理に際して光照射を効率良く行い、液晶素子の製造に要する時間の短縮が可能となる方法と液晶表示素子の製造方法に関する。   The present invention relates to a method for producing a photoalignment film for a liquid crystal element and a method for producing a liquid crystal display element. More specifically, the present invention relates to a method for producing a liquid crystal element by efficiently irradiating light during the alignment treatment of the photoalignment film. And a method for manufacturing a liquid crystal display element.

液晶表示装置においては、液晶の分子配向の状態を電場等の作用によって変化させて、これに伴う光学的特性の変化を表示に利用している。多くの場合、液晶は二枚の基板の間隙に挟んだ状態で用いられるが、ここで液晶分子を特定の方向に配向させるために、基板の内側に配向処理が行われる。通常、この配向処理は、ガラス等の基板にポリイミド等の高分子の膜を設け、これを一方向に布等で摩擦する、ラビングという方法が用いられている。   In a liquid crystal display device, the state of molecular orientation of the liquid crystal is changed by the action of an electric field or the like, and the change in optical characteristics accompanying this is used for display. In many cases, the liquid crystal is used in a state of being sandwiched between two substrates. Here, in order to align liquid crystal molecules in a specific direction, an alignment process is performed on the inside of the substrate. Usually, this alignment treatment uses a method called rubbing, in which a polymer film such as polyimide is provided on a substrate such as glass and the like is rubbed with a cloth or the like in one direction.

近年、液晶表示素子に使用する液晶配向膜の製造方法としては、ポリイミド等からなる膜にラビングを行って配向処理を行う従来のラビング法に代わり、非接触での配向処理が可能な配向法が注目されており、とりわけ紫外線偏光等を照射することで液晶を配向させることができる配向膜を用いた光配向法が注目されている。   In recent years, as a method for producing a liquid crystal alignment film used for a liquid crystal display element, there is an alignment method capable of non-contact alignment treatment instead of the conventional rubbing method in which a film made of polyimide or the like is rubbed to perform alignment treatment. In particular, a photo-alignment method using an alignment film capable of aligning liquid crystals by irradiating ultraviolet polarized light or the like has been attracting attention.

このような光配向膜としては、シンナモイル基、クマリン基、カルコン基、ベンゾフェノン基等の光二量化反応によるもの、アゾベンゼン等の光異性化によるものや、ポリイミド樹脂等の光分解によるもの等が報告されている。
例えば、アゾベンゼン誘導体を含有する膜に偏光を照射すると、偏光面に対して一定の方向に分子が配向するため、この性質を利用した液晶光配向材料として研究が進められている(例えば、特許文献1参照)。この方法では偏光を用いているが、非偏光を膜面に対して斜め方向から照射しても、容易に分子が配向し、液晶配向能が得られるため、光利用効率が高く、量産に適した光配向膜となり得ることが知られている。
Examples of such photo-alignment films include those by photodimerization reactions such as cinnamoyl group, coumarin group, chalcone group, and benzophenone group, those by photoisomerization of azobenzene, and those by photolysis of polyimide resin. ing.
For example, when a film containing an azobenzene derivative is irradiated with polarized light, the molecules are aligned in a certain direction with respect to the plane of polarization. 1). Although polarized light is used in this method, even when non-polarized light is irradiated from an oblique direction with respect to the film surface, the molecules are easily aligned and the liquid crystal alignment ability is obtained, so the light utilization efficiency is high and suitable for mass production. It is known that it can be a photo-alignment film.

特に、特定のアゾベンゼン誘導体は、非偏光の紫外線の照射によっても高いオーダーパラメーターをもって配向し、液晶に対して大きな配向規制力が得られることが知られている(例えば、特許文献2参照)。
特開平2−277025号公報 特開2002−265442号公報
In particular, it is known that a specific azobenzene derivative is aligned with a high order parameter even by irradiation with non-polarized ultraviolet rays, and a large alignment regulating force can be obtained for liquid crystals (for example, see Patent Document 2).
Japanese Laid-Open Patent Publication No. 2-277005 JP 2002-265442 A

しかしながら、特許文献2に係る発明にあっては、紫外線ランプの出力による制限のため、紫外線照射装置による光照射時間は、従来のラビング配向膜に要するラビング時間よりも長く、生産性が低下する問題があった。このことは、光配向膜が液晶パネル量産工程において普及していない原因の一つであった。   However, in the invention according to Patent Document 2, because of the limitation due to the output of the ultraviolet lamp, the light irradiation time by the ultraviolet irradiation device is longer than the rubbing time required for the conventional rubbing alignment film, and the productivity is lowered. was there. This is one of the reasons why the photo-alignment film is not widely used in the liquid crystal panel mass production process.

本発明が解決しようとする課題は、このような光配向法における欠点を軽減し、光配向処理時間の短縮した実用性に優れた光配向膜の製造方法を提案することにある。   The problem to be solved by the present invention is to propose a method for producing a photo-alignment film excellent in practicality with reduced photo-alignment processing time and alleviating the drawbacks of such photo-alignment method.

さらに、本発明は上記製造方法で得られた光配向膜を備えた基板を用いて液晶表示素子を製造する方法を提案する。   Furthermore, the present invention proposes a method for manufacturing a liquid crystal display element using a substrate provided with the photo-alignment film obtained by the above-described manufacturing method.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、特定の化合物を含有する光配向膜を形成させた二枚の基板を、該光配向膜が形成された面同士を向かい合わせになるように一定の間隙をもって対向させた液晶セルに対して、斜め方向から非偏光の紫外線を照射することで、二枚の基板上の光配向膜の配向処理を一度に行なうことができることを見出して本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors face two substrates on which a photo-alignment film containing a specific compound is formed facing each other on the surface on which the photo-alignment film is formed. The alignment process of the photo-alignment films on the two substrates can be performed at a time by irradiating the non-polarized ultraviolet rays from the oblique direction to the liquid crystal cells facing each other with a certain gap so as to be aligned. As a result, the present invention has been completed.

すなわち本発明は、基板上に設けられた電極上に二色性化合物を含有する光配向膜を形成し、この基板を二枚、前記光配向膜が形成された面同士を向かい合わせになるように一定の間隙をもって対向させ、基板面に対して斜め方向から非偏光を照射して二色性化合物を配向させることを特徴とする液晶表示素子用光配向膜の製造方法を提供する。   That is, according to the present invention, a photo-alignment film containing a dichroic compound is formed on an electrode provided on a substrate, and the two surfaces of the substrate, on which the photo-alignment film is formed, face each other. A method for producing a photo-alignment film for a liquid crystal display device is provided, wherein the dichroic compound is oriented by irradiating the substrate surface with a non-polarized light from an oblique direction.

また、本発明は、上記液晶表示素子用光配向膜の製造方法で製造した光配向膜を備えた二枚の基板の間隔に液晶材料を注入し、封止した後、これを前記液晶材料が等方性を示す温度まで加熱して前記液晶材料を配向させることを特徴とする液晶表示素子の製造方法を提供する。   Further, the present invention provides a liquid crystal material injected into a gap between two substrates provided with the photo-alignment film produced by the above-described method for producing a photo-alignment film for liquid crystal display elements, and sealed. There is provided a method for producing a liquid crystal display element, wherein the liquid crystal material is oriented by heating to a temperature exhibiting isotropic properties.

本発明によれば、光配向膜を塗布した基板で液晶セルを作製し、セルの一方の基板側から非偏光を1回照射するだけで、二枚の基板上の二色性化合物を配向させることができるため、光配向膜を用いた液晶素子の量産における課題であった光配向処理時間を短縮することができ、効率的な液晶素子用光配向膜の製造方法を提供することができる。   According to the present invention, a liquid crystal cell is produced with a substrate coated with a photo-alignment film, and the dichroic compounds on the two substrates are aligned by simply irradiating non-polarized light once from one substrate side of the cell. Therefore, the photo-alignment treatment time, which has been a problem in mass production of liquid crystal elements using the photo-alignment film, can be shortened, and an efficient method for producing a photo-alignment film for liquid crystal elements can be provided.

また、本発明によれば、液晶セルを組み立てた後、光配向膜を配向処理し、その後、このセルに液晶材料を注入して液晶材料を配向させるため、効率的な液晶素子の製造方法を提供することができる。   In addition, according to the present invention, after assembling the liquid crystal cell, the photo-alignment film is subjected to alignment treatment, and then the liquid crystal material is injected into the cell to align the liquid crystal material. Can be provided.

以下、本発明を詳しく記載する。   Hereinafter, the present invention will be described in detail.

まず、本発明で製造した液晶素子用光配向膜の一実施形態を説明する。
本実施形態の液晶素子用光配向膜は、基板上に設けられた電極上に形成された二色性化合物を含有する光配向膜から概略構成されている。この基板を二枚、光配向膜が形成された面同士を向かい合わせになるように一定の間隙をもって対向させたものを液晶セルという。
First, an embodiment of a photo-alignment film for a liquid crystal element manufactured according to the present invention will be described.
The photo-alignment film for a liquid crystal element of the present embodiment is generally composed of a photo-alignment film containing a dichroic compound formed on an electrode provided on a substrate. A liquid crystal cell having two substrates facing each other with a certain gap so that the surfaces on which the photo-alignment films are formed face each other is called a liquid crystal cell.

本発明に使用する基板は、液晶配向膜を有する液晶表示素子に通常使用する基板であって、ガラス、ポリマーフィルム、シリコンウエハなどの基板が挙げられるが、ポリマーフィルムを用いる場合は、100℃以上の耐熱性を有することが好ましい。また、二枚の基板のうち、少なくとも一方は、光配向処理で照射する光に対して透明であることが必要である。   The substrate used in the present invention is a substrate usually used for a liquid crystal display device having a liquid crystal alignment film, and examples thereof include a substrate such as glass, a polymer film, and a silicon wafer. It is preferable to have the heat resistance. In addition, at least one of the two substrates needs to be transparent to the light irradiated in the photo-alignment process.

ガラスやプラスチック等の基板上に設ける電極としては、現在最も広く用いられているITO(インジウムスズ酸化物)の他に、ATO(アンチモンスズ酸化物)、TO(酸化スズ)、ZO(酸化亜鉛)、IZO(インジウム亜鉛酸化物)、FTO(フッ素スズ酸化物)等を例示することができる。
この電極は透明電極であることが好ましい。非偏光を照射する基板は透明電極を有し、特にITOが好ましい。また、この電極の膜厚は200〜2500Åであるのが好ましい。
As electrodes provided on substrates such as glass and plastic, in addition to ITO (indium tin oxide), which is currently most widely used, ATO (antimony tin oxide), TO (tin oxide), ZO (zinc oxide) , IZO (indium zinc oxide), FTO (fluorine tin oxide), and the like.
This electrode is preferably a transparent electrode. The substrate for irradiating non-polarized light has a transparent electrode, and ITO is particularly preferable. Moreover, it is preferable that the film thickness of this electrode is 200-2500 mm.

この電極上には、二色性化合物を含有する光配向膜が設けられている。本発明で用いる光配向膜に含有される二色性化合物としては、屈折率が大きく、非偏光の紫外線の照射によっても高いオーダーパラメーターをもって配向し、液晶に対して大きな配向規制力が得られる点から、アゾベンゼン誘導体が好ましい。
このようなアゾベンゼン誘導体としては、下記一般式(1)に示される化合物が特に好ましい。
On this electrode, a photo-alignment film containing a dichroic compound is provided. The dichroic compound contained in the photo-alignment film used in the present invention has a large refractive index, is aligned with high order parameters even by irradiation with non-polarized ultraviolet rays, and has a large alignment regulating force for liquid crystals. Therefore, azobenzene derivatives are preferable.
As such an azobenzene derivative, a compound represented by the following general formula (1) is particularly preferable.

Figure 2006018106
Figure 2006018106

式中、R、Rは各々独立して、ヒドロキシ基、又は(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルオキシ基、及びマレイミド基からなる群から選ばれる重合性官能基を表す。
また、XはRがヒドロキシ基の場合、単結合を表し、Rが重合性官能基の場合、−(A−B−で表される連結基を表し、XはRがヒドロキシ基の場合、単結合を表し、Rが重合性官能基の場合、−(A−B−で表される連結基を表す。ここで、AはRと結合し、AはRと結合し、B、Bは各々隣接するフェニレン基と結合する。
、Aは各々独立して単結合、又は二価の炭化水素基を表し、B、Bは各々独立して単結合、−O−、−CO−O−、−OCO−、−CONH−、−NHCO−、−NHCO−O−、又は−OCONH−を表す。
m、nは各々独立して0〜4の整数を表す。但し、m又はnが2以上のとき、複数のA、B、A、及びBは、同じ基であっても異なった基であってもよい。但し、2つのB又はBの間に挟まれたA又はAは、単結合ではないものとする。
また、R、Rは各々独立して、ハロゲン原子、カルボキシル基、ハロゲン化メチル基、ハロゲン化メトキシ基、シアノ基、ニトロ基、メトキシ基、又はメトキシカルボニル基を表す。なお、カルボキシ基はアルカリ金属と塩を形成していてもよい。
また、R、Rは各々独立して、カルボキシル基、スルホ基、ニトロ基、アミノ基、又はヒドロキシ基を表す。なお、カルボキシ基又はスルホ基はアルカリ金属と塩を形成していてもよい。
In the formula, R 1 and R 2 are each independently a hydroxy group, or a group consisting of a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyl group, a vinyloxy group, and a maleimide group. Represents a polymerizable functional group to be selected.
X 1 represents a single bond when R 1 is a hydroxy group, and represents a linking group represented by — (A 1 -B 1 ) m — when R 1 is a polymerizable functional group, and X 2 represents When R 2 is a hydroxy group, it represents a single bond, and when R 2 is a polymerizable functional group, it represents a linking group represented by — (A 2 —B 2 ) n —. Here, A 1 is bonded to R 1 , A 2 is bonded to R 2, and B 1 and B 2 are bonded to adjacent phenylene groups.
A 1 and A 2 each independently represent a single bond or a divalent hydrocarbon group, and B 1 and B 2 each independently represent a single bond, —O—, —CO—O—, —OCO—, -CONH-, -NHCO-, -NHCO-O-, or -OCONH- is represented.
m and n each independently represents an integer of 0 to 4. However, when m or n is 2 or more, the plurality of A 1 , B 1 , A 2 , and B 2 may be the same group or different groups. However, A 1 or A 2 sandwiched between two B 1 or B 2 is not a single bond.
R 3 and R 4 each independently represent a halogen atom, a carboxyl group, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group, a methoxy group, or a methoxycarbonyl group. The carboxy group may form a salt with an alkali metal.
R 5 and R 6 each independently represent a carboxyl group, a sulfo group, a nitro group, an amino group, or a hydroxy group. In addition, the carboxy group or the sulfo group may form a salt with the alkali metal.

上記一般式(1)で表されるアゾベンゼン誘導体は、直線偏光や楕円偏光の照射によって偏光方向に対して、分子の長軸方向が垂直になるように配向し、一方、非偏光の平行光紫外線を照射した場合には、紫外線の入射面(基板面と垂直な面)に対して分子の長軸方向が平行になるように容易に配向する性質を有するため、本発明で用いる光配向膜用の二色性化合物として特に好ましい。   The azobenzene derivative represented by the general formula (1) is oriented so that the major axis direction of the molecule is perpendicular to the polarization direction by irradiation with linearly polarized light or elliptically polarized light, while non-polarized parallel light ultraviolet rays For the photo-alignment film used in the present invention because it has the property of being easily oriented so that the major axis direction of the molecules is parallel to the ultraviolet incident surface (surface perpendicular to the substrate surface). Particularly preferred as the dichroic compound.

上記一般式(1)においては、R、Rは各々独立して、ヒドロキシ基、又は(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルオキシ基、及びマレイミド基からなる群から選ばれる重合性官能基である。R及びRが重合性官能基であると、光配向処理後、熱重合や光重合によって二色性化合物の配向を固定化することができ、耐熱性や耐光性に優れた光配向膜を得ることができるため好ましい。そのなかでも、(メタ)アクリロイロキシ基、又は(メタ)アクリルアミド基が好ましい。 In the general formula (1), R 1 and R 2 are each independently a hydroxy group, a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyl group, a vinyloxy group, and It is a polymerizable functional group selected from the group consisting of maleimide groups. When R 1 and R 2 are polymerizable functional groups, the photo-alignment film having excellent heat resistance and light resistance can be obtained by fixing the orientation of the dichroic compound by thermal polymerization or photopolymerization after photo-alignment treatment. Is preferable. Among these, a (meth) acryloyloxy group or a (meth) acrylamide group is preferable.

上記一般式(1)において、R及びRで表されるヒドロキシ基や重合性官能基は、X及びXで表される連結基を介して、隣接するフェニレン基と連結している。連結基X及び連結基XのうちA又はAで表される二価の炭化水素基としては、プロピレン基、へプチレン基等の炭素原子数3〜20のアルキレン基、メチレン基、トリメチレン基、ペンタメチレン基等の炭素原子数1〜20のポリメチレン基、シクロプロピレン基、シクロヘキシレン基等の炭素原子数3〜20のシクロアルキレン基、フェニレン基、ナフチレン基等の炭素原子数6〜20のアリーレン基等が挙げられる。 In the general formula (1), the hydroxy group or polymerizable functional group represented by R 1 and R 2 is linked to the adjacent phenylene group via the linking group represented by X 1 and X 2 . . As the divalent hydrocarbon group represented by A 1 or A 2 among the linking group X 1 and the linking group X 2 , an alkylene group having 3 to 20 carbon atoms such as a propylene group and a heptylene group, a methylene group, 6 to 20 carbon atoms such as a polymethylene group having 1 to 20 carbon atoms such as a trimethylene group and a pentamethylene group, a cycloalkylene group having 3 to 20 carbon atoms such as a cyclopropylene group and a cyclohexylene group, a phenylene group and a naphthylene group And 20 arylene groups.

上記一般式(1)において、R及びRのハロゲン原子としては、フッ素原子や塩素原子が、ハロゲン化メチル基としては、トリクロロメチル基やトリフルオロメチル基等が、ハロゲン化メトキシ基としては、クロロメトキシ基やトリフルオロメトキシ基が挙げられる。そのなかでも、R及びRがカルボキシ基であると特に大きな配向規制力が得られるため好ましい。カルボキシ基は、リチウム、ナトリウム、カリウム等のアルカリ金属と塩を形成していてもよい。 In the above general formula (1), the halogen atom of R 3 and R 4 is a fluorine atom or a chlorine atom, the halogenated methyl group is a trichloromethyl group or a trifluoromethyl group, and the halogenated methoxy group is And a chloromethoxy group and a trifluoromethoxy group. Among them, it is preferable that R 3 and R 4 are carboxy groups because a particularly large alignment regulating force can be obtained. The carboxy group may form a salt with an alkali metal such as lithium, sodium or potassium.

また、上記一般式(1)において、R及びRは、カルボキシ基又はスルホ基であると基板に対する付着性が高くなるため、好ましい。また、カルボキシ基とスルホ基は、リチウム、ナトリウム、カリウム等のアルカリ金属と塩を形成していてもよい。 In the general formula (1), R 5 and R 6 are preferably a carboxy group or a sulfo group because adhesion to the substrate is increased. The carboxy group and the sulfo group may form a salt with an alkali metal such as lithium, sodium, or potassium.

上記一般式(1)で表される化合物は、偏光、もしくは基板面に対して斜め方向からの光を照射すると容易に配向し、かつ、ガラスやITO等の基板に対して成膜性や付着性に優れていることが好ましい。具体的には、下記構造のアゾベンゼン誘導体を挙げることができる。   The compound represented by the above general formula (1) is easily oriented when irradiated with polarized light or light from an oblique direction with respect to the substrate surface, and has film formability and adhesion to a substrate such as glass or ITO. It is preferable that it is excellent in property. Specific examples include azobenzene derivatives having the following structure.

Figure 2006018106
Figure 2006018106

Figure 2006018106
Figure 2006018106

Figure 2006018106
Figure 2006018106

Figure 2006018106
Figure 2006018106

例えば、前記(a)で表されるアゾベンゼン誘導体は、2,2’−ベンジジンジスルホン酸に亜硝酸ナトリウムを反応させて、ジアゾニウム化合物としてから、2−ヒドロキシ安息香酸を反応させて得られる。また、前記(b)で表されるアゾベンゼン誘導体は、前記(a)で表されるアゾベンゼン誘導体の両末端のヒドロキシ基にアクリル酸クロライドを反応させて得られる。   For example, the azobenzene derivative represented by (a) can be obtained by reacting 2,2'-benzidinedisulfonic acid with sodium nitrite to form a diazonium compound and then reacting 2-hydroxybenzoic acid. The azobenzene derivative represented by (b) is obtained by reacting acrylic acid chloride with hydroxy groups at both ends of the azobenzene derivative represented by (a).

また、本発明における光配向膜の膜厚は50〜200Åであるのが好ましい。膜厚が200Åを超えると、光配向膜に含有される二色性化合物が色を呈するようになり、透明でなくなるため好ましくないからである。   Moreover, it is preferable that the film thickness of the photo-alignment film in this invention is 50-200 mm. This is because if the film thickness exceeds 200 mm, the dichroic compound contained in the photo-alignment film becomes colored and is not transparent, which is not preferable.

次に、本発明の液晶素子用光配向膜を製造する方法の一例を述べる。
まず、上記二色性化合物を含有する光配向膜用組成物を基板上に塗布し、乾燥することによって光配向膜を作成する。光配向膜用組成物を基板上に塗布する際には、これを適切な溶媒に溶解して使用する。この際の溶媒は特に限定されないが、ピロリドン、N−メチルピロリドン、N,N−ジメチルホルムアミド、2−ブトキシエタノール、2−フェノキシエタノール、γ−ブチロラクトン、クロロベンゼン、ジメチルスルホキシド、ジメチルアセトアミド、エチレングリコール、プロピレングリコール、イソプロピレングリコール、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、3−メトキシ−3−メチルブタノール等が一般的に用いられる。そのなかでも、2−ブトキシエタノール、N−メチルピロリドン、プロピレングリコール、N,N−ジメチルホルムアミドの溶液はガラス、ITOなどの表面への塗布性が良好で、むらのない均一な塗膜が得られることから、特に好ましい。
これらの溶剤は、塗布性や、塗布後の揮発速度を考慮して選択することが好ましく、2種類以上を混合して使用することもできる。
Next, an example of a method for producing the photo-alignment film for liquid crystal elements of the present invention will be described.
First, the composition for photo-alignment films containing the said dichroic compound is apply | coated on a board | substrate, and a photo-alignment film is created by drying. When the composition for photo-alignment film is applied on the substrate, it is used after being dissolved in an appropriate solvent. The solvent in this case is not particularly limited, but pyrrolidone, N-methylpyrrolidone, N, N-dimethylformamide, 2-butoxyethanol, 2-phenoxyethanol, γ-butyrolactone, chlorobenzene, dimethyl sulfoxide, dimethylacetamide, ethylene glycol, propylene glycol In general, isopropylene glycol, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 3-methoxy-3-methylbutanol and the like are generally used. Among them, a solution of 2-butoxyethanol, N-methylpyrrolidone, propylene glycol, N, N-dimethylformamide has a good coating property on the surface of glass, ITO, etc., and a uniform coating without unevenness can be obtained. Therefore, it is particularly preferable.
These solvents are preferably selected in consideration of applicability and volatilization rate after application, and two or more types can be mixed and used.

また、光配向膜用組成物の溶液を基板上に塗布する方法としては、スピンコーティング法、フレキソ印刷法、マイクログラビア印刷法、ダイコーティング法、ディッピング法などを用いることができるが、特にスピンコーティング法、フレキソ印刷法は均一な塗膜を得ることが容易であり、好ましい。   In addition, as a method for applying the solution of the composition for photo-alignment film on the substrate, a spin coating method, a flexographic printing method, a micro gravure printing method, a die coating method, a dipping method, and the like can be used. The method and flexographic printing method are preferable because it is easy to obtain a uniform coating film.

次に、これら二枚の基板を、光配向膜が形成された面同士を向かい合わせになるようにし、一定の間隙を有するスペーサーを介して貼り合わせることで液晶セルを得る。この貼り合わせた液晶セルに対して光照射することにより光配向処理を行う。光照射は液晶セルの外側から基板面に対して斜め方向から非偏光を照射することによって行う。   Next, these two substrates are bonded to each other through a spacer having a certain gap so that the surfaces on which the photo-alignment films are formed face each other, thereby obtaining a liquid crystal cell. Photo-alignment treatment is performed by irradiating light to the bonded liquid crystal cell. Light irradiation is performed by irradiating non-polarized light from an oblique direction to the substrate surface from the outside of the liquid crystal cell.

次に、この光配向膜の配向処理方法について説明する。
図1は、透明な層状の媒質の表面に対して斜め方向から非偏光が入射した際、透過した光のP偏光成分1とS偏光成分2のそれぞれの透過率と基板面法線からの入射角依存性との関係を示すグラフである。一般に、透明な媒質の表面に対して斜め方向から光が入射した場合、面法線に対する光の入射角をθとすると、入射光のS偏光成分2の透過率は、入射角θの増加とともに減少する。一方、P偏光成分1の透過率は、ブリュースター角になるまで入射角θの増加とともに増加し、ブリュースター角を超えると減少に転じる。図1によれば、入射角(度)が増加すると光の透過率は減少するものの、透過光のうちS偏光成分2に対するP偏光成分1の比は増加している。
Next, a method for aligning the photo-alignment film will be described.
FIG. 1 shows that when non-polarized light is incident on the surface of a transparent layered medium from an oblique direction, the transmittance of the P-polarized component 1 and the S-polarized component 2 of the transmitted light and incident from the normal of the substrate surface It is a graph which shows the relationship with angle dependence. In general, when light is incident on the surface of a transparent medium from an oblique direction, if the incident angle of the light with respect to the surface normal is θ 1 , the transmittance of the S-polarized component 2 of the incident light is the incident angle θ 1 . Decreases with increase. On the other hand, the transmittance of the P-polarized component 1 increases as the incident angle θ 1 increases until the Brewster angle is reached, and starts decreasing when the angle exceeds the Brewster angle. According to FIG. 1, although the light transmittance decreases as the incident angle (degrees) increases, the ratio of the P-polarized component 1 to the S-polarized component 2 in the transmitted light increases.

また、透明な媒質における境界面での透過率は、S偏光(t)及びP偏光(t)に対して、次式で表される。 Further, the transmittance at the boundary surface in the transparent medium is expressed by the following equation for S-polarized light (t s ) and P-polarized light (t p ).

Figure 2006018106
Figure 2006018106

Figure 2006018106
Figure 2006018106

ここで、θ及びθはそれぞれの境界面に対する入射角及び屈折角である。入射側の媒質の屈折率をnとし、屈折側の媒質の屈折率をnとすると、これらとθ,θとの関係は、スネルの法則より、次式で表される。 Here, θ 1 and θ 2 are an incident angle and a refraction angle with respect to each boundary surface. When the refractive index of the incident side of the medium and n 1, the refractive index of the refractive side of the medium and n 2, these and theta 1, relationship between theta 2, from Snell's law, expressed by the following equation.

Figure 2006018106
Figure 2006018106

例えば、n>nの場合、θ>θとなる。数式(1)及び数式(2)よりt>tとなり、nとnの差が大きいほど、透過光におけるP偏光(t)とS偏光(t)の強度差は大きくなる。 For example, when n 1 > n 2 , θ 2 > θ 1 is satisfied. Equation (1) and t p> t s becomes from Equation (2), as the difference between the n 1 and n 2 is large, the intensity difference between the P-polarized light in the transmitted light (t p) and S-polarized light (t s) is increased .

図2は、液晶セルの基板面に対して斜め方向から非偏光の平行光を照射した場合の光の偏光方向と光配向膜の二色性化合物が配向する方向を示す説明図である。
本発明の光配向膜の製造方法において、基板を二枚対向させた液晶セル9に対して光照射する場合、非偏光を一方の基板面(以下、「上基板」と言う。)に対して斜め方向から照射すると、図2に示すようにこの非偏光6は、1)上基板4、2)透明電極10、3)光配向膜(上基板)3、4)空気層の順に入射し、それからもう一方の基板(以下、「下基板」と言う。)の5)光配向膜(下基板)3’、6)電極10’、7)下基板4’の順に入射して通過する。
FIG. 2 is an explanatory diagram showing the polarization direction of light and the direction in which the dichroic compound of the photo-alignment film is aligned when non-polarized parallel light is irradiated from an oblique direction to the substrate surface of the liquid crystal cell.
In the method for producing a photo-alignment film of the present invention, when light is applied to the liquid crystal cell 9 having two substrates facing each other, non-polarized light is applied to one substrate surface (hereinafter referred to as “upper substrate”). When irradiated from an oblique direction, as shown in FIG. 2, this non-polarized light 6 is incident in the order of 1) upper substrate 4, 2) transparent electrode 10, 3) photo-alignment film (upper substrate) 3, 4) air layer, Then, 5) photo-alignment film (lower substrate) 3 ′, 6) electrode 10 ′, 7) lower substrate 4 ′ of the other substrate (hereinafter referred to as “lower substrate”) is incident and passed through in this order.

ここで、各層の屈折率の代表値を下記に示す。
0)空気 屈折率=1
1)上基板(ガラス、PC、PES等) 屈折率=1.5〜1.7
2)透明電極(ITO等) 屈折率=1.8〜2.0
3)光配向膜(上基板) 屈折率=1.6〜1.8
4)空気 屈折率=1
5)光配向膜(下基板) 屈折率=1.6〜1.8
6)電極(下基板) 屈折率=1.8〜2.0
7)下基板 屈折率=1.5〜1.7
Here, representative values of the refractive index of each layer are shown below.
0) Air Refractive index = 1
1) Upper substrate (glass, PC, PES, etc.) Refractive index = 1.5 to 1.7
2) Transparent electrode (ITO etc.) Refractive index = 1.8-2.0
3) Photo-alignment film (upper substrate) Refractive index = 1.6 to 1.8
4) Air Refractive index = 1
5) Photo-alignment film (lower substrate) Refractive index = 1.6 to 1.8
6) Electrode (lower substrate) Refractive index = 1.8 to 2.0
7) Lower substrate Refractive index = 1.5 to 1.7

境界面を透過した光は、各境界面において隣り合う媒質の屈折率の大小により反射率及び透過率が変化する。実際には、他の境界面で反射及び透過された光が、さらに反射及び透過して多重反射を起こすため、もっと複雑になるが、光配向膜(上基板)3に到達する光は、空気、上基板、透明電極といった各層の屈折率により、そのP偏光とS偏光の比が決まる。   The light transmitted through the boundary surface changes in reflectance and transmittance depending on the refractive index of the adjacent medium at each boundary surface. Actually, since the light reflected and transmitted at the other interface is further reflected and transmitted to cause multiple reflection, it becomes more complicated, but the light reaching the photo-alignment film (upper substrate) 3 is air. The refractive index of each layer such as the upper substrate and the transparent electrode determines the ratio of the P-polarized light and the S-polarized light.

光配向膜(上基板)3を通過した光は、光配向膜(上基板)3とその下層の空気との屈折率が大きく異なるため、S偏光がより多く反射され、さらにその下層にある光配向膜(下基板)3’に到達する光は、P偏光成分が多くなる。   The light that has passed through the photo-alignment film (upper substrate) 3 has a large difference in refractive index between the photo-alignment film (upper substrate) 3 and the air below it. The light reaching the alignment film (lower substrate) 3 ′ has a large P-polarized component.

本発明で使用する光配向膜は、二色性化合物を含有するものである。この二色性化合物は、非偏光6の斜め方向からの照射に対しては、吸収軸(分子の長軸方向)を非偏光6の入射面(基板面と垂直な面)に対して平行となるよう配向する性質がある。具体的には、図2における光配向膜(上基板)3の二色性化合物5のように、基板の長手方向と平行に配向する。
一方、偏光の照射に対しては、吸収軸(分子の長軸方向)を偏光方向に対して垂直になるように配向する性質がある。具体的には、図2における光配向膜(下基板)3’の二色性化合物7のように、基板の長手方向と垂直に配向する。
The photo-alignment film used in the present invention contains a dichroic compound. In this dichroic compound, the absorption axis (major axis direction of the molecule) is parallel to the incident surface (surface perpendicular to the substrate surface) of the non-polarized light 6 when the non-polarized light 6 is irradiated from an oblique direction. It has the property of being oriented. Specifically, like the dichroic compound 5 of the photo-alignment film (upper substrate) 3 in FIG. 2, it is aligned parallel to the longitudinal direction of the substrate.
On the other hand, with respect to irradiation of polarized light, there is a property that the absorption axis (major axis direction of the molecule) is oriented so as to be perpendicular to the polarization direction. Specifically, it is aligned perpendicular to the longitudinal direction of the substrate, like the dichroic compound 7 of the photo-alignment film (lower substrate) 3 ′ in FIG.

この二色性化合物を含有する光配向膜の特性を利用することで、一方の基板側から非偏光を1回照射するだけで、光配向膜(上基板)と光配向膜(下基板)の二色性化合物の配向方向を、ある場合は互いが同じ方向に、ある場合は互いが直交する方向となるように制御することができる。
つまり、光配向膜(上基板)にも、光配向膜(下基板)にもP偏光を照射すると、二色性化合物はお互いが同じ方向の配向性を有する。このため、この液晶セルに液晶材料を注入し、液晶分子を配向させるとホモジニアス配向した液晶表示素子が得られる。
By utilizing the characteristics of the photo-alignment film containing this dichroic compound, the non-polarized light is irradiated once from one substrate side, so that the photo-alignment film (upper substrate) and the photo-alignment film (lower substrate) The orientation directions of the dichroic compounds can be controlled so that in some cases, the dichroic compounds are in the same direction, and in other cases, the directions are perpendicular to each other.
That is, when both the photo-alignment film (upper substrate) and the photo-alignment film (lower substrate) are irradiated with P-polarized light, the dichroic compounds have the same orientation in each other. Therefore, when a liquid crystal material is injected into this liquid crystal cell and the liquid crystal molecules are aligned, a homogeneously aligned liquid crystal display element can be obtained.

一方、光配向膜(上基板)に非偏光に近い光を照射し、光配向膜(下基板)にP偏光を照射すると、二色性化合物はお互いが直交する方向の配向性を有する。このため、この液晶セルに液晶材料を注入し、液晶分子を配向させるとツイスト配向したTN液晶表示素子が得られる。   On the other hand, when the photo-alignment film (upper substrate) is irradiated with light close to non-polarized light, and the photo-alignment film (lower substrate) is irradiated with P-polarized light, the dichroic compounds have orientations in directions perpendicular to each other. For this reason, when a liquid crystal material is injected into this liquid crystal cell and the liquid crystal molecules are aligned, a twist-aligned TN liquid crystal display element is obtained.

上基板に対する非偏光の入射角度及び光配向膜の屈折率を適切に選択すると、光が入射する側の基板に設けられた光配向膜(上基板)にはP偏光成分とS偏光成分の強度差の小さい非偏光に近い光が照射され、一方、これと対向する基板に設けられた光配向膜(下基板)にはP偏光成分とS偏光成分の強度差の大きい偏光が照射されるように制御することができる。あるいは、上基板に対する非偏光の照射角度を変化させることで、光が入射する側の基板に設けられた光配向膜(上基板)にP偏光成分とS偏光成分の強度差の大きい偏光が照射され、光配向膜(下基板)にもP偏光成分とS偏光成分の強度差の大きい偏光が照射されるように制御することもできる。   When the incident angle of non-polarized light with respect to the upper substrate and the refractive index of the photo-alignment film are appropriately selected, the photo-alignment film (upper substrate) provided on the substrate on which light is incident has the intensities of the P-polarized component and the S-polarized component. Light that is close to non-polarized light with a small difference is irradiated. On the other hand, the photo-alignment film (lower substrate) provided on the opposite substrate is irradiated with polarized light having a large intensity difference between the P-polarized component and the S-polarized component. Can be controlled. Alternatively, by changing the irradiation angle of non-polarized light with respect to the upper substrate, polarized light having a large intensity difference between the P-polarized component and the S-polarized component is irradiated to the photo-alignment film (upper substrate) provided on the substrate on which light is incident. In addition, it is possible to control the light alignment film (lower substrate) to be irradiated with polarized light having a large intensity difference between the P-polarized component and the S-polarized component.

図2に示すように、入射側の基板に設けられた光配向膜(上基板)3に、非偏光6が基板面に対して斜め方向から照射される場合、光配向膜(上基板)3の二色性化合物5は、非偏光の入射面(基板面と垂直な面)に対して平行に配向する。光配向膜(上基板)3に照射される光がどの程度偏光するかは、非偏光の照射角度、光配向膜に入射するまでに通過する層の屈折率による計算や、シミュレーションにより得ることができる。
一方、上基板4及び光配向膜(上基板)3を透過する光は、光配向膜(上基板)3と空気の界面での反射により、S偏光成分は相対的にP偏光成分よりも減少し、楕円偏光となる。この楕円偏光が対向する光配向膜(下基板)3’に照射されると、光配向膜(下基板)3’の二色性化合物7は、楕円偏光の長軸と垂直方向に配向するため、結果として光配向膜(上基板)3の二色性化合物5と光配向膜(下基板)3’の二色性化合物7は略直交して配向する。このようにして作製した液晶セル9にネマティック液晶を注入することで、TN配向の液晶素子が得られる。
As shown in FIG. 2, when the non-polarized light 6 is irradiated to the photo-alignment film (upper substrate) 3 provided on the substrate on the incident side from an oblique direction with respect to the substrate surface, the photo-alignment film (upper substrate) 3 The dichroic compound 5 is oriented parallel to the non-polarized incident surface (surface perpendicular to the substrate surface). The degree of polarization of light applied to the photo-alignment film (upper substrate) 3 can be obtained by calculation or simulation based on the irradiation angle of non-polarized light, the refractive index of the layer that passes before entering the photo-alignment film. it can.
On the other hand, the light transmitted through the upper substrate 4 and the photo-alignment film (upper substrate) 3 is reflected at the interface between the photo-alignment film (upper substrate) 3 and the air, so that the S-polarized component is relatively smaller than the P-polarized component. And it becomes elliptically polarized light. When this elliptically polarized light is irradiated to the opposing photo-alignment film (lower substrate) 3 ′, the dichroic compound 7 of the photo-alignment film (lower substrate) 3 ′ is oriented in a direction perpendicular to the major axis of the elliptically polarized light. As a result, the dichroic compound 5 of the photo-alignment film (upper substrate) 3 and the dichroic compound 7 of the photo-alignment film (lower substrate) 3 ′ are aligned substantially orthogonally. By injecting nematic liquid crystal into the liquid crystal cell 9 thus produced, a TN-aligned liquid crystal element can be obtained.

この光配向処理を行う際の入射側の基板への非偏光の照射角度は、基板面に対して斜め方向であり、基板面法線からの角度θは30〜80°であるのが好ましく、良好な光配向を得られる点から45〜80°であるのがより好ましく、効率よく配向を行うことができる点から70〜80°であるのが最も好ましい。照射角度が30°よりも小さいと、基板面に対する光配向効率が低下し、十分な配向規制力を得るためにはより多くの光照射量が必要であるとともに、基板面全体での配向の均一性が低くなるため好ましくない。一方、照射角度が80°より大きいと、基板面及び光配向膜や透明電極層などの層間での反射光量が増加することにより、光配向膜面に照射される光量が減少し、効率的な光配向を行うことができないため好ましくない。   The irradiation angle of non-polarized light on the substrate on the incident side when performing this photo-alignment treatment is an oblique direction with respect to the substrate surface, and the angle θ from the substrate surface normal is preferably 30 to 80 °, The angle is more preferably 45 to 80 ° from the viewpoint of obtaining good optical alignment, and the angle of 70 to 80 ° is most preferable from the viewpoint that the alignment can be performed efficiently. If the irradiation angle is smaller than 30 °, the photo-alignment efficiency with respect to the substrate surface decreases, and in order to obtain a sufficient alignment regulating force, a larger amount of light irradiation is required, and the alignment is uniform over the entire substrate surface. This is not preferable because the property is low. On the other hand, when the irradiation angle is larger than 80 °, the amount of light reflected between the substrate surface and the layers such as the photo-alignment film and the transparent electrode layer increases, so that the amount of light irradiated on the surface of the photo-alignment film is reduced and efficient. This is not preferable because optical alignment cannot be performed.

光配向処理で照射する光は、光源からコリメーターを用いて得た平行光であることが好ましく、比較的小さな照射エネルギーで光配向を行うことができる。   The light irradiated in the photo-alignment treatment is preferably parallel light obtained from a light source using a collimator, and photo-alignment can be performed with relatively small irradiation energy.

照射する光は、光配向膜が光吸収を有する波長領域にあることが必要であり、特に光配向膜が上記一般式(1)で表されるアゾベンゼン誘導体からなる場合、300〜500nmの波長の紫外光もしくは可視光であることが好ましく、350〜400nmの範囲の近紫外線であることが特に好ましい。このような波長の光が得られる光源としては、キセノンランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどの紫外線ランプや、He−Cdレーザーのような紫外線レーザーが挙げられる。特に、超高圧水銀ランプは点光源に近いため、レンズや凹面鏡などからなるコリメーターを用いて容易に平行光を得ることができることや、上記一般式(1)で表されるアゾベンゼン誘導体の吸収が大きい365nm付近に強い発光スペクトルを有し、効率的な光配向を行うことができることから、特に好ましい。   The light to be irradiated needs to be in a wavelength region in which the photo-alignment film has light absorption. In particular, when the photo-alignment film is composed of the azobenzene derivative represented by the general formula (1), the light having a wavelength of 300 to 500 nm is used. It is preferably ultraviolet light or visible light, and particularly preferably near ultraviolet light in the range of 350 to 400 nm. Examples of a light source that can obtain light having such a wavelength include ultraviolet lamps such as a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp, and an ultraviolet laser such as a He-Cd laser. In particular, since the ultra-high pressure mercury lamp is close to a point light source, it is possible to easily obtain parallel light using a collimator composed of a lens or a concave mirror, and the absorption of the azobenzene derivative represented by the general formula (1) is high. This is particularly preferable because it has a strong emission spectrum in the vicinity of a large 365 nm and can perform efficient photo-alignment.

また、上記一般式(1)で表されるアゾベンゼン誘導体が重合性官能基を有する場合は、光配向処理後、この重合性官能基を重合させるのが好ましい。重合性官能基を重合させることにより、耐光性、耐湿性など安定性に優れた光配向膜を得ることができる。
重合方法としては、熱重合又は光重合が挙げられる。このとき、必要に応じて公知慣用の重合開始剤を使用することが好ましい。熱重合開始剤としては、例えば、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,2’−アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等が挙げられる。また、光重合開始剤としては、例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[(メチルチオ)フェニル]−2モリホリノプロパン−1、ベンジルジメチルケタール、アシルフォスフィンオキシド等が挙げられる。
When the azobenzene derivative represented by the general formula (1) has a polymerizable functional group, it is preferable to polymerize the polymerizable functional group after the photo-alignment treatment. By polymerizing a polymerizable functional group, a photo-alignment film having excellent stability such as light resistance and moisture resistance can be obtained.
Examples of the polymerization method include thermal polymerization and photopolymerization. At this time, it is preferable to use a known and usual polymerization initiator as necessary. Examples of the thermal polymerization initiator include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,2′-azo. Examples thereof include bisisobutyronitrile and tetramethylthiuram disulfide. Examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[(methylthio) phenyl] -2 morpholinopropane-1, benzyl dimethyl ketal, and acylphosphine oxide. It is done.

重合性官能基を熱重合させる場合は、光配向膜用組成物を塗布乾燥させ、配向のための光照射を行った後加熱を行う。加熱温度は100〜300℃が好ましく、100〜200℃がさらに好ましい。
一方、重合性官能基を光重合させる場合は、光配向膜用組成物を塗布乾燥させ、配向のための光照射を行った後、光配向膜が吸収しない波長の光を照射することが好ましい。例えば上記一般式(1)で表されるアゾベンゼン誘導体の場合は、アゾベンゼン骨格が吸収しない波長である、200〜320nmの波長の光を照射して光重合させる。
In the case where the polymerizable functional group is thermally polymerized, the composition for photo-alignment film is applied and dried, irradiated with light for alignment, and then heated. The heating temperature is preferably from 100 to 300 ° C, more preferably from 100 to 200 ° C.
On the other hand, when photopolymerizing a polymerizable functional group, it is preferable to irradiate light having a wavelength that is not absorbed by the photo-alignment film after coating and drying the composition for photo-alignment film and performing light irradiation for orientation. . For example, in the case of the azobenzene derivative represented by the general formula (1), photopolymerization is performed by irradiating light having a wavelength of 200 to 320 nm, which is a wavelength that is not absorbed by the azobenzene skeleton.

従来は液晶セルを組み立てる前に、上基板及び下基板に対して各々光照射を行い配向処理を施した後、セルを組み立てていたのに対し、本発明によれば、セルを組み立てた後、1回照射で上基板及び下基板の両方に配向を付与することができ、光配向処理時間を短縮することができる。   Conventionally, before assembling the liquid crystal cell, each of the upper substrate and the lower substrate was irradiated with light and subjected to alignment treatment, and then the cell was assembled, whereas according to the present invention, after assembling the cell, The orientation can be imparted to both the upper substrate and the lower substrate by one irradiation, and the photo-alignment processing time can be shortened.

また、本発明における二色性化合物を含有する光配向膜は、分解型光配向膜のように、配向制御のための光照射により分解物が発生しないため、光配向処理後、セル内が光照射による分解物で汚染されることがない。   In addition, the photo-alignment film containing the dichroic compound in the present invention does not generate a decomposition product by light irradiation for alignment control unlike the decomposition type photo-alignment film. It is not contaminated with decomposition products by irradiation.

さらに、本発明における二色性化合物を含有する光配向膜では、斜め方向からの非偏光の照射に対する二色性化合物の配向方向と偏光に対する二色性化合物の配向方向とが異なるため、この差を利用してツイスト配向又はホモジニアス配向を適宜選択することができる。   Further, in the photo-alignment film containing the dichroic compound in the present invention, the difference between the alignment direction of the dichroic compound with respect to the non-polarized irradiation from the oblique direction and the alignment direction of the dichroic compound with respect to the polarized light is different. The twist orientation or the homogeneous orientation can be appropriately selected using.

次に、本発明で製造した液晶素子の一実施形態を説明する。
本実施形態の液晶素子は、上述した光配向膜を備えた二枚の基板からなる液晶セルと、この二枚の基板の間に注入された液晶から概略構成されている。この基板上には電極が設けられており、さらにこの電極上には二色性化合物を含有する光配向膜が形成されている。液晶セルは、この基板を二枚、光配向膜が形成された面同士を向かい合わせになるように一定の間隙をもって対向させてなり、この間隔には液晶材料が注入されている。
Next, an embodiment of a liquid crystal device manufactured according to the present invention will be described.
The liquid crystal element of this embodiment is roughly composed of a liquid crystal cell composed of two substrates provided with the above-described photo-alignment film, and liquid crystal injected between the two substrates. An electrode is provided on the substrate, and a photo-alignment film containing a dichroic compound is formed on the electrode. The liquid crystal cell has two substrates facing each other with a certain gap so that the surfaces on which the photo-alignment films are formed face each other, and a liquid crystal material is injected into this space.

使用する液晶材料には制約は無く、ネマチック液晶や強誘電液晶等を使用することができる。配向のしやすさから、ネマチック液晶が好ましい。
この液晶材料は、好ましくは2〜40種、特に4〜30種の液晶化合物を含有する。好ましくは液晶化合物として、ビフェニル化合物、ターフェニル化合物、フェニルまたはシクロヘキシルベンゾエート化合物、フェニルシクロヘキサン化合物、シクロヘキシルビフェニル化合物、フェニル−またはシクロヘキシルピリミジン化合物、及びトラン化合物が挙げられる。これらの化合物中に存在する1,4−フェニレン基はフッ素化されている化合物が好ましい。
The liquid crystal material to be used is not limited, and nematic liquid crystal, ferroelectric liquid crystal, or the like can be used. A nematic liquid crystal is preferable from the viewpoint of easy alignment.
This liquid crystal material preferably contains 2 to 40 kinds, particularly 4 to 30 kinds of liquid crystal compounds. Preferably, the liquid crystal compound includes a biphenyl compound, a terphenyl compound, a phenyl or cyclohexyl benzoate compound, a phenyl cyclohexane compound, a cyclohexyl biphenyl compound, a phenyl- or cyclohexyl pyrimidine compound, and a tolan compound. The 1,4-phenylene group present in these compounds is preferably a fluorinated compound.

本実施形態の液晶素子は、以下のように製造する。
まず、上述した液晶素子用光配向膜の製造方法にしたがって、液晶セルを組み立てた後、光照射により、光配向膜の配向処理を行う。得られた空セル内に液晶材料を、減圧による真空注入法、加圧よる注入法、または毛細管現象を利用した注入法などの公知の方法により注入し、注入孔を熱硬化型シール材や、紫外線硬化型シールにより封孔する。この熱硬化型シール材及び紫外線硬化型シールは、公知のものを使用して良く特に限定はない。
次いで、得られた液晶セルを、液晶材料が等方性を示す温度まで加熱し、1時間その温度でアニールした後、徐冷し液晶表示素子を完成する。
The liquid crystal element of this embodiment is manufactured as follows.
First, after assembling a liquid crystal cell according to the above-described method for producing a photo-alignment film for a liquid crystal element, alignment treatment of the photo-alignment film is performed by light irradiation. A liquid crystal material is injected into the obtained empty cell by a known method such as a vacuum injection method using reduced pressure, an injection method using pressurization, or an injection method using capillary action, and the injection hole is formed by a thermosetting sealing material, Seal with a UV curable seal. As the thermosetting sealant and the ultraviolet curable seal, known ones may be used without any particular limitation.
Next, the obtained liquid crystal cell is heated to a temperature at which the liquid crystal material is isotropic, annealed at that temperature for 1 hour, and then gradually cooled to complete a liquid crystal display element.

本発明の液晶素子の製造方法によれば、入射側の基板への非偏光の照射角度を変えることにより、ホモジニアス配向した液晶表示素子又はツイスト配向したTN液晶表示素子を効率的に製造することができる。   According to the method for manufacturing a liquid crystal element of the present invention, it is possible to efficiently manufacture a homogeneously aligned liquid crystal display element or a twist aligned TN liquid crystal display element by changing the irradiation angle of non-polarized light on the incident side substrate. it can.

以下、実施例及び比較例を用いて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples.

[実施例1]
下記化学式(2)で表されるアゾベンゼン誘導体の1.0質量%N,N−ジメチルホルムアミド溶液を、スピンコーターを用いてITO電極付ガラス基板のITO電極面に均一に塗布した。次いで、100℃のホットプレート上で1分間、溶媒の乾燥を行い、上記アゾベンゼン誘導体による光配向膜を得た。この光配向膜の膜厚は100Åであった。
次いで、この光配向膜付基板の外縁部に、直径5μmのスチレンビーズを含んだ二液エポキシ樹脂系接着剤を液晶注入口が残るように塗布し、もう一枚の光配向膜付基板を、光配向膜面が向かい合わせになるように重ね合わせて圧着し、接着剤を硬化させることによって液晶セルを作製した。
[Example 1]
A 1.0 mass% N, N-dimethylformamide solution of an azobenzene derivative represented by the following chemical formula (2) was uniformly applied to the ITO electrode surface of the glass substrate with an ITO electrode using a spin coater. Next, the solvent was dried on a hot plate at 100 ° C. for 1 minute to obtain a photo-alignment film made of the azobenzene derivative. The film thickness of this photo-alignment film was 100 mm.
Next, a two-pack epoxy resin adhesive containing styrene beads having a diameter of 5 μm is applied to the outer edge of the substrate with a photo-alignment film so that the liquid crystal injection port remains, and another substrate with a photo-alignment film is formed. A liquid crystal cell was produced by overlapping and pressing the photo-alignment film faces to face each other and curing the adhesive.

Figure 2006018106
Figure 2006018106

なお、別のガラス基板に上記と同様の方法で光配向膜を塗布し、エリプソメーターを用いて該光配向膜の屈折率を測定したところ、屈折率は1.72であった。   In addition, when the photo-alignment film was apply | coated to another glass substrate by the method similar to the above, and the refractive index of this photo-alignment film was measured using the ellipsometer, the refractive index was 1.72.

セル作製後光配向膜への光照射を行った。光照射のための光源としては超高圧水銀ランプを用い、バンドパスフィルタ、及びコリメーターミラーを通して得た、波長365nm、照射光量40mW/cmの紫外光をセルの一方の基板側より、基板面法線に対して75°の方向から5J/cmの光量を照射した。 After the cell was fabricated, the photo-alignment film was irradiated with light. An ultra-high pressure mercury lamp is used as a light source for light irradiation, and ultraviolet light having a wavelength of 365 nm and an irradiation light amount of 40 mW / cm 2 obtained through a band-pass filter and a collimator mirror is applied to the substrate surface from one substrate side of the cell. A light amount of 5 J / cm 2 was irradiated from a direction of 75 ° with respect to the normal line.

次に、この液晶セルにネマティック液晶組成物である4−n−ペンチル−4’−シアノビフェニルを、室温でかつ真空中で毛管現象により注入した。その後、注入口をエポキシ系接着剤で封止し、液晶材料が等方性を示す温度(50℃)まで加熱し、1時間50℃でアニールした後、徐冷し液晶素子を得た。なお、この液晶のネマチック相から等方相への転移温度は35℃である。
このようにして作製した液晶素子を直交ニコル配置の二枚の偏光板の間に配置したところ、光が透過していることがわかった。また、偏光顕微鏡を用いてツイスト角の測定を行ったところ、ほぼ90°のTN配向が得られていることがわかった。
Next, 4-n-pentyl-4′-cyanobiphenyl, which is a nematic liquid crystal composition, was injected into this liquid crystal cell by capillary action at room temperature and in vacuum. Thereafter, the injection port was sealed with an epoxy adhesive, heated to a temperature (50 ° C.) at which the liquid crystal material was isotropic, annealed at 50 ° C. for 1 hour, and then slowly cooled to obtain a liquid crystal element. The transition temperature from the nematic phase to the isotropic phase of this liquid crystal is 35 ° C.
When the liquid crystal element thus produced was placed between two polarizing plates with a crossed Nicols arrangement, it was found that light was transmitted. Further, when the twist angle was measured using a polarizing microscope, it was found that a TN orientation of approximately 90 ° was obtained.

[実施例2]
下記化学式(3)で表されるアゾベンゼン誘導体を50質量%のN−メチルピロリドン及び50質量%の2−ブトキシエタノールからなる混合溶媒に溶解し、1.0質量%の溶液を得た。この溶液に上記アゾベンゼン誘導体の質量に対して2.5質量%の1,1’−アゾビス(シクロヘキサン−1−カーボニトリル)を熱重合開始剤として添加した。
[Example 2]
The azobenzene derivative represented by the following chemical formula (3) was dissolved in a mixed solvent composed of 50% by mass of N-methylpyrrolidone and 50% by mass of 2-butoxyethanol to obtain a 1.0% by mass solution. To this solution, 2.5% by mass of 1,1′-azobis (cyclohexane-1-carbonitrile) was added as a thermal polymerization initiator based on the mass of the azobenzene derivative.

Figure 2006018106
Figure 2006018106

このようにして作製した光配向膜用組成物溶液を用いて実施例1と同様の方法で液晶セルを作製した。セル作製後の光照射は実施例1を同じ紫外光を用い、基板面法線に対して55°の方向から5J/cmの光量を照射した。
光照射後、窒素気流中150℃で1時間加熱を行って、上記化学式(3)で表されるアゾベンゼン誘導体の熱重合を行った。
この液晶セルから実施例1と同様の方法で液晶素子を作製し、ツイスト角の測定を行ったところ、ほぼ90°のTN配向が得られていることがわかった。
A liquid crystal cell was produced in the same manner as in Example 1 using the composition solution for photo-alignment film thus produced. For the light irradiation after the cell preparation, the same ultraviolet light as in Example 1 was used, and a light amount of 5 J / cm 2 was irradiated from a direction of 55 ° with respect to the normal to the substrate surface.
After light irradiation, heating was performed at 150 ° C. for 1 hour in a nitrogen stream, and thermal polymerization of the azobenzene derivative represented by the chemical formula (3) was performed.
When a liquid crystal element was produced from this liquid crystal cell by the same method as in Example 1 and the twist angle was measured, it was found that a TN alignment of approximately 90 ° was obtained.

[実施例3]
実施例1に示した化学式(2)で表されるアゾベンゼン誘導体を用いて、実施例1と同様の方法で光配向膜用組成物溶液を作製し、さらに液晶セルを作製した。
このようにして作製した液晶セルに実施例1と同様の光照射系を用い、基板法線に対して50°の方向から5J/cmの光量を照射した。
この液晶セルから実施例1と同様の方法で液晶素子を作製し、直交ニコル配置の二枚の偏光板の間に配置したところ、液晶はホモジニアス配向しており、ツイスト角は0°であることがわかった。
[Example 3]
Using the azobenzene derivative represented by the chemical formula (2) shown in Example 1, a photoalignment film composition solution was prepared in the same manner as in Example 1, and a liquid crystal cell was further prepared.
The liquid crystal cell thus fabricated was irradiated with a light amount of 5 J / cm 2 from a direction of 50 ° with respect to the substrate normal using the same light irradiation system as in Example 1.
When a liquid crystal element was produced from this liquid crystal cell in the same manner as in Example 1 and placed between two polarizing plates with a crossed Nicols arrangement, it was found that the liquid crystal was homogeneously oriented and the twist angle was 0 °. It was.

以上の結果から、本発明によれば、液晶セルを組み立ててから、1回照射で上基板及び下基板の両方に配向を付与することができ、かつ光の入射角によってツイスト配向又はホモジニアス配向が制御できること及びツイスト配向又はホモジニアス配向した液晶表示素子が得られることが確認された。   From the above results, according to the present invention, after assembling the liquid crystal cell, orientation can be imparted to both the upper substrate and the lower substrate by one irradiation, and twist orientation or homogeneous orientation can be obtained depending on the incident angle of light. It was confirmed that a liquid crystal display element having controllability and twist alignment or homogeneous alignment could be obtained.

透明な層状の媒質の表面に対して斜め方向から非偏光が入射した際、透過した光のP偏光成分1とS偏光成分2のそれぞれの透過率と基板面法線からの入射角依存性との関係を示すグラフである。When non-polarized light is incident on the surface of the transparent layered medium from an oblique direction, the transmittance of the P-polarized component 1 and the S-polarized component 2 of the transmitted light and the incident angle dependence from the normal to the substrate surface It is a graph which shows the relationship. 液晶セルの基板面に対して斜め方向から非偏光の平行光を照射した場合の光の偏光方向と光配向膜の二色性化合物が配向する方向を示す説明図である。It is explanatory drawing which shows the polarization direction of the light at the time of irradiating the non-polarized parallel light from the diagonal direction with respect to the substrate surface of a liquid crystal cell, and the direction where the dichroic compound of a photo-alignment film aligns.

符号の説明Explanation of symbols

3 光配向膜(上基板)
3’ 光配向膜(下基板)
4 上基板
4’ 下基板
5 上基板の二色性化合物
6 非偏光
7 下基板の二色性化合物
10 電極(上基板)
10’ 電極(下基板)


3 Photo-alignment film (upper substrate)
3 'photo-alignment film (lower substrate)
4 Upper substrate 4 'Lower substrate 5 Dichroic compound of upper substrate 6 Non-polarized light 7 Dichroic compound of lower substrate 10 Electrode (upper substrate)
10 'electrode (lower substrate)


Claims (6)

基板上に設けられた電極上に二色性化合物を含有する光配向膜を形成し、
この基板を二枚、前記光配向膜が形成された面同士を向かい合わせになるように一定の間隙をもって対向させ、
基板面に対して斜め方向から非偏光を照射して二色性化合物を配向させることを特徴とする液晶表示素子用光配向膜の製造方法。
Forming a photo-alignment film containing a dichroic compound on an electrode provided on a substrate;
Two of the substrates are opposed to each other with a certain gap so that the surfaces on which the photo-alignment films are formed face each other.
A method for producing a photo-alignment film for a liquid crystal display element, wherein a dichroic compound is aligned by irradiating non-polarized light from an oblique direction with respect to a substrate surface.
前記二色性化合物がアゾベンゼン誘導体であることを特徴とする請求項1に記載の液晶表示素子用光配向膜の製造方法。   The method for producing a photo-alignment film for a liquid crystal display element according to claim 1, wherein the dichroic compound is an azobenzene derivative. 前記非偏光の照射角度が基板面法線に対して30〜80°であることを特徴とする請求項1又は2に記載の液晶表示素子用光配向膜の製造方法。   The method for producing a photo-alignment film for a liquid crystal display element according to claim 1, wherein the irradiation angle of the non-polarized light is 30 to 80 ° with respect to the normal to the substrate surface. 上基板の二色性化合物と下基板の二色性化合物との配向方向が、略直交していることを特徴とする請求項1〜3のいずれか一項に記載の液晶表示素子用光配向膜の製造方法。   The alignment direction of the dichroic compound of an upper board | substrate and the dichroic compound of a lower board | substrate is substantially orthogonal, The optical orientation for liquid crystal display elements as described in any one of Claims 1-3 characterized by the above-mentioned. A method for producing a membrane. 前記アゾベンゼン誘導体が下記一般式(1)で表されることを特徴とする請求項2〜4のいずれか一項に記載の液晶表示素子用光配向膜の製造方法。
Figure 2006018106
(式中、R、Rは各々独立して、ヒドロキシ基、又は(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルオキシ基、及びマレイミド基からなる群から選ばれる重合性官能基を表す。
また、XはRがヒドロキシ基の場合、単結合を表し、Rが重合性官能基の場合、−(A−B−で表される連結基を表し、XはRがヒドロキシ基の場合、単結合を表し、Rが重合性官能基の場合、−(A−B−で表される連結基を表す。ここで、AはRと結合し、AはRと結合し、B、Bは各々隣接するフェニレン基と結合する。
、Aは各々独立して単結合、又は二価の炭化水素基を表し、B、Bは各々独立して単結合、−O−、−CO−O−、−OCO−、−CONH−、−NHCO−、−NHCO−O−、又は−OCONH−を表す。
m、nは各々独立して0〜4の整数を表す。但し、m又はnが2以上のとき、複数のA、B、A、及びBは、同じ基であっても異なった基であってもよい。但し、2つのB又はBの間に挟まれたA又はAは、単結合ではないものとする。
また、R、Rは各々独立して、ハロゲン原子、カルボキシル基、ハロゲン化メチル基、ハロゲン化メトキシ基、シアノ基、ニトロ基、メトキシ基、又はメトキシカルボニル基を表す。なお、カルボキシ基はアルカリ金属と塩を形成していてもよい。
また、R、Rは各々独立して、カルボキシル基、スルホ基、ニトロ基、アミノ基、又はヒドロキシ基を表す。なお、カルボキシ基又はスルホ基はアルカリ金属と塩を形成していてもよい。)
The said azobenzene derivative is represented by following General formula (1), The manufacturing method of the photo-alignment film for liquid crystal display elements as described in any one of Claims 2-4 characterized by the above-mentioned.
Figure 2006018106
(Wherein R 1 and R 2 are each independently a hydroxy group, or a group consisting of a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyl group, a vinyloxy group, and a maleimide group). Represents a polymerizable functional group selected from:
X 1 represents a single bond when R 1 is a hydroxy group, and represents a linking group represented by — (A 1 -B 1 ) m — when R 1 is a polymerizable functional group, and X 2 represents When R 2 is a hydroxy group, it represents a single bond, and when R 2 is a polymerizable functional group, it represents a linking group represented by — (A 2 —B 2 ) n —. Here, A 1 is bonded to R 1 , A 2 is bonded to R 2, and B 1 and B 2 are bonded to adjacent phenylene groups.
A 1 and A 2 each independently represent a single bond or a divalent hydrocarbon group, and B 1 and B 2 each independently represent a single bond, —O—, —CO—O—, —OCO—, -CONH-, -NHCO-, -NHCO-O-, or -OCONH- is represented.
m and n each independently represents an integer of 0 to 4. However, when m or n is 2 or more, the plurality of A 1 , B 1 , A 2 , and B 2 may be the same group or different groups. However, A 1 or A 2 sandwiched between two B 1 or B 2 is not a single bond.
R 3 and R 4 each independently represent a halogen atom, a carboxyl group, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group, a methoxy group, or a methoxycarbonyl group. The carboxy group may form a salt with an alkali metal.
R 5 and R 6 each independently represent a carboxyl group, a sulfo group, a nitro group, an amino group, or a hydroxy group. In addition, the carboxy group or the sulfo group may form a salt with the alkali metal. )
請求項1〜5のいずれか一項に記載の液晶表示素子用光配向膜の製造方法で製造した光配向膜を備えた二枚の基板の間隔に液晶材料を注入し、封止した後、これを前記液晶材料が等方性を示す温度まで加熱して前記液晶材料を配向させることを特徴とする液晶表示素子の製造方法。

After injecting a liquid crystal material into a gap between two substrates provided with a photo-alignment film manufactured by the method for manufacturing a photo-alignment film for a liquid crystal display element according to any one of claims 1 to 5, and sealing, A method for producing a liquid crystal display element, comprising: heating the liquid crystal material to a temperature at which the liquid crystal material is isotropic to align the liquid crystal material.

JP2004197095A 2004-07-02 2004-07-02 Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element Active JP4689201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197095A JP4689201B2 (en) 2004-07-02 2004-07-02 Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197095A JP4689201B2 (en) 2004-07-02 2004-07-02 Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2006018106A true JP2006018106A (en) 2006-01-19
JP4689201B2 JP4689201B2 (en) 2011-05-25

Family

ID=35792434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197095A Active JP4689201B2 (en) 2004-07-02 2004-07-02 Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4689201B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
JP2007313497A (en) * 2006-04-24 2007-12-06 Seiko Epson Corp Pattern formation method, drop jetting device, and circuit module
JP2008076839A (en) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc Composition for photo-alignment film and optically anisotropic material
JP2010078782A (en) * 2008-09-25 2010-04-08 Dic Corp Method for producing phase-difference film
JP2011257761A (en) * 2011-06-30 2011-12-22 Dic Corp Composition for photo aligned film and optically anisotropic body
CN102754019A (en) * 2010-02-09 2012-10-24 夏普株式会社 Liquid crystal display panel manufacturing method and liquid crystal display panel
EP2853581A1 (en) 2013-09-25 2015-04-01 LG Display Co., Ltd. Liquid crystal horizontal orientation agent, horizontal orientation type liquid crystal composition, and horizontal orientation type liquid crystal display device and method of fabricating the same
JP2018036314A (en) * 2016-08-29 2018-03-08 富士フイルム株式会社 Polarization image sensor and polarization image sensor fabrication method
CN110989247A (en) * 2019-12-03 2020-04-10 Tcl华星光电技术有限公司 Liquid crystal display panel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356348A (en) * 2000-06-15 2001-12-26 Matsushita Electric Ind Co Ltd Method for manufacturing liquid crystal alignment film, liquid crystal display device and method for manufacturing the same
JP2004083810A (en) * 2002-08-28 2004-03-18 Dainippon Ink & Chem Inc Composition for vertically aligned membrane and method for producing vertically aligned membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356348A (en) * 2000-06-15 2001-12-26 Matsushita Electric Ind Co Ltd Method for manufacturing liquid crystal alignment film, liquid crystal display device and method for manufacturing the same
JP2004083810A (en) * 2002-08-28 2004-03-18 Dainippon Ink & Chem Inc Composition for vertically aligned membrane and method for producing vertically aligned membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
JP2007313497A (en) * 2006-04-24 2007-12-06 Seiko Epson Corp Pattern formation method, drop jetting device, and circuit module
JP2008076839A (en) * 2006-09-22 2008-04-03 Dainippon Ink & Chem Inc Composition for photo-alignment film and optically anisotropic material
JP2010078782A (en) * 2008-09-25 2010-04-08 Dic Corp Method for producing phase-difference film
CN102754019A (en) * 2010-02-09 2012-10-24 夏普株式会社 Liquid crystal display panel manufacturing method and liquid crystal display panel
CN102754019B (en) * 2010-02-09 2015-09-30 夏普株式会社 The manufacture method of display panels and display panels
JP2011257761A (en) * 2011-06-30 2011-12-22 Dic Corp Composition for photo aligned film and optically anisotropic body
EP2853581A1 (en) 2013-09-25 2015-04-01 LG Display Co., Ltd. Liquid crystal horizontal orientation agent, horizontal orientation type liquid crystal composition, and horizontal orientation type liquid crystal display device and method of fabricating the same
US9547198B2 (en) 2013-09-25 2017-01-17 Lg Display Co., Ltd. Liquid crystal horizontal orientation agent, horizontal orientation type liquid crystal composition, and horizontal orientation type liquid crystal display device and method of fabricating the same
JP2018036314A (en) * 2016-08-29 2018-03-08 富士フイルム株式会社 Polarization image sensor and polarization image sensor fabrication method
CN110989247A (en) * 2019-12-03 2020-04-10 Tcl华星光电技术有限公司 Liquid crystal display panel and preparation method thereof
CN110989247B (en) * 2019-12-03 2023-03-17 Tcl华星光电技术有限公司 Liquid crystal display panel and preparation method thereof

Also Published As

Publication number Publication date
JP4689201B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4661502B2 (en) Composition for photo-alignment film and method for producing photo-alignment film
KR101215368B1 (en) Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element and method for manufacturing such optical film
US7955665B2 (en) Photoalignment film composition, optically anisotropic medium and method for preparing thereof
JP5124027B2 (en) Optical film, method for producing the same, and liquid crystal display device including the same
JP5462628B2 (en) Volume light aligned retarder
JP2009058584A (en) Liquid crystal aligning agent and method of forming liquid crystal alignment layer
JP4756342B2 (en) Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method for producing the optical film
JP4506333B2 (en) Manufacturing method of optical anisotropic body
JP4689201B2 (en) Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element
JP5504601B2 (en) Composition for alignment film, method for producing alignment film, and optical anisotropic body
US6939587B1 (en) Fabrication of aligned crystal cell/film by simultaneous alignment and phase separation
WO2001018594A2 (en) Fabrication of aligned liquid crystal cell/film by simultaneous alignment and phase separation
JP2010230815A (en) Method for measuring tilt angle of alignment layer, optical alignment layer, and optically anisotropic body
JP2005049386A (en) Method for manufacturing optical alignment layer, and optical alignment layer
JP4679972B2 (en) Liquid crystal display element and manufacturing method thereof
JP2005173548A (en) Optically anisotropic substance and method for manufacturing the same
JP2004302272A (en) Composition for liquid crystal alignment film, liquid crystal alignment film, method for manufacturing liquid crystal alignment film and maleimide compound
JP4666137B2 (en) Method for forming liquid crystal alignment film, liquid crystal display element and optical member
JP2001122981A (en) Organic thin membrane, its production and photocuring composition
JP5580548B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2005258429A (en) Liquid crystal display element
JP2005292241A (en) Optical anisotropic substance and its manufacturing method
JP2001072976A (en) Liquid crystal cell and its preparation
JP2008191524A (en) Liquid crystal optical device
JP5772864B2 (en) Method for measuring tilt angle of alignment film, photo-alignment film, optical anisotropic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250