JP2009058584A - Liquid crystal aligning agent and method of forming liquid crystal alignment layer - Google Patents

Liquid crystal aligning agent and method of forming liquid crystal alignment layer Download PDF

Info

Publication number
JP2009058584A
JP2009058584A JP2007223684A JP2007223684A JP2009058584A JP 2009058584 A JP2009058584 A JP 2009058584A JP 2007223684 A JP2007223684 A JP 2007223684A JP 2007223684 A JP2007223684 A JP 2007223684A JP 2009058584 A JP2009058584 A JP 2009058584A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
aligning agent
group
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007223684A
Other languages
Japanese (ja)
Other versions
JP5316740B2 (en
Inventor
Hiroshi Ogawa
博司 小川
Yasumasa Takeuchi
安正 竹内
Masayuki Kimura
雅之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007223684A priority Critical patent/JP5316740B2/en
Publication of JP2009058584A publication Critical patent/JP2009058584A/en
Application granted granted Critical
Publication of JP5316740B2 publication Critical patent/JP5316740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal aligning agent capable of imparting liquid crystal alignment capability by light radiation of a low exposure amount. <P>SOLUTION: The liquid crystal aligning agent has a structure expressed by a formula (I) and contains a polymer having a glass transition temperature of 50°C or lower. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液晶配向剤および液晶配向膜の形成方法に関する。さらに詳しくは、ラビング処理を行わずに低温における低露光量の光照射によって液晶配向能を付与することのできる液晶配向剤および液晶配向膜の形成方法に関する。   The present invention relates to a liquid crystal alignment agent and a method for forming a liquid crystal alignment film. More specifically, the present invention relates to a liquid crystal aligning agent and a method for forming a liquid crystal alignment film that can impart liquid crystal aligning ability by low-exposure light irradiation at a low temperature without performing a rubbing treatment.

正の誘電異方性を有するネマチック型液晶を、液晶配向膜を有する透明電極付基板でサンドイッチ構造にしてなる液晶セルを有する液晶表示素子が知られている。かかる液晶表示素子の動作モードとしては、液晶分子の長軸が基板間で90°以上連続的に捻れるようにしてなる液晶セルに基板界面と垂直方向の電界を印加するTN(Twisted Nematic)モードおよびSTN(Super Twisted Nematic)モード、液晶分子の長軸を基板間で一様に配向させた液晶セルに基板面と平行方向の電界を印加するIPS(In Plane Switching)モードを挙げることができる(特許文献1および2参照)。また、近年、上記とは別の液晶表示素子の動作モードとして、高プレチルト角(10〜20°)の水平配向膜を有する透明電極付基板の間に液晶分子を挟んでベンド配向させるOCB(Optically Compensated Birefringence)モードならびに水平配向膜および垂直配向膜を各々有する透明電極付基板の間に液晶分子を挟んでハイブリッド配向させるR−OCB(Reflective−OCB)モードが提案されている。   There is known a liquid crystal display element having a liquid crystal cell in which nematic liquid crystal having positive dielectric anisotropy is sandwiched by a substrate with a transparent electrode having a liquid crystal alignment film. As an operation mode of such a liquid crystal display element, a TN (Twisted Nematic) mode in which an electric field perpendicular to the substrate interface is applied to a liquid crystal cell in which the major axis of liquid crystal molecules is continuously twisted by 90 ° or more between the substrates. And an STN (Super Twisted Nematic) mode, and an IPS (In Plane Switching) mode in which an electric field in a direction parallel to the substrate surface is applied to a liquid crystal cell in which the long axes of liquid crystal molecules are uniformly aligned between the substrates ( (See Patent Documents 1 and 2). In recent years, as an operation mode of a liquid crystal display device different from the above, OCB (Optically) in which a liquid crystal molecule is sandwiched between substrates with a transparent electrode having a horizontal alignment film having a high pretilt angle (10 to 20 °). A Compensated Birefringence) mode and an R-OCB (Reflective-OCB) mode in which liquid crystal molecules are sandwiched between transparent electrode substrates each having a horizontal alignment film and a vertical alignment film have been proposed.

このような液晶セルにおいて液晶を配向させる手段としては、基板表面に有機膜を形成し、次いでその有機膜表面をレーヨンなどの布材で一方向に擦ることにより液晶配向能を付与するラビング法、基板表面に酸化珪素を斜方蒸着する方法、長鎖アルキル基を有する単分子膜をラングミュア・ブロジェット法(LB法)により形成する方法などが挙げられる。このうち基板サイズ、液晶の配向均一性、処理時間および処理コストの観点からラビング処理が広く採用されている。
しかし、有機膜へ液晶配向性を付与する工程をラビング法により行うと、工程内でほこりや静電気が発生しやすいために、配向膜表面にほこりが付着して表示不良発生の原因となり、あるいは特にTFT(Thin Film Transistor)素子を有する基板の場合には発生した静電気によってTFT素子の回路破壊が起こり、歩留まり低下の原因になるという問題がある。さらに、今後ますます高精細化される液晶表示素子においては、画素の高密度化に伴い、不可避的に基板表面に凹凸が生じることとなるため、基板の全面にわたって均一にラビング処理を行うことがより困難となりつつある。
As a means for aligning the liquid crystal in such a liquid crystal cell, a rubbing method in which an organic film is formed on the surface of the substrate and then the surface of the organic film is rubbed in one direction with a cloth material such as rayon, thereby providing a liquid crystal alignment ability, Examples thereof include a method of obliquely depositing silicon oxide on the surface of the substrate, and a method of forming a monomolecular film having a long chain alkyl group by the Langmuir-Blodgett method (LB method). Among these, rubbing is widely adopted from the viewpoint of substrate size, liquid crystal alignment uniformity, processing time and processing cost.
However, if the process of imparting liquid crystal alignment to the organic film is performed by the rubbing method, dust and static electricity are likely to be generated in the process, which may cause dust to adhere to the alignment film surface and cause display defects. In the case of a substrate having a TFT (Thin Film Transistor) element, there is a problem that the circuit damage of the TFT element occurs due to the generated static electricity, resulting in a decrease in yield. Furthermore, in liquid crystal display elements that will become increasingly high-definition in the future, as the density of pixels increases, irregularities will inevitably occur on the surface of the substrate, so that the entire surface of the substrate can be rubbed uniformly. It is becoming more difficult.

液晶セルにおいて、有機膜に液晶配向能を付与する別の手段として、基板表面にポリビニルシンナメート、ポリ(4'−メタクリロイロキシカルコン)などの感光性高分子膜を形成し、これに直線偏光された紫外線を照射することによって液晶配向能を付与する光配向法が挙げられる。この方法によれば、静電気やほこりを発生することなく均一な液晶配向を実現できる利点を有する(特許文献3〜11参照)。しかしながら、光配向法を適用しうる材料として従来知られているものは、有機膜に液晶配向能を付与するために、高温下において極めて高い強度の紫外線を照射しなければならない。具体的には、有機膜を形成した基板を180℃程度に加熱したうえで15,000J/m程度の非常に高い強度の紫外線照射を必要とするため、コスト上の問題がある。
さらにこのような高温の処理を施すと、特に「ポスト第7世代」と呼ばれる大型基板においては基板に歪みが生じるため均一な紫外線照射ができず、基板の全面にわたって均一な液晶配向性が得られないとの問題がある。
大型基板に歪みが生じない低温において、低露光量の光照射により液晶配向能を付与することのできる液晶配向剤が求められているが、このような液晶配向剤は未だ知られていない。
特開昭56−91277号公報 特開平1−120528号公報 特開平6−289374号公報 特開平6−287453号公報 特開平10−251646号公報 特開平11−2815号公報 特開平11−152475号公報 特開2000−144136号公報 特開2000−319510号公報 特開2000−281724号公報 特開2001−307203号公報
In the liquid crystal cell, as another means for imparting liquid crystal alignment ability to the organic film, a photosensitive polymer film such as polyvinyl cinnamate or poly (4′-methacryloyloxychalcone) is formed on the substrate surface, and linearly polarized light is formed on the film. The photo-alignment method which provides liquid crystal aligning ability by irradiating the irradiated ultraviolet-ray is mentioned. This method has an advantage that uniform liquid crystal alignment can be realized without generating static electricity or dust (see Patent Documents 3 to 11). However, what is conventionally known as a material to which the photo-alignment method can be applied has to irradiate the organic film with extremely high intensity ultraviolet rays at a high temperature in order to impart the liquid crystal alignment ability to the organic film. Specifically, since the substrate on which the organic film is formed is heated to about 180 ° C., and it is necessary to irradiate ultraviolet rays with a very high intensity of about 15,000 J / m 2 , there is a problem in cost.
Furthermore, when such a high temperature treatment is performed, a large substrate called “post 7th generation” is distorted in the substrate, so uniform ultraviolet irradiation cannot be performed, and uniform liquid crystal orientation can be obtained over the entire surface of the substrate. There is no problem.
There is a need for a liquid crystal aligning agent capable of imparting liquid crystal aligning ability by light irradiation with a low exposure amount at a low temperature at which no distortion occurs in a large substrate, but such a liquid crystal aligning agent is not yet known.
JP 56-91277 A JP-A-1-120528 JP-A-6-289374 JP-A-6-287453 JP-A-10-251646 Japanese Patent Laid-Open No. 11-2815 JP-A-11-152475 JP 2000-144136 A JP 2000-319510 A JP 2000-281724 A JP 2001-307203 A

本発明は上記事情に鑑みてなされたものであり、その目的は、大型基板に歪みが生じない低温において、低露光量の光照射により液晶配向能を付与することのできる液晶配向剤および液晶配向膜の形成方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a liquid crystal aligning agent and a liquid crystal aligning agent capable of imparting liquid crystal aligning ability by low exposure light irradiation at a low temperature at which no distortion occurs in a large substrate. It is to provide a method for forming a film.

本発明によれば、本発明の上記目的は第一に、下記式(I)   According to the present invention, the above object of the present invention is firstly represented by the following formula (I):

Figure 2009058584
Figure 2009058584

(式(I)中、Rは水素原子または炭素数1〜4のアルキル基であり、Xは水素原子、ハロゲン原子、アミノ基、ニトロ基、シアノ基、炭素数1〜12のアルコキシル基またはフェニル基であり、Yは単結合または芳香環を有する2価の有機基であり、n1は1〜10の整数である。)
で表される構造を有し且つガラス転移温度が50℃以下のポリマーを含有する液晶配向剤によって達成される。
本発明の上記目的は第二に、基板上に上記の液晶配向剤を塗布して塗膜を形成し、これに光照射する工程を含む液晶配向膜の形成方法によって達成される。
(In Formula (I), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X 1 is a hydrogen atom, a halogen atom, an amino group, a nitro group, a cyano group, or an alkoxyl group having 1 to 12 carbon atoms. Or a phenyl group, Y is a divalent organic group having a single bond or an aromatic ring, and n1 is an integer of 1 to 10.)
And a liquid crystal aligning agent containing a polymer having a glass transition temperature of 50 ° C. or lower.
Secondly, the above object of the present invention is achieved by a method for forming a liquid crystal alignment film comprising a step of applying the above liquid crystal aligning agent on a substrate to form a coating film and irradiating it with light.

本発明の液晶配向剤を用いた本発明の液晶配向膜の形成方法によると、基板に歪が生じない低温における低露光量の光照射によってラビング法に匹敵する液晶配向能を示す液晶配向膜を得ることができるので、特に大型基板を使用する液晶表示素子の製造に有用である。   According to the method for forming a liquid crystal alignment film of the present invention using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film having a liquid crystal alignment ability comparable to the rubbing method by light irradiation at a low exposure amount at a low temperature at which no distortion occurs on the substrate. Since it can be obtained, it is particularly useful for manufacturing a liquid crystal display device using a large substrate.

以下、本発明について詳細に説明する。
本発明の液晶配向膜は、上記式(I)で表される構造を有するポリマーを含有する。
上記式(I)におけるRとしては水素原子またはメチル基が好ましい。
としては、水素原子、ニトロ基またはメトキシル基が好ましい。
Yの芳香環を有する2価の有機基としては、好ましくは芳香環を有し且つ炭素数が6〜18の2価の有機基であり、具体的には、1,4−フェニレン基、4,4’−ビフェニレン基、4,4”−p−ターフェニレン基等を挙げることができる。Yとしては単結合または1,4−フェニレン基が好ましい。
本発明の液晶配向剤に含有されるポリマーは、そのガラス転移温度(Tg)が50℃以下である。Tgは好ましくは20〜35℃である。かかるTgのポリマーを使用することにより、本発明の目的である低温における低露光量の光配向法によって、ラビング法に匹敵する液晶配向能の付与が容易に行えることとなる。
本発明の液晶配向膜に含有されるポリマーの分子量は、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の数平均分子量として100,000以下であることが好ましく、5,000〜50,000であることがより好ましい。かかる分子量範囲のポリマーを用いることにより、低露光量の光配向法によってもさらに良好な液晶配向能を示す液晶配向剤が得られることとなる。
本発明の液晶配向膜に含有されるポリマーは、上記の要件を充足する限り、その他の要件については特に制限はないが、例えば下記式(II)
Hereinafter, the present invention will be described in detail.
The liquid crystal alignment film of the present invention contains a polymer having a structure represented by the above formula (I).
R 1 in the above formula (I) is preferably a hydrogen atom or a methyl group.
X 1 is preferably a hydrogen atom, a nitro group or a methoxyl group.
The divalent organic group having an aromatic ring of Y is preferably a divalent organic group having an aromatic ring and having 6 to 18 carbon atoms, specifically 1,4-phenylene group, 4 , 4′-biphenylene group, 4,4 ″ -p-terphenylene group, etc. Y is preferably a single bond or a 1,4-phenylene group.
The polymer contained in the liquid crystal aligning agent of the present invention has a glass transition temperature (Tg) of 50 ° C. or lower. Tg is preferably 20 to 35 ° C. By using such a Tg polymer, the liquid crystal alignment ability comparable to the rubbing method can be easily imparted by the low-exposure photo-alignment method at a low temperature which is the object of the present invention.
The molecular weight of the polymer contained in the liquid crystal alignment film of the present invention is preferably 100,000 or less as a number average molecular weight in terms of polystyrene measured by gel permeation chromatography, and is 5,000 to 50,000. Is more preferable. By using a polymer having such a molecular weight range, a liquid crystal aligning agent having even better liquid crystal aligning ability can be obtained by a low exposure amount photo-alignment method.
The polymer contained in the liquid crystal alignment film of the present invention is not particularly limited with respect to other requirements as long as the above requirements are satisfied. For example, the following formula (II)

Figure 2009058584
Figure 2009058584

(式(II)中、R、X、Yおよびn1は上記式(I)におけるのと同じ意味である。)
で表される化合物(以下、「化合物(II)」という。)の重合体、または
化合物(II)と、下記式(III)
(In formula (II), R 1 , X 1 , Y and n1 have the same meaning as in formula (I) above.)
A polymer of a compound represented by the formula (hereinafter referred to as “compound (II)”), or compound (II), and the following formula (III)

Figure 2009058584
Figure 2009058584

(式(III)中、Rは水素原子または炭素数1〜4のアルキル基であり、Xは水素原子、ハロゲン原子、アミノ基、ニトロ基、シアノ基、炭素数1〜12のアルコキシル基またはフェニル基であり、n2は1〜10の整数である。)
で表される化合物(以下「化合物(III)」という。)および下記式(IV)
(In Formula (III), R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X 2 is a hydrogen atom, a halogen atom, an amino group, a nitro group, a cyano group, or an alkoxyl group having 1 to 12 carbon atoms. Or a phenyl group, and n2 is an integer of 1 to 10.)
(Hereinafter referred to as “compound (III)”) and the following formula (IV)

Figure 2009058584
Figure 2009058584

(式(IV)中、Xは水素原子、ハロゲン原子、アミノ基、ニトロ基、シアノ基、炭素数1〜12のアルコキシル基またはフェニル基であり、n3は1〜10の整数である。)
で表される化合物(以下、「化合物IV」という。)から選択される少なくとも1種との共重合体であることができる。
化合物(II)の具体例としては、例えば4−(6−メタクロイルオキシヘキシルオキシ)カルコン、4−(4−メタクロイルオキシブトキシ)カルコン、4−(6−メタクロイルオキシヘキシルオキシ)−4’−メトキシカルコン、4−(6−メタクロイルオキシヘキシルオキシ)−4’−ニトロキシカルコン、4−フルオロ−4’−(6−メタクロイルオキシヘキシルオキシ)カルコンなど;
化合物(III)の具体例としては、例えば4−(4−(1,6−ジオキシヘキシル)カルコニル)スチレンなど;
化合物(IV)の具体例としては、例えば4−(4−(1,6−ジオキシヘキシル)カルコニル)フェニルマレイミドなどを、それぞれ挙げることができる。
本発明の液晶配向膜に含有されるポリマーが、化合物(II)と、化合物(III)および化合物(IV)から選択される少なくとも1種との共重合体である場合、該ポリマー中に含まれる化合物(II)の共重合割合は、化合物(II)、化合物(III)および化合物(IV)の合計に基づいて50重量%以上であることが好ましく、80重量%以上であることがより好ましい。
(In the formula (IV), X 3 is a hydrogen atom, a halogen atom, an amino group, a nitro group, a cyano group, an alkoxyl group or a phenyl group having 1 to 12 carbon atoms, n3 is an integer of from 1 to 10.)
And a copolymer with at least one selected from the following compounds (hereinafter referred to as “compound IV”).
Specific examples of the compound (II) include 4- (6-methacryloyloxyhexyloxy) chalcone, 4- (4-methacryloyloxybutoxy) chalcone, 4- (6-methacryloyloxyhexyloxy) -4 ′, for example. -Methoxychalcone, 4- (6-methacryloyloxyhexyloxy) -4'-nitroxychalcone, 4-fluoro-4 '-(6-methacryloyloxyhexyloxy) chalcone and the like;
Specific examples of the compound (III) include, for example, 4- (4- (1,6-dioxyhexyl) calconyl) styrene and the like;
Specific examples of compound (IV) include, for example, 4- (4- (1,6-dioxyhexyl) calconyl) phenylmaleimide and the like.
When the polymer contained in the liquid crystal alignment film of the present invention is a copolymer of compound (II) and at least one selected from compound (III) and compound (IV), it is included in the polymer. The copolymerization ratio of the compound (II) is preferably 50% by weight or more, and more preferably 80% by weight or more based on the total of the compound (II), the compound (III) and the compound (IV).

本発明の液晶配向剤に含有されるポリマーは、本発明の効果を損なわない範囲で、上記の化合物(II)、化合物(III)および化合物(IV)のほかに他の重合性化合物を共重合して得られたものであってもよい。
かかる他の重合性化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどの脂肪族(メタ)アクリレート化合物;
テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン−8−イル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどの脂環式(メタ)アクリレート化合物;
4−(メタ)アクリロイロキシカルコン、4−(メタ)アクリロイロキシ−4’−フェニルカルコン、4−(メタ)アクリロイロキシ−4’−ペンチルカルコン、4−(メタ)アクリロイロキシ−4’−(4−ペンチルフェニル)カルコン、ベンジル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどの芳香族(メタ)アクリレート化合物;
The polymer contained in the liquid crystal aligning agent of the present invention is copolymerized with other polymerizable compounds in addition to the above-mentioned compound (II), compound (III) and compound (IV) as long as the effects of the present invention are not impaired. May be obtained.
Examples of such other polymerizable compounds include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 2-hydroxy. Aliphatic (meth) acrylate compounds such as propyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, trimethylolpropane tri (meth) acrylate;
Tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, glycidyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl (meta ) Cycloaliphatic (meth) acrylate compounds such as acrylate and isobornyl (meth) acrylate;
4- (meth) acryloyloxychalcone, 4- (meth) acryloyloxy-4′-phenylchalcone, 4- (meth) acryloyloxy-4′-pentylchalcone, 4- (meth) acryloyloxy-4 ′-(4-pentyl) Aromatic (meth) acrylate compounds such as phenyl) chalcone, benzyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate;

エチレン、プロピレン、ブテン、スチレン、p−メチルスチレン、p−トリフルオロメチルスチレン、α−メチルスチレン、p−トリフルオロメチル−α−メチルスチレン、4−(4−トリフルオロメチルベンゾイルオキシ)スチレン、p−セチルオキシスチレン、p−パルミトイルオキシスチレン、4−トリフルオロメチルフェニル−3−(4−ビニルフェニル)プロピオネート、4−セチル−3−(4−ビニルフェニル)プロピオネート、4−ステアリル−3−(4−ビニルフェニル)プロピオネート、塩化ビニル、酢酸ビニル、アクリロニトリルなどのビニル化合物;
無水マレイン酸、フェニルマレイミド、4−フルオロフェニルマレイミド、3、5−ジフルオロフェニルマレイミド、4−(トリフルオロメチル)フェニルマレイミド、4−(セチルオキシ)フェニルマレイミド、4−(パルミトイルオキシ)フェニルマレイミドなどのマレイン酸誘導体;
ブタジエン、イソプレン、クロロプレンなどのジエン類などを、それぞれ挙げることができる。これらのうち、スチレン、p−メチルスチレン、p−トリフルオロメチルスチレン、α−メチルスチレン、p−トリフルオロメチル−α−メチルスチレン、p−セチルオキシスチレン、p−パルミトイルオキシスチレン、フェニルマレイミド、4−フルオロフェニルマレイミド、3、5−ジフルオロフェニルマレイミド、4−(トリフルオロメチル)フェニルマレイミド、4−(セチルオキシ)フェニルマレイミドまたは4−(パルミトイルオキシ)フェニルマレイミドが好ましい。
これら他の重合性化合物は単独でまたは2種以上を組み合わせて使用することができる。
本発明の液晶配向膜に含有されるポリマーが、他の重合性化合物をも共重合して得られたものである場合、他の重合性化合物の共重合割合としては、化合物(II)、化合物(III)および化合物(IV)ならびに他の重合性化合物の合計に基づいて50重量%以下であることが好ましく、20重量%以下であることがより好ましい。
本発明の液晶配向膜に含有されるポリマーの重合方法は問わないが、ラジカル重合法によることが好ましい。ラジカル重合法は公知の方法に準じて行うことができる。
Ethylene, propylene, butene, styrene, p-methylstyrene, p-trifluoromethylstyrene, α-methylstyrene, p-trifluoromethyl-α-methylstyrene, 4- (4-trifluoromethylbenzoyloxy) styrene, p -Cetyloxystyrene, p-palmitoyloxystyrene, 4-trifluoromethylphenyl-3- (4-vinylphenyl) propionate, 4-cetyl-3- (4-vinylphenyl) propionate, 4-stearyl-3- (4 -Vinyl compounds such as vinylphenyl) propionate, vinyl chloride, vinyl acetate, acrylonitrile;
Maleic anhydride, phenylmaleimide, 4-fluorophenylmaleimide, 3,5-difluorophenylmaleimide, 4- (trifluoromethyl) phenylmaleimide, 4- (cetyloxy) phenylmaleimide, 4- (palmitoyloxy) phenylmaleimide, etc. Acid derivatives;
Examples thereof include dienes such as butadiene, isoprene, and chloroprene. Of these, styrene, p-methylstyrene, p-trifluoromethylstyrene, α-methylstyrene, p-trifluoromethyl-α-methylstyrene, p-cetyloxystyrene, p-palmitoyloxystyrene, phenylmaleimide, 4 -Fluorophenylmaleimide, 3,5-difluorophenylmaleimide, 4- (trifluoromethyl) phenylmaleimide, 4- (cetyloxy) phenylmaleimide or 4- (palmitoyloxy) phenylmaleimide are preferred.
These other polymerizable compounds can be used alone or in combination of two or more.
When the polymer contained in the liquid crystal alignment film of the present invention is obtained by copolymerizing another polymerizable compound, the copolymerization ratio of the other polymerizable compound includes compound (II), compound It is preferably 50% by weight or less, more preferably 20% by weight or less, based on the total of (III), compound (IV) and other polymerizable compounds.
Although the polymerization method of the polymer contained in the liquid crystal alignment film of the present invention is not limited, it is preferably a radical polymerization method. The radical polymerization method can be performed according to a known method.

本発明の液晶配向剤は、上記の如きポリマーを含有し、好ましくは溶液として調製される。
ここで使用することのできる溶媒としては、上記ポリマーを溶解し得る有機溶媒であれば特に制限はない。例えばN−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N、N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ジメチルイミダゾリジノン、ヘキサメチルホスホニルトリアミドなどの非プロトン系極性溶媒;
ブチルセロソルブアセテート、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチルなどのエステル系溶媒;
メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノンなどのケトン系溶媒;
クロルベンゼン、オルトジクロルベンゼン、テトラクロルエチレン、1、1、1−トリクロルエタンなどのハロゲン系溶媒;
m−クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒などを例示することができる。これらは、単独でまたは2種以上を組み合わせて使用することができる。かかる溶媒には、上記ポリマーの貧溶媒を、ポリマーが析出しない範囲で併用することができる。
本発明の液晶配向剤の固形分濃度(液晶配向剤のうち溶媒を除いた重量の、液晶配向剤の全重量に対する割合)は、好ましくは1〜20重量%である。
The liquid crystal aligning agent of this invention contains the above polymers, Preferably it is prepared as a solution.
The solvent that can be used here is not particularly limited as long as it is an organic solvent that can dissolve the polymer. For example, aprotic systems such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, dimethylimidazolidinone, hexamethylphosphonyltriamide Polar solvent;
Ester solvents such as butyl cellosolve acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate;
Ketone solvents such as methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone;
Halogen solvents such as chlorobenzene, orthodichlorobenzene, tetrachloroethylene, 1,1,1-trichloroethane;
Examples thereof include phenol solvents such as m-cresol, xylenol, phenol and halogenated phenol. These can be used alone or in combination of two or more. Such a solvent can be used in combination with a poor solvent for the polymer as long as the polymer does not precipitate.
The solid content concentration of the liquid crystal aligning agent of the present invention (ratio of the weight of the liquid crystal aligning agent excluding the solvent to the total weight of the liquid crystal aligning agent) is preferably 1 to 20% by weight.

本発明の液晶配向膜の形成方法は、基板上に上記の如き液晶配向剤を塗布して塗膜を形成し、これに光照射する工程を含むものである。
まず、パターン化された透明導電膜が設けられた基板の透明導電膜側に、本発明の液晶配向剤をロールコーター法、スピンナー法、印刷法などの適宜の方法により塗布し、40〜200℃の温度で5〜10分加熱することにより溶媒を除去し、塗膜を形成する。塗膜の膜厚は、好ましくは0.001〜1μmであり、より好ましくは0.005〜0.1μmである。前記基板としては、例えばフロートガラス、ソーダガラスなどのガラス基板、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネートなどのプラスチックフィルムからなる透明基板などを用いることができる。
前記透明導電膜としては、例えばSnOからなるNESA膜、In−SnOからなるITO膜などを用いることができる。これらの透明導電膜のパターニングには、例えばフォト・エッチング法や、透明導電膜を形成する際に予めマスクを用いる方法などが用いられる。液晶配向剤の塗布に先んじて、基板および透明導電膜と形成される塗膜との接着性をさらに良好にするために、基板および透明導電膜上に、予め官能性シラン含有化合物、チタネート化合物などを塗布しておいてもよい。
The method for forming a liquid crystal alignment film of the present invention includes a step of applying a liquid crystal aligning agent as described above on a substrate to form a coating film and irradiating it with light.
First, the liquid crystal aligning agent of this invention is apply | coated to the transparent conductive film side of the board | substrate with which the patterned transparent conductive film was provided by appropriate methods, such as a roll coater method, a spinner method, a printing method, and 40-200 degreeC. The solvent is removed by heating at a temperature of 5 to 10 minutes to form a coating film. The film thickness of the coating film is preferably 0.001 to 1 μm, more preferably 0.005 to 0.1 μm. Examples of the substrate include glass substrates such as float glass and soda glass, and transparent substrates made of plastic films such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, and polycarbonate.
As the transparent conductive film, for example, a NESA film made of SnO 2 or an ITO film made of In 2 O 3 —SnO 2 can be used. For patterning these transparent conductive films, for example, a photo-etching method or a method using a mask in advance when forming the transparent conductive film is used. Prior to application of the liquid crystal aligning agent, a functional silane-containing compound, titanate compound, etc. are previously formed on the substrate and the transparent conductive film in order to further improve the adhesion between the substrate and the transparent conductive film and the formed coating film. May be applied.

次いで、前記塗膜に、光を照射することにより塗膜に液晶配向能を付与して液晶配向膜とすることができる。ここで使用される光としては、直線偏光した光であることが好ましく、その電場ベクトルが基板面と所定の角度をなすように照射することが好ましい。この光としては、150〜800nmの波長を有する紫外線および可視光線を用いることが好ましく、320〜450nmの波長を有する紫外線がより好ましい。光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザーなどが使用できる。前記の好ましい波長領域の紫外線は、フィルター、回折格子などを光源と併用するなどの手段によりにより得ることができるほか、偏光板としてパイレックス(登録商標)ガラス製偏光板など320nmより短い波長の紫外線を透過しないものを用いる方法が簡便である。
露光量としては、好ましくは好ましくは10〜10,000J/mであり、より好ましくは10〜5,000J/mである。なお前述の通り、光配向法に適用しうる液晶配向剤として従来知られているものは15,000J/m程度の露光量を要していたが、本発明においては、露光量を10,000J/m以下、さらに5,000J/m以下とすることができるため、タクトタイムを短縮することができ、液晶配向膜ひいては液晶表示素子の製造規模を大きくする上で非常に有用である。また、露光量を低くすることにより基板上の他の材料の損傷の危険性を抑制することにも資する。
Next, by irradiating the coating film with light, liquid crystal alignment ability can be imparted to the coating film to form a liquid crystal alignment film. The light used here is preferably linearly polarized light, and is preferably irradiated so that the electric field vector forms a predetermined angle with the substrate surface. As this light, it is preferable to use ultraviolet rays and visible rays having a wavelength of 150 to 800 nm, and ultraviolet rays having a wavelength of 320 to 450 nm are more preferable. As the light source, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The ultraviolet rays in the preferred wavelength region can be obtained by means such as using a filter, a diffraction grating or the like together with a light source, and ultraviolet rays having a wavelength shorter than 320 nm such as a Pyrex (registered trademark) glass polarizing plate can be used as a polarizing plate. A method using a non-transmitting material is simple.
The exposure preferably is preferably 10~10,000J / m 2, more preferably from 10~5,000J / m 2. As described above, conventionally known liquid crystal aligning agents applicable to the photo-alignment method required an exposure amount of about 15,000 J / m 2 , but in the present invention, the exposure amount is set to 10, 000J / m 2 or less, it is possible to further 5,000J / m 2 or less, it is possible to shorten the tact time is very useful in the production scale is increased in the liquid crystal alignment film thus the liquid crystal display device . In addition, reducing the exposure dose also helps to reduce the risk of damage to other materials on the substrate.

露光時の好ましい温度は、その下限が液晶配向剤に含有される上記式(I)で表される構造を有するポリマーのガラス転移温度をTg(℃)として(Tg−10)℃であり、より好ましくは(Tg)℃であり、さらに(Tg+10)℃であることが好ましい。一方、露光時の好ましい温度の上限は80℃であり、より好ましくは45℃である。前述の通り、光配向法に適用しうる液晶配向剤として従来知られているものは露光時に180℃程度の加熱を要していたが、本発明においては露光時の温度をさらに80℃以下、特に50℃以下とすることができるので、大型基板を使用する場合でも基板の歪みが生じることがない。
この後さらに任意的に、液晶配向膜が形成された基板を加熱してもよい。この追加的な基板の加熱により液晶配向膜の液晶配向性および電気特性をさらに改善することができる。この加熱は、好ましくは50〜100℃の温度において5〜10分間行われる。この追加的な加熱は、液晶配向膜形成後、液晶セルに液晶を充填するまでの任意の時点に一回または複数回実施することができる。
The preferable temperature at the time of exposure is (Tg-10) ° C., where Tg (° C.) is the glass transition temperature of the polymer having the structure represented by the above formula (I) whose lower limit is contained in the liquid crystal aligning agent. It is preferably (Tg) ° C., and more preferably (Tg + 10) ° C. On the other hand, the upper limit of the preferable temperature at the time of exposure is 80 degreeC, More preferably, it is 45 degreeC. As described above, conventionally known liquid crystal aligning agents applicable to the photo-alignment method required heating at about 180 ° C. during exposure. In the present invention, the temperature during exposure is further set to 80 ° C. or less. In particular, since the temperature can be set to 50 ° C. or lower, the substrate is not distorted even when a large substrate is used.
Thereafter, optionally, the substrate on which the liquid crystal alignment film is formed may be heated. This additional heating of the substrate can further improve the liquid crystal alignment properties and electrical characteristics of the liquid crystal alignment film. This heating is preferably performed at a temperature of 50 to 100 ° C. for 5 to 10 minutes. This additional heating can be performed once or a plurality of times at any time after the liquid crystal alignment film is formed and before the liquid crystal is filled with the liquid crystal.

本発明の液晶配向剤を用いて形成される液晶表示素子は、例えば以下の如くして製造することができる。
まず前記の如くして形成された液晶配向膜を有する基板の一対(2枚)を、その有する液晶配向膜に照射した光の直線偏光の偏光方向が所定の角度となるよう対向させ、基板の間の周辺部をシール剤でシールし、液晶を充填した後充填孔を封止して液晶セルを構成する。次いでこの液晶セルを、用いた液晶が等方相をとる温度まで加熱した後、室温まで冷却して注入時の流動配向を除去することが望ましい。
その後上記液晶セルの両面に、偏光板を、偏光板の偏光方向がそれぞれ基板の液晶配向膜を照射した光の直線偏光の偏光方向と所定の角度をなすように張り合わせることにより、液晶表示素子とすることができる。
液晶配向膜が形成された2枚の基板における、照射した直線偏光放射線の偏光方向のなす角度およびそれぞれの基板と偏光板との角度を適宜に選択することにより、TN型もしくはSTN型またはその他モードの液晶セルを有する液晶表示素子を得ることができる。
The liquid crystal display element formed using the liquid crystal aligning agent of this invention can be manufactured as follows, for example.
First, a pair (two sheets) of a substrate having a liquid crystal alignment film formed as described above is opposed so that the polarization direction of linearly polarized light irradiated to the liquid crystal alignment film has a predetermined angle. A peripheral portion is sealed with a sealant, and after filling with liquid crystal, the filling hole is sealed to form a liquid crystal cell. The liquid crystal cell is then heated to a temperature at which the liquid crystal used takes an isotropic phase, and then cooled to room temperature to remove the flow alignment during injection.
Thereafter, a polarizing plate is bonded to both surfaces of the liquid crystal cell so that the polarizing direction of the polarizing plate forms a predetermined angle with the polarizing direction of the linearly polarized light of the light irradiated on the liquid crystal alignment film of the substrate. It can be.
By appropriately selecting the angle between the polarization directions of the irradiated linearly polarized radiation and the angle between each substrate and the polarizing plate in the two substrates on which the liquid crystal alignment film is formed, the TN type or STN type or other modes A liquid crystal display element having the liquid crystal cell can be obtained.

前記シール剤としては、例えば硬化剤およびスペーサーとしての酸化アルミニウム球を含有したエポキシ樹脂などを用いることができる。前記液晶としては、ネマティック型液晶、スメクティック型液晶などを用いることができる。TN型液晶セルの場合、ネマティック型液晶を形成させるものが好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などが用いられる。STN型液晶セルの場合には、前記液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネートなどのコレステリック液晶;商品名C−15、CB−15(メルク社製)として販売されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメートなどの強誘電性液晶などを、さらに添加して使用することもできる。
液晶セルの外側に使用される偏光板としては、ポリビニルアルコールを延伸配向させながら、ヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、またはH膜そのものからなる偏光板等を挙げることができる。
As the sealing agent, for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used. As the liquid crystal, nematic liquid crystal, smectic liquid crystal, or the like can be used. In the case of a TN type liquid crystal cell, those that form a nematic type liquid crystal are preferable. For example, Schiff base type liquid crystal, azoxy type liquid crystal, biphenyl type liquid crystal, phenyl cyclohexane type liquid crystal, ester type liquid crystal, terphenyl type liquid crystal, biphenyl cyclohexane type liquid crystal, pyrimidine Type liquid crystal, dioxane type liquid crystal, bicyclooctane type liquid crystal, cubane type liquid crystal and the like are used. In the case of an STN type liquid crystal cell, for example, cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonate, cholesteryl carbonate; trade names C-15 and CB-15 (manufactured by Merck) are used as the liquid crystal. Chiral agents; ferroelectric liquid crystals such as p-decyloxybenzylidene-p-amino-2-methylbutylcinnamate, and the like can be further added and used.
As a polarizing plate used outside the liquid crystal cell, a polarizing film called an “H film” that absorbs iodine while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films, or the H film itself. The polarizing plate etc. which become can be mentioned.

本発明の液晶配向剤が、上記の如く低温、低露光量の穏やかな条件において良好な液晶配向能を有する液晶配向膜を与える理由につき、本発明者らは以下のように推察する。
すなわち、光配向法により液晶配向能が付与される有機膜は、その有する構造の一部が、直線偏光の光照射により励起してエネルギー準位が高まり、次いでエネルギーを放出することにより安定状態に戻るが、このとき前記構造の方位が直線偏光の方向に一致するように変化すると信じられている。本発明の液晶配向剤は上記式(I)で表される構造を有するところ、これに含まれる共役エノン構造は、光励起によりまず励起一重項となり次いで励起寿命の長い励起三重項状態になるものと考えられる。そして三重項状態に励起した共役エノン構造同士が二量化して液晶配向能を示す方位が固定されることとなると信じられる。このとき、上記式(I)で表される構造がガラス転移温度50℃以下のポリマーに結合していることで上記の光反応が効率よく進行するために最適の構造が与えられ、最適の光反応場が実現されることにより、低温且つ低露光量の条件下で好適な液晶配向能が得られるものと考えられる。
The present inventors speculate as follows about the reason why the liquid crystal aligning agent of the present invention provides a liquid crystal aligning film having a good liquid crystal aligning ability under mild conditions of low temperature and low exposure as described above.
In other words, an organic film to which liquid crystal alignment ability is imparted by the photo-alignment method is partially stabilized by excitation by linearly polarized light irradiation to increase the energy level and then release energy. Returning, it is believed that at this time the orientation of the structure changes to match the direction of linear polarization. The liquid crystal aligning agent of the present invention has a structure represented by the above formula (I), and the conjugated enone structure contained therein is first excited singlet by photoexcitation and then into an excited triplet state having a long excitation lifetime. Conceivable. It is believed that the conjugated enone structures excited to the triplet state are dimerized to fix the orientation showing the liquid crystal alignment ability. At this time, since the structure represented by the above formula (I) is bonded to a polymer having a glass transition temperature of 50 ° C. or less, the above-mentioned photoreaction proceeds efficiently, so that an optimal structure is given. By realizing the reaction field, it is considered that a suitable liquid crystal alignment ability can be obtained under conditions of low temperature and low exposure.

以下、本発明を実施例により、さらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
合成例1(4−(6−メタクロイルオキシヘキシルオキシ)カルコン(MA−6−H)の合成)
6−クロロヘキシルメタクリレート0.87g(4.25mmol)、4−ヒドロキシカルコン1.0g(4.26mmol)、炭酸カリウム0.59g(4.25mmol)およびヨウ化カリウム64mg(0.43mmol)を、ジメチルホルムアミド5ml中、75℃で10時間反応した。吸引ろ過で無機塩を濾別後、溶媒を除去した。残渣をカラムクロマトグラフィーにて精製し、エタノールより再結晶を行い、モノマーMA−6−Hを1.23g得た(収率74%)。
HNMR(重クロロホルム)の結果は以下のとおりである。
1.4−1.9(m、8H、メチレン)、1.96(s、3H、CH)、4.02(t、2H、CHO)、4.16(t、2H、COCH)、5.56(m、1H、CH=CCH)、6.11(m、1H、CH=CCH)、6.8−8.1(m、11H、Aromatic)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Synthesis Example 1 (Synthesis of 4- (6-methacryloyloxyhexyloxy) chalcone (MA-6-H))
6-chlorohexyl methacrylate 0.87 g (4.25 mmol), 4-hydroxychalcone 1.0 g (4.26 mmol), potassium carbonate 0.59 g (4.25 mmol) and potassium iodide 64 mg (0.43 mmol) The reaction was carried out in 5 ml of formamide at 75 ° C. for 10 hours. The inorganic salt was removed by suction filtration, and then the solvent was removed. The residue was purified by column chromatography and recrystallized from ethanol to obtain 1.23 g of monomer MA-6-H (yield 74%).
The results of 1 HNMR (deuterated chloroform) are as follows.
1.4-1.9 (m, 8H, methylene), 1.96 (s, 3H, CH 3), 4.02 (t, 2H, CH 2 O), 4.16 (t, 2H, CO 2 CH 2), 5.56 (m, 1H, CH 2 = CCH 3), 6.11 (m, 1H, CH 2 = CCH 3), 6.8-8.1 (m, 11H, Aromatic)

合成例2(4−(4−メタクロイルオキシブトキシ)カルコン(MA−4−H)の合成)
6−クロロヘキシルメタクリレートの代わりに4−クロロブチルメタクリレート0.75g(4.25mmol)を用いたほかは、合成例1と同様にしてモノマーMA−4−Hを1.40g得た(収率100%)。
HNMR(重クロロホルム);1.4−1.9(m、4H、メチレン)、1.96(s、3H、CH)、4.02(t、2H、CHO)、4.16(t、2H、COCH)、5.56(m、1H、CH=CCH)6.11(m、1H、CH2=CCH)、6.8−8.1(m、11H、Aromatic)
合成例3(4−(6−メタクロイルオキシヘキシルオキシ)−4’−メトキシカルコン(MA−6−OMe)の合成)
4−ヒドロキシカルコンの代わりに4−ヒドロキシ−4’−メトキシカルコン1.62g(6.44mmol)を用い、他の試薬の使用量を各1.51倍としたほかは、合成例1と同様にしてモノマーMA−6−OMeを2.01g得た(収率74%)。
HNMR(重クロロホルム);1.4−1.9(m、4H、メチレン)、1.96(s、3H、CH)、3.89(s、3H、OCH)4.02(t、2H、CHO)、4.16(t、2H、COCH)、5.56(m、1H、CH=CCH)6.11(m、1H、CH=CCH)、6.8−8.1(m、10H、Aromatic)
合成例4(4−(6−メタクロイルオキシヘキシルオキシ)−4’−ニトロキシカルコン(MA−6−NO2)の合成)
4−ヒドロキシカルコンの代わりに4−ヒドロキシ−4’−ニトロキシカルコン2.69g(9.99mmol)を用い、他の試薬の使用量を各2.35倍としたほかは、合成例1と同様にしてモノマーMA−6−NO2を1.09g得た(収率25%)。
HNMR(重クロロホルム);1.4−1.9(m、4H、メチレン)、1.96(s、3H、CH)、4.02(t、2H、CHO)、4.16(t、2H、COCH)、5.56(m、1H、CH=CCH)6.11(m、1H、CH=CCH)、6.8−8.1(m、10H、Aromatic)
Synthesis Example 2 (Synthesis of 4- (4-methacryloyloxybutoxy) chalcone (MA-4-H))
1.40 g of monomer MA-4-H was obtained in the same manner as in Synthesis Example 1 except that 0.75 g (4.25 mmol) of 4-chlorobutyl methacrylate was used instead of 6-chlorohexyl methacrylate (yield: 100). %).
1 HNMR (deuterated chloroform); 1.4-1.9 (m, 4H, methylene), 1.96 (s, 3H, CH 3 ), 4.02 (t, 2H, CH 2 O), 4.16 (t, 2H, CO 2 CH 2), 5.56 (m, 1H, CH 2 = CCH 3) 6.11 (m, 1H, CH2 = CCH 3), 6.8-8.1 (m, 11H , Aromatic)
Synthesis Example 3 (Synthesis of 4- (6-methacryloyloxyhexyloxy) -4′-methoxychalcone (MA-6-OMe))
Instead of 4-hydroxychalcone, 4-hydroxy-4′-methoxychalcone (1.62 g, 6.44 mmol) was used, and the amount of other reagents used was 1.51 times each. As a result, 2.01 g of monomer MA-6-OMe was obtained (yield 74%).
1 HNMR (deuterated chloroform); 1.4-1.9 (m, 4H, methylene), 1.96 (s, 3H, CH 3 ), 3.89 (s, 3H, OCH 3 ) 4.02 (t , 2H, CH 2 O), 4.16 (t, 2H, CO 2 CH 2), 5.56 (m, 1H, CH 2 = CCH 3) 6.11 (m, 1H, CH 2 = CCH 3) 6.8-8.1 (m, 10H, Aromatic)
Synthesis Example 4 (Synthesis of 4- (6-methacryloyloxyhexyloxy) -4'-nitroxychalcone (MA-6-NO2))
The same as Synthesis Example 1 except that 2.69 g (9.99 mmol) of 4-hydroxy-4′-nitroxychalcone was used instead of 4-hydroxychalcone, and the amount of other reagents used was 2.35 times each. As a result, 1.09 g of monomer MA-6-NO2 was obtained (yield 25%).
1 HNMR (deuterated chloroform); 1.4-1.9 (m, 4H, methylene), 1.96 (s, 3H, CH 3 ), 4.02 (t, 2H, CH 2 O), 4.16 (t, 2H, CO 2 CH 2), 5.56 (m, 1H, CH 2 = CCH 3) 6.11 (m, 1H, CH 2 = CCH 3), 6.8-8.1 (m, 10H, Aromatic)

合成例5(ポリ4−(6−メタクロイルオキシヘキシルオキシ)カルコン(PMA−6−H)の合成)
合成例1で合成した4−(6−メタクロイルオキシヘキシルオキシ)カルコン(MA−6−H)0.4g(1.02mmol)およびアゾビスイソブチロニトリル8.4mg(0.05mmol)をトルエン10mlに溶解し、窒素気流下80℃で10時間反応した。溶液を濃縮後、メタノールに投入して沈殿物を回収しこれを乾燥することにより、ポリマーPMA−6−Hを0.39g得た(収率96%)。
このポリマーのガラス転移温度(Tg)は21℃であり、分子量(ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の数平均分子量をいう。以下同じ。)は、7,000であった。また、HNMR(重クロロホルム)の結果は以下のとおりである。
0.8−1.9(m、13H)、3.96(m、4H)、6.8−8.1(m、11H、Aromatic)
合成例6(ポリ4−(4−メタクロイルオキシブトキシ)カルコン(PMA−4−H)の合成)
MA−6−Hの代わりに合成例2で合成した4−(4−メタクロイルオキシブトキシ)カルコン(MA−4−H)1.40gを用いたほかは合成例5と同様にして実施し、ポリマーPMA−4−Hを1.12g得た(80%)。
Tg:26℃
分子量:8,000
HNMR(重クロロホルム);0.8−1.9(m、9H)、3.96(m、4H)、6.8−8.1(m、11H、Aromatic)
Synthesis Example 5 (Synthesis of poly-4- (6-methacryloyloxyhexyloxy) chalcone (PMA-6-H))
4- (6-Methacryloyloxyhexyloxy) chalcone (MA-6-H) 0.4 g (1.02 mmol) synthesized in Synthesis Example 1 and azobisisobutyronitrile 8.4 mg (0.05 mmol) were dissolved in toluene. It melt | dissolved in 10 ml and reacted at 80 degreeC under nitrogen stream for 10 hours. The solution was concentrated and then poured into methanol to collect a precipitate and dried to obtain 0.39 g of polymer PMA-6-H (yield 96%).
The glass transition temperature (Tg) of this polymer was 21 ° C., and the molecular weight (referred to the number average molecular weight in terms of polystyrene measured by gel permeation chromatography, hereinafter the same) was 7,000. The results of 1 HNMR (deuterated chloroform) are as follows.
0.8-1.9 (m, 13H), 3.96 (m, 4H), 6.8-8.1 (m, 11H, Aromatic)
Synthesis Example 6 (Synthesis of poly-4- (4-methacryloyloxybutoxy) chalcone (PMA-4-H))
The same procedure as in Synthesis Example 5 was performed except that 1.40 g of 4- (4-methacryloyloxybutoxy) chalcone (MA-4-H) synthesized in Synthesis Example 2 was used instead of MA-6-H. 1.12 g of polymer PMA-4-H was obtained (80%).
Tg: 26 ° C
Molecular weight: 8,000
1 HNMR (deuterated chloroform); 0.8-1.9 (m, 9H), 3.96 (m, 4H), 6.8-8.1 (m, 11H, Aromatic)

合成例7(ポリ4−(6−メタクロイルオキシヘキシルオキシ)−4’−メトキシカルコン(PMA−6−OMe)の合成)
MA−6−Hの代わりに合成例3で合成した4−(6−メタクロイルオキシヘキシルオキシ)−4’−メトキシカルコン(MA−6−OMe)2.01gを用いたほかは合成例5と同様にして実施し、ポリマーPMA−6−OMeを1.71g得た(収率85%)。
Tg:29℃
分子量:8,000
HNMR(重クロロホルム);0.8−1.9(m、9H)、3.96(m、7H)、6.8−8.1(m、10H、Aromatic)
合成例8(ポリ4−(6−メタクロイルオキシヘキシルオキシ)−4’−ニトロキシカルコン(PMA−6−NO2)の合成)
MA−6−Hの代わりに合成例4で合成した4−(6−メタクロイルオキシヘキシルオキシ)−4’−ニトロキシカルコン(MA−6−NO2)1.09gを用いたほかは合成例5と同様にして実施し、ポリマーPMA−6−NO2を0.93g得た(収率85%)。
Tg:33℃
分子量:9,000
HNMR(重クロロホルム);0.8−1.9(m、9H)、3.96(m、7H)、6.8−8.1(m、10H、Aromatic)
Synthesis Example 7 (Synthesis of poly-4- (6-methacryloyloxyhexyloxy) -4′-methoxychalcone (PMA-6-OMe))
Synthetic Example 5 except that 2.01 g of 4- (6-methacryloyloxyhexyloxy) -4′-methoxychalcone (MA-6-OMe) synthesized in Synthetic Example 3 was used instead of MA-6-H. In the same manner, 1.71 g of polymer PMA-6-OMe was obtained (yield: 85%).
Tg: 29 ° C
Molecular weight: 8,000
1 HNMR (deuterated chloroform); 0.8-1.9 (m, 9H), 3.96 (m, 7H), 6.8-8.1 (m, 10H, Aromatic)
Synthesis Example 8 (Synthesis of poly-4- (6-methacryloyloxyhexyloxy) -4′-nitroxychalcone (PMA-6-NO2))
Synthesis Example 5 except that 1.09 g of 4- (6-methacryloyloxyhexyloxy) -4′-nitroxychalcone (MA-6-NO2) synthesized in Synthesis Example 4 was used instead of MA-6-H. In the same manner as above, 0.93 g of polymer PMA-6-NO2 was obtained (yield: 85%).
Tg: 33 ° C
Molecular weight: 9,000
1 HNMR (deuterated chloroform); 0.8-1.9 (m, 9H), 3.96 (m, 7H), 6.8-8.1 (m, 10H, Aromatic)

実施例1
〔液晶配向剤の調製〕
上記合成例5で得られたポリマー(PMA−6−H)をγ−ブチロラクトンに溶解して、固形分濃度2重量%の溶液として孔径0.45μmのフィルターで濾過することにより、液晶配向剤を調製した。
〔液晶表示素子の製造と評価(I)、配向度の評価(二色比試験)〕
(1)液晶配向膜の製造
ITO膜からなる透明電極付きガラス基板の透明電極側の面に、上記の液晶配向剤をスピンナーにより塗布し、150℃にて10分加熱することにより、膜厚0.1μmの塗膜を形成した。
この塗膜に対し、45℃において超高圧水銀ランプを光源とする波長365nm、エネルギー密度40mW/cmの紫外光を、コリメーターミラーで平行光とし、バンドパスフィルターで不要な波長の光を除いた後、塗膜面に対して90°の方向から2.5秒間照射し(積算光量:1,000J/m)、光配向能操作を行って液晶配向膜とした。この操作を繰り返し、液晶配向膜を有する基板を2枚(一対)作成した。
(2)液晶表示素子の製造
一対の液晶配向膜付きの基板を、両面の配向容易軸が平行になるように対向させて外周部をシールし、その間隙にメルク(株)製のネマチック液晶にシグマアルドリッチジャパン(株)製の二色性染料(クマリン6)を0.5重量%添加した組成物を注入し、液晶表示素子を製造した。
(3)配向度の評価(二色比試験)
上記で製造した液晶表示素子につき、波長365nmの直線偏光に対する光吸収の二色比Dを、(株)日立製作所製の「F−7000形分光蛍光光度計」を用い、下記数式(1)

D=(A(垂直)−A(平行))/(A(垂直)+A(平行)) (1)

(数式(1)中、A(垂直)は垂直偏光の吸光度であり、A(平行)は平行偏光の吸光度である。)
により求めたところ、この液晶表示素子の二色比Dは0.71であった。
Example 1
(Preparation of liquid crystal aligning agent)
The polymer (PMA-6-H) obtained in Synthesis Example 5 was dissolved in γ-butyrolactone, and filtered through a filter having a pore size of 0.45 μm as a solution having a solid content concentration of 2% by weight, whereby a liquid crystal aligning agent was obtained. Prepared.
[Production and evaluation of liquid crystal display element (I), evaluation of orientation degree (dichroic ratio test)]
(1) Manufacture of liquid crystal aligning film The liquid crystal aligning agent is applied to the surface on the transparent electrode side of the glass substrate with a transparent electrode made of an ITO film by a spinner, and heated at 150 ° C. for 10 minutes, whereby the film thickness is 0. A 1 μm coating film was formed.
With respect to this coating film, ultraviolet light having a wavelength of 365 nm and an energy density of 40 mW / cm 2 using an ultrahigh pressure mercury lamp as a light source at 45 ° C. is converted into parallel light by a collimator mirror, and light having an unnecessary wavelength is removed by a band pass filter. After that, irradiation was performed for 2.5 seconds from a direction of 90 ° with respect to the coating film surface (integrated light amount: 1,000 J / m 2 ), and a photo-alignment ability operation was performed to obtain a liquid crystal alignment film. This operation was repeated to produce two (a pair) substrates having a liquid crystal alignment film.
(2) Manufacture of liquid crystal display element A pair of substrates with a liquid crystal alignment film face each other so that the alignment axes of both surfaces are parallel to each other, and the outer periphery is sealed, and a nematic liquid crystal manufactured by Merck Co. A composition containing 0.5% by weight of a dichroic dye (coumarin 6) manufactured by Sigma-Aldrich Japan was injected to produce a liquid crystal display device.
(3) Evaluation of orientation degree (dichroic ratio test)
About the liquid crystal display element manufactured above, the dichroic ratio D of light absorption with respect to linearly polarized light having a wavelength of 365 nm is expressed by the following formula (1) using “F-7000 type spectrofluorometer” manufactured by Hitachi, Ltd.

D = (A (vertical) -A (parallel)) / (A (vertical) + A (parallel)) (1)

(In Formula (1), A (vertical) is the absorbance of vertically polarized light, and A (parallel) is the absorbance of parallel polarized light.)
The dichroic ratio D of this liquid crystal display element was 0.71.

〔液晶表示素子の製造と評価(II)、アンカリング力の測定〕
(1)液晶配向膜の製造
光配向操作時の温度を45℃および室温(25℃)の2温度においてそれぞれ実施したほかは上記配向度の評価における「(1)液晶配向膜の製造」と同様にして、光照射温度の異なる液晶配向膜付き基板をそれぞれ2枚(一対)ずつ製造した。
(2)液晶表示素子の製造
上記のように製造した液晶配向膜付きの基板を、光照射温度の同じ2枚ずつを組として、それぞれ両面の配向容易軸が平行になるように対向させて外周部をシールし、その間隙にメルク(株)製の螺旋ピッチガ62μmであるネマチック液晶を注入し、光照射温度の異なる2種類の液晶表示素子を製造した。
(3)アンカリング力の測定
上記で製造した各液晶表示素子につき、液晶のらせんピッチに対して四分の一の厚みに形成されるディスクリネーションライン近傍の液晶のねじれ角を用いる方位角測定によりアンカリング力を求めた。測定には中央精機(株)製のOMS−2アンカリング測定装置を用いた。
その結果、室温照射の液晶表示素子につき22.4μJ・m、45℃照射の液晶表示素子につき230μJ・mであった。
[Manufacture and evaluation of liquid crystal display elements (II), measurement of anchoring force]
(1) Manufacture of liquid crystal alignment film The same as “(1) Manufacture of liquid crystal alignment film” in the evaluation of the degree of alignment, except that the temperature during the photo alignment operation was carried out at two temperatures of 45 ° C. and room temperature (25 ° C.) Thus, two substrates (one pair) each with a liquid crystal alignment film having different light irradiation temperatures were produced.
(2) Manufacture of liquid crystal display element The substrate with the liquid crystal alignment film manufactured as described above is paired with two each having the same light irradiation temperature, and the outer surfaces are opposed so that the axes of easy alignment of both surfaces are parallel to each other. Two parts of the liquid crystal display element having different light irradiation temperatures were manufactured by injecting nematic liquid crystal having a pitch pitch of 62 μm manufactured by Merck Co., Ltd. into the gap.
(3) Measurement of anchoring force For each liquid crystal display element manufactured as described above, azimuth angle measurement using the twist angle of the liquid crystal in the vicinity of the disclination line formed at a quarter thickness with respect to the helical pitch of the liquid crystal. The anchoring power was calculated by An OMS-2 anchoring measuring device manufactured by Chuo Seiki Co., Ltd. was used for the measurement.
As a result, it was 22.4 μJ · m 2 for the liquid crystal display element irradiated at room temperature and 230 μJ · m 2 for the liquid crystal display element irradiated at 45 ° C.

実施例2〜4
実施例1においてPMA−6−Hの代わりに合成例6〜8で得られたポリマーPMA−4−H、PMA−6−OMeおよびPMA−6−NO2をそれぞれ用いたほかは実施例1と同様にして液晶配向剤を調製し、これらを用いてそれぞれ液晶表示素子を製造して評価した。ただしアンカリング力の評価は、光照射温度が45℃の一温度のみについて行った。
評価結果を表1に示す。
Examples 2-4
Example 1 was the same as Example 1 except that instead of PMA-6-H, the polymers PMA-4-H, PMA-6-OMe and PMA-6-NO2 obtained in Synthesis Examples 6-8 were used. A liquid crystal aligning agent was prepared, and a liquid crystal display element was produced and evaluated using each of them. However, the anchoring force was evaluated only at one temperature of the light irradiation temperature of 45 ° C.
The evaluation results are shown in Table 1.

Figure 2009058584
Figure 2009058584

Claims (3)

下記式(I)
Figure 2009058584
(式(I)中、Rは水素原子または炭素数1〜4のアルキル基であり、Xは水素原子、ハロゲン原子、アミノ基、ニトロ基、シアノ基、炭素数1〜12のアルコキシル基またはフェニル基であり、Yは単結合または芳香環を有する2価の有機基であり、n1は1〜10の整数である。)
で表される構造を有し且つガラス転移温度が50℃以下のポリマーを含有することを特徴とする、液晶配向剤。
Formula (I)
Figure 2009058584
(In Formula (I), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X 1 is a hydrogen atom, a halogen atom, an amino group, a nitro group, a cyano group, or an alkoxyl group having 1 to 12 carbon atoms. Or a phenyl group, Y is a divalent organic group having a single bond or an aromatic ring, and n1 is an integer of 1 to 10.)
The liquid crystal aligning agent characterized by containing the polymer which has the structure represented by these, and a glass transition temperature is 50 degrees C or less.
ポリマーの分子量が、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の数平均分子量として100,000以下である、請求項1に記載の液晶配向剤。   The liquid crystal aligning agent of Claim 1 whose molecular weight of a polymer is 100,000 or less as a number average molecular weight of polystyrene conversion measured by the gel permeation chromatography. 基板上に請求項1または2に記載の液晶配向剤を塗布して塗膜を形成し、これに光照射する工程を含むことを特徴とする、液晶配向膜の形成方法。   A method for forming a liquid crystal alignment film, comprising: applying a liquid crystal alignment agent according to claim 1 on a substrate to form a coating film, and irradiating the film with light.
JP2007223684A 2007-08-30 2007-08-30 Method for forming liquid crystal alignment film Expired - Fee Related JP5316740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223684A JP5316740B2 (en) 2007-08-30 2007-08-30 Method for forming liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223684A JP5316740B2 (en) 2007-08-30 2007-08-30 Method for forming liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2009058584A true JP2009058584A (en) 2009-03-19
JP5316740B2 JP5316740B2 (en) 2013-10-16

Family

ID=40554414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223684A Expired - Fee Related JP5316740B2 (en) 2007-08-30 2007-08-30 Method for forming liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP5316740B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054784A1 (en) 2011-10-11 2013-04-18 日産化学工業株式会社 Cured film formation composition, orientation material, and phase difference material
WO2013191251A1 (en) * 2012-06-20 2013-12-27 日産化学工業株式会社 Cured film-forming composition, oriented material, and phase difference material
KR20140142257A (en) 2012-03-28 2014-12-11 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
KR20150036174A (en) 2012-07-12 2015-04-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and phase difference material
WO2015050132A1 (en) * 2013-10-02 2015-04-09 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display element using same
KR20150054898A (en) 2012-09-12 2015-05-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
KR20150082402A (en) 2012-11-08 2015-07-15 닛산 가가쿠 고교 가부시키 가이샤 Film having cured film formed thereon, aligning material, and retardation material
KR20150103057A (en) 2012-12-27 2015-09-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
KR20150126829A (en) 2013-03-08 2015-11-13 닛산 가가쿠 고교 가부시키 가이샤 Cured-film forming composition, alignment material, and retardation material
KR20150143540A (en) 2013-04-16 2015-12-23 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
WO2016002722A1 (en) * 2014-06-30 2016-01-07 日産化学工業株式会社 Alignment material, phase-difference material, and cured film–forming composition
CN105518035A (en) * 2013-11-29 2016-04-20 Dic株式会社 Compound, polymer, liquid crystal alignment film, liquid crystal display element, and optical anisotropic body
KR20160048793A (en) 2013-08-27 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
KR20160075515A (en) 2013-10-17 2016-06-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and retardation material
KR20160127724A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
KR20160127725A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Cured-film-forming composition, alignment material, and phase difference material
KR20170126968A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20170126931A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20180014695A (en) 2015-06-02 2018-02-09 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent for optical alignment, an alignment agent and a retardation agent
KR20190127787A (en) 2017-03-27 2019-11-13 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130583A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130599A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
US10570248B2 (en) 2015-03-13 2020-02-25 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20200037278A (en) 2017-08-03 2020-04-08 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200062259A (en) 2017-10-16 2020-06-03 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200093068A (en) 2017-12-18 2020-08-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200116553A (en) 2012-10-24 2020-10-12 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase-difference material
CN112020663A (en) * 2018-03-27 2020-12-01 日产化学株式会社 Composition for forming cured film, alignment material, and phase difference material
KR20200135967A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
KR20210030345A (en) 2018-07-10 2021-03-17 닛산 가가쿠 가부시키가이샤 Cured film, alignment material and retardation material
KR20220012859A (en) 2019-05-27 2022-02-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20220108097A (en) 2019-11-25 2022-08-02 닛산 가가쿠 가부시키가이샤 Cured film forming composition, orientation material and retardation material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287453A (en) * 1993-02-17 1994-10-11 F Hoffmann La Roche Ag Polymer as orientation layer
JPH09222605A (en) * 1995-07-28 1997-08-26 Rolic Ag Method for forming angle of inclination to ppn layer
JP2002515617A (en) * 1998-05-18 2002-05-28 エルシコン・インコーポレーテッド Method and material for inducing liquid crystal alignment, and liquid crystal optical element
JP2005528486A (en) * 2002-05-31 2005-09-22 エルシコン・インコーポレーテッド Hybrid polymer material for liquid crystal alignment layer
JP2007131653A (en) * 2005-11-08 2007-05-31 Tokyo Institute Of Technology Chalcone analog

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287453A (en) * 1993-02-17 1994-10-11 F Hoffmann La Roche Ag Polymer as orientation layer
JPH09222605A (en) * 1995-07-28 1997-08-26 Rolic Ag Method for forming angle of inclination to ppn layer
JP2002515617A (en) * 1998-05-18 2002-05-28 エルシコン・インコーポレーテッド Method and material for inducing liquid crystal alignment, and liquid crystal optical element
JP2005528486A (en) * 2002-05-31 2005-09-22 エルシコン・インコーポレーテッド Hybrid polymer material for liquid crystal alignment layer
JP2007131653A (en) * 2005-11-08 2007-05-31 Tokyo Institute Of Technology Chalcone analog

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823400B2 (en) 2011-10-11 2017-11-21 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
US9244199B2 (en) 2011-10-11 2016-01-26 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20140074963A (en) 2011-10-11 2014-06-18 닛산 가가쿠 고교 가부시키 가이샤 Cured film formation composition, orientation material, and phase difference material
WO2013054784A1 (en) 2011-10-11 2013-04-18 日産化学工業株式会社 Cured film formation composition, orientation material, and phase difference material
KR20140142257A (en) 2012-03-28 2014-12-11 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
KR20150023559A (en) 2012-06-20 2015-03-05 닛산 가가쿠 고교 가부시키 가이샤 Novel polymerizable compound and method for producing same
US10000701B2 (en) 2012-06-20 2018-06-19 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
KR20150023557A (en) 2012-06-20 2015-03-05 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, oriented material, and phase difference material
JPWO2013191251A1 (en) * 2012-06-20 2016-05-26 日産化学工業株式会社 Cured film forming composition, alignment material and retardation material
WO2013191251A1 (en) * 2012-06-20 2013-12-27 日産化学工業株式会社 Cured film-forming composition, oriented material, and phase difference material
KR20150036174A (en) 2012-07-12 2015-04-07 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and phase difference material
KR20190096458A (en) 2012-07-12 2019-08-19 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and phase difference material
US9598547B2 (en) 2012-07-12 2017-03-21 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
US9255191B2 (en) 2012-07-12 2016-02-09 Nissan Chemical Industries, Ltd. Cured-film formation composition, orientation material, and retardation material
KR20150054898A (en) 2012-09-12 2015-05-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
US9405154B2 (en) 2012-09-12 2016-08-02 Nissan Chemical Industries, Ltd. Method for manufacturing orientation material, orientation material, method for manufacturing retardation material, and retardation material
KR20200116553A (en) 2012-10-24 2020-10-12 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase-difference material
KR20150082402A (en) 2012-11-08 2015-07-15 닛산 가가쿠 고교 가부시키 가이샤 Film having cured film formed thereon, aligning material, and retardation material
KR20150103057A (en) 2012-12-27 2015-09-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, orientation material, and phase difference material
US9529132B2 (en) 2013-03-08 2016-12-27 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
US9823401B2 (en) 2013-03-08 2017-11-21 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20150126829A (en) 2013-03-08 2015-11-13 닛산 가가쿠 고교 가부시키 가이샤 Cured-film forming composition, alignment material, and retardation material
KR20150143540A (en) 2013-04-16 2015-12-23 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
KR20160048793A (en) 2013-08-27 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Cured film-forming composition, alignment material, and phase difference material
WO2015050132A1 (en) * 2013-10-02 2015-04-09 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display element using same
US10423033B2 (en) 2013-10-02 2019-09-24 Dic Corporation Method for producing liquid crystal alignment film and liquid crystal display element using same
TWI634373B (en) * 2013-10-02 2018-09-01 日商迪愛生股份有限公司 Manufacturing method of liquid crystal alignment film and liquid crystal display element using the same
JP5904312B2 (en) * 2013-10-02 2016-04-13 Dic株式会社 Method for producing liquid crystal alignment film and liquid crystal display device using the same
KR20210049950A (en) 2013-10-17 2021-05-06 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and retardation material
KR20160075515A (en) 2013-10-17 2016-06-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming cured film, alignment material, and retardation material
CN105518035A (en) * 2013-11-29 2016-04-20 Dic株式会社 Compound, polymer, liquid crystal alignment film, liquid crystal display element, and optical anisotropic body
KR20210107177A (en) 2014-02-28 2021-08-31 닛산 가가쿠 가부시키가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
US10590219B2 (en) 2014-02-28 2020-03-17 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
US10081693B2 (en) 2014-02-28 2018-09-25 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
US10100201B2 (en) 2014-02-28 2018-10-16 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material and retardation material
KR20160127725A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Cured-film-forming composition, alignment material, and phase difference material
KR20160127724A (en) 2014-02-28 2016-11-04 닛산 가가쿠 고교 가부시키 가이샤 Phase difference material-forming resin composition, orientation material, and phase difference material
WO2016002722A1 (en) * 2014-06-30 2016-01-07 日産化学工業株式会社 Alignment material, phase-difference material, and cured film–forming composition
KR20170023840A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Alignment material, phase-difference material, and cured film-forming composition
KR20170126968A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
CN107406720A (en) * 2015-03-11 2017-11-28 日产化学工业株式会社 Cured film is formed with composition, orientation material and phase difference material
KR20170126931A (en) 2015-03-11 2017-11-20 닛산 가가쿠 고교 가부시키 가이샤 A cured film-forming composition, an alignment material and a retardation material
KR20230120675A (en) 2015-03-13 2023-08-17 닛산 가가쿠 가부시키가이샤 Cured-film-forming composition, alignment material, and phase difference material
US10570248B2 (en) 2015-03-13 2020-02-25 Nissan Chemical Industries, Ltd. Cured film formation composition, orientation material, and retardation material
KR20180014695A (en) 2015-06-02 2018-02-09 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent for optical alignment, an alignment agent and a retardation agent
US10428274B2 (en) 2015-06-02 2019-10-01 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent for photo-alignment, aligning member, and retardation member
KR20190130599A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190127787A (en) 2017-03-27 2019-11-13 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20190130583A (en) 2017-03-27 2019-11-22 닛산 가가쿠 가부시키가이샤 Cured film formation composition, orientation material, and phase difference material
KR20200037278A (en) 2017-08-03 2020-04-08 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200062259A (en) 2017-10-16 2020-06-03 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20200093068A (en) 2017-12-18 2020-08-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
CN112020663A (en) * 2018-03-27 2020-12-01 日产化学株式会社 Composition for forming cured film, alignment material, and phase difference material
KR20200135967A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
KR20200135968A (en) 2018-03-27 2020-12-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material, and retardation material
KR20210030345A (en) 2018-07-10 2021-03-17 닛산 가가쿠 가부시키가이샤 Cured film, alignment material and retardation material
KR20220012859A (en) 2019-05-27 2022-02-04 닛산 가가쿠 가부시키가이샤 Cured film forming composition, alignment material and retardation material
KR20220108097A (en) 2019-11-25 2022-08-02 닛산 가가쿠 가부시키가이샤 Cured film forming composition, orientation material and retardation material

Also Published As

Publication number Publication date
JP5316740B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316740B2 (en) Method for forming liquid crystal alignment film
KR100768289B1 (en) Method of manufacturing photo-alignment layer
JP5186734B2 (en) Azo compound, composition for photo-alignment film, photo-alignment film and liquid crystal display element
JP4629043B2 (en) Azo compound, composition for photo-alignment film using the same, and method for producing photo-alignment film
JP5620006B2 (en) Manufacturing method of liquid crystal display device
WO2012050177A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP4661502B2 (en) Composition for photo-alignment film and method for producing photo-alignment film
JP4104938B2 (en) Composition for vertical alignment film and method for producing vertical alignment film
JP5413610B2 (en) Liquid crystal aligning agent and method for forming liquid crystal aligning film
TWI810273B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
JP2002250924A (en) Method for manufacturing photo-alignment film
JP4094764B2 (en) Liquid crystal alignment agent
JP2009037104A (en) Liquid crystal alignment agent, manufacturing method for liquid crystal alignment film, polyamic acid and polyamide and diamine compound
JP2007256484A (en) Liquid crystal aligning agent, alignment layer, liquid crystal display element, and optical member
KR20130058598A (en) Liquid crystal aligning agent, liquid crystal alignment film, forming method for the liquid crystal alignment film, liquid crystal display device, and polymer
JP4594484B2 (en) Alignment film for liquid crystal display elements
US10329486B2 (en) Cyanostilbenes
JP4522662B2 (en) Composition for liquid crystal alignment film, liquid crystal alignment film, method for producing liquid crystal alignment film, and maleimide compound
JP3952662B2 (en) Liquid crystal display element
JP2015067821A (en) Liquid crystal composition, liquid crystal display element and method of manufacturing liquid crystal display element
TW202122563A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
WO2009041708A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device
TWI739929B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polymer
JP4553499B2 (en) Liquid crystal alignment agent
TW202104157A (en) Method for the preparation of photoaligning polymer materials and compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Ref document number: 5316740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees