JPH06160878A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH06160878A
JPH06160878A JP22546293A JP22546293A JPH06160878A JP H06160878 A JPH06160878 A JP H06160878A JP 22546293 A JP22546293 A JP 22546293A JP 22546293 A JP22546293 A JP 22546293A JP H06160878 A JPH06160878 A JP H06160878A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
display device
pixel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22546293A
Other languages
Japanese (ja)
Other versions
JP2940354B2 (en
Inventor
Hidetoshi Abe
Katsumi Kondo
Masuyuki Ota
Kenkichi Suzuki
Hiroshi Terao
益幸 太田
寺尾  弘
克己 近藤
堅吉 鈴木
英俊 阿部
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24993892 priority Critical
Priority to JP4-249938 priority
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP22546293A priority patent/JP2940354B2/en
Publication of JPH06160878A publication Critical patent/JPH06160878A/en
Application granted granted Critical
Publication of JP2940354B2 publication Critical patent/JP2940354B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Abstract

PURPOSE:To obtain an active matrix type liquid crystal display device having such features that the contrast is high, visual angle property is good, a multi- level display can be easily performed, and that the display is bright and the cost is reduced. CONSTITUTION:The device has such a structure that an electric field 7 parallel to a substrate surface is impressed on a liquid crystal composition layer by a thin film transistor provided with a drain electrode 12 and a common electrode 2 which are extending over plural picture elements and a source electrode 1 extending in a direction same as that of the electrodes.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、量産性が良好で低コストで視角特性が良好な薄膜トランジスタ型液晶表示装置に関する。 The present invention relates to a viewing angle characteristic at a low cost with good productivity is related to good thin film transistor liquid crystal display device.

【0002】 [0002]

【従来の技術】従来の薄膜トランジスタ型液晶表示装置では、液晶層を駆動する電極としては2枚の基板界面上に形成し相対向させた透明電極を用いていた。 In a conventional thin film transistor liquid crystal display device, as an electrode for driving the liquid crystal layer had a transparent electrode was formed was facing the two substrates on the interface. これは、 this is,
液晶に印加する電界の方向を基板界面にほぼ垂直な方向とすることで動作する、ツイステッドネマチック表示方式に代表される表示方式を採用していることによる。 The direction of the electric field applied to the liquid crystal operates by a direction substantially perpendicular to the substrate interface, due to employing a display system represented by a twisted nematic display mode. 一方、液晶に印加する電界の方向を基板界面にほぼ平行な方向とする方式として、櫛歯電極対を用いた方式が、例えば特公昭63−21907 号により提案されている。 On the other hand, the direction of the electric field applied to the liquid crystal as a method to a direction substantially parallel to the substrate surface, a method using a pair of comb electrodes is proposed, for example, by Japanese Patent Publication No. 63-21907. この場合、電極は透明である必要は無く導電性が高く不透明な金属電極を用いることが可能である。 In this case, the electrodes need to be able to use without high conductivity opaque metal electrode is transparent.

【0003】 [0003]

【発明が解決しようとする課題】前記の従来技術においては、ITOに代表される透明電極を形成する為にスパッタリング装置等の真空系製造設備を使用する必要があり、設備コストが巨額になっていた。 In [0008] the prior art, it is necessary to use a vacuum system manufacturing facilities of a sputtering apparatus or the like to form a transparent electrode represented by ITO, equipment cost has become huge It was. また、真空系製造設備の使用には真空炉内の汚染を除去する作業を伴い、 Further, with the task of removing contamination in the vacuum furnace for use in the vacuum system manufacturing facilities,
その為に多大な時間を要し、このことが製造コストを著しく引き上げている。 That takes a long time for, this has significantly raised the cost of production. また、一般に透明電極はその表面に数10nm程度の凹凸があり、薄膜トランジスタのような微細なアクティブ素子の加工を困難にしている。 In general the transparent electrode has irregularities of approximately several 10nm on the surface, making it difficult to process the fine active element such as a thin film transistor. さらに、透明電極の凸部はしばしば離脱し電極等の他の部分に混入し、点状或いは線状の表示欠陥を引き起こし、 Further, the convex portion of the transparent electrode is often mixed into other parts such as withdrawal and electrode cause punctate or linear display defects,
歩留まりを著しく低下させていた。 Yield was significantly reduced. これらの為に、マーケットニーズに対応した低価格の液晶表示装置を安定的に提供することが出来ずにいた。 Because of these, there was a low-cost liquid crystal display device corresponding to the market needs can not be stably provided. また、前記の従来技術においては、画質面でも多くの課題を有していた。 Further, in the prior art, it had many problems in terms of image quality. 特に、視角方向を変化させた際の輝度変化が著しく、中間調表示を行った場合、強い各方向により階調レベルが反転してしまうなど、実用上問題であった。 In particular, the brightness change upon changing the viewing angle direction is significantly, in the case of performing the halftone display, such as gray level by strong each direction is inverted, was practically acceptable. さらに、薄膜トランジスタ素子の凹凸構造の為にその周辺で配向不良ドメインが発生し、その対策の為に大きな面積の遮光膜を要し、光の利用効率も著しく低下させていた。 Furthermore, alignment defects domain is generated at the periphery for the uneven structure of the thin film transistor element, requires a light shielding film having a large area for a countermeasure, the light utilization efficiency was also significantly reduced.

【0004】一方、特公昭63−21907 号に示されている櫛歯電極を用いれば透明電極を使う必要はなくなり、上記の課題を解決できる可能性があるが、以下の理由により実用化はされていない。 On the other hand, no longer need to use the transparent electrode by using the comb-teeth electrodes shown in JP-B-63-21907, there is a possibility of solving the above problems, but practical application is for the following reason not. 即ち、この公知技術に於いては相互に咬合する櫛歯電極対を用いているために、画素内のパターンが微細化かつ複雑化し、量産性が著しく低い。 That is, since the In this known technique uses a pair of comb electrodes which bite each other, the pattern is finer and complication of the pixel, significantly lower productivity. 特に、表示情報量が多く、画素サイズの小さなディスプレイでは櫛歯構造の電極を1画素内に入れることはほとんど不可能であり、仮に入れたとしても開口率が著しく低く、ほとんど光が有効に利用できない暗いディスプレイしか実現できない。 In particular, many display information amount, a small display pixel size is almost impossible to put the electrodes of the comb tooth structure in one pixel, also the aperture ratio is significantly lower as placed if, most light is effectively utilized not only it can realize a dark display that can not be. 原理的には櫛歯電極の電極幅を1〜2μm程度まで縮小すれば開口率を実用レベルまで拡大出来るが、実際には大型基板全面にわたってそのような細線を均一にかつ断線がないように形成することは極めて困難である。 Although in principle it is larger opening ratio to a practical level could shrink the electrode width of the comb electrodes up to about 1 to 2 [mu] m, in practice formed so as not uniformly and disconnection of such fine wire over large substrate entire surface it is very difficult to. 即ち、上記の従来技術では、相互に咬合する櫛歯状の電極を用いたために画素開口率と製造歩留まりがトレ−ドオフの関係となり、明るい画像を有する液晶表示装置を低コストで提供することは困難であった。 That is, in the above prior art, the pixel aperture ratio and production yield for using comb-shaped electrodes bite into each other tray - to provide it with relation offs, a liquid crystal display device having a bright image at a low cost It was difficult.

【0005】本発明はこれらの課題を同時に解決するもので、その目的とするところは、第一に、透明電極がなくとも高コントラストで、低価格の設備で高い歩留まりで量産可能な低コストの薄膜トランジスタ型液晶表示装置を提供することにある。 [0005] The present invention is intended to solve these problems at the same time, the place of interest, the first, transparent even electrode without a high contrast, low-cost low-cost possible mass production at a high yield facilities to provide a thin film transistor liquid crystal display device. 第二に、低い電圧で駆動ができかつ視角特性が良好で多階調表示が容易である薄膜トランジスタ型液晶表示装置を提供することにある。 Secondly, it is an and viewing angle characteristics can be driven at low voltage to provide a thin film transistor liquid crystal display device which is easy to good multi-tone display. 第三に、使用可能な液晶組成物及び配向膜材料の選択の自由度を上げ、これにより液晶パネル作製等のプロセスの裕度を大きくし、高い開口率と画素劣化抑制を両立させ、 Thirdly, increasing the freedom of choice of available liquid crystal composition and an alignment film material, thereby increasing the tolerance of the process such as a liquid crystal panel manufacturing, to achieve both a high aperture ratio and pixel degradation suppressed,
光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することにある。 It was pulled a light transmittance to provide a brighter TFT type liquid crystal display device. 第四に、第一から第三の目的に加えてより構造が簡素であり、製造歩留まりが高い薄膜トランジスタ型液晶表示装置を提供することにある。 Fourth, a more structured, in addition to the third object from the first is simple, it is that the manufacturing yield to provide a high thin film transistor liquid crystal display device.

【0006】 [0006]

【課題を解決するための手段】前記課題を解決し、上記目的を達成するために本発明では以下の手段を用いる。 To solve the problems SUMMARY OF THE INVENTION uses the following means in the present invention in order to achieve the above object.
少なくとも一方が透明な一対の基板、該基板間に挾持され、配向した誘電率異方性と屈折率異方性とを有する液晶組成物層,偏光手段,マトリクス状に配置された複数の画素、各画素ごとに備えられ、画素電極,信号配線電極及び走査配線電極に接続された薄膜トランジスタ素子、該薄膜トランジスタ素子とは離接した共通電極、前記画素の光透過率或いは反射率を変化させる電圧信号波形を印加する手段とを有する液晶表示装置において、前記画素電極と前記信号配線電極は、電圧信号波形を印加する手段により前記画素電極と前記共通電極との間に、 At least one of a pair of transparent substrates are sandwiched between the substrates, a plurality of pixels arranged liquid crystal composition layer, polarizing means, in a matrix having a refractive index anisotropy and oriented dielectric anisotropy, provided for each pixel, the pixel electrodes, the signal wiring electrode and the thin film transistors connected elements in the scan line electrodes, a common electrode in contact away from the thin-film transistor element, the voltage signal waveform for changing the light transmittance or reflectance of the pixel in the liquid crystal display device having a means for applying the signal wiring electrode and the pixel electrode, the means for applying a voltage signal waveform between the common electrode and the pixel electrode,
基板面にほぼ平行に電界を印加し(この電界を横電界と称する)、電界の強度に応じ前記画素の光透過率或いは反射率を変化させるように配置され、 〔手段1〕前記画素電極が前記画素内で第1の方向に伸びており、前記信号配線電極及び前記共通電極は第1の方向に、かつ複数の画素間にまたがってそれぞれ表示部端部にまで伸びていることを特徴とする液晶表示装置。 Applying an electric field substantially parallel to the substrate surface (this field is referred to as a horizontal electric field) is arranged to change the optical transmittance or reflectivity of the pixel corresponding to the intensity of the electric field, the Measure 1] The pixel electrode It extends in a first direction in said pixel, and wherein the signal wiring electrode and the common electrode extends to each display unit ends across the first direction, and between a plurality of pixels a liquid crystal display device.

【0007】〔手段2〕前記画素電極が1画素内で前記信号配線電極を挟むように対をなし、前記画素及び前記信号配線電極が1対の共通電極に挟まれてなることを特徴とする手段1に記載の液晶表示装置。 [0007] Measure 2] the pixel electrode pairs so as to sandwich the signal wiring electrode in one pixel, the pixels and the signal wiring electrode is characterized by comprising sandwiched common electrode pair 1 the liquid crystal display device according to means 1.

【0008】〔手段3〕前記画素電極,前記信号配線電極,前記共通電極及び前記走査配線電極のいずれもが前記一対の基板の一方に配置されていることを特徴とする手段1或いは手段2に記載の液晶表示装置。 [0008] Measure 3] The pixel electrode, the signal wiring electrode, that none of the common electrode and the scanning wiring electrode is disposed on one of the pair of substrates to the means 1 or means 2, characterized in the liquid crystal display device according.

【0009】以上の手段1から手段3により、透明電極が不要で、かつ櫛歯電極対を用いた従来技術に比べはるかに簡素な構造を有し、開口率も高く製造歩留まりも高い、第一及び第四の目的にかなう薄膜トランジスタ型液晶表示装置が得られる。 The [0009] or more means 1 unit 3 from unnecessary transparent electrode, and has a much simpler structure than the conventional technique using a pair of comb electrodes, the aperture ratio is high production yield is high, the first and a thin film transistor liquid crystal display device to meet the fourth object can be obtained.

【0010】〔手段4〕前記画素電極と前記共通電極とが同層であって、前記画素電極,前記共通電極或いは隣接する画素電極のいずれかひとつと前記走査配線との間に絶縁物を介して容量素子を形成していることを特徴とする手段3に記載の液晶表示装置。 [0010] Measure 4] The pixel electrode and said common electrode is a same layer, through an insulator between the pixel electrode, the scan lines and one of the common electrode or the adjacent pixel electrodes the liquid crystal display device according to the means 3, characterized in that to form a capacitor element Te.

【0011】〔手段5〕前記一対の基板のうち前記薄膜トランジスタ素子を備えた基板に対向した基板上に、色の異なる少なくとも2種以上のカラーフィルタを備え、 [0011] Measure 5] on the substrate facing the substrate provided with the thin film transistor element of the pair of substrates, having different at least two kinds of color filters in color,
該カラーフィルタの境界が前記画素電極,前記信号配線電極及び前記共通電極のいずれかと重なることを特徴とする手段1或いは手段2に記載の液晶表示装置。 The liquid crystal display device according to the means 1 or means 2, characterized in that the boundary of the color filters overlaps with any one of the pixel electrodes, the signal wiring electrode and the common electrode.

【0012】手段5によれば、従来は色純度の低いカラーフィルタの境界を覆っていた遮光層を省略でき、より低コストの薄膜トランジスタ型液晶表示装置が得られる。 According to the means 5, conventionally can be omitted shielding layer covering the border of low color filter color purity, low cost thin film transistor liquid crystal display device can be obtained more.

【0013】〔手段6〕前記画素電極,前記信号配線電極,前記共通電極及び前記走査配線電極を有する基板に対向する他方の基板上に、色の異なる少なくとも2種以上のカラーフィルタを備え、該カラーフィルタ上に表面をより平坦化する有機ポリマを積層し、該有機ポリマが透明ポリマであり、更に該透明ポリマをその表面をラビング処理することで界面上の液晶分子を所定方向に配向制御する配向膜として用いることを特徴とする手段3に記載の液晶表示装置。 [0013] Measure 6] The pixel electrode, the signal wiring electrode, the common electrode and the other substrate opposing the substrate having the scan line electrodes, a color having different at least two kinds of color filters, the laminating organic polymer to further flatten the surface on the color filter, an organic polymer is transparent polymer, controlling alignment of the liquid crystal molecules on the interface in a predetermined direction by further rubbing the surface of the transparent polymer the liquid crystal display device according to means 3, which comprises using as an alignment film.

【0014】手段6によればカラーフィルタの凹凸を平坦化する有機ポリマと液晶分子を配向制御するための配向膜とが兼用でき、低コスト化に有効である。 According to the means 6 can also used organic polymer to flatten the unevenness of the color filter and an alignment film for controlling alignment of the liquid crystal molecules are effective in cost reduction.

【0015】〔手段7〕少なくとも一方が透明な一対の基板、該基板間に挾持され、配向した誘電率異方性と屈折率異方性とを有する液晶組成物層,偏光手段,マトリクス状に配置された複数の画素、各画素ごとに備えられ、画素電極,信号配線電極及び走査配線電極に接続された薄膜トランジスタ素子,該薄膜トランジスタ素子とは離接した共通電極,前記画素の光透過率或いは反射率を変化させる電圧信号波形を印加する手段とを有する液晶表示装置において、前記画素電極と前記信号配線電極は、電圧信号波形を印加する手段により前記画素電極と前記共通電極との間に、基板面にほぼ平行に電界を印加し、電界の強度に応じ前記画素の光透過率或いは反射率を変化させるように配置され、前記薄膜トランジスタ素子及び前記液晶組成 [0015] Measure 7] at least one of a pair of transparent substrates are sandwiched between the substrates, the liquid crystal composition layer having a refractive index anisotropy and oriented dielectric anisotropy, polarization means, the matrix It arranged a plurality of pixels, provided in each pixel, the pixel electrodes, the signal wiring electrode and the thin film transistors connected elements in the scan line electrodes, a common electrode in contact away from the thin-film transistor element, the light transmittance or reflection of the pixel in the liquid crystal display device having a means for applying a voltage signal waveform for changing the rate, the signal wiring electrode and the pixel electrode, the means for applying a voltage signal waveform between the common electrode and the pixel electrode, the substrate applying an electric field substantially parallel to the plane, is arranged to vary the light transmittance or reflectance of the pixels corresponding to the intensity of the electric field, the thin film transistor element and the liquid crystal composition 層に直接接する有機絶縁層が備えられていることを特徴とする液晶表示装置。 The liquid crystal display device, wherein a organic insulating layer in direct contact with the layer are provided.

【0016】〔手段8〕前記薄膜トランジスタ素子を覆った前記有機絶縁層をラビング処理することで該有機絶縁層に、前記薄膜トランジスタ素子の保護膜と液晶分子配向制御膜の両方の機能を持たせたことを特徴とする手段7に記載の液晶表示装置。 [0016] Measure 8] the said organic insulating layer covering the thin film transistor element in the organic insulating layer by rubbing it, gave both functions of the protective film and the liquid crystal molecule alignment control film of the thin film transistor element the liquid crystal display device according to the means 7, characterized.

【0017】また、手段7から手段8によれば、従来C [0017] According the means 7 to the means 8, the conventional C
VD(Chemical Vapor Deposi-tion)法等の真空系で形成していた無機の絶縁膜が、より安価に製造できる有機絶縁層に交換でき、低コスト化に有効である。 VD (Chemical Vapor Deposi-tion) method or the like inorganic insulating film which has been formed in the vacuum system is to exchange the organic insulating layer can be more inexpensively manufactured, it is effective for cost reduction.

【0018】手段9以下は、第二の目的である視角特性が良好で多階調表示能に優れた特性を実現する方法を表す。 The means 9 below represents how the viewing angle characteristic is a second object to realize the excellent characteristics in good multi-gradation display capability.

【0019】〔手段9〕前記液晶組成物層の誘電率異方性が正であり、かつ少なくとも一方の基板界面上での液晶分子配向方向と電界方向とのなす角度|φ LC |が45 [0019] Measure 9] wherein a dielectric anisotropy of the liquid crystal composition layer is positive, and the angle between the liquid crystal molecular alignment direction and the direction of the electric field at least one of the substrates on the interface | phi LC | 45
度以上90度未満であることを特徴とする手段1から手段4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of means 1, wherein the means 4 that degrees less than 90 degrees. ただし、−90 However, -90
度≦φ LC ≦90度である。 In degrees ≦ φ LC ≦ 90 degrees.

【0020】〔手段10〕前記液晶組成物層の誘電率異方性が負であり、かつ少なくとも一方の基板界面上での液晶分子配向方向と電界方向とのなす角度|φ LC |が0 [0020] Measure 10] The dielectric anisotropy of the liquid crystal composition layer is negative, and the angle between the liquid crystal molecular alignment direction and the direction of the electric field at least one of the substrates on the interface | phi LC | 0
度を超え45度未満であることを特徴とする手段1から手段4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of means 4 from the means 1, wherein the degree is less than 45 degrees beyond the. ただし、−9 However, -9
0度≦φ LC ≦90度である。 0 ° ≦ φ LC ≦ 90 degrees.

【0021】〔手段11〕前記液晶組成物層内の配向に関して、一方の基板界面上での液晶分子配向方向角度φ [0021] Measure 11] with respect to the orientation of the liquid crystal composition layer, the liquid crystal molecular alignment direction angle φ with one of the substrates on the interface
LC1と他方基板界面上での液晶分子配向方向角度φ LC2とが互いに略平行(φ LC1 ≒φ LC2 )であり、かつ前記液晶組成物層の厚みd及び屈折率異方性Δnの積d・Δnが0.21μmから0.36μmの間であることを特徴とする手段9あるいは10に記載の液晶表示装置。 LC1 and the other substrate interface on the liquid crystal molecular alignment direction angle phi LC2 of is substantially parallel (φ LC1 ≒ φ LC2) to each other, and the product d · thickness d and refractive index anisotropy Δn of the liquid crystal composition layer Δn liquid crystal display device according to the means 9 or 10, characterized in that between 0.36μm from 0.21 [mu] m.

【0022】〔手段12〕前記液晶組成物層の厚みd及び屈折率異方性Δnの積d・Δnよりも低い位相差R f [0022] Measure 12] The liquid crystal composition layer of thickness d and refractive index anisotropy lower retardation than the product d · [Delta] n of [Delta] n R f
を有する光学的異方性媒質を液晶組成物層により生じた位相差を補償するように挿入し、かつその絶対値の差| Insert the optically anisotropic medium to compensate for the phase difference caused by the liquid crystal composition layer having, and that the difference between the absolute value |
d・Δn|−|R f |を0.21μmから0.36μm の間としたことを特徴とする手段11に記載の液晶表示装置。 d · Δn | - | R f | liquid crystal display device according to the means 11, characterized in that a between 0.21μm of 0.36μm to.

【0023】手段9から手段12によれば、複屈折モードによる高いコントラストと広い視角特性が得られる。 According from the means 9 to the means 12, high contrast and wide viewing angle characteristics by birefringence mode is obtained.

【0024】〔手段13〕前記液晶組成物層内の配向に関して、一方の基板界面上での液晶分子配向方向角度φ [0024] Measure 13] with respect to the orientation of the liquid crystal composition layer, the liquid crystal molecular alignment direction angle φ with one of the substrates on the interface
LC1と他方基板界面上での液晶分子配向方向角度φ LC2とが互いに交差し、その角度|φ LC1 −φ LC2 |が80度以上100度以下であり、かつ前記液晶組成物層の厚みd Intersects the liquid crystal molecular alignment direction angle phi LC2 and each other in LC1 and the other substrate surface, the angle | φ LC1LC2 | is less than 100 degrees 80 degrees, and the thickness d of the liquid crystal composition layer
及び屈折率異方性Δnの積d・Δnが0.40μm から0.60μm の間であることを特徴とする手段9或いは10に記載の液晶表示装置。 And a liquid crystal display device according to the means 9 or 10, characterized in that the product d · [Delta] n of the refractive index anisotropy [Delta] n is between 0.60μm from 0.40 .mu.m.

【0025】手段13によれば、旋光性モードによる高いコントラストと広い視角特性が得られる。 According to the means 13, high contrast and wide viewing angle characteristics by optical rotation mode can be obtained.

【0026】〔手段14〕液晶分子の傾き角が、いずれの界面上に於いても4度以下であることを特徴とする手段11あるいは13に記載の液晶表示装置。 [0026] Measure 14] tilt angle of liquid crystal molecules, the liquid crystal display device according to the means 11 or 13, characterized in that less than 4 degrees at on any interface.

【0027】〔手段15〕前記液晶組成物層の誘電率異方性が正であり、前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、前記界面上の液晶分子の長軸方向と電界方向とのなす角φ LCが該一対の偏光板のうちの一方の偏光板Aの透過軸(或いは吸収軸)の角度φ Pよりも大きく、かつその差|φ LC −φ P |が3度以上15 [0027] Measure 15] is the dielectric anisotropy of the liquid crystal composition layer is positive, the polarization means is a pair of polarizing plates sandwiching the liquid crystal composition layer, long axes of liquid crystal molecules on the interface greater than the angle phi P of the transmission axis of one polarizing plate a of the angle phi LC of the direction and the field direction said pair of polarizing plates (or absorption axis), and the difference | φ LCP | 15 but three times or more
度以下であることを特徴とする手段9に記載の液晶表示装置。 The liquid crystal display device according to the means 9, wherein the or less degrees.

【0028】〔手段16〕前記液晶組成物層の誘電率異方性が負であり、前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、前記界面上の液晶分子の長軸方向と電界方向とのなす角φ LCが該偏光板の吸収軸或いは透過軸の角度φ Pよりも小さく、かつその差| φ P −φ [0028] Measure 16] dielectric anisotropy of the liquid crystal composition layer is negative, the polarization means is a pair of polarizing plates sandwiching the liquid crystal composition layer, long axes of liquid crystal molecules on the interface angle phi LC of the direction and the electric field direction is smaller than the angle phi P of the absorption axis or transmission axis of the polarizing plate, and the difference | phi P -.phi
LC |が3度以上15度以下であることを特徴とする手段10に記載の液晶表示装置。 LC | liquid crystal display device according to the means 10, wherein the is less than 15 degrees 3 degrees.

【0029】〔手段17〕前記第2の電極に画像信号を印加し、かつ前記液晶組成物層に印加される電圧がより高まるように前記コモン電極にも電圧信号波形を印加することを特徴とする手段15或いは16に記載の液晶表示装置。 [0029] and characterized in that Measure 17] The image signal is applied to the second electrode, and the voltage applied to the liquid crystal composition layer is applied a voltage signal waveform to the common electrode to be more increased the liquid crystal display device according to the means 15 or 16.

【0030】〔手段18〕前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、それらを低電圧V L印加時に明状態、高電圧V H印加時に暗状態となる配置に設定し、前記一対の偏光板間に、V H印加時の液晶層の界面残留位相差を補償する透明媒体を挿入したことを特徴とする手段11或いは13に記載の液晶表示装置。 [0030] Measure 18] a pair of polarizing plates the polarizing means sandwich the liquid crystal composition layer, and set them a bright at low voltage V L applied state, in a dark state positioned at the high voltage V H applied the liquid crystal display device according to the pair of polarizing plates, the means 11 or 13, characterized in that the insertion of the transparent medium to compensate for the interfacial residual phase difference of the liquid crystal layer at the time of V H is applied.

【0031】手段14から手段18は、本発明の基本構成である横電界駆動を採用した際に、しきい値電圧が上昇し、より高い耐圧を有する駆動回路を用いる必要があるという課題を対策するものである。 [0031] means 14 from the means 18, measures the time of adopting the transverse electric field driving the basic configuration of the present invention, the threshold voltage increases, the problem that it is necessary to use a driving circuit having a higher breakdown voltage it is intended to. これによれば、実施例にもあるように10ボルト未満の十分低い出力電圧の駆動回路でも動作が可能となる。 According to this, the operation is possible even in the driving circuit of sufficiently low output voltage below 10 volts so that even in the examples.

【0032】 [0032]

【作用】先ず初めに、電界方向に対する、偏光板の偏光透過軸のなす角φ P ,界面近傍での液晶分子長軸(光学軸)方向のなす角φ LC ,一対の偏光板間に挿入した位相差板の進相軸のなす角φ Rの定義を示す(図6)。 [Action] First of all, with respect to the electric field direction, and inserted angle phi P polarization transmission axis of the polarizer, the liquid crystal molecular long axis in the vicinity of the interface (the optical axis) of the angle phi LC, a pair of polarizing plates the definition of the angle phi R of the phase advance axis of the phase difference plate (Fig. 6). 偏光板及び液晶界面はそれぞれ上下に一対あるので必要に応じてφ P1 ,φ P2 ,φ LC1 ,φ LC2と表記する。 Phi P1 optionally Since the polarizer and the liquid crystal interface is a pair up and down, respectively, φ P2, φ LC1, referred to as phi LC2. 尚、図6は後述する図1の正面図に対応する。 Incidentally, FIG. 6 corresponds to the front view of FIG. 1 to be described later.

【0033】次に本発明の作用を図1を用いて説明する。 [0033] Next, operation of the present invention will be described with reference to FIG.

【0034】図1(a),(b)は本発明の液晶パネル内での液晶の動作を示す側断面を、図1(c),(d)はその正面図を表す。 [0034] FIG. 1 (a), the (b) is a side cross-section showing a liquid crystal behavior in the liquid crystal panel of the present invention, FIG. 1 (c), (d) represents a front view thereof. 図1では薄膜トランジスタ素子を省略してある。 In Figure 1 are omitted thin-film transistor element. また、本発明ではストライプ状の電極を構成して複数の画素を形成するが、ここでは一画素の部分を示した。 Further, although the present invention to form a plurality of pixels constituting the stripe electrodes showed portions of one pixel here. 電圧無印加時のセル側断面を図1(a)に、その時の正面図を図1(c)に示す。 The cell side cross section of when no voltage is applied in FIG. 1 (a), shows a front view of the in Figure 1 (c). 透明な一対の基板の内側に線状の電極1,2が形成され、その上に配向制御膜4が塗布及び配向処理されている。 Is a pair of transparent linear electrodes 1 and 2 on the inner side of the substrate is formed, the alignment control film 4 is applied and orientation process thereon. 間には液晶組成物が挟持されている。 The liquid crystal composition is sandwiched between. 棒状の液晶分子5は、電界無印加時には電極1,2の長手方向に対して若干の角度、即ち4 Liquid crystal molecules 5 of the rod-like slight angle to the longitudinal direction of the electrodes 1, 2 when no electric field is applied, i.e. 4
5度≦|φ LC |<90度、をもつように配向されている。 5 ° ≦ | φ LC | <90 °, and is oriented to have. 上下界面上での液晶分子配向方向はここでは平行、 Liquid crystal molecular alignment direction on the upper and lower interfaces are parallel here,
即ちφ LC1 =φ LC2を例に説明する。 I.e. φ LC1 = φ LC2 as an example. また、液晶組成物の誘電異方性は正を想定している。 Further, the dielectric anisotropy of the liquid crystal composition is assumed to be positive. 次に、電界7を印加すると図1(b),(d)に示したように電界方向に液晶分子がその向きを変える。 Next, FIG. 1 when an electric field is applied to 7 (b), the liquid crystal molecules change their orientation in the direction of the electric field as shown in (d). 偏光板6を所定角度9に配置することで電界印加によって光透過率を変えることが可能となる。 It is possible to vary the light transmittance by an electric field is applied by placing a polarizing plate 6 at a predetermined angle 9. このように、本発明によれば透明電極がなくともコントラストを与える表示が可能となる。 Thus, it is possible to display giving contrast without the transparent electrodes according to the present invention. 尚、図1 Incidentally, FIG. 1
(b)では基板表面と電界方向とのなす角が大きく、平行ではないように見えるが、これは厚み方向を拡大して表した結果で、実際には20度以下である。 In (b) large angle between the substrate surface and the electric field direction, seems to not parallel, this is a result showing an enlarged part in the thickness direction, in practice less than 20 degrees. 以後本発明では、20度以下のものを総称して横電界と表現する。 In the present invention hereinafter, expressed as the transverse electric field are collectively of 20 degrees or less.
また、図1では電極1,2を上下基板に分けて形成したが、一方の基板に備えてもなんら効果は変わるものではない。 Although it formed separately electrodes 1, 2 in Figure 1 in upper and lower substrates, does not in any way effect varies be provided on one substrate. むしろ配線等のパターンが微細化する場合や熱, Rather or if the heat pattern such as wiring becomes finer,
外力等による種々の変形等を鑑みると、一方の基板に備えたほうがより高精度なアライメントが可能となり、望ましい。 In view of the various deformation by an external force or the like, is better equipped on one of the substrates enables more precise alignment is desirable. また、液晶組成物の誘率異方性は正を想定したが、負であっても構わない。 Further, 誘率 anisotropy of the liquid crystal composition is assumed positive, but may be negative. その場合には初期配向状態を電極1,2の長手方向に垂直な方向(電界方向7)から若干の角度|φ LC |(即ち、0度<|φ LC |≦45度) Its slight angle from the longitudinal direction perpendicular to the initial alignment state of the electrode 1, 2 (electric field direction 7) if | phi LC | (i.e., 0 ° <| φ LC | ≦ 45 degrees)
を持つように配向させる。 It is oriented to have.

【0035】以下、本発明の3つの目的それぞれに応じて、その作用について説明する。 [0035] Hereinafter, in accordance with each of the three purposes of the present invention, and its function will be described.

【0036】(1)透明電極を備えない状態での高コントラスト化 コントラストを付与する具体的構成としては、上下基板上の液晶分子配向がほぼ平行な状態を利用したモード(複屈折位相差による干渉色を利用するので、ここでは複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方向が交差しセル内での分子配列がねじれた状態を利用したモード(液晶組成物層内で偏光面が回転する旋光性を利用するので、ここでは旋光性モードと呼ぶ)とがある。 [0036] (1) a transparent electrode as a specific structure for imparting a high contrast contrast in the state without a, the interference due to mode (birefringence phase difference the liquid crystal molecular orientation using a substantially parallel state on the upper and lower substrates since utilizing color, and is referred to herein as birefringence mode), liquid crystal molecules mode alignment direction using the state molecular arrangement twisted in crossed the cell (the plane of polarization in the liquid crystal composition layer on the upper and lower substrates there because it utilizes optical rotatory power rotating, referred to herein as optical rotation mode) and there is. 複屈折モードでは、電圧印加により分子長軸(光軸)方向が基板界面にほぼ平行なまま面内でその方位を変え、所定角度に設定された偏光板の軸とのなす角を変えて光透過率を変える。 The birefringence mode, changing its orientation in substantially parallel remain plane to the long molecular axis (the optical axis) direction substrate interface by applying voltage, by changing the angle between the axis of polarizing plate is set to a predetermined angle light change the transmittance. 旋光性モードでも同様に電圧印加により分子長軸方向の方位のみを変えるが、こちらの場合はら線がほどけることによる旋光性の変化を利用する。 Changing only the orientation of the molecular long axis direction in the same energizable in optical rotation mode, but if the item utilizing the optical rotation of the change due to al line unwinding.

【0037】次に表示を無彩色にしコントラスト比をあげる定量的構成および作用について、以下複屈折モードを用いる場合と旋光性モードを用いる場合の2つのケースに分けて述べる。 [0037] Next, quantitative structure and operation to increase the contrast ratio and achromatic display is described in two cases of the case of using the case and optical rotation mode using birefringence mode below.

【0038】I. [0038] I. 複屈折モードで表示する場合 一般に一軸性複屈折性媒体を直交配置した2枚の偏光板の間に挿入した時の光透過率T/T oは次式で表される。 Light transmission T / T o when generally inserted between two polarizing plates were orthogonally arranged uniaxial birefringent medium when displaying in birefringence mode is expressed by the following equation. ここで、χ effは液晶組成物層の実効的な光軸方向(光軸と偏光透過軸とのなす角)、d effは複屈折性を有する実効的な液晶組成物層の厚み、Δnは屈折率異方性、λは光の波長を表す。 Here, chi eff is the effective optical axis of the liquid crystal composition layer (the angle between the optical axis the polarized light transmission axis), d eff is the effective thickness of a liquid crystal composition layer having birefringence, [Delta] n is refractive index anisotropy, lambda represents the wavelength of light. ここで、液晶組成物層の光軸方向を実効的な値とした目的は、実際のセル内では界面上では液晶分子が固定されており、電界印加時にはセル内で全ての液晶分子が互いに平行かつ一様に配向しているのではなく、特に界面近傍では大きな変形が起こっていることを鑑み、それらの平均値として一様状態を想定した時の見かけの値で取り扱うことにある。 Here, the purpose in which the optical axis direction of the liquid crystal composition layer and the effective value, the actual in the cell and the liquid crystal molecules is fixed on the surface, parallel to each other all the liquid crystal molecules in the cell when an electric field is applied and rather than being uniformly oriented, particularly in view of what is happening is a large deformation in the vicinity of the interface is to deal with an apparent value when assuming a uniform state as their average value.

【0039】 T/T o =sin 2 (2χ eff )・sin 2 (πd eff・Δn/λ) …(1) 低電圧V L印加時に暗、高電圧V H印加時に明状態となるノーマリクローズ特性を得るには偏光板の配置としては一方の偏光板の透過軸(あるいは吸収軸)を液晶分子配向方向(ラビング軸)にほぼ平行、即ちφ P1 ≒φ LC1 [0039] T / T o = sin 2 ( 2χ eff) · sin 2 (πd eff · Δn / λ) ... (1) dark at the time of the low voltage V L is applied, normally closed to a bright state at the time of the high voltage V H applied substantially parallel to obtain characteristics as the arrangement of the polarizing plate transmission axis of one polarizing plate (or absorption axis) in the liquid crystal molecular alignment direction (rubbing axis), i.e. φ P1 ≒ φ LC1 =
φ LC2とし、他方の偏光板の透過軸をそれに垂直、即ちφ P2 =φ P1 +90度とすればよい。 and phi LC2, the transmission axis of the other polarizing plate may be perpendicular thereto, i.e. φ P2 = φ P1 +90 degrees and. 電界無印加時には、 At the time of no electric field is applied,
(1)式におけるχ effが0であるので光透過率T/T o (1) Light transmittance because chi eff is 0 in the formula T / T o
も0となる。 It is also zero. 一方電界印加時にはその強度に応じてχ Whereas when an electric field is applied in accordance with the intensity χ
effの値が増大し、45度の時に最大なる。 The value of eff increases, becomes maximum at the time of 45 degrees. この時、光の波長を0.555μm と想定すると無彩色でかつ透過率を最大とするには実効的なd eff・Δnを2分の1波長である0.28μmとすれば良い。 In this case, it is sufficient if the wavelength of light is assumed to 0.555μm to maximize the achromatic a and transmittance and the effective d eff · [Delta] n is the ½ wavelength 0.28 .mu.m. 現実には裕度があるために、0.21から0.36μmの間に入っていれば良いが、望ましくは0.24から0.33μmの間の値に設定すると良い。 For in reality there is a margin, it may but need only enter from 0.21 during 0.36 .mu.m, preferably set to a value of between 0.33μm 0.24.

【0040】一方低電圧V L印加時に明、高電圧V H印加時に暗状態となるノーマリオープン特性を得るには電界無印加時あるいは低電界印加時に、(1)式におけるχ Meanwhile bright at low voltage V L applied, when no electric field is applied or when a low electric field applied to obtain a normally open characteristic as the dark state when a high voltage V H applied, chi in (1)
effがほぼ45度となるように偏光板配置を設定すれば良い。 may be set to polarization plate disposed so that eff approximately 45 degrees. 電界印加時にはノーマリクローズの場合とは逆にその強度に応じてχ effの値が減少する。 At the time the electric field is applied the value of chi eff decreases depending on its intensity as opposed to the case of the normally closed. しかしながら、χ effが最小(即ち0)になっても界面近傍で固定されている液晶分子の残留位相差のために、このままではかなりの光が漏れてしまう。 However, because of the residual phase difference of the liquid crystal molecules chi eff is fixed near the interface also becomes minimum (i.e. 0), leaks are quite light in this state. d・Δnを0.27から0. A d · Δn from 0.27 0.
37μm の間に設定し、3〜10Vの実効電圧を印加した本発明者等の実験によれば界面残留位相差の値は0.02から0.06μm程度であった。 Set between 37 [mu] m, the value of the interfacial residual phase difference according to the experiments of the present inventors, the application of the effective voltage 3~10V was about 0.06μm 0.02. よって、0.0 Thus, 0.0
2から0.06μm程度の複屈折位相差を有する位相差板(この位相差をR fと表す)を界面残留位相差を補償するように挿入することで、暗状態が沈み込み、高コントラスト比が得られる。 Retardation plate having birefringence phase difference of about 0.06μm from 2 (the phase difference is represented as R f) by inserting to compensate the interfacial residual phase difference, sinking dark state, a high contrast ratio It is obtained. 位相差板の進相軸の角度φ Angle of the fast axis of the retardation plate φ
Rは、電圧印加時の液晶組成物層の実効的な光軸χ eff R is the effective optical axis chi eff of the liquid crystal composition layer when a voltage is applied
に平行にする。 To be parallel to. より完全に暗状態の明るさを沈み込ませるには、暗状態を表示するための電圧を印加したときの残留位相差にきちっと合わせれば良い。 The sinking more fully the brightness of the dark state may, combined snugly to residual retardation when a voltage is applied to display the dark state. 以上より、暗状態の沈み込みと明状態の透過率,白色度を両立するには、次式の関係を満たせば良い。 Thus, subduction and bright state transmittance in a dark state, to both whiteness, may satisfy the following relationship.

【0041】 0.21μm<(d・Δn−R f )<0.36μm …(2) 望ましくは、 0.23μm<(d・Δn−R f )<0.33μm …(3) II. [0041] 0.21μm <(d · Δn-R f) <0.36μm ... (2) preferably, 0.23μm <(d · Δn- R f) <0.33μm ... (3) II. 旋光性モードで表示する場合 従来方式であるツイステッドネマチック(Twisted Nemat Twisted nematic a conventional method when displaying in optical rotation mode (Twisted Nemat
ic:TN)方式では一般に知られているようにd・Δn ic: TN) As is generally known in the method d · Δn
をファーストミニマム条件である0.50μm近傍に設定した時に、高透過率,無彩色となる。 The when set to 0.50μm near a first minimum condition, high transmittance, the achromatic. その裕度を考慮するとTN方式では0.40から0.60μmの間に設定すると良い。 It may be set between 0.60μm from 0.40 in TN mode considering its tolerance. 偏光板の配置としては一方の偏光板の透過軸(あるいは吸収軸)を界面上の液晶分子配向方向(ラビング軸)にほぼ平行、即ちφ LC1 ≒φ LC2とする。 The transmission axis of one polarizing plate as an arrangement of the polarizing plate (or absorption axis) substantially parallel to the liquid crystal molecular alignment direction on the interface (rubbing axis), that is, φ LC1 ≒ φ LC2. ノーマリクローズ型を実現するためには、他方の偏光板の透過軸をそれに平行とすれば良く、ノーマリオープン型とするには垂直とすればよい。 To achieve the normally closed type, the transmission axis of the other polarizing plate may be parallel to it, may be perpendicular to the normally open type.

【0042】尚、完全に旋光性を消失させるには、上下基板界面近傍での液晶配向方向をほぼ平行となるようにする必要があり、90度TNモードを想定すると、一方の基板側の液晶分子を90度近く回転させなくてはならない。 [0042] Incidentally, in order completely to eliminate the optical rotatory power, must be substantially parallel to the liquid crystal alignment direction of the upper and lower substrate interface vicinity, assuming a 90 ° TN mode, liquid crystal of one substrate side It must be rotated nearly 90 degrees the molecule. 複屈折モードで表示する場合には液晶分子回転角は45度程度で良く、ことしきい値電圧に関しては複屈折モードのほうが低くなる。 Liquid crystal molecules rotation angle when displaying in birefringence mode may at about 45 degrees, better birefringence mode becomes lower with respect to this and the threshold voltage.

【0043】(2)視角特性の改善 本発明の表示モードでは液晶分子の長軸は基板と常にほぼ平行であり、立ち上がることがなく、従って視角方向を変えた時の明るさの変化が小さい。 [0043] (2) the long axis of the liquid crystal molecules in the display mode of the improved invention of viewing angle characteristic is always substantially parallel to the substrate, without rising, therefore small changes in brightness when changing the viewing angle direction. 本表示モードは従来のように電圧印加で複屈折位相差をほぼ0にすることで暗状態を得るものではなく、液晶分子長軸と偏光板の軸(吸収あるいは透過軸)とのなす角を変えるもので、 This display mode is not to obtain a dark state by almost zero birefringence phase difference voltage is applied as in the prior art, the angle between the liquid crystal molecular long axis and the polarizer axis (absorption or transmission axis) those that change,
根本的に異なる。 Fundamentally different. 従来のTN型のように液晶分子長軸を基板界面に垂直に立ち上がらせる場合だと、複屈折位相差が0となる視角方向は正面即ち基板界面に垂直な方向のみであり、僅かでも傾斜すると複屈折位相差が現れ、 That's the case of rise of the liquid crystal molecular long axis as in the conventional TN-type perpendicular to the substrate surface, the viewing angle direction birefringence phase difference of 0 is only a direction perpendicular to the front or substrate surface, the inclined even slightly It appeared birefringent phase difference,
ノーマリオープン型では光が漏れ、コントラストの低下や階調レベルの反転を引き起こす。 Light leaks for a normally open type, causing a reversal of the reduction and gray level of contrast.

【0044】(3)配向膜材料と液晶材料の選択の自由度改善及びそれによるプロセス裕度の拡大 さらに、このように液晶分子が立ち上がらない為に、従来のような大きな傾き角(液晶分子長軸と界面とのなす角)を与える配向膜を必要としない。 [0044] (3) the alignment film material and selection of the liquid crystal material flexibility improves and it due to the expansion of the process tolerance Furthermore, in order in this way does not rise the liquid crystal molecules, a large tilt angle (liquid crystal molecular long as in the prior art It does not require the alignment material providing the angle) of the shaft and the interface. 従来方式では、傾き角が不足すると傾く方向の異なる2状態及びそれらの境界部のドメインが生じ、表示不良となる可能性がある。 In the conventional method, occur in different directions two states and domain of their boundary tilting the inclination angle is insufficient, there is a possibility that a display defect. 本方式では、傾き角を付与する代わりに基板界面上での液晶分子長軸方向(ラビング方向)を電界方向にに対して0度あるいは90度からずらした所定方向に設定すれば良い。 In this method, it may be set in a predetermined direction by shifting the liquid crystal molecular long axis direction on the substrate surface (the rubbing direction) from 0 degrees or 90 degrees with respect to the electric field direction, instead of applying the tilt angle. 例えば、液晶組成物の誘電率異方性が負の場合、電界方向と基板界面上での液晶分子長軸方向とがなす角φ LCLC >0度と定義する)を0度以上(実質的には0.5度以上)、望ましくは2度以上にすれば良い。 For example, if the dielectric anisotropy of the liquid crystal composition is negative, the electric field direction and the liquid crystal molecular long axis direction on the substrate interface (defined as phi LC> 0 degrees) angle phi LC of 0 degree or more ( 0.5 degrees substantially), preferably it may be more than twice. もし完全に0度とすると、方向の異なる2種の変形が生じ異なる2状態及びそれらの境界部のドメインが生じ、表示不良となる可能性がある。 If fully to 0 °, occurs domains of the two deformation occurs two different states and their boundaries of different directions, there can be a display defect. 0.5 度以上であれば電界印加及びその強度の増大により見かけの液晶分子長軸方向(φ LC (V)と定義する)が一様に増加して行き、逆方向への傾斜、即ちφ LC (V)<0度になることはない。 If 0.5 times or more by applying an electric field and increase of its intensity (defined as phi LC (V)) liquid crystal molecular long axis direction of the apparent continue to increase uniformly, inclined in the opposite direction, i.e. phi LC (V) <it will not be at 0 degrees. 本方式ではこのように、界面と液晶分子とのなす角(傾き角)が小さくともドメインが生じずに動作することから、低めの傾き角に設定することが可能である。 Thus, in this method, since the angle between the surface and the liquid crystal molecules (the inclination angle) is operated without occur with small domain, it is possible to set the lower tilt angle.
液晶分子配向の均一性は低めの傾き角に設定するほどラビング等のプロセス裕度が上がり、良好である。 Uniformity of the liquid crystal molecular orientation increases the process margin such as rubbing enough to set lower the tilt angle, the better. 従って、界面に平行に電界を印加する本方式に、低傾き角を組み合わせれば液晶分子配向はより均一化し、同程度の製造プロセス変動があっても、従来方式よりも表示むらが低く抑えられる。 Accordingly, the present method of applying an electric field parallel to the interface, the liquid crystal molecular alignment Combine low inclination angle is more uniform, even if there is the same degree of manufacturing process variations, be kept low display unevenness than the conventional method . 一般に高い傾き角を付与する配向膜の種類は、低い傾き角を付与するものに比べて少なく、 Generally the type of alignment films to impart high tilt angle is less than those of imparting a low tilt angle,
本方式を用いれば配向膜材料の選択の自由度も高くなる。 Degree of freedom in selecting the alignment film material using the present method also increases. 例えばカラーフィルタ上の平坦化膜,薄膜トランジスタ上の保護膜に有機ポリマを用い、それを直接ラビング等の表面配向処理を行っても、傾き角が不要なので配向膜との兼用がより容易になり、更にプロセスの簡易化とそれに伴うコストの低減が可能となる。 For example the organic polymer used planarization layer on the color filter, a protective film on the thin film transistor, even if the surface alignment treatment directly rubbing such that, combined with the alignment layer because the tilt angle is not required becomes easier, Furthermore it is possible to reduce the costs associated therewith and simplification of the process. 製造プロセス変動による表示むらを抑制するには傾き角を4度以下、 The inclination angle of 4 degrees or less to suppress the display unevenness due to manufacturing process variations,
望ましくは2度以下にすれば良い。 Desirably it may be below 2 degrees.

【0045】また、液晶材料についても下記の理由によりその選択の自由度が上がる。 [0045] In addition, the degree of freedom in the selection for the following reasons also for the liquid crystal material is increased. 即ち、本発明では画素電極と共通電極は液晶組成物層に対して主として基板界面に平行な電界を印加する構造を有しており、電極間の距離は従来の縦電界方式のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の距離に比べて大きくとることができる。 That is, the common electrode and the pixel electrode in the present invention has a structure mainly applying an electric field parallel to the substrate surface on the liquid crystal composition layer, the distance between the electrodes is an active matrix liquid crystal of a conventional vertical electric field type it can be increased as compared with the distance between the transparent electrodes were opposed in the display device. また、等価的な電極の断面積は従来のものより小さく抑えることができる。 Further, the cross-sectional area of ​​the equivalent electrodes can be reduced than the conventional. したがって、本発明による対をなす画素電極間の電気抵抗は従来のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の電気抵抗は桁違いに大きくすることができる。 Therefore, the electrical resistance between the pixel electrodes in a pair according to the invention is the electrical resistance between the opposite is not transparent electrode in a conventional active matrix type liquid crystal display device can be orders of magnitude larger. さらに、本発明による画素電極と共通電極間の静電容量は容量素子と並列接続になり、電気抵抗も十分高い容量素子を実現できる。 Furthermore, the capacitance between the common electrode and the pixel electrode according to the present invention becomes parallel with capacitive elements, the electrical resistance can be realized sufficiently high capacitance element. これらにより、画素電極に蓄積された電荷を保持することが容易になり、従来開口率を犠牲にしていた容量素子の面積を小さくしても十分な保持特性が得られる。 These makes it easy to hold the charges accumulated in the pixel electrode, even to reduce the area of ​​the capacitive element at the expense of a conventional aperture ratio sufficient retention characteristics. また、液晶組成物の方も従来は例えば10 12 Ωcmといった極めて高い比抵抗を有するものが必要であるのに対して、より低い比抵抗の液晶組成物であっても問題にならない。 Further, while the even towards the conventional liquid crystal composition is required to have a very high specific resistance, e.g. 10 12 [Omega] cm, no problem even lower liquid crystal composition Resistivity. このことは、単に液晶材料の選択の自由度が上がるのみならず、プロセス裕度も引き上げる。 This is not only increases the degree of freedom of selection of liquid crystal materials, process tolerance is also pulled. 即ち、プロセスの途中で液晶が汚染しても画質不良となりにくい。 In other words, even if the liquid crystal is contaminated in the middle of a process unlikely to be a poor image quality. 特に、前述の配向膜との界面上での変動に対する裕度が上がり、界面起因の不良はほとんどなくなる。 In particular, it increases the tolerance to variations on the interface with the alignment layer described above, caused in the interface defects are hardly. よって、検査やエージングといった工程を大幅に簡略化することができ、薄膜トランジスタ型液晶表示装置の低コスト化に大きく寄与する。 Therefore, it is possible to greatly simplify the process such as inspection and aging, greatly contributes to cost reduction of the thin film transistor liquid crystal display device. また、本発明による画素電極は櫛歯状電極対に比べて単純な形状であるため、光の利用効率を向上させる。 The pixel electrode according to the invention because it is a simple shape in comparison with the interdigital electrode pair, thereby improving light efficiency. 従来方式のように十分な量の電荷を蓄積できる容量素子を得るために開口部を犠牲にする必要がない。 There is no need to sacrifice an opening in order to obtain a capacitor capable of storing a sufficient amount of charge as in the conventional method. さらに、薄膜トランジスタを保護する絶縁膜を有機物にすれば、無機物に比べて誘電率が低くできるため、画素電極近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが可能になり、より広い領域で液晶が動作する。 Further, if an insulating film for protecting the thin film transistor organic, the dielectric constant can be lower than that of inorganic materials, it is reduced as compared to the transverse electric field component perpendicular direction of the electric field component in the substrate interface occurs in the pixel electrode near It allows the liquid crystal to operate in a wider area. このことも明るさ向上に寄与する。 This also contributes to the brightness improvement. また、共通電極を、隣接する画素の共通電極と共用した場合には、従来のアクティブマトリクス型液晶表示装置における共通電極とほぼ同等の作用をし、かつより構造を更に簡単化することができ更に開口率を上げることが可能である。 Further, the common electrode, when sharing the common electrodes of adjacent pixels, can further be nearly the same effect as a common electrode in a conventional active matrix type liquid crystal display device, and further simplify the more structured it is possible to increase the aperture ratio.

【0046】(4)簡素で開口率の高い薄膜トランジスタ構造の実現及びそれによる明るさの向上 薄膜トランジスタを含む画素内の構造に関して、公知例(特公昭63−21907号)に示されている櫛歯電極を用いる場合は開口率が著しく低下し、それにより明るさが低下してしまうという問題が生じる。 [0046] (4) with respect to the structure of the pixel including the improved thin film transistor realized and brightness of its high TFT structures simple, the aperture ratio, the comb-tooth electrodes shown in the known example (JP-B No. 63-21907) decreased aperture ratio considerably when using, whereby a problem that the brightness is lowered occurs. 量産性を考慮すると櫛歯電極1本の幅は8μm程度、最小でも4μm以上必要であり、特公昭63−21907 号に示されている例えば図7 Width of consideration and the comb electrodes one mass productivity is 8μm about requires 4μm or more at the minimum, FIG example shown in JP-B-63-21907 7
のような櫛歯が合計17本もあるような構造で対角9. Structure as comb is also present a total of 17 in the diagonal 9 like.
4 インチカラーVGAクラスの0.3×0.1mm 2の画素を構成することは不可能である。 It is not possible to configure the 4 inches 0.3 pixels × 0.1 mm 2 color VGA class. 本発明は上記(1),(2)の利点を保ちつつも開口率を十分に保持するための手段を考案したものである。 The present invention (1) is obtained by devising a means for holding well even aperture ratio while maintaining the advantages of (2). 櫛歯のように開口率を下げざるを得ない構造に替わって、より単純な電極構造により、実用性のある高い開口率が実現できている。 Instead of the structure inevitably lowering the aperture ratio as comb, by a simpler electrode structure, a high aperture ratio of utility is realized. 手段1から手段5は、共通電極を対向基板上或いは、画素電極を同層上に形成した場合の構造に関する。 It means 5 means 1, a common electrode on the counter substrate or to a structure in the case of forming a pixel electrode on the same layer.
前記公知例(特公昭63−21907 号)では櫛歯電極を形成するために、信号配線と共通電極それぞれの引き出し方向を直交させている。 In order to form the known example (JP-B No. 63-21907), the comb electrodes, which are perpendicular to the drawing direction of each common electrode and the signal wiring. 即ち、信号配線を第1の方向(Y That is, the signal lines a first direction (Y
方向)に、共通電極をそれに直交する方向(X方向)に引き伸ばしている。 Direction), and stretched in the direction (X direction) perpendicular to the common electrode on it. それに対し、本発明は、手段1にあるように信号配線,画素電極,共通電極のいずれをも第1の方向に伸ばすことで、櫛歯のような複雑な構造を回避している。 In contrast, the present invention relates to a signal line as in section 1, the pixel electrode, any of the common electrode that extend in the first direction, thereby avoiding complicated structure such as a comb. 尚、液晶のしきい値電圧を下げ、応答時間を短縮するには画素電極と共通電極の間隔を詰めれば良いが、そのためには手段2の方法を採用すれば良く、櫛歯のような複雑な構造とする必要はない。 Incidentally, lowering the threshold voltage of the liquid crystal, but it Tsumere the distance common electrode and the pixel electrode to reduce the response time, in order that may be adopted a method of means 2, complexity, such as comb it is not necessary to the structure.

【0047】 [0047]

【実施例】本発明を実施例により具体的に説明する。 Specifically described by examples EXAMPLES The present invention.

【0048】〔実施例1〕基板としては厚みが1.1mm [0048] Example 1 1.1mm thickness is used as the substrate
で表面を研磨した透明なガラス基板を2枚用いる。 Use two sheets of transparent glass substrates polished surface in. これらの基板間に誘電率異方性Δεが正でその値が4.5 であり、屈折率異方性Δnが0.072(589nm,20 These dielectric anisotropy Δε between the substrates is that value is positive is 4.5, the refractive index anisotropy Δn is 0.072 (589 nm, 20
℃)のネマチック液晶組成物を挟む。 ° C.) sandwiching a nematic liquid crystal composition. 基板表面に塗布したポリイミド系配向制御膜をラビング処理して、3.5 A polyimide alignment layer coated on the substrate surface rubbing treatment, 3.5
度のプレチルト角とする。 And every time the pre-tilt angle of. 上下界面上のラビング方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を8 Rubbing directions on the upper and lower interfaces are substantially parallel to each other, and the angle between the applied electric field direction 8
5度(φ LC1 =φ LC2 =85°)とした。 5 ° was (φ LC1 = φ LC2 = 85 °). ギャップdは球形のポリマビーズを基板間に分散して挾持し、液晶封入状態で4.5μm とした。 Gap d is clamped dispersed spherical polymer beads between the substrates, and a 4.5μm in a liquid crystal sealed state. よってΔn・dは0.324 Therefore, Δn · d is 0.324
μmである。 It is μm. 2枚の偏光板〔日東電工社製G1220DU〕でパネルを挾み、一方の偏光板の偏光透過軸をラビング方向にほぼ平行、即ちφ P1 =85°とし、他方をそれに直交、即ちφ P2 =−5°とした。 The panel of two polarizing plates [manufactured by Nitto Denko Corporation G1220DU] sandwiched, the polarization transmission axis of one polarizing plate substantially parallel to the rubbing direction, i.e. the φ P1 = 85 °, perpendicular to the other to, i.e. phi P2 = It was -5 °. これにより、ノーマリクローズ特性を得た。 This gave the normally closed characteristics.

【0049】薄膜トランジスタ及び各種電極の構造は図2(a)(正面図)及び図2(b)(側断面)に示すように、薄膜トランジスタ素子(図2の斜線部)が画素電極(ソース電極)1と信号電極(ドレイン電極)12、 The structure of a thin film transistor and various electrodes FIGS. 2 (a) as shown in (front view) and FIG. 2 (b) (side sectional), thin-film transistor element (hatched portion in FIG. 2) is a pixel electrode (source electrode) 1 and the signal electrode (drain electrode) 12,
及び走査電極(ゲート電極)10を有し、画素電極1が第1の方向(図2では紙面内で上下の方向を意味する)に伸びており、信号電極12及び共通電極2が複数の画素間(図2では紙面内で上下の方向に並んだ画素を意味する)に渡って第1の方向伸び、薄膜トランジスタ素子が共通電極の間に配置されている。 And has a scan electrode (gate electrode) 10, the pixel electrode 1 is the first direction extends in (meaning the direction of up and down in the paper plane in FIG. 2), the signal electrode 12 and the common electrode 2 is of a plurality of pixels during elongation the first direction across (meaning pixels arranged in the direction of up and down in the paper plane in FIG. 2), a thin film transistor element is disposed between the common electrode.

【0050】信号電極12には情報を有する信号波形が印加され、走査電極10には走査波形が信号波形と同期をとって印加される。 [0050] The signal electrode 12 is a signal waveform having information is applied to the scanning electrode 10 is applied taking the scan waveform is a signal waveform and synchronization. アモルファスシリコン(a−S Amorphous silicon (a-S
i)からなるチャネル層16及び窒化シリコン(Si Consisting i) the channel layer 16 and silicon nitride (Si
N)の保護絶縁膜15からなる薄膜トランジスタは隣接する共通電極の間に配置されている。 Thin film transistor of the protective insulating film 15 N) is disposed between adjacent common electrode. 信号電極12から薄膜トランジスタを介して画素電極1に情報信号が伝達され、共通電極2との間で液晶部分に電圧が印加される。 Information signals to the pixel electrode 1 from the signal electrode 12 through the thin film transistor is transferred, the voltage to the liquid crystal portion is applied between the common electrode 2. 本実施例では共通電極を対向基板側に配置し、図2 In the present embodiment places the common electrode on the counter substrate side, FIG. 2
(b)では厚み方向を拡大して表した為、電界方向7が傾斜しているように見えるが、実際には幅が48μmに対して液晶層5の厚みが6μm程度であり、傾斜はほとんどなく、印加電界方向は基板面にほぼ平行である。 (B) for showing an enlarged part in the thickness direction in, it looks like the electric field direction 7 is inclined, is actually a 6μm of about the thickness of the liquid crystal layer 5 widths for 48 [mu] m, the inclination most without an applied electric field direction is substantially parallel to the substrate surface.

【0051】容量素子12は、図1(c)に示すように、画素電極1を特記部を形成した走査配線10の上にゲート絶縁膜13を挟む構造として形成した。 The capacitive element 12, as shown in FIG. 1 (c), was formed as a structure sandwiching the gate insulating film 13 on the scanning wire 10 forming the otherwise part the pixel electrode 1. この容量素子12の静電容量は約21fFになった。 The capacitance of the capacitive element 12 becomes approximately 21FF. 各走査配線10および各信号電極駆動回路21にはそれぞれ走査配線駆動用LSIおよび信号配線駆動用LSIを接続した。 Each scan line 10 and the signal electrode driving circuit 21 is connected to the scanning wiring driving LSI and the signal wiring driving LSI respectively.

【0052】画素電極1に蓄積された電荷は、画素電極1と共通電極2の間の静電容量と付加容量素子11を並列接続した容量である約24fFに蓄積されることになり、液晶組成物50の比抵抗が5×10 10 Ωcmであっても画素電極1の電圧変動を抑制することができる。 [0052] The charge accumulated in the pixel electrode 1, will be accumulated to approximately 24fF a capacitance connected in parallel to the capacitance and the additional capacitance element 11 between the pixel electrode 1 and the common electrode 2, the liquid crystal composition resistivity of the object 50 can be inhibited from 5 × 10 10 voltage variation in the pixel electrode 1 be [Omega] cm. このため、画質劣化を防止することができた。 For this reason, it was possible to prevent the deterioration of image quality.

【0053】画素数は40(×3)×30で、画素ピッチは横方向(即ち共通電極間)は80μm、縦方向(即ち走査電極間)は240μmである。 [0053] the number of pixels in the 40 (× 3) × 30, the pixel pitch transversely (ie between the common electrode) is 80 [mu] m, the vertical direction (ie between scanning electrodes) is 240 .mu.m. 走査電極の幅は1 Width of the scanning electrode 1
2μmで隣接する走査電極の間隙を68μmとし、50 The gap between the adjacent scanning electrodes 2μm and 68 .mu.m, 50
%という高い開口率を確保した。 To ensure a high aperture ratio of%. また薄膜トランジスタを有する基板に相対向する基板上にストライプ状のR, The stripe-shaped R on a substrate opposing a substrate having a thin film transistor,
G,B3色のカラーフィルタを備えた。 G, with the B3 color filters. カラーフィルタの上には表面を平坦化する透明樹脂を積層した。 On the color filter obtained by laminating a transparent resin to planarize the surface. 透明樹脂の材料としてはエポキシ樹脂を用いた。 The transparent resin material using an epoxy resin. 更に、この透明樹脂上ポリイミド系の配向制御膜を塗布した。 Furthermore, it was applied to the alignment layer of the transparent resin on the polyimide. パネルには駆動回路が接続されている。 Driving circuit is connected to the panel. 本実施例の駆動回路システムの構成を図8に示す。 The configuration of the drive circuit system of this embodiment is shown in FIG. 信号電極23及び共通電極31は表示部端部にまで伸びている。 Signal electrodes 23 and the common electrode 31 extends to the display unit end. 図9及び図10は光学システムの構成を表し、図9が透過型、図10が反射型を表す。 9 and 10 showing the configuration of an optical system, FIG. 9 is a transmission type, FIG. 10 represents a reflection type.

【0054】本実施例では透明電極を必要としないため、製造プロセスが簡単化できかつ歩留まりも向上し、 [0054] does not require a transparent electrode in this embodiment, even better be high yield simplified manufacturing process,
著しくコストが低減できる。 Remarkably cost can be reduced. 特に、透明電極を形成するための真空炉を有する極めて高価な設備が不要になり、 In particular, very expensive equipment is not required to have a vacuum furnace to form a transparent electrode,
製造設備投資額の大幅低減とそれによる低コスト化が可能となる。 It is possible to significantly reduce the cost by that of the manufacturing equipment investment. 本実施例における画素への印加電圧実効値と明るさの関係を示す電気光学特性を図3(a)に示す。 The electro-optical characteristics indicating the relationship between the applied voltage effective value and the brightness of the pixel in the present embodiment shown in FIG. 3 (a).
コントラスト比は7V駆動時に150以上となり、視角を左右,上下に変えた場合のカーブの差は従来方式(比較例1に示す)に比べて極めて小さく、視角を変化させても表示特性はほとんど変化しなかった。 Contrast ratio becomes 150 or more at 7V driving, left and right viewing angle, the difference between the curves when changing up and down is extremely small as compared with the conventional method (shown in Comparative Example 1), displayed by changing the viewing angle characteristics almost unchanged It did not. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur. また、開口率は薄膜トランジスタ及び電極構造の簡単化により50%と十分に高い値を確保し、明るいディスプレイを実現した。 Further, the aperture ratio by simplification of the thin film transistor and the electrode structure to ensure 50% and a sufficiently high value, to achieve a bright display. パネル全体の平均透過率は8.4% となった。 The average transmittance of the whole panel was 8.4%. 尚、ここで明るさとは2枚の偏光板を平行に配置したときの輝度透過率で定義した。 Incidentally, defined intensity transmittance when arranged in parallel with two polarizing plates are to herein as brightness.

【0055】〔実施例2〕本実施例では実施例1で対抗基板側に配置し走査電極を同一基板側に配置した。 [0055] Example 2 In this Example were arranged scan electrodes disposed on opposing substrate side in Example 1 on the same substrate. 他の構成は実施例1と同一である。 Other configurations are the same as in Example 1. 薄膜トランジスタ及び電極の断面構造を図4に示す。 The cross-sectional structure of a thin film transistor and the electrode shown in FIG. 画素電極1,信号電極1 Pixel electrodes 1, the signal electrodes 1
2,走査電極はいずれもアルミニウムで、同時に成膜及びエッチングをして形成した。 2, both the scan electrodes of aluminum was formed by a deposition and etch simultaneously. 対向基板上には一切導電性の物質は存在しない。 Any conductive material on the counter substrate does not exist. 従って、本実施例の構成においては仮に製造工程中に導電性の異物が混入したとしても、上下電極間タッチの可能性がなく、上下電極間タッチの不良率がゼロに抑制される。 Therefore, even if conductive foreign substance if during the manufacturing process in the structure of the present embodiment is mixed, there is no possibility of the upper and lower inter-electrode touch, failure rate of the upper and lower inter-electrode touch is suppressed to zero. なお、電極用の材料としては電気抵抗の低い金属性のものであれば特に材料の制約はなく、クロム,銅等でもよい。 Incidentally, no particular limitation of the material as long as the low metal electric resistance as a material for the electrodes, chromium, or copper or the like.

【0056】一般にフォトマスクのアライメント精度は対向する2枚のガラス基板間の組合わせのアライメント精度に比べて著しく高い。 [0056] In general alignment accuracy of the photomask is significantly higher than the combination of the alignment accuracy between the two glass substrates facing. 従って、本実施例のように4 Therefore, as in the present embodiment 4
種の電極群のいずれをも一方の基板上に形成した方が、 Any species of the electrode group even better formed on one substrate,
各電極の形成時のアライメントがフォトマスクのみで行われるため、電極間のアライメントずれが小さく抑制される。 Since the alignment during the formation of each electrode is carried out only with a photomask, misalignment between the electrodes can be kept small. 従って、本実施例は走査電極を対向基板上に形成する場合に比べて、より高精細なパターンを形成するのに有効である。 Therefore, the present embodiment as compared with the case of forming the scanning electrodes on the counter substrate, it is effective to form a finer pattern.

【0057】実施例1と同様に広い視角特性を有する明るい表示を得た。 [0057] to obtain a bright display having the same wide viewing angle characteristics as Example 1.

【0058】〔実施例3〕本実施例の構成は下記の要件を除けば、実施例1と同一である。 [0058] Example 3 structure of this embodiment except for the following requirements, the same as in Example 1.

【0059】薄膜トランジスタ及び各種電極の構造を図5に示すように、対をなす画素電極1の間に信号電極1 [0059] The structure of a thin film transistor and various electrodes as shown in FIG. 5, the signal electrodes 1 between the pixel electrode 1 a pair
2を配置し、さらに対をなす共通電極2をこれらの電極の外側に配置した。 2 Place, a common electrode 2 forming a further pair arranged outside of the electrodes. 信号電極12には情報を有する信号波形が印加され、走査電極10には走査波形が信号波形と同期をとって印加される。 The signal electrode 12 is a signal waveform applied with information, the scan electrodes 10 are applied synchronously with the scanning waveform signal waveform. アモルファスシリコン(a Amorphous silicon (a
−Si)16及び窒化シリコン(SiN)の保護絶縁膜15からなる薄膜トランジスタは対をなす共通電極のほぼ中央部に配置されている。 Thin film transistor of the protective insulating film 15 -Si) 16 and silicon nitride (SiN) is disposed in a substantially central portion of the common electrode forming a pair. 信号電極12から2個の薄膜トランジスタを介して2個の第1の電極1に同じ情報信号が伝達され、電位を同じくした両側の共通電極との間で液晶部分に同じ電圧信号が印加される。 From the signal electrode 12 via two thin film transistors have the same information signal to the two first electrode 1 is transmitted, the same voltage signal to the liquid crystal portion between the common electrode of the same were bilateral potential is applied. このようにすることで薄膜トランジスタ及び電極構造を複雑化せずに電極間隔を半分程度にでき、同一電圧でより高い電界を印加することができるようになり、駆動電圧の低減及び高速応答化が実現される。 Thus can the electrode distance about half the thin film transistor and the electrode structure by without complicating the, will be able to apply a higher electric field at the same voltage, reduction and high-speed response of the driving voltage is realized It is.

【0060】実施例1の広い視角特性と明るさは本実施例でも実現される。 [0060] wide viewing angle characteristic and brightness of the first embodiment are also realized in this embodiment.

【0061】〔実施例4〕本実施例の構成は下記の要件を除けば、実施例1と同一である。 [0061] Example 4 structure of this embodiment except for the following requirements, the same as in Example 1.

【0062】カラーフィルタ上に有機絶縁層として透明ポリマからなる平坦化膜14(図2(b))を積層し、 [0062] laminating the color formed of a transparent polymer organic insulating layer on the filter planarization film 14 (FIG. 2 (b)),
その上に配向制御膜としての別の膜を形成せずに表面を直接ラビングした。 The surface was rubbed directly without forming another film as an alignment control film formed thereon. 透明ポリマの材料としてはエポキシ樹脂を用いた。 The transparent polymer with epoxy resin. このエポキシ樹脂は平坦化と液晶分子の配向制御の両方の機能を兼ね備えている。 The epoxy resin has both the functions of both of the orientation control of the planarization and the liquid crystal molecules. 液晶組成物層はエポキシ樹脂に直接接し、界面での傾き角は0.5 度であった。 The liquid crystal composition layer is in direct contact with the epoxy resin, the inclination angle at the interface was 0.5 degrees. これにより、配向膜を塗布する工程がなくなり、製造がより容易かつ短くなった。 This eliminates the step of applying an alignment film, manufacturing becomes easier and shorter. 一般に従来方式であるTN型では、配向制御膜に要求される特性が多岐にわたり、それら全てを満足する必要があり、そのためポリイミド等の一部の材料に限られていた。 Generally, in the TN type is a conventional method, characteristics over a range required for the alignment control film, it is necessary to satisfy all of them, therefore has been limited to a part of the material such as polyimide. 特に重要な特性は、傾き角である。 Particularly important characteristic is the slope angle. しかし、作用のところで述べたように、本発明では大きな傾き角を必要とせず、従って、 However, as mentioned at the action, without requiring a large inclination angle in the present invention, therefore,
材料の選択幅が著しく改善される。 Choice of materials is significantly improved.

【0063】本実施例における電気光学特性を測定したところ、実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。 [0063] When the electro-optical characteristics in this example was measured, the left and right viewing angle in the same manner as in Example 1, the difference between the curves when changing up and down is extremely small, the display characteristics were obtained the result that hardly changes. また、傾き角が0.5 度と小さいにもかかわらず液晶配向性も良好で、配向不良ドメインは発生しなかった。 The slope angle of 0.5 degrees and less even though the liquid crystal alignment property was good, orientation failure domain was generated.

【0064】〔実施例5〕実施例4の平坦化する為の透明ポリマをエポキシ樹脂からポリイミド樹脂に変えた。 [0064] The transparent polymer for flattening of Example 5 Example 4 was changed from the epoxy resin in the polyimide resin.
同様にポリイミド樹脂の表面を直接ラビングし、平坦化と液晶分子の配向制御の両方の機能を兼ね備えた。 Similarly directly rubbed surface of the polyimide resin, combines the functions of both of the orientation control of the planarization and the liquid crystal molecules. 界面での傾き角は2度であった。 Tilt angle at the interface was 2 degrees. 他の実施例と比較して、表示特性はほとんど変化しないという結果を得た。 Compared with other examples, the display characteristics were obtained the result that hardly changes. また、 Also,
液晶配向性も良好で、配向不良ドメインは発生しなかった。 The liquid crystal orientation is good, and orientation failure domain did not occur.

【0065】〔実施例6〕本実施例の構成は下記の要件を除けば、実施例1と同一である。 [0065] Example 6 structure of this embodiment except for the following requirements, the same as in Example 1.

【0066】薄膜トランジスタを保護する保護絶縁膜1 [0066] The protective insulating film 1 for protecting the thin film transistor
5(図2(b))を窒化シリコンからエポキシ樹脂からなる有機絶縁層に交換し、その上を直接ラビング処理し、有機絶縁層に保護膜と液晶分子配向制御膜の両方の機能を持たせた。 5 is replaced with an organic insulating layer made of (FIG. 2 (b)) the epoxy resin of silicon nitride, over the direct rubbing, to have the function of both the protective film and the liquid crystal molecule alignment control layer in the organic insulating layer It was. 傾き角は0.5度である。 The tilt angle is 0.5 degrees.

【0067】本実施例における電気光学特性を測定したところ、実施例1と比較して、ほとんど変わらない表示特性を得た。 [0067] When the electro-optical properties were measured in the present embodiment, as compared with Example 1, was obtained almost the same display characteristics. また、実施例4と同様に、傾き角が0.5 Further, in the same manner as in Example 4, the tilt angle is 0.5
度と小さいにもかかわらず液晶配向性も良好で、配向不良ドメインは発生しなかった。 Degree and small despite the liquid crystal orientation is good, and orientation failure domain did not occur.

【0068】〔実施例7〕実施例6で保護膜に用いたエポキシ樹脂を同様に有機絶縁層となるポリイミドに変えた。 [0068] The Example 7 Epoxy resin used for the protective layer in Example 6 was changed to a polyimide which is a similar organic insulating layer.

【0069】本実施例における電気光学特性を測定したところ、実施例1と比較して、ほとんど変わらない表示特性を得た。 [0069] When the electro-optical properties were measured in the present embodiment, as compared with Example 1, was obtained almost the same display characteristics. また、実施例6に比べ、傾き角は2.0 度と若干上昇した。 Further, compared with Example 6, the inclination angle of 2.0 degrees and was slightly increased. 液晶配向性は良好で、配向不良ドメインは発生しなかった。 The liquid crystal orientation is good, orientation failure domain did not occur.

【0070】〔実施例8〜12〕これらの実施例の構成は下記の要件を除けば、実施例7と同一である。 [0070] Example 8-12] Configuration of these examples except for the following requirements, the same as in Example 7.

【0071】実施例8では上下界面上の液晶分子長軸方向(ラビング方向)は互いにほぼ平行で、かつ印加電界方向とのなす角度を89.5度(φ LC1 =φ LC2 =89.5 [0071] The liquid crystal molecular long axis direction (rubbing direction) on the upper and lower interfaces in Example 8 substantially parallel to each other, and an angle of 89.5 degrees with the applied electric field direction (φ LC1 = φ LC2 = 89.5
°)、一方の偏光板の偏光透過軸をラビング方向にほぼ平行(φ P1 =89.5°)とし、他方をそれに直交(φ P2 °), and substantially parallel (φ P1 = 89.5 °) in the rubbing direction of the polarization transmission axis of one polarizing plate, perpendicular to the other it (phi P2
=−0.5°)とした。 = Was -0.5 °).

【0072】同様に実施例9ではφ LC1 =φ LC2 =φ P1 [0072] Similarly, in Example 9 φ LC1 = φ LC2 = φ P1 =
88°,φ P2 =−2.0°とした。 88 °, it was φ P2 = -2.0 °. 同様に実施例10ではφ LC1 =φ LC2 =φ P1 =75°,φ P2 =−25°とした。 Similarly in Example 10 φ LC1 = φ LC2 = φ P1 = 75 °, and a φ P2 = -25 °. 同様に実施例11ではφ LC1 =φ LC2 =φ P1 =45 Similarly, in Example 11 φ LC1 = φ LC2 = φ P1 = 45
°,φ P2 =−45°とした。 °, was φ P2 = -45 °. 同様に実施例12ではφ Similarly, in Example 12 phi
LC1 =φ LC2 =φ P1 =30°,φ P2 =−60°とした。 LC1 = φ LC2 = φ P1 = 30 °, and a φ P2 = -60 °. これらの実施例における電気光学特性の測定結果を図7にまとめて表す。 The measurement results of electro-optical properties in these examples represent are summarized in Figure 7. 尚ここでは明るさを印加電圧が0ボルトから10ボルト(実効値V rms )の範囲で最大となるときを100%、最小となるときを0%とした規格化した値で表した。 Incidentally it expressed here 100% when the maximum in the range of 10 volts applied voltage brightness is 0 volts (rms V rms), when as a minimum normalized value was 0%. 角度φ LCを大きくすることで、しきい値特性のカーブがより急峻になる傾向を示した。 By increasing the angle phi LC, tended curve of the threshold characteristic becomes steeper. 中間調表示を大きな電圧裕度を持って行うには、φ LCを小さくすれば良いが、45度以下になると明るさが低下する傾向を示した。 To perform an intermediate tone display with a large voltage margin may be reduced phi LC, but brightness becomes below 45 degrees showed a tendency to decrease. 角度φ LCの最適な値は、表示する中間調レベルの数,明るさに対する要求値,駆動する電圧,コモン電極に電圧を印加するか否かによって代わる。 Optimal value of the angle phi LC is replace the number of gray levels to be displayed, the required value for the brightness, the voltage to be driven, depending on whether a voltage is applied to the common electrode. 設計者は、φ The designer, φ
LCの選択により大きな範囲でしきい値特性が制御できる。 Threshold characteristics to a large extent by the choice of LC can be controlled. 明るさを考慮すると、望ましくはφ LCを45度以上とすると良い。 In view of the brightness, preferably it may be at least 45 degrees phi LC. また更により望ましくは60度から8 Also even more preferably from 60 ° 8
9.5 度の間とすると良い。 It may be between 9.5 degrees.

【0073】視角特性を測定したところ、いずれの場合も実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。 [0073] When the viewing angle characteristics were measured, the left and right viewing angle as well as in Example 1 in either case, the difference between the curves when changing up and down is extremely small, the display characteristics were obtained the result that hardly changes. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0074】〔実施例13〜16〕以上の実施例と本実施例の最大の相違点は、液晶組成物層の誘電率異方性の値を負にし、それに合わせてラビング方向を変えた点である。 [0074] The main difference of Example 13 to 16] above embodiments and this embodiment, the value of the dielectric anisotropy of the liquid crystal composition layer on the negative, the point of changing the rubbing direction accordingly it is. Δεが−4.8 ,Δnが0.0437(589n Δε is -4.8, Δn is 0.0437 (589n
m,20℃)のネマチック液晶組成物(メルク社製,Z m, nematic liquid crystal composition of the 20 ° C.) (Merck, Z
LI−2806)を用いた。 LI-2806) was used. 実施例13〜16の実施例に於いては、いずれも上下界面上の液晶分子長軸方向(ラビング方向φ LC1 ,φ LC2 )を互いにほぼ平行(φ LC1 The In the embodiment of Examples 13 to 16, both the liquid crystal molecular long axis direction on the upper and lower interfaces (rubbing direction φ LC1, φ LC2) substantially parallel to each other (phi LC1
=φ LC2 )とし、印加電界方向とのなす角度φ LC1を0度を超え45度未満である範囲とした。 = Phi LC2) and then, the angle phi LC1 between the applied electric field direction and the range is less than 45 degrees than 0 degrees. また一方の偏光板の偏光透過軸(φ P1 )はラビング方向にほぼ平行とし、 The polarization transmission axis of one polarizing plate (phi P1) is substantially parallel to the rubbing direction,
他方(φ P2 )をそれに直交とした。 The other (phi P2) was perpendicular to it.

【0075】即ち、実施例13ではφ LC1 =φ LC2 =φ P1 [0075] That is, in Example 13 φ LC1 = φ LC2 = φ P1
=1.5°,φ P2 =−88.5°とした。 = 1.5 °, was φ P2 = -88.5 °.

【0076】実施例14ではφ LC1 =φ LC2 =φ P1 =15 [0076] In Example 14 φ LC1 = φ LC2 = φ P1 = 15
°,φ P2 =−75°とした。 °, was φ P2 = -75 °.

【0077】実施例15ではφ LC1 =φ LC2 =φ P1 =30 [0077] In Example 15 φ LC1 = φ LC2 = φ P1 = 30
°,φ P2 =−60°とした。 °, was φ P2 = -60 °.

【0078】実施例16ではφ LC1 =φ LC2 =φ P1 =45 [0078] In Example 16 φ LC1 = φ LC2 = φ P1 = 45
°,φ P2 =−45°とした。 °, was φ P2 = -45 °.

【0079】ギャップdは液晶封入状態で6.3μmとし、Δn・dを0.275μmとした。 [0079] gap d is set to 6.3μm in the liquid crystal filling state, was 0.275μm the Δn · d. 薄膜トランジスタ,電極の構造等の以外の条件は実施例3と同じである。 TFT, conditions other than the structure of the electrode are the same as in Example 3.

【0080】これらの実施例における電気光学特性の測定結果を図11にまとめて表す。 [0080] collectively represent the measurement results of electro-optical properties in the examples in Figure 11. 誘電率異方性が正の場合とは逆に、角度φ LCを小さくするに従い、しきい値特性のカーブがより急峻になる傾向を示した。 Dielectric anisotropy contrary to the case of positive in accordance with decreasing the angle phi LC, tended curve of the threshold characteristic becomes steeper. 中間調表示を大きな電圧裕度を持って行うには、φ LCを大きくすれば良いが、45度以上になると明るさが低下する傾向を示した。 To perform an intermediate tone display with a large voltage margin may be increased phi LC, but brightness becomes more than 45 degrees tended to decrease. 誘電率異方性が正の場合と同様に、角度φ LCの最適な値は、表示する中間調レベルの数,明るさに対する要求値,駆動する電圧,共通電極に電圧を印加するか否かによって代わる。 As with dielectric anisotropy is positive, the optimum value of the angle phi LC is the number of gray levels to be displayed, the required value for the brightness, the voltage for driving, whether to apply a voltage to the common electrode replace by. 設計者は、φ LCの選択により大きな範囲でしきい値特性が制御できる。 Designers, threshold characteristics to a large extent by the choice of phi LC can be controlled. 明るさを考慮すると、より望ましくはφ LCを45度以下とすると良い。 In view of the brightness, and more preferably it may be less than 45 degrees phi LC.

【0081】尚、視角特性を測定したところ、いずれの場合も実施例1と同様に視角を左右,上下に変えた場合のカーブの差が極めて小さく、表示特性はほとんど変化しないという結果を得た。 [0081] Incidentally, the measured viewing angle characteristics, the left and right viewing angle as well as in Example 1 in either case, the difference between the curves when changing up and down is extremely small, the display characteristics were obtained the result that hardly changes . 特に中間調表示(8階調)したときのレベルの反転が上下,左右ともに±50度の範囲内ではまったく見られなかった。 In particular inversion level when the halftone display (8 gray levels) is vertically, it was observed at all in the range of 50 degrees ± right and left both. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0082】〔実施例17〜19〕本実施例では、実施例13〜16に於いて最も特性が良好であった実施例1 [0082] Example 17-19] In the present embodiment, Example 1 the most characteristic In Examples 13 to 16 were good
4(φ LC1 =φ LC2 =φ P1 =15°,φ P2 =−75°)と液晶分子長軸方向,偏光板配置を同一とし、液晶組成物層の厚みdと屈折率異方性Δnの積d・Δnを変えた。 4 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = -75 °) and liquid crystal molecular long axis direction, the same polarizing plate arrangement, the thickness d and the refractive index anisotropy Δn of the liquid crystal composition layer changing the product d · Δn.
実施例17,18,19それぞれの液晶組成物層の厚みdを4.0,4.9,7.2μm、即ちd・Δnをそれぞれ0.1748,0.2141,0.3146μmとした。 Example 17, 18, 19 4.0,4.9,7.2Myuemu the thickness d of each of the liquid crystal composition layer, i.e. d · [Delta] n, respectively was 0.1748,0.2141,0.3146Myuemu. 尚、ここでは屈折率異方性Δnを一定とし、液晶組成物層の厚みdのみを変えたが、他の液晶表示方式(例えば、90度ツイステッドネマチック方式)と同様に、 Here, the constant refractive index anisotropy Δn is changed only thickness d of the liquid crystal composition layer, as well as other liquid crystal display systems (e.g., 90 degrees twisted nematic mode),
屈折率異方性Δnを変えても明るさの最適値については同様の結果が得られる。 By changing the refractive index anisotropy Δn similar results are obtained for the brightness even optimal value of. また、液晶組成物層の誘電率異方性の値を正にしても同様の結果が得られる。 Also, just to similar results the value of the dielectric anisotropy of the liquid crystal composition layer is obtained. 結果を実施例14の結果も含めて、図12にまとめて示す。 Results including the results of Example 14 are summarized in Figure 12. 図1 Figure 1
2(a)は横軸を印加電圧とし、図12(b)は図12 . 2 (a) and the applied voltage on the horizontal axis, FIG. 12 (b) 12
(a)に於いて印加電圧を7ボルトに固定して横軸をd The horizontal axis fixed to the applied voltage to 7 volts at the (a) d
・Δnにして表したものである。 - in the Δn it is a representation. 図12(b)から明らかなように、明るさはd・Δn強く依存し、かつ最適な値が存在する。 Figure 12 (b) As is apparent from, the brightness is strongly dependent d · [Delta] n, and the optimum value is present. 明るさを実用性のある30%以上とするにはd・Δnを0.21から0.36μmの間にすれば良く、さらに明るさを50%以上に引き上げるには0.2 Brightness in the practical with some 30% or more may be between 0.36μm and d · [Delta] n from 0.21, the further brightness to raise more than 50% 0.2
3から0.33μmの間にすれば良い。 3 may be between 0.33μm. また、液晶の封入時間や液晶組成物層の厚みの制御等、量産性を考慮するとdの値を5.0μm以上とし、Δnを本実施例のように0.08以下とすることが望ましい。 Further, control of the thickness of the liquid crystal of the encapsulating time and the liquid crystal composition layer, considering the mass-productivity of the value of d not less than 5.0 .mu.m, it is desirable to 0.08 as in this embodiment the [Delta] n.

【0083】〔実施例20〜22〕実施例17〜19の結果から明らかなように、d・Δnの最適値は0.21 [0083] Example 20 to 22] As apparent from the results of Examples 17 to 19, the optimum value of d · [Delta] n is 0.21
から0.36μmの間、望ましくは0.23から0.33 From between 0.36 .mu.m, preferably from 0.23 0.33
μm の間にある。 It lies between μm. 量産性のある液晶組成物層の厚みが5.0μm 以上であることを鑑みると、屈折率異方性Δ Considering that the thickness of the mass production of certain liquid crystal composition layer is not less than 5.0 .mu.m, the refractive index anisotropy Δ
nの値は0.072以下、望ましくは0.066以下でなくてはならない。 The value of n is 0.072 or less, preferably must not 0.066 or less. ところが、このように極めてΔnの低い液晶化合物の種類は非常に少なく、十分に他の実用上の要求特性と両立することが困難である。 However, in this way very different low crystal compound having Δn is very low, it is difficult to sufficiently consistent with the required characteristics of the other practical. そこで液晶組成物層のd・Δnをやや高めに設定しておき、最適値よりも超過した分をこの液晶組成物層のd・Δn よりも低い位相差R fを有する光学的異方性媒質を液晶組成物層により生じた位相差を補償するように挿入し、その結果液晶組成物層と光学的異方性媒質とで合わせた実効的な位相差が最適値である0.21から0.36μmの間に入るようにする方法を考案した。 So may be set slightly higher to d · [Delta] n of the liquid crystal composition layer, optically anisotropic medium having a low retardation R f than d · [Delta] n of the amount in excess than the optimum value this liquid crystal composition layer was inserted so as to compensate the phase difference caused by the liquid crystal composition layer, from 0.21 is effective phase difference optimum value combined with the result the liquid crystal composition layer and the optically anisotropic medium 0 We have devised a way to enter between the .36Myuemu.

【0084】実施例20〜22では下記に示す条件以外は実施例3と同じ構成とした。 [0084] except the conditions shown in the following Example 20-22 were the same configuration as in Example 3. 液晶組成物層の厚みをそれぞれ5.0,5.2,5.5μm とした。 The thickness of the liquid crystal composition layer was 5.0,5.2,5.5μm respectively. 屈折率異方性Δnが0.072(589nm,20℃)のネマチック液晶組成物を用いている為、d・Δnの値は0.360, Since the refractive index anisotropy [Delta] n is used a nematic liquid crystal composition of 0.072 (589nm, 20 ℃), the value of d · [Delta] n is 0.360,
0.3744,0.396μm である。 It is 0.3744,0.396μm. このままでは、 If this goes on,
明るさ及び色調が良好な0.21から0.36μmの範囲よりも高い値となっている為、オレンジ色に着色している。 Because it has a higher value than the brightness and color tone of 0.36μm from good 0.21 range, it is colored orange. この液晶セルにポリビニルアルコール製一軸延伸フィルムの光学的異方性媒質を、低電圧駆動時(ここでは0ボルト)に液晶の複屈折位相差を補償するように積層した。 The optical anisotropic medium of the liquid crystal cell in a polyvinyl alcohol manufactured by uniaxially stretched film was laminated so as to compensate for the birefringence phase difference of the liquid crystal at a low voltage driving (here 0 volts). 即ち、φ Rをφ LC1 (=φ LC2 )と同じ85度とした。 That is, the phi R were the same 85 degrees as φ LC1 (= φ LC2). 位相差はR fはそれぞれ0.07,0.08,0.10 Each of the phase difference R f 0.07,0.08,0.10
μm とし、(d・Δn−R f )の値を0.29,0.30 and μm, the value of (d · Δn-R f) 0.29,0.30
44,0.296μmと明るさ及び色調が良好な0.21 44,0.296μm and brightness and color tone is good 0.21
から0.36μmの範囲に入るようにした。 It was to enter the range of 0.36μm from.

【0085】その結果、着色がなく明るさが50%以上の明るい表示が得られた。 [0085] As a result, coloration no brightness was obtained a bright display over 50%.

【0086】〔実施例23〕実施例20の液晶組成物層を誘電率異方性Δεが負で、その値が−2.5 であり、 [0086] The liquid crystal composition layer of Example 23 Example 20 a negative dielectric anisotropy Δε is, the value is -2.5,
Δnが0.0712(589nm,20℃)のネマチック液晶組成物(メルク社製,ZLI−4518)に変えた。 Δn was changed to 0.0712 (589nm, 20 ℃) ​​nematic liquid crystal composition (Merck, ZLI-4518). 他の構成は下記を除けば実施例14と同じである。 Other configurations are the same as in Example 14 except for the following.
液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3 The thickness of the liquid crystal composition layer 5.5 [mu] m, i.e. d · [Delta] n is 0.3
916μmである。 It is 916μm. この液晶セルに位相差R fが0.11 Retardation R f to the liquid crystal cell is 0.11
μmであるポリビニルアルコール製一軸延伸フィルムの光学的異方性媒質を積層し、(d・Δn−R f )の値を0. The optical anisotropic medium of polyvinyl alcohol manufactured by uniaxially oriented film is μm are laminated, the value of (d · Δn-R f) 0.
2816μmと明るさ及び色調が良好な0.21から0.36 From 2816μm and brightness and color are good 0.21 0.36
μmの範囲に入るようにした。 It was to enter the range of μm.

【0087】その結果、着色がなく明るさが50%以上の明るい表示が得られた。 [0087] As a result, coloration no brightness was obtained a bright display over 50%.

【0088】〔実施例24〕本実施例の構成は下記の要件を除けば、実施例8と同一である。 [0088] Example 24 structure of this embodiment except for the following requirements, the same as in Example 8.

【0089】液晶組成物層のΔnは0.072でギャップdは7.0μmとした。 [0089] gap d in the Δn of the liquid crystal composition layer 0.072 was 7.0μm. よってΔn・dは0.504μ Therefore, Δn · d is 0.504μ
mである。 A m. φ LC1を89.5 度とし、上下基板上の液晶分子配向方向を互いに交差させ、|φ LC1 −φ LC2 |=9 The phi LC1 and 89.5 degrees, crossed the liquid crystal molecular alignment direction on the upper and lower substrates to each other, | φ LC1 -φ LC2 | = 9
0度とした。 0 degrees and the. 偏光板の配置は互いに直交(|φ P2 −φ P1 The arrangement of the polarizing plate is orthogonal to each other (| φ P2P1
|=90°)させかつ液晶分子配向方向との関係を旋光モードとなるようにφ LC1 =φ P1とした。 | = 90 °) it is allowed and the relationship between the liquid crystal molecular alignment direction is as φ LC1 = φ P1 becomes rotatory mode. この結果、ノーマリオープン型が得られた。 As a result, normally open type was obtained.

【0090】本実施例における電気光学特性を測定したところ、複屈折モードである他の実施例に比べてしきい値電圧V 10 ,V 90が約2倍になった点を除けば、同じく明るさも50%以上で、視角を左右,上下に変えた場合のカーブの差も極めて小さく、表示特性はほとんど変化しないという結果を得た。 [0090] Measurement of the electro-optical properties in the present embodiment, except that the threshold voltage V 10, V 90 as compared with the other examples that birefringence mode was about 2-fold, also brightness or else by more than 50%, the left and right viewing angle, the difference between the curves when changing up and down is extremely small, the display characteristics were obtained the result that hardly changes. また、液晶配向性も良好で、 Further, the liquid crystal orientation is also good,
配向不良ドメインは発生しなかった。 Orientation failure domain did not occur.

【0091】〔実施例25,26〕本実施例の構成は下記の要件を除けば、実施例1と同一である。 [0091] Example 25 and 26] structure of this embodiment except for the following requirements, the same as in Example 1.

【0092】偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように、設定した。 [0092] The arrangement of the polarizing plate, as in a state in which an electric field is slightly applied not zero dark state is obtained and set. 即ち、|φ LC1 −φ P1 |を実施例25,26でそれぞれ5 That, | φ LC1P1 |, respectively Example 25 5
度,15度とし、|φ P2 −φ P1 |=90度とした。 Every time, and 15 degrees, | φ P2P1 | = was 90 degrees.

【0093】他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。 [0093] As with other embodiments, brightness, good display characteristics in the viewing angle both surfaces was obtained. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0094】〔実施例27,28〕本実施例の構成は下記の要件を除けば、実施例14と同一である。 [0094] Example 27 and 28] structure of this embodiment except for the following requirements, the same as in Example 14.

【0095】偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように、設定した。 [0095] The arrangement of the polarizing plate, as in a state in which an electric field is slightly applied not zero dark state is obtained and set. 即ち、|φ P1 −φ LC1 |を実施例27,28でそれぞれ5 That, | φ P1LC1 |, respectively Example 27 5
度,7度とし、|φ P2 −φ P1 |=90度とした。 Every time, and 7 degrees, | φ P2P1 | = was 90 degrees. また、 Also,
液晶組成物層の厚みdは6.3μmとした。 The thickness d of the liquid crystal composition layer was 6.3 [mu] m. よって、Δ Thus, Δ
n・dは0.275μmである。 n · d is 0.275μm.

【0096】本実施例における電気光学特性の測定結果を図13に示す。 [0096] The measurement results of the electro-optical characteristics in the embodiment shown in FIG. 13. 実施例27の場合、暗状態となる電圧V OFFは3.0ボルト、最も明るくなる電圧V ONは9.2 For Example 27, the voltage V OFF to the dark state 3.0 volts, the brightest becomes voltage V ON is 9.2
ボルトであった。 It was a bolt. 駆動をV OFFとV ONの間で行えば、十分に高いコントラストが得られる。 By performing driving between V OFF and V ON, a sufficiently high contrast can be obtained. 同様に、実施例28 Similarly, Example 28
の場合はV OFFは5.0ボルト、V ONは9.0ボルトであった。 Is V OFF in the case of 5.0 volts, V ON was 9.0 volts.

【0097】V OFFとV ONの間で駆動した場合、他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。 [0097] When driven between V OFF and V ON, as in the other embodiments, brightness, good display characteristics in the viewing angle both surfaces was obtained. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0098】〔実施例29〕本実施例の構成は下記の要件を除けば、実施例27と同一である。 [0098] Example 29] structure of this embodiment except for the following requirements, the same as in Example 27.

【0099】信号電極に画像信号を印加すると共に、共通電極に3.0V の交流波形を印加した。 [0099] to the signal electrode is applied with an image signal, and applying an AC waveform of 3.0V to the common electrode. その結果、信号電極に供給する電圧の低電圧化(8.3V⇒6.2V) As a result, the low voltage of the voltage supplied to the signal electrode (8.3V⇒6.2V)
が実現した。 There was realized.

【0100】このようにしてV OFFとV ONの間で駆動を行い、他の実施例と同じく、明るさ,視角両面で良好な表示特性を得た。 [0100] carried out driven between this way V OFF and V ON, as in the other examples, to obtain the brightness, good display characteristics in the viewing angle both sides. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0101】〔実施例30〕本実施例の構成は下記の要件を除けば、実施例1と同一である。 [0102] Example 30] structure of this embodiment except for the following requirements, the same as in Example 1.

【0102】偏光板の配置を、電界が0ではなく印加された状態で暗状態が得られるように、設定した。 [0102] The arrangement of the polarizing plate, so that the electric field is the dark state in a state of being applied 0 instead obtained, was set. 即ち、 In other words,
LC1 −φ P1 |を45度、|φ P2 −φ P1 |を90度とした。 | φ LC1P1 | 45 degrees, | was 90 degrees | φ P2P1. これにより、低電圧印加時に明状態、高電圧印加時に暗状態となった。 Thus, a bright state when a low voltage is applied to obtain a dark state when a high voltage is applied. この時の明るさの電圧依存性の測定結果を図14で実線で示した。 The brightness voltage dependence of the measurement result of this time shown in FIG. 14 in solid line.

【0103】他の実施例と同じく、明るさ,視角両面で良好な表示特性が得られた。 [0103] As with other embodiments, brightness, good display characteristics in the viewing angle both surfaces was obtained. コントラスト比は35となった。 The contrast ratio was 35. また、液晶配向性も良好で、配向不良ドメインは発生しなかった。 Further, the liquid crystal orientation is good, and orientation failure domain did not occur.

【0104】〔実施例31〕実施例30の構成に於いて、2枚の偏光板の間に界面残留位相差を補償する複屈折媒体(一軸延伸したポリビニルアルコールフィルム) [0104] In the configuration of Example 31 Example 30, the birefringent medium compensates a surface residual retardation between two polarizing plates (polyvinyl alcohol film was uniaxially stretched)
を挿入した。 It was inserted. このフィルムの延伸方向φ Rは−45度とし、偏光板透過軸に直交させた。 The stretching direction phi R of the film was set to -45 °, it was perpendicular to the polarizer transmission axis. また、位相差R fは1 In addition, the phase difference R f 1
5nmである。 It is 5nm.

【0105】図14の点線で示したように、実施例30 [0105] As shown by a dotted line in FIG. 14, Example 30
に比べて高電圧印加時の光漏れが抑制され、コントラスト比は150に更に改善された。 Light leakage at the time of high voltage can be suppressed as compared with, was further improved the contrast ratio is 150.

【0106】 [0106]

【発明の効果】本発明によれば、第一に、透明電極がなくとも高コントラストで、低価格の設備で高い歩留まりで量産可能な低コストの薄膜トランジスタ型液晶表示装置を提供することができ、第二に、視角特性が良好で多階調表示が容易である薄膜トランジスタ型液晶表示装置を提供することができ、第三に、液晶配向に関するプロセス及び材料の裕度が大きく、そのため開口率が高くでき、光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することができ、第四に、第一から第三の効果に加えてより構造が簡素である薄膜トランジスタ構造を提供し、開口率を高くし、光透過率を引上げた、より明るい薄膜トランジスタ型液晶表示装置を提供することができる。 According to the present invention, the first, without the transparent electrode with high contrast, it is possible to provide a mass producible, low cost thin film transistor liquid crystal display device with a high yield at a low cost equipment, Secondly, it is possible to viewing angle characteristics to provide a thin film transistor liquid crystal display device which is easy to good multi-tone display, in a third, large tolerance of processes and materials relating to liquid crystal alignment, therefore the aperture ratio is high can, was pulled a light transmittance, it is possible to provide a brighter TFT type liquid crystal display device, the fourth, more structure in addition to the third effect from the first is to provide a thin film transistor structure is simple, the aperture to increase the rate, it was raised the light transmittance, it is possible to provide a brighter TFT type liquid crystal display device.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の液晶表示装置における液晶の動作を示す図。 It shows the operation of the liquid crystal in the liquid crystal display device of the present invention; FIG.

【図2】本発明の薄膜トランジスタの一例を示す図。 It illustrates an example of a thin film transistor of the present invention; FIG.

【図3】本発明(a)及び比較例(b)の電気光学特性(視角方向依存性)を示す図。 Shows an electro-optical characteristics (viewing angle direction dependence) in FIG. 3 (a) of the present invention and Comparative Example (b).

【図4】薄膜トランジスタにおいて画素電極(ソース電極),共通電極,走査電極,信号電極(ドレイン電極) [4] pixel in the thin film transistor electrode (source electrode), a common electrode, a scanning electrode, signal electrode (drain electrode)
をいずれも一方の基板上に配置した本発明の一実施例を示す図。 Illustrates an embodiment of the present invention were all placed on one of the substrates a.

【図5】画素電極(ソース電極),信号電極(ドレイン電極)を画素の中央に配置し、一画素を2分割した本発明の一実施例を示す図。 [5] The pixel electrode (source electrode), a signal electrode (drain electrode) is arranged in the center of the pixel, illustrating one embodiment of the present invention which is divided into two one pixel FIG.

【図6】電界方向に対する、界面上の分子長軸配向方向φ LC ,偏光板偏光軸φ P ,位相板進相軸φ Rのなす角を示す図。 6 shows with respect to the electric field direction, the long molecular axis orientation direction phi LC on the interface, a polarizing plate polarizing axis phi P, the angle of the phase plate fast axis phi R.

【図7】界面上の分子長軸配向方向φ LCを変えた種々の実施例における電気光学特性を示す図。 7 is a diagram showing an electro-optical characteristics in various embodiments with different molecular long axis orientation direction phi LC on the interface. 誘電率異方性が正の場合。 If the dielectric anisotropy is positive.

【図8】本発明の液晶表示駆動回路システムを表す図。 8 is a diagram representing a liquid crystal display driving circuit system of the present invention.

【図9】本発明の液晶表示透過型光学システムを表す図。 9 is a diagram representing a liquid crystal display transmissive optical system of the present invention.

【図10】本発明の液晶表示反射型光学システムを表す図。 FIG. 10 is a diagram representing a liquid crystal display reflective optical system of the present invention.

【図11】界面上の分子長軸配向方向φ LCを変えた種々の実施例における電気光学特性を示す図。 11 is a diagram showing an electro-optical characteristics in various embodiments with different molecular long axis orientation direction phi LC on the interface. 誘電率異方性が負の場合。 If the dielectric anisotropy is negative.

【図12】液晶組成物層の厚みdを変えた種々の実施例における電気光学特性を示す図。 12 is a diagram showing electro-optical properties of various embodiments of changing the thickness d of the liquid crystal composition layer. 誘電率異方性が負の場合。 If the dielectric anisotropy is negative.

【図13】偏光板の配置を、電界が0ではなくやや印加された状態で暗状態が得られるように設定した時の電気光学特性を示す図。 [13] The arrangement of the polarizing plate, showing the electro-optical characteristic when an electric field is set to a dark state is obtained in a state of slightly applied not zero Fig.

【図14】ノーマリオープン型の特性及び界面残留位相差を補償した時の特性を表す図。 Figure 14 is a graph representing the characteristics when compensating for the characteristics and surface residual retardation of the normally open type.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…画素電極(ソース電極)、2…共通電極(コモン電極)、3…基板、4…配向膜、5…液晶組成物層中の液晶分子、6…偏光板、7…電界方向、8…界面上の分子長軸配向方向(ラビング方向)、9…偏光板偏光軸方向、10…ゲート電極(走査配線)、11…付加容量素子、12…信号電極(ドレイン電極)、13…ゲート絶縁膜、14…平坦化膜、15…保護絶縁膜、16…アモルファスシリコン、17…カラーフィルタ、18…遮光層、19…偏光板偏光透過軸、20…位相差板進相軸、 1 ... pixel electrode (source electrode), 2 ... common electrode (common electrode), 3 ... substrate, 4 ... orientation film, 5 ... liquid crystal molecules of the liquid crystal composition layer, 6 ... polarizing plate, 7 ... electric field direction, 8 ... molecular long axis orientation direction on the surface (rubbing direction), 9 ... polarizer polarizing axis direction, 10 ... gate electrode (scanning line), 11 ... additional capacitance element, 12 ... signal electrode (drain electrode), 13 ... gate insulating film , 14 ... flattening film, 15 ... protective insulating film, 16 ... amorphous silicon, 17 ... color filter, 18 ... light shielding layer, 19 ... polarizing plate polarizing transmission axis 20 ... phase feedboard fast axis,
21…信号電極駆動回路、22…走査電極駆動回路、2 21 ... signal electrode drive circuit, 22 ... scanning electrode driving circuit, 2
3…信号電極、24…走査電極、25…下側基板、26 3 ... signal electrode, 24 ... scan electrodes, 25 ... lower substrate, 26
…上側基板、27…コントロール回路、28…位相差板、29…バックライト、30…反射板、31…液晶組成物層。 ... upper substrate, 27 ... control circuit, 28 ... phase difference plate, 29 ... backlight, 30 ... reflector, 31 ... liquid crystal composition layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 益幸 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 鈴木 堅吉 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Ota Ekiko Hitachi City, Ibaraki Prefecture Kuji-cho, 4026 address, Inc. Date falling Works Hitachi the laboratory (72) inventor Mobara City, Chiba Prefecture Kenkichi Suzuki Hayano 3300 address Hitachi Seisakusho Mobara factory the inner

Claims (18)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】少なくとも一方が透明な一対の基板、該基板間に挾持され、配向した誘電率異方性と屈折率異方性とを有する液晶組成物層,偏光手段,マトリクス状に配置された複数の画素、各画素ごとに備えられ、画素電極,信号配線電極及び走査配線電極に接続された薄膜トランジスタ素子、該薄膜トランジスタ素子とは離接した共通電極、前記画素の光透過率或いは反射率を変化させる電圧信号波形を印加する手段とを有する液晶表示装置において、 前記画素電極と前記信号配線電極は、電圧信号波形を印加する手段により前記画素電極と前記共通電極との間に、基板面にほぼ平行に電界を印加し、電界の強度に応じ前記画素の光透過率或いは反射率を変化させるように配置され、 前記画素電極が前記画素内で第1の方向に伸びており 1. A at least one of a pair of transparent substrates are sandwiched between the substrates, the liquid crystal composition layer having a refractive index anisotropy and oriented dielectric anisotropy, polarization means are arranged in a matrix a plurality of pixels, provided in each pixel, the pixel electrodes, the signal wiring electrodes and the scanning wiring electrodes connected to the thin-film transistor device, a common electrode in contact away from the thin-film transistor element, a light transmittance or reflectance of the pixel in the liquid crystal display device having a means for applying a voltage signal waveform changing, the signal wiring electrode and the pixel electrode, between the common electrode and the pixel electrode by means for applying a voltage signal waveform, to the substrate surface an electric field is applied substantially in parallel, are arranged to change the optical transmittance or reflectivity of the pixel corresponding to the intensity of the electric field, the pixel electrode extends in a first direction within the pixel
    前記信号配線電極及び前記共通電極は第1の方向に、かつ複数の画素間にまたがってそれぞれ表示部端部にまで伸びていることを特徴とする液晶表示装置。 The liquid crystal display device, characterized in that the signal wiring electrode and the common electrode extends to each display unit ends across the first direction, and between the plurality of pixels.
  2. 【請求項2】前記画素電極が1画素内で前記信号配線電極を挟むように対をなし、前記画素及び前記信号配線電極が1対の共通電極に挟まれてなることを特徴とする請求項1項に記載の液晶表示装置。 2. A method according to claim wherein said pixel electrodes are paired so as to sandwich the signal wiring electrode in one pixel, the pixels and the signal wiring electrode is characterized by comprising sandwiched common electrode pair 1 the liquid crystal display device according to item 1.
  3. 【請求項3】前記画素電極,前記信号配線電極,前記共通電極及び前記走査配線電極のいずれもが前記一対の基板の一方に配置されていることを特徴とする請求項1項或いは2項に記載の液晶表示装置。 Wherein the pixel electrodes, the signal wiring electrode, the common electrode and claim 1, wherein none of the scanning wiring electrode is characterized in that it is arranged on one of said pair of substrates or the binomial the liquid crystal display device according.
  4. 【請求項4】前記画素電極と前記共通電極とが同層であって、前記画素電極と前記走査配線との間に絶縁物を介して容量素子を形成していることを特徴とする請求項1 Wherein said common electrode and said pixel electrode is a same layer, claims, characterized in that forming a capacitor through an insulator between the scanning lines and the pixel electrode 1
    項或いは2項に記載の液晶表示装置。 The liquid crystal display device according to claim or 2, wherein.
  5. 【請求項5】前記一対の基板のうち前記薄膜トランジスタ素子を備えた基板に対向した基板上に、色の異なる少なくとも2種以上のカラーフィルタを備え、該カラーフィルタの境界が前記画素電極,前記信号配線電極及び前記共通電極のいずれかと重なることを特徴とする請求項1項或いは2項に記載の液晶表示装置。 5. A substrate facing the substrate provided with the thin film transistor element of the pair of substrates, the color having different at least two kinds of color filters, a boundary is the pixel electrode of the color filter, the signal the liquid crystal display device according to claim 1, wherein or 2 wherein, characterized in that overlap with any of the wiring electrodes and the common electrode.
  6. 【請求項6】前記画素電極,前記信号配線電極,前記共通電極及び前記走査配線電極を有する基板に対向する他方の基板上に、色の異なる少なくとも2種以上のカラーフィルタを備え、該カラーフィルタ上に表面をより平坦化する有機ポリマを積層し、該有機ポリマが透明ポリマであり、更に該透明ポリマをその表面をラビング処理することで界面上の液晶分子を所定方向に配向制御する配向膜として用いることを特徴とする請求項1項から3項のいずれかに記載の液晶表示装置。 Wherein said pixel electrode, the signal wiring electrode, the common electrode and the scanning wiring electrodes other substrate opposing the substrate having provided with at least two different kinds or more of the color filter color, the color filter the organic polymer to further flatten the surface above laminated, organic polymer is transparent polymer, an alignment film controls alignment predetermined direction liquid crystal molecules on the interface by further rubbing the surface transparent polymer the liquid crystal display device according to any one of 3 claims 1 to wherein which comprises using as.
  7. 【請求項7】少なくとも一方が透明な一対の基板、該基板間に挾持され、配向した誘電率異方性と屈折率異方性とを有する液晶組成物層,偏光手段,マトリクス状に配置された複数の画素、各画素ごとに備えられ、画素電極,信号配線電極及び走査配線電極に接続された薄膜トランジスタ素子、該薄膜トランジスタ素子とは離接した共通電極、前記画素の光透過率或いは反射率を変化させる電圧信号波形を印加する手段とを有する液晶表示装置において、 前記画素電極と前記信号配線電極は、電圧信号波形を印加する手段により前記画素電極と前記共通電極との間に、基板面にほぼ平行に電界を印加し、電界の強度に応じ前記画素の光透過率或いは反射率を変化させるように配置され、 前記薄膜トランジスタ素子及び前記液晶組成物層に直 7. at least one of a pair of transparent substrates are sandwiched between the substrates, the liquid crystal composition layer having a refractive index anisotropy and oriented dielectric anisotropy, polarization means are arranged in a matrix a plurality of pixels, provided in each pixel, the pixel electrodes, the signal wiring electrodes and the scanning wiring electrodes connected to the thin-film transistor device, a common electrode in contact away from the thin-film transistor element, a light transmittance or reflectance of the pixel in the liquid crystal display device having a means for applying a voltage signal waveform changing, the signal wiring electrode and the pixel electrode, between the common electrode and the pixel electrode by means for applying a voltage signal waveform, to the substrate surface an electric field is applied substantially in parallel, are arranged to change the optical transmittance or reflectivity of the pixel corresponding to the intensity of the electric field, the TFT elements and directly to the liquid crystal composition layer 接する有機絶縁層が備えられていることを特徴とする液晶表示装置。 The liquid crystal display device, characterized in that the organic insulating layer is provided in contact.
  8. 【請求項8】前記薄膜トランジスタ素子を覆った前記有機絶縁層をラビング処理することで該有機絶縁層に、前記薄膜トランジスタ素子の保護膜と液晶分子配向制御膜の両方の機能を持たせたことを特徴とする請求項7項に記載の液晶表示装置。 8. A organic insulating layer by rubbing the organic insulating layer covering the thin film transistor element, characterized in that to have a function of both the protective film and the liquid crystal molecule alignment control film of the thin film transistor element the liquid crystal display device according to claim 7, wherein to.
  9. 【請求項9】前記液晶組成物層の誘電率異方性が正であり、かつ少なくとも一方の基板界面上での液晶分子配向方向と電界方向とのなす角度|φ LC |が45度以上90 9. A dielectric anisotropy of the liquid crystal composition layer is positive, and the angle between the liquid crystal molecular alignment direction and the direction of the electric field at least one of the substrates on the interface | phi LC | 45 degrees 90
    度未満であることを特徴とする請求項1項から4項のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of 4 of claims 1, wherein, characterized in that less than degrees. ただし、−90度≦φ LC However, -90 degrees ≦ φ LC
    ≦90度である。 ≦ 90 degrees.
  10. 【請求項10】前記液晶組成物層の誘電率異方性が負であり、かつ少なくとも一方の基板界面上での液晶分子配向方向と電界方向とのなす角度|φ LC |が0度を超え4 10. A dielectric anisotropy of the liquid crystal composition layer is negative, and the angle between the liquid crystal molecular alignment direction and the direction of the electric field at least one of the substrates on the interface | exceeds the 0 degree | phi LC 4
    5度未満であることを特徴とする請求項1項から4項のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any of claims 1, wherein, wherein the fourth term to be less than 5 degrees. ただし、−90度≦φ However, -90 degrees ≦ φ
    LC ≦90度である。 Is an LC ≦ 90 degrees.
  11. 【請求項11】前記液晶組成物層内の配向に関して、一方の基板界面上での液晶分子配向方向角度φ LC1と他方基板界面上での液晶分子配向方向角度φ LC2とが互いに略平行(φ LC1 ≒φ LC2 )であり、かつ前記液晶組成物層の厚みd及び屈折率異方性Δnの積d・Δnが0.21 Respect 11. The orientation of the liquid crystal composition layer, substantially parallel to each other and a liquid crystal molecular alignment direction angle phi LC2 on LC1 and other substrate interface the liquid crystal molecular alignment direction angle phi in one substrate interface (phi LC1 ≒ a phi LC2), and the product d · [Delta] n of thickness d and refractive index anisotropy [Delta] n of the liquid crystal composition layer is 0.21
    μmから0.36μmの間であることを特徴とする請求項10項あるいは11項に記載の液晶表示装置。 The liquid crystal display device according to claim 10 wherein, or 11 wherein, characterized in that is between μm of 0.36 .mu.m.
  12. 【請求項12】前記液晶組成物層の厚みd及び屈折率異方性Δnの積d・Δnよりも低い位相差R fを有する光学的異方性媒質を液晶組成物層により生じた位相差を補償するように挿入し、かつその絶対値の差|d・Δn| 12. A phase difference of the optically anisotropic medium having a thickness d and refractive index anisotropy [Delta] n of the product d · [Delta] n retardation R f is lower than the liquid crystal composition layer caused by the liquid crystal composition layer insert the to compensate, and the difference between the absolute value | d · Δn |
    −|R f |を0.21μmから0.36μm の間としたことを特徴とする請求項11項に記載の液晶表示装置。 - | liquid crystal display device according to claim 11 wherein, characterized in that it has a between from 0.21μm to 0.36μm | R f.
  13. 【請求項13】前記液晶組成物層内の配向に関して、一方の基板界面上での液晶分子配向方向角度φ LC1と他方基板界面上での液晶分子配向方向角度φ LC2とが互いに交差し、その角度|φ LC1 −φ LC2 |が80度以上100 Respect 13. The orientation of the liquid crystal composition layer, intersects the liquid crystal molecular alignment direction angle phi LC2 each other in the liquid crystal molecular alignment direction angle phi LC1 and the other substrate interface on one substrate surface, the angle | φ LC1LC2 | is 80 degrees or more 100
    度以下であり、かつ前記液晶組成物層の厚みd及び屈折率異方性Δnの積d・Δnが0.40μmから0.60μ 0.60μ degrees or less, and the and the product d · [Delta] n of thickness d and refractive index anisotropy [Delta] n of the liquid crystal composition layer is from 0.40μm
    mの間であることを特徴とする請求項10項或いは11 10. Section or 11, characterized in that m is between
    項に記載の液晶表示装置。 The liquid crystal display device according to item.
  14. 【請求項14】液晶分子の傾き角が、いずれの界面上に於いても4度以下であることを特徴とする請求項11あるいは13項記載の液晶表示装置。 14. tilt angle of liquid crystal molecules, the liquid crystal display device according to claim 11 or 13 wherein wherein at most 4 degrees at on any interface.
  15. 【請求項15】前記液晶組成物層の誘電率異方性が正であり、前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、前記界面上の液晶分子の長軸方向と電界方向とのなす角φ LCが該一対の偏光板のうちの一方の偏光板Aの透過軸(或いは吸収軸)の角度φ Pよりも大きく、かつその差|φ LC −φ P |が3度以上15度以下であることを特徴とする請求項10項に記載の液晶表示装置。 15. A dielectric anisotropy of the liquid crystal composition layer is positive, the polarization means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the longitudinal direction of the liquid crystal molecules on the interface greater than the angle phi P of the transmission axis of one polarizing plate a of the angle phi LC is the pair of polarizing plates between the electric field direction (or absorption axis), and the difference | φ LCP | 3 the liquid crystal display device according to claim 10 wherein, characterized in that it is 15 degrees or more degrees.
  16. 【請求項16】前記液晶組成物層の誘電率異方性が負であり、前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、前記界面上の液晶分子の長軸方向と電界方向とのなす角φ LCが該偏光板の吸収軸或いは透過軸の角度φ Pよりも小さく、かつその差|φ P −φ LC |が3度以上15度以下であることを特徴とする請求項11項に記載の液晶表示装置。 16. The dielectric anisotropy of the liquid crystal composition layer is negative, the polarization means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the longitudinal direction of the liquid crystal molecules on the interface characterized in that is less than 15 degrees 3 degrees | angle phi LC between the electric field direction is smaller than the angle phi P of the absorption axis or transmission axis of the polarizing plate, and the difference | phi P -.phi LC the liquid crystal display device of claim 11 wherein.
  17. 【請求項17】前記第2の電極に画像信号を印加し、かつ前記液晶組成物層に印加される電圧がより高まるように前記コモン電極にも電圧信号波形を印加することを特徴とする請求項15項或いは16項に記載の液晶表示装置。 17. The image signal is applied to the second electrode, and the voltage applied to the liquid crystal composition layer and applying a voltage signal waveform to the common electrode to be more increased claims the liquid crystal display device according to 15, wherein claim or 16, wherein.
  18. 【請求項18】前記偏光手段が前記液晶組成物層を挟む一対の偏光板であり、それらを低電圧V L印加時に明状態、高電圧V H印加時に暗状態となる配置に設定し、前記一対の偏光板間に、V H印加時の液晶層の界面残留位相差を補償する透明媒体を挿入したことを特徴とする請求項11或いは13項に記載の液晶表示装置。 18. A pair of polarizing plates the polarizing means sandwich the liquid crystal composition layer, and set them a bright at low voltage V L applied state, in a dark state positioned at the high voltage V H is applied, the a pair of polarizing plates, the liquid crystal display device according to claim 11 or 13 wherein, characterized in that the insertion of the transparent medium to compensate for the interfacial residual phase difference of the liquid crystal layer at the time of V H is applied.
JP22546293A 1992-09-18 1993-09-10 The liquid crystal display device Expired - Lifetime JP2940354B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24993892 1992-09-18
JP4-249938 1992-09-18
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 The liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 The liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH06160878A true JPH06160878A (en) 1994-06-07
JP2940354B2 JP2940354B2 (en) 1999-08-25

Family

ID=26526653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22546293A Expired - Lifetime JP2940354B2 (en) 1992-09-18 1993-09-10 The liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2940354B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010530A1 (en) * 1995-09-14 1997-03-20 Hitachi, Ltd. Active matrix liquid crystal display
JPH09105918A (en) * 1995-10-12 1997-04-22 Hitachi Ltd The liquid crystal display device
JPH11149076A (en) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd Liquid crystal display device
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US5977562A (en) * 1995-11-14 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6034757A (en) * 1995-10-12 2000-03-07 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging electricity
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US6052168A (en) * 1997-11-20 2000-04-18 Nec Corporation Active matrix liquid-crystal display with verticle alignment, positive anisotropy and opposing electrodes below pixel electrode
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
US6097467A (en) * 1996-08-05 2000-08-01 Nec Corporation Latitudinal LCD with cylindrical and eliptical spacers at intersection of signal and gate lines
US6130737A (en) * 1997-01-21 2000-10-10 Hitachi, Ltd. Lateral electric field switching mode liquid crystal display apparatus without black stains
US6130739A (en) * 1996-10-04 2000-10-10 Sharp Kabushiki Kaisha Matrix driving transverse electric field liquid crystal display device and homeotropically-oriented nematic liquid crystal material
US6141078A (en) * 1997-07-14 2000-10-31 Mitsubishi Denki Kabushiki Kaisha IPS type liquid crystal display apparatus having in-plane retardation value of less than zero and not more than 20
US6147738A (en) * 1998-02-09 2000-11-14 Nec Corporation Liquid crystal display device and manufacturing method for same
US6160600A (en) * 1995-11-17 2000-12-12 Semiconductor Energy Laboratory Co., Ltd. Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride
US6191837B1 (en) 1996-09-20 2001-02-20 Nec Corporation IPS LCD having an organic conductive layer outside the subtrate
US6195145B1 (en) 1996-10-04 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display device
US6222602B1 (en) 1995-10-12 2001-04-24 Hitachi, Ltd Liquid crystal display apparatus and a method for manufacturing the same
US6243064B1 (en) 1995-11-07 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US6285429B1 (en) 1998-01-19 2001-09-04 Nec Corporation Liquid crystal display device and method for its production
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6300992B1 (en) 1997-07-15 2001-10-09 Nec Corporation Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6337726B1 (en) 1998-02-24 2002-01-08 Kabushiki Kaisha Toshiba Array substrate for liquid crystal display element
US6346932B1 (en) 1996-03-14 2002-02-12 Seiko Epson Corporation Liquid crystal device and electronic equipment
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6384888B2 (en) 1997-07-12 2002-05-07 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6498634B1 (en) 1995-12-20 2002-12-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US6525798B1 (en) 1999-10-21 2003-02-25 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6590627B2 (en) 2001-02-28 2003-07-08 Hitachi, Ltd. Liquid crystal display
US6618100B2 (en) 1997-07-23 2003-09-09 Seiko Epson Corporation Liquid crystal device, liquid crystal device manufacturing method and electronic apparatus
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
US6756089B2 (en) 1996-05-08 2004-06-29 Hitachi, Ltd. Active-matrix liquid crystal display
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6850303B2 (en) 2000-09-27 2005-02-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device having additional storage capacitance
US6859194B2 (en) 2001-03-29 2005-02-22 Hitachi, Ltd. Liquid crystal display apparatus
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
US6911962B1 (en) 1996-03-26 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
KR100759093B1 (en) * 1998-05-08 2007-09-19 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
JP2007248637A (en) * 2006-03-14 2007-09-27 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
KR100900625B1 (en) * 2004-06-29 2009-06-02 샤프 가부시키가이샤 Phase difference film, polarization film, liquid crystal display unit, and method of designing phase difference film
US7548289B2 (en) 2005-01-19 2009-06-16 Future Vision Inc. LCD device with film member attached to polarizing element and satisfies a predetermined contast ratio to be equal or greater than 0.025 for all azimuth angels
US7615260B2 (en) 1996-05-08 2009-11-10 Hitachi, Ltd. Active-matrix liquid crystal display
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US7630043B2 (en) 2006-07-19 2009-12-08 Hitachi Displays, Ltd. Liquid display device and fabrication method thereof
US7663726B2 (en) 2006-12-08 2010-02-16 Epson Imaging Devices Corporation Liquid crystal apparatus and electronic apparatus
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US7799390B2 (en) 2007-03-30 2010-09-21 Sony Corporation Liquid crystal display device and liquid crystal display
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
US7961263B2 (en) 1997-11-20 2011-06-14 Samsung Electronics Co., Ltd. Liquid crystal displays and manufacturing methods thereof
JP2012014200A (en) * 2011-10-18 2012-01-19 Semiconductor Energy Lab Co Ltd Active matrix liquid crystal display device
JP2012088743A (en) * 2012-01-25 2012-05-10 Semiconductor Energy Lab Co Ltd Liquid crystal display device, liquid crystal display module, and electronic appliance
US20120182501A1 (en) * 2011-01-19 2012-07-19 Nobuko Fukuoka Liquid crystal display device
JP2012150498A (en) * 2012-03-12 2012-08-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2012190040A (en) * 2012-05-16 2012-10-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
US8305334B2 (en) 2008-02-14 2012-11-06 Hitachi Displays, Ltd. Liquid crystal display device
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
JP2013205652A (en) * 2012-03-28 2013-10-07 Japan Display Inc Liquid crystal display
US8659728B2 (en) 2005-05-09 2014-02-25 Lg Display Co., Ltd. Liquid crystal display device comprising compensation films having negative photo-elastic constant
JP2014081637A (en) * 2013-11-25 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
KR20160008954A (en) 2014-07-15 2016-01-25 제이엔씨 주식회사 Diamins, polyamicacids or the dirivatives, liquid crystal aligning agents, liquid crystal alignment films, and liquid crystal display devices
WO2016017570A1 (en) * 2014-07-28 2016-02-04 Dic株式会社 Liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141900A (en) 2017-02-28 2018-09-13 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display and method for manufacturing liquid crystal display
JP2018141901A (en) 2017-02-28 2018-09-13 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display and method for manufacturing liquid crystal display

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010530A1 (en) * 1995-09-14 1997-03-20 Hitachi, Ltd. Active matrix liquid crystal display
US6034757A (en) * 1995-10-12 2000-03-07 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging electricity
JPH09105918A (en) * 1995-10-12 1997-04-22 Hitachi Ltd The liquid crystal display device
US6222602B1 (en) 1995-10-12 2001-04-24 Hitachi, Ltd Liquid crystal display apparatus and a method for manufacturing the same
US6108066A (en) * 1995-10-12 2000-08-22 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging with electricity
US6236441B1 (en) 1995-10-12 2001-05-22 Hitachi, Ltd. Liquid crystal display apparatus and a method for manufacturing the same
US6621102B2 (en) 1995-11-04 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6456269B2 (en) 1995-11-07 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US6243064B1 (en) 1995-11-07 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US6268617B1 (en) 1995-11-14 2001-07-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US5977562A (en) * 1995-11-14 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6160600A (en) * 1995-11-17 2000-12-12 Semiconductor Energy Laboratory Co., Ltd. Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving
US6963382B1 (en) 1995-11-17 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving same
US9182642B2 (en) 1995-12-20 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6498634B1 (en) 1995-12-20 2002-12-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US7327412B2 (en) 1995-12-20 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US7692749B2 (en) 1995-12-20 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8040450B2 (en) 1995-12-20 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8339558B2 (en) 1995-12-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6914655B2 (en) 1995-12-20 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
USRE40770E1 (en) 1996-03-14 2009-06-23 Seiko Epson Corporation Liquid crystal device and electronic equipment
US6657608B2 (en) 1996-03-14 2003-12-02 Seiko Epson Corporation Liquid crystal device and electronic equipment
US6346932B1 (en) 1996-03-14 2002-02-12 Seiko Epson Corporation Liquid crystal device and electronic equipment
US7336249B2 (en) 1996-03-26 2008-02-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
US6911962B1 (en) 1996-03-26 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US6493055B1 (en) 1996-04-10 2002-12-10 Sharp Kabushiki Kaisha Homeo-tropically-oriented nematic liquid crystal material
US6756089B2 (en) 1996-05-08 2004-06-29 Hitachi, Ltd. Active-matrix liquid crystal display
US7615260B2 (en) 1996-05-08 2009-11-10 Hitachi, Ltd. Active-matrix liquid crystal display
US6097467A (en) * 1996-08-05 2000-08-01 Nec Corporation Latitudinal LCD with cylindrical and eliptical spacers at intersection of signal and gate lines
US6191837B1 (en) 1996-09-20 2001-02-20 Nec Corporation IPS LCD having an organic conductive layer outside the subtrate
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6130739A (en) * 1996-10-04 2000-10-10 Sharp Kabushiki Kaisha Matrix driving transverse electric field liquid crystal display device and homeotropically-oriented nematic liquid crystal material
US6663795B2 (en) 1996-10-04 2003-12-16 Sharp Kabushiki Kaisha Liquid crystal display device and liquid crystal material
US6195145B1 (en) 1996-10-04 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display device
US6130737A (en) * 1997-01-21 2000-10-10 Hitachi, Ltd. Lateral electric field switching mode liquid crystal display apparatus without black stains
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US6587170B2 (en) 1997-01-23 2003-07-01 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US7551256B1 (en) 1997-05-19 2009-06-23 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6741312B2 (en) 1997-07-12 2004-05-25 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6384888B2 (en) 1997-07-12 2002-05-07 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6141078A (en) * 1997-07-14 2000-10-31 Mitsubishi Denki Kabushiki Kaisha IPS type liquid crystal display apparatus having in-plane retardation value of less than zero and not more than 20
US6300992B1 (en) 1997-07-15 2001-10-09 Nec Corporation Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6680768B2 (en) 1997-07-15 2004-01-20 Nec Lcd Technologies, Ltd. Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6618100B2 (en) 1997-07-23 2003-09-09 Seiko Epson Corporation Liquid crystal device, liquid crystal device manufacturing method and electronic apparatus
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
JPH11149076A (en) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd Liquid crystal display device
US6052168A (en) * 1997-11-20 2000-04-18 Nec Corporation Active matrix liquid-crystal display with verticle alignment, positive anisotropy and opposing electrodes below pixel electrode
US7961263B2 (en) 1997-11-20 2011-06-14 Samsung Electronics Co., Ltd. Liquid crystal displays and manufacturing methods thereof
US6285429B1 (en) 1998-01-19 2001-09-04 Nec Corporation Liquid crystal display device and method for its production
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6628362B2 (en) 1998-01-23 2003-09-30 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device having a high aperture ratio
US6147738A (en) * 1998-02-09 2000-11-14 Nec Corporation Liquid crystal display device and manufacturing method for same
US6337726B1 (en) 1998-02-24 2002-01-08 Kabushiki Kaisha Toshiba Array substrate for liquid crystal display element
KR100759093B1 (en) * 1998-05-08 2007-09-19 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 The liquid crystal display device
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US6833881B2 (en) 1998-07-07 2004-12-21 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US7145627B2 (en) 1998-07-07 2006-12-05 Lg.Philips Lcd. Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
US7701541B2 (en) 1999-05-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. In-plane switching display device having electrode and pixel electrode in contact with an upper surface of an organic resin film
US7126661B2 (en) 1999-05-20 2006-10-24 Semiconductor Energy Laboratory Co., Ltd In-plane switching display device having common electrode overlapping channel forming region, and double gate TFT
US6950168B2 (en) 1999-05-20 2005-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
US6525798B1 (en) 1999-10-21 2003-02-25 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
US6850303B2 (en) 2000-09-27 2005-02-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device having additional storage capacitance
US6958799B2 (en) 2001-02-28 2005-10-25 Hitachi, Ltd. Liquid crystal display
US6590627B2 (en) 2001-02-28 2003-07-08 Hitachi, Ltd. Liquid crystal display
US6859194B2 (en) 2001-03-29 2005-02-22 Hitachi, Ltd. Liquid crystal display apparatus
US7180490B2 (en) 2001-03-29 2007-02-20 Hitachi, Ltd. Liquid crystal display apparatus
US8025939B2 (en) 2002-12-09 2011-09-27 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US9405152B2 (en) 2002-12-09 2016-08-02 Japan Display Inc. Liquid crystal display and method for manufacturing same
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US8758871B2 (en) 2002-12-09 2014-06-24 Japan Display Inc. Liquid crystal display and method for manufacturing same
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP4586503B2 (en) * 2004-02-12 2010-11-24 チッソ株式会社 Liquid crystal aligning agent, a liquid crystal display device having the alignment film and the alignment film
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
JP4620438B2 (en) * 2004-02-27 2011-01-26 チッソ株式会社 A liquid crystal alignment film, the liquid crystal alignment agent and liquid crystal display device
KR100900625B1 (en) * 2004-06-29 2009-06-02 샤프 가부시키가이샤 Phase difference film, polarization film, liquid crystal display unit, and method of designing phase difference film
US8284358B2 (en) 2004-06-29 2012-10-09 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US8031308B2 (en) 2004-06-29 2011-10-04 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US7948591B2 (en) 2004-06-29 2011-05-24 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US8139188B2 (en) 2004-06-29 2012-03-20 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US7548289B2 (en) 2005-01-19 2009-06-16 Future Vision Inc. LCD device with film member attached to polarizing element and satisfies a predetermined contast ratio to be equal or greater than 0.025 for all azimuth angels
US8659728B2 (en) 2005-05-09 2014-02-25 Lg Display Co., Ltd. Liquid crystal display device comprising compensation films having negative photo-elastic constant
JP2007248637A (en) * 2006-03-14 2007-09-27 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
US7630043B2 (en) 2006-07-19 2009-12-08 Hitachi Displays, Ltd. Liquid display device and fabrication method thereof
US7663726B2 (en) 2006-12-08 2010-02-16 Epson Imaging Devices Corporation Liquid crystal apparatus and electronic apparatus
US7799390B2 (en) 2007-03-30 2010-09-21 Sony Corporation Liquid crystal display device and liquid crystal display
US8305334B2 (en) 2008-02-14 2012-11-06 Hitachi Displays, Ltd. Liquid crystal display device
JP2012150268A (en) * 2011-01-19 2012-08-09 Japan Display Central Co Ltd Liquid crystal display apparatus
US20120182501A1 (en) * 2011-01-19 2012-07-19 Nobuko Fukuoka Liquid crystal display device
CN102608813A (en) * 2011-01-19 2012-07-25 东芝移动显示器有限公司 Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
JP2012014200A (en) * 2011-10-18 2012-01-19 Semiconductor Energy Lab Co Ltd Active matrix liquid crystal display device
JP2012088743A (en) * 2012-01-25 2012-05-10 Semiconductor Energy Lab Co Ltd Liquid crystal display device, liquid crystal display module, and electronic appliance
JP2012150498A (en) * 2012-03-12 2012-08-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
JP2013205652A (en) * 2012-03-28 2013-10-07 Japan Display Inc Liquid crystal display
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
JP2012190040A (en) * 2012-05-16 2012-10-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
JP2014081637A (en) * 2013-11-25 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
KR20160008954A (en) 2014-07-15 2016-01-25 제이엔씨 주식회사 Diamins, polyamicacids or the dirivatives, liquid crystal aligning agents, liquid crystal alignment films, and liquid crystal display devices
WO2016017570A1 (en) * 2014-07-28 2016-02-04 Dic株式会社 Liquid crystal display element
JPWO2016017570A1 (en) * 2014-07-28 2017-04-27 Dic株式会社 The liquid crystal display element

Also Published As

Publication number Publication date
JP2940354B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US7683999B2 (en) Liquid crystal display
US7006189B2 (en) In-plane switching mode liquid crystal display device and manufacturing method thereof
JP3826217B2 (en) Fringe field switching mode liquid crystal display device
US5309264A (en) Liquid crystal displays having multi-domain cells
JP4402280B2 (en) The liquid crystal display device
US6600542B2 (en) Liquid crystal display having high transmittance and high aperture ratio in which the counter electrodes having rectangular plate shape and the pixel electrodes having branches
JP3509875B2 (en) A liquid crystal display device suitable for narrow frame
US5249070A (en) Liquid crystal display
US6341002B1 (en) Liquid crystal display device
US5598285A (en) Liquid crystal display device
JP3022463B2 (en) The liquid crystal display device and manufacturing method thereof
US6608662B1 (en) Liquid crystal display device
US6781657B1 (en) Method of producing two domains within a liquid crystal layer and liquid crystal display device
US20040227890A1 (en) Liquid crystal display panel of horizontal electric field applying type
US5907380A (en) Liquid crystal cell employing thin wall for pre-tilt control
US6678027B2 (en) Fringe field switching mode LCD
JP3211581B2 (en) The liquid crystal display device
JP3398025B2 (en) The liquid crystal display device
JP3162210B2 (en) The liquid crystal display device
US6424393B1 (en) Liquid crystal display apparatus
JP3143925B2 (en) Active matrix liquid crystal display device
KR100246980B1 (en) Active matrix type liquid crystal display elements
JP3811811B2 (en) Fringe field switching mode liquid crystal display device
US6181402B1 (en) Liquid crystal display
US6573965B1 (en) Multi-domain wide viewing angle liquid crystal display having slits on electrodes and bumps above the slits

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250