JP2005292241A - Optical anisotropic substance and its manufacturing method - Google Patents

Optical anisotropic substance and its manufacturing method Download PDF

Info

Publication number
JP2005292241A
JP2005292241A JP2004103739A JP2004103739A JP2005292241A JP 2005292241 A JP2005292241 A JP 2005292241A JP 2004103739 A JP2004103739 A JP 2004103739A JP 2004103739 A JP2004103739 A JP 2004103739A JP 2005292241 A JP2005292241 A JP 2005292241A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
alignment
alignment film
optical anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103739A
Other languages
Japanese (ja)
Inventor
Hirokazu Takada
宏和 高田
Yoshiyuki Ono
善之 小野
Joji Kawamura
丞治 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2004103739A priority Critical patent/JP2005292241A/en
Publication of JP2005292241A publication Critical patent/JP2005292241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily obtaining an anisotropic substance consisting of a partial structure which is free of an alignment defect and has high resolution and different optical anisotropy. <P>SOLUTION: The optical anisotropic substance, which is formed between two substrates, has a plurality of alignment regions nearly in parallel to one substrate and different in alignment direction on the one substrate and also has alignment nearly perpendicular to the other substrate, and the method for manufacturing the optical anisotropic substance in which a liquid crystal compound having a polymerizable function group is sandwiched between substrates opposed with a surface having liquid crystal alignment capability and they are polymerized with an active energy beam or heat while the liquid crystal material is aligned, the substrates being a substrate having a plurality of regions which are nearly parallel to the substrates and capable of aligning liquid crystal in different directions and two substrates capable of aligning liquid crystal nearly perpendicularly to the substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一方の基板に対する配向方向が異なったハイブリッド構造を有する光学異方体に関するものであり、重合性液晶組成物を一方の基板に対して異なった配向状態で重合させて得られるハイブリッド構造を有する光学異方体及びその製造方法に関する。   The present invention relates to an optical anisotropic body having a hybrid structure with different orientation directions with respect to one substrate, and a hybrid structure obtained by polymerizing a polymerizable liquid crystal composition in a different orientation state with respect to one substrate. The present invention relates to an optically anisotropic body having:

液晶は表示素子として使用されるほか、最近では、配向した液晶の複屈折を利用し光の位相を制御することも行われている。中でも、光学的な性質が部分的に異なるように液晶の配向方向をパターン状に変化させた、ハイブリッド配向等の異なる複数の配向領域を有する光学異方体は、パターンの設計や、屈折率の分布等を制御することで、様々な応用が期待されている。例えば、従来無機の複屈折性結晶からなる、回折格子、層状の導波路構造、あるいは偏光ビームスプリッタ等の光学異方体を、安価に実現することが可能である。   Liquid crystals are used as display elements, and recently, the phase of light is controlled using the birefringence of aligned liquid crystals. Among them, optical anisotropic bodies that have different alignment regions such as hybrid alignment, in which the alignment direction of the liquid crystal is changed into a pattern so that the optical properties are partially different, can be used for pattern design and refractive index. Various applications are expected by controlling the distribution and the like. For example, it is possible to realize an optically anisotropic body such as a diffraction grating, a layered waveguide structure, or a polarizing beam splitter made of an inorganic birefringent crystal at low cost.

液晶の配向を利用して光学異方体を作製する方法の一つの例として、重合性液晶モノマーを重合してなる光学異方性ポリマーにより膜に回折格子の凹凸パターンを形成させた、波長板と回折格子の機能を有した光ヘッド用の部品の作製方法が知られている。(例えば、特許文献1参照)具体的には、フォトマスクを用いて重合性液晶モノマーを紫外線硬化させた後、未重合の液晶モノマーを溶出除去するという方法で凹凸パターンを作製している。しかし、パターンの凹凸部に別の光学異方性ポリマーを充填する必要があり、作製工程が複雑で、かつ位相差の調整が困難であった。   As an example of a method for producing an optical anisotropic body using the orientation of liquid crystal, a wave plate in which a concave / convex pattern of a diffraction grating is formed on a film by an optical anisotropic polymer obtained by polymerizing a polymerizable liquid crystal monomer And a method of manufacturing a component for an optical head having a function of a diffraction grating. (For example, refer to Patent Document 1) Specifically, after the polymerizable liquid crystal monomer is UV-cured using a photomask, the uneven pattern is prepared by elution and removal of the unpolymerized liquid crystal monomer. However, it is necessary to fill the uneven portion of the pattern with another optically anisotropic polymer, the production process is complicated, and it is difficult to adjust the phase difference.

凹凸パターンによらないでパターンを形成する方法としては光配向膜を用いる方法がある。例えば、光配向可能なポリマーからなる配向膜を偏光紫外線で位置選択的に照射することにより、光配向可能なポリマー網状組織(PPN)からなり液晶層と接している配向層を形成し、次いで液晶モノマーを塗布し、紫外線照射を行うことで、液晶分子の配向が局所的に変わるように架橋させた液晶モノマーの異方性フィルムを備えた光学素子を得る方法が提案されている(例えば、特許文献2参照)。紫外線照射により配向領域を作製するので、精細なパターンが得られる。
しかし、偏光ビームスプリッタ等の高解像度を要する回折格子を得る場合、光学異方体の厚み方向にパターンの狂いが生じるおそれがあることから、通常は、塗布法ではなく、(1)異なる複数の液晶配向能領域を有する光配向膜付きの基板2枚を、上下のパターンが揃うように位置合わせしてセルを作成し、該セル中に重合性液晶モノマーを注入し、重合性液晶モノマーを配向させる方法や、(2)異なる複数の液晶配向能領域を有する光配向膜上に重合性液晶モノマーを塗布し、重合性液晶モノマーを配向させる方法がとられる。
As a method for forming a pattern without depending on the uneven pattern, there is a method using a photo-alignment film. For example, an alignment layer made of a photo-alignable polymer is selectively irradiated with polarized ultraviolet rays to form an alignment layer made of a photo-alignable polymer network (PPN) and in contact with the liquid crystal layer, and then the liquid crystal There has been proposed a method of obtaining an optical element having an anisotropic film of a liquid crystal monomer that is crosslinked so that the orientation of liquid crystal molecules is locally changed by applying a monomer and irradiating with ultraviolet rays (for example, patents) Reference 2). Since the alignment region is produced by ultraviolet irradiation, a fine pattern can be obtained.
However, when obtaining a diffraction grating that requires high resolution, such as a polarizing beam splitter, there is a possibility that pattern misalignment may occur in the thickness direction of the optical anisotropic body. A cell is prepared by aligning two substrates with a photo-alignment film having a liquid crystal alignment region so that the upper and lower patterns are aligned, and a polymerizable liquid crystal monomer is injected into the cell to align the polymerizable liquid crystal monomer. And (2) a method in which a polymerizable liquid crystal monomer is applied on a photo-alignment film having a plurality of different liquid crystal alignment ability regions and the polymerizable liquid crystal monomer is aligned.

一方、回折格子のパターンは通常数十μmである。従って(1)の方法では、上下の配向膜パターンの位置合わせの精度が最大10%であっても、数μmの位置合わせをひとつひとつ顕微鏡で行う必要があった。またこれを工業的に行うには特殊な位置合わせ装置を必要とする。
また、(2)の方法では、前記位置合わせは必要としないが、片面が配向膜ではなく空気に接しているため配向欠陥が生じ、良好なパターンは得られにくく、十分な解像度の素子を得ることが難しかった。
特開平9−50642号公報 特開平6−289374号公報
On the other hand, the diffraction grating pattern is usually several tens of μm. Therefore, in the method (1), even when the alignment accuracy of the upper and lower alignment film patterns is 10% at the maximum, it is necessary to perform alignment of several μm one by one with a microscope. In addition, a special alignment device is required to do this industrially.
In the method (2), the alignment is not required. However, since one surface is in contact with air instead of the alignment film, alignment defects are generated, a good pattern is difficult to obtain, and an element with sufficient resolution is obtained. It was difficult.
Japanese Patent Laid-Open No. 9-50642 JP-A-6-289374

本発明が解決しようとする課題は、配向欠陥がなく、解像度の高い異なった光学異方性を有する部分構造からなる光学異方体を、簡便に得る方法を提供することにある。   The problem to be solved by the present invention is to provide a method for easily obtaining an optical anisotropic body having a partial structure free from alignment defects and having different optical anisotropy with high resolution.

本発明者らは、片側の基板は、略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有し、もう片側の基板は、略垂直の液晶配向能を有し、該2枚の基板間に、重合性官能基を有する液晶化合物を含有する重合性液晶材料を挟持させ、該液晶材料を配向させた状態で活性エネルギー線または熱により重合させることで、微細な配向パターンからなり、配向欠陥等のない光学異方体を安価に作製できることを見出した。   The inventors of the present invention have a plurality of regions in which one side of the substrate is substantially parallel and has liquid crystal alignment ability in different directions, and the other side of the substrate has substantially vertical liquid crystal alignment ability. A fine alignment pattern is formed by sandwiching a polymerizable liquid crystal material containing a liquid crystal compound having a polymerizable functional group between the substrates and polymerizing the liquid crystal material with active energy rays or heat in an aligned state. The present inventors have found that an optically anisotropic body free from alignment defects can be produced at low cost.

即ち本発明は、2枚の基板間に形成された光学異方体であって、一方の基板に対しては基板に略平行であって配向方向が異なる複数の配向領域を有し、他方の基板に対しては基板に略垂直な配向を有する光学異方体を提供する。   That is, the present invention is an optical anisotropic body formed between two substrates, and one substrate has a plurality of alignment regions that are substantially parallel to the substrate and have different alignment directions. An optical anisotropic body having an orientation substantially perpendicular to the substrate is provided.

また、本発明は、基板に対して略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する基板と、基板に対して略垂直の液晶配向能を有する2枚の基板を、液晶配向能を有する面を内側にして対向させた基板間に重合性官能基を有する液晶化合物を含有する重合性液晶材料を挟持し、該液晶材料を配向させた状態で活性エネルギー線または熱により重合させる光学異方体の製造方法を提供する。   The present invention also provides a substrate having a plurality of regions that are substantially parallel to the substrate and having liquid crystal alignment ability in different directions, and two substrates having liquid crystal alignment ability substantially perpendicular to the substrate. A polymerizable liquid crystal material containing a liquid crystal compound having a polymerizable functional group is sandwiched between substrates facing each other with the surface having the alignment ability inside, and the liquid crystal material is aligned and polymerized by active energy rays or heat. A method for producing an optical anisotropic body is provided.

本発明の光学異方体は、素子の両面に配向規制能を付与した状態で、かつ、片側の基板は、略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する状態で、もう片側の基板は、略垂直の液晶配向能を有する状態で、重合性官能基を有する液晶化合物を配向させるので、配向欠陥等が生じず解像度の高い、連続的に配向方向が変化したハイブリッド配向の光学異方体が得られる。
また、本発明の製造方法によれば、上下の配向膜パターンの位置合わせの必要がないので、高解像度の光学異方体を安価かつ容易に作製することができる。
The optical anisotropic body of the present invention is in a state in which alignment regulating ability is imparted to both surfaces of the element, and the substrate on one side has a plurality of regions that are substantially parallel and have liquid crystal orientation ability in different directions. The other side of the substrate has a liquid crystal compound having a polymerizable functional group in a state of having a substantially vertical liquid crystal alignment ability, so that a high-resolution, hybrid alignment in which the alignment direction is continuously changed without causing alignment defects or the like. The optically anisotropic body is obtained.
In addition, according to the manufacturing method of the present invention, it is not necessary to align the upper and lower alignment film patterns, so that a high-resolution optical anisotropic body can be manufactured inexpensively and easily.

本発明の光学異方体は、基板に対して略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する基板(以下、基板(A)と略す)と、基板に対して略垂直の液晶配向能を有する基板(以下、基板(B)と略す)とを、液晶配向能を有する面を内側にして対向させた間に挟持された、重合性官能基を有する液晶化合物(以下、重合性液晶化合物と略す)の重合体からなる。
以下、「異なる方向に対する液晶配向能を持つ複数の領域」を「パターン配向領域」と略すことがある。
The optical anisotropic body of the present invention includes a substrate (hereinafter abbreviated as substrate (A)) having a plurality of regions substantially parallel to the substrate and having liquid crystal alignment ability in different directions, and substantially perpendicular to the substrate. A liquid crystal compound having a polymerizable functional group (hereinafter, referred to as a substrate having a liquid crystal alignment ability) sandwiched between the substrates having the liquid crystal alignment ability (hereinafter, abbreviated as substrate (B)) with the surface having the liquid crystal alignment ability facing inside. Abbreviated as a polymerizable liquid crystal compound).
Hereinafter, “a plurality of regions having liquid crystal alignment ability in different directions” may be abbreviated as “pattern alignment region”.

基板としては実質的に透明であれば材質には特に限定はなく、ガラス、セラミックス、プラスチック等を使用することができる。プラスチック基板としては、セルロース、トリアセチルセルロース、ジアセチルセルロース等のセルロース誘導体、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリカーボネート、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、ポリスチレン、ポリアクリレート、ポリメチルメタクリレート、ポリエーテルサルホン、ポリアリレートなどを用いることができる。   The material of the substrate is not particularly limited as long as it is substantially transparent, and glass, ceramics, plastics and the like can be used. As a plastic substrate, cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polyethylene, polycarbonate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, nylon, Polystyrene, polyacrylate, polymethyl methacrylate, polyether sulfone, polyarylate and the like can be used.

(基板(A))
基板(A)は、基板に対して略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する基板である。ここで言う略平行とは、液晶分子の分子長軸が、基板面に対して平行な面内にあるか、又は、基板面に対して20°以下の角度(チルト角)を有する状態を指す。
基板(A)は、ラビング法、斜め蒸着、イオンビーム法、LB法、光配向法などにより作製された配向膜付きのガラス基板やプラスチック基板等があげられる。中でも、光配向可能なポリマーからなる配向膜(以下光配向膜という)付きの基板であることが、フォトマスク等によりパターン配向領域を容易に得ることができるので好ましい。
(Substrate (A))
The substrate (A) is a substrate having a plurality of regions that are substantially parallel to the substrate and have liquid crystal alignment ability in different directions. The term “substantially parallel” as used herein refers to a state in which the molecular major axis of the liquid crystal molecules is in a plane parallel to the substrate surface or has an angle (tilt angle) of 20 ° or less with respect to the substrate surface. .
Examples of the substrate (A) include a glass substrate or a plastic substrate with an alignment film produced by a rubbing method, oblique deposition, an ion beam method, an LB method, a photo-alignment method, or the like. Among these, a substrate with an alignment film (hereinafter referred to as a photo-alignment film) made of a photo-alignable polymer is preferable because a pattern alignment region can be easily obtained with a photomask or the like.

光配向膜は、アゾ色素などの二色性色素や、アゾベンゼン、桂皮酸エステル、クマリン、カルコン等の光異性化や光二量化が可能な構造を有するポリマー、またポリイミドなどの光反応性化合物を含有する組成物(以下、光配向膜用組成物と略す)を基板上に塗布し、偏光又は配向膜面に対して斜め方向から非偏光を照射することにより得られる。中でも、二色性色素の誘導体を含有する組成物が好ましく、フォトマスクによりパターン配向領域を最も容易に得ることができることから、アゾベンゼン誘導体を含有する組成物がもっとも好ましい。アゾベンゼン誘導体による光配向膜は、光照射に伴う化学結合の生成や、分解を伴う他の配向膜とは異なり一旦光で配向した後も再配向が可能である。従って、一旦膜全体を特定の方向に配向させた後、フォトマスクを用いて光が照射された部分のみ別の方向に配向させることができるので、簡便に、かつ精度良くパターン配向領域を得ることができる。   The photo-alignment film contains a dichroic dye such as an azo dye, a polymer having a structure capable of photoisomerization and photodimerization such as azobenzene, cinnamic acid ester, coumarin and chalcone, and a photoreactive compound such as polyimide. The composition to be obtained (hereinafter abbreviated as a composition for photo-alignment film) is applied on a substrate and irradiated with non-polarized light from an oblique direction with respect to polarized light or an alignment film surface. Among them, a composition containing a dichroic dye derivative is preferable, and a pattern alignment region can be most easily obtained with a photomask, and therefore a composition containing an azobenzene derivative is most preferable. A photo-alignment film made of an azobenzene derivative can be re-orientated even after it is once aligned with light, unlike other alignment films that involve generation or decomposition of chemical bonds accompanying light irradiation. Therefore, once the entire film is oriented in a specific direction, only a portion irradiated with light can be oriented in another direction using a photomask, so that a pattern orientation region can be obtained easily and accurately. Can do.

アゾベンゼン誘導体としては、例えば、特開2002−250924号公報に記載の化合物や、SID‘01 Digest,1170(2001)に記載の化合物を使用することができる。該化合物は、数種類を混合して使用することもできる。   As the azobenzene derivative, for example, a compound described in JP-A No. 2002-250924 or a compound described in SID′01 Digest, 1170 (2001) can be used. These compounds can be used in combination of several kinds.

これらのアゾベンゼン誘導体は、適当な良溶媒に溶解し、スピンコート法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法などの塗布法やフレキソ印刷法等の方法で基板上に塗布する。溶媒としては特に限定はないが、ガラス等の基板に対する光配向膜用化合物の溶液の塗布性が良好で、かつ、均一な膜が得られるので、N−メチルピロリドン、ブチルセロソルブ、ガンマ−ブチロラクトン、ジメチルホルムアミドなどが特に好ましい。   These azobenzene derivatives can be dissolved in an appropriate good solvent and applied to the substrate by spin coating, extrusion, gravure coating, die coating, bar coating, applicator and other application methods and flexographic printing methods. Apply on top. The solvent is not particularly limited, but the coating property of the compound for photo-alignment film on a substrate such as glass is good and a uniform film can be obtained. Therefore, N-methylpyrrolidone, butyl cellosolve, gamma-butyrolactone, dimethyl Formamide and the like are particularly preferable.

光配向膜に液晶配向能を付与するには、光配向膜用組成物が含有する光反応性化合物が吸収しうる波長の直線偏光もしくは楕円偏光を配向膜面あるいは配向膜面とは反対の基板側から、面に対して垂直にあるいは斜め方向から、または偏向していない平行光を該配向膜面に対して斜め方向から照射する。斜め方向から照射する場合の角度は基板面に対して10°から80°の範囲が好ましく、30°から60°の範囲が特に好ましい。パターン配向させるには、例えば、光配向膜を形成した基板にフォトマスクを被せて全面に偏光もしくは非偏光を照射し、パターン状に露光部分に液晶配向能を与えればよい。必要に応じてこれを複数回繰り返すことで、パターン配向領域を得ることができる。
また、一旦膜全体を特定の方向に配向させた後、フォトマスクを用いて光が照射された部分のみ別の方向に配向させることによっても、パターン配向領域を得ることもできる。例えば、光配向膜全面に対し偏光または斜め方向からの無偏光を照射して基板面内の一方向に液晶配向能を与え、次に、該配向膜面上にフォトマスクを重ね、最初の照射とは偏光面の方向が異なる偏光を照射することで、パターン状に最初の方向とは異なった方向の液晶配向能を得ることができる。
パターンの形状に特に限定はなく、目的に応じて様々なパターンを形成することができる。例えば、矩形状に配向領域が交互に並ぶパターンや、格子状に配向領域が並ぶパターンや、絵柄状にパターンを形成することもできる。矩形状に配向領域が交互に並ぶパターンであれば、得られる光学異方体は回折格子として機能する。
In order to impart the liquid crystal alignment ability to the photo-alignment film, linearly polarized light or elliptically polarized light having a wavelength that can be absorbed by the photoreactive compound contained in the composition for photo-alignment film is the substrate opposite to the alignment film surface or the alignment film surface. From the side, the alignment light is irradiated perpendicularly to the surface or from an oblique direction, or from the oblique direction to the alignment film surface. The angle when irradiating from an oblique direction is preferably in the range of 10 ° to 80 °, particularly preferably in the range of 30 ° to 60 ° with respect to the substrate surface. For pattern alignment, for example, a photomask is placed on a substrate on which a photo-alignment film is formed, and the entire surface is irradiated with polarized light or non-polarized light, and liquid crystal alignment capability is given to the exposed portion in a pattern. By repeating this a plurality of times as necessary, a pattern alignment region can be obtained.
Alternatively, the pattern alignment region can also be obtained by once aligning the entire film in a specific direction and then aligning only the portion irradiated with light using a photomask in another direction. For example, the entire surface of the photo-alignment film is irradiated with polarized light or non-polarized light from an oblique direction to give a liquid crystal alignment ability in one direction within the substrate surface, and then a photomask is overlaid on the alignment film surface for the first irradiation. By irradiating polarized light having a different polarization plane direction, it is possible to obtain a liquid crystal alignment ability in a direction different from the initial direction in a pattern.
There is no particular limitation on the shape of the pattern, and various patterns can be formed according to the purpose. For example, a pattern in which alignment regions are arranged alternately in a rectangular shape, a pattern in which alignment regions are aligned in a lattice shape, or a pattern in a pattern shape can also be formed. In the case of a pattern in which alignment regions are alternately arranged in a rectangular shape, the obtained optical anisotropic body functions as a diffraction grating.

光配向膜に液晶配向能を付与するための光は、光配向膜用組成物が含有するアゾベンゼン誘導体等の光反応性化合物が吸収しうる波長領域の光であれば良い。例えばアゾベンゼン誘導体を使用する場合、アゾベンゼンのπ→π遷移による強い吸収帯に対応する波長350〜500nmの範囲の紫外光もしくは可視光が特に好ましい。照射光の光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、紫外光レーザー等が挙げられる。特に超高圧水銀ランプはほぼ点光源であるため、平行光を得ることが容易であることから特に好ましい。前記光源からの光を偏光フィルタや偏光プリズムを通すことで直線偏光を得ることができる。 The light for imparting liquid crystal alignment ability to the photo-alignment film may be light in a wavelength region that can be absorbed by a photoreactive compound such as an azobenzene derivative contained in the composition for photo-alignment film. For example, when an azobenzene derivative is used, ultraviolet light or visible light in a wavelength range of 350 to 500 nm corresponding to a strong absorption band due to the π → π * transition of azobenzene is particularly preferable. Examples of the light source for irradiation light include a xenon lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, and an ultraviolet laser. In particular, since an ultra-high pressure mercury lamp is almost a point light source, it is particularly preferable because it is easy to obtain parallel light. Linearly polarized light can be obtained by passing light from the light source through a polarizing filter or a polarizing prism.

光配向膜が重合性官能基を有する場合は、後述の光重合開始剤、もしくは熱重合開始剤を光配向膜用組成物に添加し、基板への塗布および光の照射を行う。フォトマスクによる光照射を行った後、光照射による光重合もしくは加熱により熱重合を行うが、光の照射が得られた配向を損なう恐れがあることから、熱重合が好ましい。   When the photo-alignment film has a polymerizable functional group, a photopolymerization initiator or a thermal polymerization initiator described later is added to the composition for photo-alignment film, and application to the substrate and irradiation with light are performed. After light irradiation by a photomask, photopolymerization by light irradiation or thermal polymerization is performed by heating. However, thermal polymerization is preferable because there is a risk of damaging the alignment obtained by the light irradiation.

(基板(B))
基板(B)は、基板に対して略垂直の液晶配向能を有する基板である。ここで言う略垂直とは、液晶分子の分子長軸が、基板面に対して垂直であるか、又は、基板面法線に対して10°以下の角度(チルト角)を有する状態を指す。
本発明で使用する垂直配向膜は、基板上に塗膜として設けることで、液晶分子の分子軸を略垂直配向させる機能を有するものであればよい。具体的には、例えば、レシチン、シラン系界面活性剤、チタネート系界面活性剤、ピリジニウム塩系高分子界面活性剤、n−オクタデシルトリエトキシシラン等のシランカップリング系垂直配向膜用組成物、長鎖アルキル基や脂環式構造を側鎖に有する可溶性ポリイミドや長鎖アルキル基や脂環式構造を側鎖に有するポリアミック酸等のポリイミド系垂直配向膜用組成物が挙げられる。本発明においては、前記垂直配向膜用組成物として、ジェイエスアール(株)製のポリイミド系垂直配向膜用組成物「JALS−2021」や「JALS−204」、日産化学工業(株)製の「RN−1517」や「SE−1211」等の市販品をそのまま使用することができる。
(Substrate (B))
The substrate (B) is a substrate having a liquid crystal alignment ability substantially perpendicular to the substrate. The term “substantially perpendicular” as used herein refers to a state in which the molecular long axis of the liquid crystal molecules is perpendicular to the substrate surface or has an angle (tilt angle) of 10 ° or less with respect to the normal to the substrate surface.
The vertical alignment film used in the present invention may be any film as long as it has a function of aligning the molecular axes of liquid crystal molecules substantially vertically by providing it as a coating film on the substrate. Specifically, for example, a composition for a silane coupling-based vertical alignment film such as lecithin, a silane-based surfactant, a titanate-based surfactant, a pyridinium salt-based polymer surfactant, and n-octadecyltriethoxysilane, Examples thereof include a composition for a polyimide-based vertical alignment film such as a soluble polyimide having a chain alkyl group or an alicyclic structure in the side chain, or a polyamic acid having a long chain alkyl group or an alicyclic structure in the side chain. In the present invention, as the composition for the vertical alignment film, the polyimide vertical alignment film composition “JALS-2021” and “JALS-204” manufactured by GS Co., Ltd., “ Commercial products such as “RN-1517” and “SE-1211” can be used as they are.

前記垂直配向膜は、例えば不揮発分濃度が1%程度となるように有機溶剤に溶解し、基板上にスピンコーティング法等の方法で塗工した後、有機溶剤を除去することで得られる。該垂直配向膜は、塗膜表面が疎水性であるので、液晶分子の分子軸を略垂直配向させることができる。中でも、無極性の長鎖アルキル基や脂環式構造を有するポリイミド系の垂直配向膜用組成物は、基板に塗布しやすいことや、耐熱性に優れた垂直配向膜が得られることから特に好ましい。
基板(B)は、パターン配向ではなく、基板全域で一様な略垂直配向を行い、基板(A)のパターン配向領域との位置合わせをする必要がない。
The vertical alignment film can be obtained by, for example, dissolving in an organic solvent so that the nonvolatile content concentration is about 1%, coating the substrate by a method such as spin coating, and then removing the organic solvent. Since the surface of the vertical alignment film is hydrophobic, the molecular axes of the liquid crystal molecules can be aligned substantially vertically. Among them, a polyimide-based composition for a vertical alignment film having a nonpolar long-chain alkyl group or an alicyclic structure is particularly preferable because it can be easily applied to a substrate and a vertical alignment film having excellent heat resistance can be obtained. .
The substrate (B) does not require pattern alignment but performs substantially vertical alignment that is uniform over the entire substrate, and does not require alignment with the pattern alignment region of the substrate (A).

(重合性液晶化合物)
本発明で使用する重合性液晶化合物は、単独又は他の液晶化合物との組成物において液晶性を示す、重合性官能基を有する化合物であれば特に限定はない。例えば、Handbook of Liquid Crystals (D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill編集、Wiley−VCH 社発行、1998年)、季刊化学総説No.22、液晶の化学(日本化学会編、1994年)、あるいは、特開平7−294735号公報、特開平8−3111号公報、特開平8−29618号公報、特開平11−80090号公報、特開平11−148079号公報、特開2000−178233号公報、特開2002−308831号公報、特開2002−145830号公報に記載されているような、1,4−フェニレン基、1,4−シクロヘキシレン基等の構造が複数繋がったメソゲンと呼ばれる剛直な部位と、(メタ)アクリロイル基、ビニルオキシ基、エポキシ基といった重合性官能基とを有する棒状重合性液晶化合物、あるいは、例えば、Handbook of Liquid Crystals (D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill編集、Wiley−VCH 社発行、1998年)、季刊化学総説No.22、液晶の化学(日本化学会編、1994年)や、特開平07−146409号公報に記載されているディスコティック重合性化合物があげられる。中でも、重合性基を有する棒状液晶化合物が、液晶温度範囲として室温前後の低温を含むものを作りやすく好ましい。
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound used in the present invention is not particularly limited as long as it is a compound having a polymerizable functional group that exhibits liquid crystallinity alone or in a composition with another liquid crystal compound. For example, Handbook of Liquid Crystals (D. Demus, J. W. Goodbye, GW Gray, H. W. Spiss, V. Vill, edited by Wiley-VCH, 1998), Quarterly Chemical Review. 22, Liquid Crystal Chemistry (Edited by Chemical Society of Japan, 1994), or JP-A-7-294735, JP-A-8-3111, JP-A-8-29618, JP-A-11-80090, 1,4-phenylene group, 1,4-cyclohexene, as described in Kaihei 11-148079, JP-A 2000-178233, JP-A 2002-308831, and JP-A 2002-145830. A rod-like polymerizable liquid crystal compound having a rigid site called mesogen in which a plurality of structures such as a sylene group are connected and a polymerizable functional group such as a (meth) acryloyl group, a vinyloxy group, and an epoxy group, or, for example, Handbook of Liquid Crystals (D. Demus, J. W. Goodby, GW Gray, H. et al. W. Spiess, edited by V. Vill, published by Wiley-VCH, 1998), Quarterly Chemical Review No. 22. Liquid crystal chemistry (edited by Chemical Society of Japan, 1994) and discotic polymerizable compounds described in JP-A-07-146409. Among these, a rod-like liquid crystal compound having a polymerizable group is preferable because it can easily produce a liquid crystal having a temperature range around room temperature.

(光重合開始剤)
前記重合性液晶化合物を重合させる際には、公知慣用の光重合開始剤や熱重合開始剤を配合することが好ましい。
光重合開始剤としては、例えば1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ社製「イルガキュア184」)、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン(メルク社製「ダロキュア1116」)、2−メチル−1−[(メチルチオ)フェニル]−2−モリホリノプロパン−1(チバ・スペシャルティ・ケミカルズ社製「イルガキュア907」)、ベンジルメチルケタ−ル(チバ・スペシャルティ・ケミカルズ社製「イルガキュア651」)。2,4−ジエチルチオキサントン(日本化薬社製「カヤキュアDETX」)とp−ジメチルアミノ安息香酸エチル(日本化薬社製「カヤキュアEPA」)との混合物、アシルフォスフィンオキシド(BASF社製「ルシリンTPO」)、などが挙げられる。一方、熱重合開始剤としては、例えば、ベンゾイルパ−オキサイド、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、t−ブチルパ−オキシベンゾエイト、メチルエチルケトンパ−オキサイド等の有機過酸化物、2,2’−アゾビスイソブチロニトリル等のアゾニトリル化合物、2,2’−アゾビス(2−メチル−N−フェニルプロピオン−アミヂン)ジハイドロクロライド等のアゾアミヂン化合物、2,2’アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}等のアゾアミド化合物、2,2’アゾビス(2,4,4−トリメチルペンタン)等のアルキルアゾ化合物等を使用することができる。これらの重合開始剤の使用量は組成物に対して10質量%以下が好ましく、0.5〜5質量%が特に好ましい。(以下、前記重合性液晶化合物と重合開始剤等を含有する組成物を、重合性液晶組成物と略す。)
(Photopolymerization initiator)
When polymerizing the polymerizable liquid crystal compound, it is preferable to blend a known and commonly used photopolymerization initiator or thermal polymerization initiator.
Examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals), 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one ( “Darocur 1116” manufactured by Merck & Co.), 2-methyl-1-[(methylthio) phenyl] -2-morpholinopropane-1 (“Irgacure 907” manufactured by Ciba Specialty Chemicals), benzylmethylketal ( “Irgacure 651” manufactured by Ciba Specialty Chemicals). Mixture of 2,4-diethylthioxanthone (“Kayacure DETX” manufactured by Nippon Kayaku Co., Ltd.) and ethyl p-dimethylaminobenzoate (“Kayacure EPA” manufactured by Nippon Kayaku Co., Ltd.), acylphosphine oxide (“Lucirin” manufactured by BASF TPO "), and the like. On the other hand, examples of the thermal polymerization initiator include organic peroxides such as benzoyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butyl peroxybenzoate, and methyl ethyl ketone peroxide. Azonitrile compounds such as 2′-azobisisobutyronitrile, azoamidin compounds such as 2,2′-azobis (2-methyl-N-phenylpropion-amidin) dihydrochloride, 2,2′azobis {2-methyl- Use azoamide compounds such as N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, alkylazo compounds such as 2,2′azobis (2,4,4-trimethylpentane), and the like. Can do. The amount of these polymerization initiators used is preferably 10% by mass or less, particularly preferably 0.5 to 5% by mass, based on the composition. (Hereinafter, a composition containing the polymerizable liquid crystal compound and a polymerization initiator is abbreviated as a polymerizable liquid crystal composition.)

(光学異方体の製造方法)
本発明の光学異方体は、例えば、前記基板(A)と前記基板(B)とを、各々の基板を、液晶配向能を有する面を内側にし、スペーサー、およびシール剤を用いて一定の間隙を設けて貼り合わせてセルを作成し、該セルに重合性液晶組成物を注入する方法や、前記基板(A)上に重合性液晶組成物を滴下し、その上から前記基板(B)を対向させて貼り合わせる方法により、両基板間に重合性液晶組成物を狭持させた後、該重合性液晶組成物を配向させた状態で、重合性液晶組成物を重合させることで得られる。
基板の間隔は、所望する光学異方体の位相差によって異なるが、概ね2μm〜20μmとなるようにするのが好ましい。基板の間隔即ち得られる重合性液晶組成物の重合体の厚さを調整することで、所望の位相差を有する光学異方体を得ることができる。
スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、重合性液晶組成物の注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
(Optical anisotropic body manufacturing method)
In the optical anisotropic body of the present invention, for example, the substrate (A) and the substrate (B) are fixed to each other using a spacer and a sealant with each substrate having a surface having liquid crystal alignment ability inside. A cell is formed by bonding with a gap, and a method of injecting a polymerizable liquid crystal composition into the cell, or dropping a polymerizable liquid crystal composition on the substrate (A), and then the substrate (B) from above. Obtained by sandwiching the polymerizable liquid crystal composition between both substrates and then polymerizing the polymerizable liquid crystal composition in a state where the polymerizable liquid crystal composition is oriented. .
The interval between the substrates varies depending on the desired phase difference of the optical anisotropic body, but it is preferable to be approximately 2 μm to 20 μm. An optical anisotropic body having a desired phase difference can be obtained by adjusting the distance between the substrates, that is, the thickness of the polymer of the resulting polymerizable liquid crystal composition.
Examples of the spacer include glass particles, plastic particles, alumina particles, and a photoresist material. Thereafter, a sealing agent such as an epoxy-based thermosetting composition is screen-printed on the substrates in a form provided with an inlet for the polymerizable liquid crystal composition, the substrates are bonded together, and heated to thermally cure the sealing agent. .

配向させた状態の重合性液晶組成物を重合固定化させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。照射時の温度は、重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶組成物の熱重合の誘起を避けるため、可能な限り25℃以下とすることが好ましい。尚、液晶組成物は、通常、昇温過程において、C(固相)−N(ネマチック)転移温度(以下、C−N転移温度と略す。)から、N−I転移温度範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C−N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。紫外線照射強度は、1W/m〜10kW/mの範囲が好ましい。特に、10W/m〜2kW/mの範囲が好ましい。紫外線強度が1W/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。 Examples of the method for polymerizing and fixing the aligned polymerizable liquid crystal composition include a method of irradiating active energy rays and a thermal polymerization method, but the reaction proceeds at room temperature without requiring heating. A method of irradiating active energy rays is preferable, and among them, a method of irradiating light such as ultraviolet rays is preferable because of easy operation. The temperature at the time of irradiation is preferably set to 25 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal composition so that the polymerizable liquid crystal composition can maintain the liquid crystal phase. The liquid crystal composition usually has a liquid crystal phase in the range from the C (solid phase) -N (nematic) transition temperature (hereinafter abbreviated as C-N transition temperature) to the NI transition temperature in the temperature rising process. Indicates. On the other hand, in the temperature lowering process, a non-equilibrium state is taken thermodynamically, so that the liquid crystal state may be maintained without being solidified even at a temperature lower than the CN transition temperature. This state is called a supercooled state. In the present invention, the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained. The ultraviolet irradiation intensity is preferably in the range of 1 W / m 2 to 10 kW / m 2 . In particular, a range of 10 W / m 2 to 2 kW / m 2 is preferable. When the ultraviolet intensity is less than 1 W / m 2 , it takes a lot of time to complete the polymerization. On the other hand, when the strength exceeds 2 kW / m 2 , liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during polymerization. The parameter may change, and the retardation of the film after polymerization may be distorted.

本発明の光学異方体は基板をつけた状態で使用しても良いが、一方もしくは両側の基板を剥離して、フィルム状として使用することもできる。   The optical anisotropic body of the present invention may be used with a substrate attached, but it can also be used as a film by peeling off one or both substrates.

以下、本発明の実施例を示し、本発明を更に具体的に説明する。
(重合性液晶組成物の調製)
式(a)で表される化合物20質量部、式(b)で表される化合物40質量部、式(c)で表される化合物40質量部からなる液晶組成物を調製し、孔径0.1μmのフィルタ−で濾過し、重合性液晶組成物とした。
該重合性液晶組成物のC−N転移温度は31℃、N−I転移温度は48℃であった。液晶組成物を48℃から降温させたところ、31℃以下で過冷却状態となり、25℃においても液晶相を示した。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Preparation of polymerizable liquid crystal composition)
A liquid crystal composition comprising 20 parts by mass of the compound represented by the formula (a), 40 parts by mass of the compound represented by the formula (b), and 40 parts by mass of the compound represented by the formula (c) was prepared. The mixture was filtered through a 1 μm filter to obtain a polymerizable liquid crystal composition.
The polymerizable liquid crystal composition had a CN transition temperature of 31 ° C. and an NI transition temperature of 48 ° C. When the temperature of the liquid crystal composition was lowered from 48 ° C., the liquid crystal composition was supercooled at 31 ° C. or lower and exhibited a liquid crystal phase even at 25 ° C.

Figure 2005292241
Figure 2005292241

(光配向膜用組成物の調整)
式(d)で表される化合物をN,N−ジメチルホルムアミド(DMF)に溶かして、固形分1重量%溶液とした。この溶液を孔径0.5μmのフィルタ−で濾過し、光配向膜用組成物とした。
(Adjustment of composition for photo-alignment film)
The compound represented by the formula (d) was dissolved in N, N-dimethylformamide (DMF) to obtain a 1% by weight solid content solution. This solution was filtered through a filter having a pore diameter of 0.5 μm to obtain a composition for a photo-alignment film.

Figure 2005292241
(d)
Figure 2005292241
(D)

(チルト角測定)
後述の配向膜付き基板(A−1)〜(A−3)、(B−1)、(B−2)について、チルト角を測定した。測定は、同種類の基板2枚をアンチパラレル状態に配置して作製した液晶セル(セルギャップ5μm)に、重合性液晶組成物を注入し、クリスタルローテーション法により測定した。
(Tilt angle measurement)
Tilt angles were measured for the alignment film-attached substrates (A-1) to (A-3), (B-1), and (B-2) described later. The measurement was performed by injecting a polymerizable liquid crystal composition into a liquid crystal cell (cell gap 5 μm) produced by arranging two substrates of the same type in an anti-parallel state, and measured by a crystal rotation method.

(実施例1)
前記光配向膜用組成物を、スピンコート法にてガラス基板上に均一に塗布し、100℃で1分間の乾燥を行った。このようにして得られた塗膜表面に超高圧水銀ランプを光源とし、365nm付近のバンドパスフィルタおよびコリメーターミラーを用いてほぼ平行光とした非偏光の紫外線を基板面に対して45°の角度から5J/cmの光量を照射した。
次に、周期20μmの矩形状スリットを有するフォトマスクを上記の光照射した光配向膜面に重ね、最初に照射した光の入射面と90°の角度をなし、かつ、基板面に対し45°の角度から5J/cmの光量を照射することで、光配向膜の面内配向方向が90°異なる矩形状の配向領域が交互に並ぶパターン化処理を行った略平行配向の光配向膜付き基板(A−1)を作製した。基板(A−1)のチルト角は5°であった。
別の基板にはポリイミド系垂直配向膜用組成物「JALS−2021」(ジェイエスアール(株)製)をスピンコート法にてガラス基板上に塗布し、190℃で1.5時間焼成を行うことで垂直配向膜付き基板(B−1)を作製した。基板(B−1)のチルト角は基板面法線に対して0°であった。
基板(A−1)の光配向膜が形成された面の外縁部に直径5μmのスチレンビーズを含んだ光硬化性接着剤を液晶注入口が残るように塗布し、これに基板(B−1)を配向膜面が相対するように重ね合わせて圧着し、紫外線を照射することで接着剤を硬化させ、セルを作成した。
(Example 1)
The composition for photo-alignment film was uniformly applied on a glass substrate by a spin coating method, and dried at 100 ° C. for 1 minute. The surface of the coating film thus obtained was subjected to an ultrahigh pressure mercury lamp as a light source, and non-polarized ultraviolet light that was made substantially parallel using a bandpass filter and a collimator mirror near 365 nm was 45 ° with respect to the substrate surface. A light amount of 5 J / cm 2 was irradiated from an angle.
Next, a photomask having a rectangular slit with a period of 20 μm is overlaid on the surface of the photo-aligned film irradiated with light, forming an angle of 90 ° with the incident surface of the first irradiated light and 45 ° with respect to the substrate surface. With a photo-alignment film having a substantially parallel orientation, in which a rectangular alignment region in which the in-plane orientation direction of the photo-alignment film differs by 90 ° is alternately arranged by irradiating a light amount of 5 J / cm 2 from the angle of A substrate (A-1) was produced. The tilt angle of the substrate (A-1) was 5 °.
On another substrate, a polyimide-based vertical alignment film composition “JALS-2021” (manufactured by JSR Co., Ltd.) is applied onto a glass substrate by spin coating, and baked at 190 ° C. for 1.5 hours. A substrate with a vertical alignment film (B-1) was produced. The tilt angle of the substrate (B-1) was 0 ° with respect to the normal to the substrate surface.
A photo-curable adhesive containing styrene beads having a diameter of 5 μm is applied to the outer edge of the surface of the substrate (A-1) where the photo-alignment film is formed so that the liquid crystal injection port remains, and the substrate (B-1 ) Were superimposed and pressure-bonded so that the alignment film surfaces faced each other, and the adhesive was cured by irradiating with ultraviolet rays to form a cell.

次に、前記重合性液晶組成物に、光重合開始剤「イルガキュア907」(チバ・スペシャルティ・ケミカルズ社製)を、質量比が98対2となるように添加した組成物を、上記セルに真空注入法にて注入した。超高圧水銀ランプを使用して、0.25W/cmの強度の紫外線を、基板面に垂直の方向から4秒間照射して、注入した重合性液晶組成物の光重合反応を行い、光学異方体(1)を作製した。
偏光板を通したHe−Neレーザー(633nm)を基板面に垂直に、かつ偏光の振動方向が、矩形状パターンの一方の配向方向に平行になるように入射したところ、Raman−Nath散乱を示し、±5次の回折ピークまで観測され、回折格子として機能することが確認できた。また、レーザー光の透過率は98.5%であった。
偏光顕微鏡でこの光学異方体(1)の観察を行ったところ、矩形の明暗のパターンが明瞭に観察され、液晶の配向欠陥によるパターンの乱れは認められなかった。
Next, a composition obtained by adding a photopolymerization initiator “Irgacure 907” (manufactured by Ciba Specialty Chemicals Co., Ltd.) to the polymerizable liquid crystal composition so as to have a mass ratio of 98: 2 is applied to the cell. Injection was performed by an injection method. Using an ultra-high pressure mercury lamp, ultraviolet light having an intensity of 0.25 W / cm 2 was irradiated for 4 seconds from a direction perpendicular to the substrate surface, and the injected polymerizable liquid crystal composition was subjected to a photopolymerization reaction, and optical properties were different. A rectangular parallelepiped (1) was produced.
When a He—Ne laser (633 nm) that has passed through a polarizing plate is incident perpendicularly to the substrate surface and the polarization vibration direction is parallel to one orientation direction of the rectangular pattern, Raman-Nath scattering is exhibited. , Up to ± 5th order diffraction peaks were observed, confirming that it functions as a diffraction grating. The laser beam transmittance was 98.5%.
When the optical anisotropic body (1) was observed with a polarizing microscope, a rectangular bright and dark pattern was clearly observed, and no disturbance of the pattern due to alignment defects of the liquid crystal was observed.

(比較例1)
実施例1において、垂直配向膜付き基板(B−1)の代わりに配向膜のないガラス基板(B−2)を使用した以外は実施例1と同様にして光学異方体(2)を作成した。偏光板を通したHe−Neレーザー(633nm)を基板面に垂直に、かつ偏光の振動方向が、矩形状のパターンの一方の配向方向に平行になるように入射したところ、Raman−Nath散乱を示し、±5次の回折ピークまで観察され、回折格子として機能することが確認できた。しかし、レーザー光の透過率は94.0%であった。
偏光顕微鏡でこの光学異方体(2)の観察を行ったところ、矩形の明暗パターンは観察されるものの、配向欠陥が多く、これによる光の散乱のために光透過率が低下していることがわかった。
(Comparative Example 1)
In Example 1, an optical anisotropic body (2) was prepared in the same manner as in Example 1 except that a glass substrate (B-2) without an alignment film was used instead of the substrate (B-1) with a vertical alignment film. did. When a He-Ne laser (633 nm) that has passed through a polarizing plate is incident perpendicularly to the substrate surface and the polarization vibration direction is parallel to one of the orientation directions of the rectangular pattern, Raman-Nath scattering occurs. It was observed that up to ± 5th order diffraction peaks, confirming that it functions as a diffraction grating. However, the laser beam transmittance was 94.0%.
When this optical anisotropic body (2) is observed with a polarizing microscope, a rectangular light and dark pattern is observed, but there are many orientation defects, and light transmittance is reduced due to light scattering due to this. I understood.

(比較例2)
前記光配向膜用組成物を、一辺が20mmの正方形の基板二枚にスピンコート法にて均一に塗布し、100℃で1分間の乾燥を行った。
このうちの一枚の基板には、塗膜表面に、実施例1と同様の紫外線を基板面に対して垂直で基板の一辺に対して+45°の角度をなす面内、かつ基板面に対して45°の方向から5J/cmの光量で照射した。次に、周期20μmの矩形状スリットを有し、基板と同じ形状のフォトマスクを上記の光照射した光配向膜面に基板と揃えて重ね、基板面に対して垂直で最初に照射した光の入射面と90°の角度をなす面内、かつ基板面に対して45°の方向から5J/cmの光量で照射することで、光配向膜の面内配向方向が90°異なる矩形状の配向領域が交互に並ぶパターン化処理を行った光配向膜付き基板(A−2)を作製した。基板(A−2)のチルト角は5°であった。
もう一枚の基板には、同様の紫外線を、基板面に対して垂直で基板の一辺に対して−45°の角度をなす面内、かつ基板面に対して45°の方向から5J/cmの光量で照射した。次に、周期20μmの矩形状スリットを有し、基板と同じ形状のフォトマスクを上記の光照射した光配向膜面に基板と揃えて重ね、基板面に対して垂直で最初に照射した光の入射面と90°の角度をなす面内、かつ基板面に対して45°の方向から5J/cmの光量で照射することで、光配向膜の面内配向方向が90°異なる矩形状の配向領域が交互に並ぶパターン化処理を行った光配向膜付き基板(A−3)を作製した。基板(A−3)のチルト角は5°であった。
基板(A−2)の光配向膜が形成された面の外縁部に直径5μmのスチレンビーズを含んだ光硬化性接着剤を液晶注入口が残るように塗布し、これに基板(A−3)を基板の各辺を精密に揃えながら、配向膜面が相対するように重ね合わせて圧着し、紫外線を照射することで接着剤を硬化させた。
(Comparative Example 2)
The composition for photo-alignment film was uniformly applied to two square substrates having a side of 20 mm by a spin coating method, and dried at 100 ° C. for 1 minute.
On one of these substrates, the same ultraviolet ray as in Example 1 was applied to the surface of the coating film in a plane perpendicular to the substrate surface and forming an angle of + 45 ° with respect to one side of the substrate, and with respect to the substrate surface. The light was irradiated at a light amount of 5 J / cm 2 from a direction of 45 °. Next, it has a rectangular slit with a period of 20 μm, and a photomask having the same shape as that of the substrate is superimposed on the surface of the photo-aligned film that has been irradiated with the light so that it is aligned with the substrate. By irradiating with a light amount of 5 J / cm 2 from a direction of 45 ° with respect to the substrate surface and an angle of 90 ° with the incident surface, the photo-alignment film has a rectangular shape whose in-plane alignment direction is different by 90 ° A substrate with a photo-alignment film (A-2) subjected to a patterning process in which alignment regions were alternately arranged was produced. The tilt angle of the substrate (A-2) was 5 °.
On the other substrate, the same ultraviolet rays are applied at a rate of 5 J / cm from the direction perpendicular to the substrate surface and at an angle of −45 ° to one side of the substrate and from the direction of 45 ° to the substrate surface. Irradiated with a light quantity of 2 . Next, it has a rectangular slit with a period of 20 μm, and a photomask having the same shape as that of the substrate is superimposed on the surface of the photo-aligned film that has been irradiated with the light so that it is aligned with the substrate. By irradiating with a light amount of 5 J / cm 2 from a direction of 45 ° with respect to the substrate surface and an angle of 90 ° with the incident surface, the photo-alignment film has a rectangular shape whose in-plane alignment direction is different by 90 ° A substrate with a photo-alignment film (A-3) subjected to a patterning process in which alignment regions were alternately arranged was produced. The tilt angle of the substrate (A-3) was 5 °.
A photocurable adhesive containing styrene beads having a diameter of 5 μm is applied to the outer edge of the surface of the substrate (A-2) where the photo-alignment film is formed so that the liquid crystal injection port remains, and the substrate (A-3) is applied to this. ) Were aligned and pressure-bonded with the alignment film surfaces facing each other while precisely aligning the sides of the substrate, and the adhesive was cured by irradiating ultraviolet rays.

次に、前記重合性液晶組成物を、上記のようにして貼り合わせたガラス基板の間隙に真空注入法にて注入した。超高圧水銀ランプを使用して、0.25W/cmの強度の紫外線を、基板面に垂直の方向から4秒間照射して、重合性液晶組成物の光重合反応を行い、光学異方体(3)を作製した。
偏光顕微鏡でこの光学異方体(3)の観察を行ったところ、液晶の配向欠陥によるパターンの乱れは認められないが、約10μmの上下の基板の配向パターンのズレが認められた。
偏光板を通したHe−Neレーザー(633nm)を基板面に垂直に、かつ偏光の振動方向が、矩形状パターンの一方の配向方向に平行になるように入射したところ、光の回折パターンはほとんど観測されなかった。
Next, the polymerizable liquid crystal composition was injected into the gap between the glass substrates bonded together as described above by a vacuum injection method. Using an ultra-high pressure mercury lamp, ultraviolet light having an intensity of 0.25 W / cm 2 is irradiated for 4 seconds from a direction perpendicular to the substrate surface to carry out a photopolymerization reaction of the polymerizable liquid crystal composition, thereby producing an optical anisotropic body. (3) was produced.
When this optical anisotropic body (3) was observed with a polarizing microscope, pattern disturbance due to alignment defects in the liquid crystal was not observed, but a deviation in the alignment patterns of the upper and lower substrates of about 10 μm was observed.
When a He-Ne laser (633 nm) that has passed through a polarizing plate is incident perpendicularly to the substrate surface and the polarization oscillation direction is parallel to one orientation direction of the rectangular pattern, the light diffraction pattern is almost Not observed.

(比較例3)
比較例2の基板(A−2)に基板(A−3)を重ね合わせる工程において、偏光顕微鏡で観察しながら上下基板の相対位置を微調整し、上下基板のパターンが1μm以内の精度で一致したことを確認した後、これらを圧着した以外は、比較例2と同様にして、光学異方体(4)を作製した。
偏光板を通したHe−Neレーザー(633nm)を基板面に垂直に、かつ偏光の振動方向が、矩形状パターンの一方の配向方向に平行になるように入射したところ、Raman−Nath散乱を示し、±5次の回折ピークまで観測され、回折格子として機能することが確認できた。また、レーザー光の透過率は98.5%であった。
偏光顕微鏡でこの光学異方体(4)の観察を行ったところ、矩形の明暗のパターンが明瞭に観察され、液晶の配向欠陥によるパターンの乱れは認められなかった。
しかし、本方法は偏光顕微鏡による上下基板の厳密な相対位置の微調整が必要であり、量産には不適切である。
(Comparative Example 3)
In the process of superimposing the substrate (A-3) on the substrate (A-2) of Comparative Example 2, the relative positions of the upper and lower substrates are finely adjusted while observing with a polarizing microscope, and the patterns of the upper and lower substrates match with accuracy within 1 μm. After confirming this, an optically anisotropic body (4) was produced in the same manner as in Comparative Example 2 except that these were pressure-bonded.
When a He—Ne laser (633 nm) that has passed through a polarizing plate is incident perpendicularly to the substrate surface and the polarization oscillation direction is parallel to one orientation direction of the rectangular pattern, Raman-Nath scattering is exhibited. , Up to ± 5th order diffraction peaks were observed, confirming that it functions as a diffraction grating. The laser beam transmittance was 98.5%.
When the optical anisotropic body (4) was observed with a polarizing microscope, a rectangular bright and dark pattern was clearly observed, and no disorder of the pattern due to alignment defects of the liquid crystal was observed.
However, this method requires fine adjustment of the relative positions of the upper and lower substrates with a polarizing microscope, and is not suitable for mass production.

本発明の光学異方体は、回折格子、層状の導波路構造、偏光ビームスプリッタ等に応用可能であり、特に、CD、DVD、MOなどの光ヘッド装置における波長板や回折格子への応用可能である。   The optical anisotropic body of the present invention can be applied to a diffraction grating, a layered waveguide structure, a polarizing beam splitter, etc., and particularly applicable to a wave plate or a diffraction grating in an optical head device such as a CD, DVD, or MO. It is.

本発明の光学異方体の具体的態様を模式的に示した平面図及び側面断面図である。It is the top view and side sectional view which showed typically the specific aspect of the optical anisotropic body of this invention.

符号の説明Explanation of symbols

1 基板(C)のパターン化処理を行った光配向膜付近の重合性液晶の配向方向
2 基板
3 パターン化配向処理を行った光配向膜
4 垂直配向膜
5 重合した重合性液晶層


DESCRIPTION OF SYMBOLS 1 Alignment direction of polymerizable liquid crystal near the photo-alignment film subjected to patterning treatment of substrate (C) 2 Substrate 3 Photo-alignment film subjected to patterning alignment treatment 4 Vertical alignment film 5 Polymerized polymerizable liquid crystal layer


Claims (5)

2枚の基板間に形成された光学異方体であって、一方の基板に対しては基板に略平行であって配向方向が異なる複数の配向領域を有し、他方の基板に対しては基板に略垂直な配向を有することを特徴とする光学異方体。 An optical anisotropic body formed between two substrates, wherein one substrate has a plurality of alignment regions that are substantially parallel to the substrate and have different alignment directions, and the other substrate An optical anisotropic body having an orientation substantially perpendicular to a substrate. 前記光学異方体の配向方向が異なる複数の配向領域は、光配向膜により形成され、前記略垂直な配向は、垂直配向膜により形成される請求項1に記載の光学異方体。 2. The optical anisotropic body according to claim 1, wherein the plurality of alignment regions having different alignment directions of the optical anisotropic body are formed by a photo alignment film, and the substantially vertical alignment is formed by a vertical alignment film. 前記光配向膜がアゾベンゼン誘導体を含有する組成物からなる、請求項2に記載の光学異方体。 The optical anisotropic body according to claim 2, wherein the photo-alignment film is made of a composition containing an azobenzene derivative. 基板に対して略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する基板と、基板に対して略垂直の液晶配向能を有する基板を、液晶配向能を有する面を内側にして対向させた基板間に重合性官能基を有する液晶化合物を含有する重合性液晶材料を挟持し、該液晶材料を配向させた状態で活性エネルギー線または熱により重合させることを特徴とする光学異方体の製造方法。 A substrate having a plurality of regions substantially parallel to the substrate and having a liquid crystal alignment ability in different directions, and a substrate having a liquid crystal alignment ability substantially perpendicular to the substrate, with the surface having the liquid crystal alignment ability inward. An optical anisotropy characterized by sandwiching a polymerizable liquid crystal material containing a liquid crystal compound having a polymerizable functional group between opposed substrates and polymerizing the liquid crystal material with active energy rays or heat in an aligned state. Body manufacturing method. 基板に対して略平行であって異なる方向に対する液晶配向能を持つ複数の領域を有する基板が、基板上に形成した光配向膜に、フォトマスクを通して偏光または配向膜面に対して斜め方向から非偏光を照射することにより、光配向膜に複数の液晶配向能領域を生じさせた基板である請求項4に記載の光学異方体の製造方法。

A substrate having a plurality of regions substantially parallel to the substrate and having a liquid crystal alignment ability in different directions is applied to a photo-alignment film formed on the substrate through a photomask from a direction oblique to the polarization or alignment film surface. The method for producing an optical anisotropic body according to claim 4, wherein the substrate is a substrate in which a plurality of liquid crystal alignment regions are generated in a photo-alignment film by irradiating polarized light.

JP2004103739A 2004-03-31 2004-03-31 Optical anisotropic substance and its manufacturing method Pending JP2005292241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103739A JP2005292241A (en) 2004-03-31 2004-03-31 Optical anisotropic substance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103739A JP2005292241A (en) 2004-03-31 2004-03-31 Optical anisotropic substance and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005292241A true JP2005292241A (en) 2005-10-20

Family

ID=35325273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103739A Pending JP2005292241A (en) 2004-03-31 2004-03-31 Optical anisotropic substance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005292241A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068322A (en) * 2010-09-21 2012-04-05 Dainippon Printing Co Ltd Pattern retardation member, three-dimensional liquid crystal panel and three-dimensional liquid crystal display device
KR20120120007A (en) * 2011-04-21 2012-11-01 제이에스알 가부시끼가이샤 Liquid crystal aligning agent for phase difference film, liquid crystal alignment film for phase difference film, the phase difference film and its manufacturing method
WO2013054673A1 (en) * 2011-10-14 2013-04-18 大日本印刷株式会社 Pattern phase difference film and method for manufacturing same
CN109116635A (en) * 2018-10-11 2019-01-01 北京航空航天大学 A kind of liquid crystal polarization gratings preparation method
WO2020022501A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Method for producing optical element, and optical element
US11333933B2 (en) * 2018-07-27 2022-05-17 Fujifilm Corporation Method of manufacturing optical element and optical element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068322A (en) * 2010-09-21 2012-04-05 Dainippon Printing Co Ltd Pattern retardation member, three-dimensional liquid crystal panel and three-dimensional liquid crystal display device
KR20120120007A (en) * 2011-04-21 2012-11-01 제이에스알 가부시끼가이샤 Liquid crystal aligning agent for phase difference film, liquid crystal alignment film for phase difference film, the phase difference film and its manufacturing method
JP2012234146A (en) * 2011-04-21 2012-11-29 Jsr Corp Liquid crystal aligning agent for retardation film, liquid crystal aligning film for retardation film, retardation film and method of manufacturing the same
KR101927752B1 (en) 2011-04-21 2018-12-11 제이에스알 가부시끼가이샤 Liquid crystal aligning agent for phase difference film, liquid crystal alignment film for phase difference film, the phase difference film and its manufacturing method
WO2013054673A1 (en) * 2011-10-14 2013-04-18 大日本印刷株式会社 Pattern phase difference film and method for manufacturing same
JPWO2013054673A1 (en) * 2011-10-14 2015-03-30 大日本印刷株式会社 Pattern retardation film and method for producing the same
US9638848B2 (en) 2011-10-14 2017-05-02 Dai Nippon Printing Co., Ltd. Patterned phase difference film and method for manufacturing same
US9720154B2 (en) 2011-10-14 2017-08-01 Dai Nippon Printing Co., Ltd. Patterned phase difference film and method for manufacturing same
WO2020022501A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Method for producing optical element, and optical element
US11333933B2 (en) * 2018-07-27 2022-05-17 Fujifilm Corporation Method of manufacturing optical element and optical element
CN109116635A (en) * 2018-10-11 2019-01-01 北京航空航天大学 A kind of liquid crystal polarization gratings preparation method

Similar Documents

Publication Publication Date Title
KR101215368B1 (en) Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element and method for manufacturing such optical film
JP5462628B2 (en) Volume light aligned retarder
Peeters et al. High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems
EP2940497B1 (en) Polarizing mask
JP4506333B2 (en) Manufacturing method of optical anisotropic body
JP4756342B2 (en) Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method for producing the optical film
KR20120008425A (en) Optical film, preparation method of the same, and liquid crystal display comprising the same
JP6845304B2 (en) Variable transmittance film
US10481436B2 (en) Process for producing a phase difference control component and liquid crystal display device
JP5057157B2 (en) Optical anisotropic body and method for producing the same
JP4591753B2 (en) Optical anisotropic body and manufacturing method thereof
JP2005292241A (en) Optical anisotropic substance and its manufacturing method
JP5332449B2 (en) Method for producing retardation film
JP4689201B2 (en) Method for producing photo-alignment film for liquid crystal display element and method for producing liquid crystal display element
JP2022541609A (en) Photo-orientable positive c-plate retarder
WO2022025051A1 (en) Method for manufacturing optically anisotropic film
JP5580548B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR101798584B1 (en) Optical conpensation film and method of manufacturing the same and liquid crystal display provided with the optical compensation film
KR101742842B1 (en) Composition for photo-aligning layer
JP2012032832A (en) Manufacturing method of liquid crystal alignment film, manufacturing method of optical anisotropic body and manufacturing method of liquid crystal element
JP4910508B2 (en) Method for producing liquid crystal alignment film, method for producing optical anisotropic body, and method for producing liquid crystal element
JP2007034008A (en) Method for manufacturing optically anisotropic body
JP5674876B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP5772864B2 (en) Method for measuring tilt angle of alignment film, photo-alignment film, optical anisotropic body
JP4411516B2 (en) Optical element and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050909