JPH06160878A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH06160878A
JPH06160878A JP22546293A JP22546293A JPH06160878A JP H06160878 A JPH06160878 A JP H06160878A JP 22546293 A JP22546293 A JP 22546293A JP 22546293 A JP22546293 A JP 22546293A JP H06160878 A JPH06160878 A JP H06160878A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
electrode
crystal display
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22546293A
Other languages
Japanese (ja)
Other versions
JP2940354B2 (en
Inventor
Katsumi Kondo
克己 近藤
Hiroshi Terao
寺尾  弘
Hidetoshi Abe
英俊 阿部
Masuyuki Ota
益幸 太田
Kenkichi Suzuki
堅吉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22546293A priority Critical patent/JP2940354B2/en
Publication of JPH06160878A publication Critical patent/JPH06160878A/en
Application granted granted Critical
Publication of JP2940354B2 publication Critical patent/JP2940354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Abstract

PURPOSE:To obtain an active matrix type liquid crystal display device having such features that the contrast is high, visual angle property is good, a multi- level display can be easily performed, and that the display is bright and the cost is reduced. CONSTITUTION:The device has such a structure that an electric field 7 parallel to a substrate surface is impressed on a liquid crystal composition layer by a thin film transistor provided with a drain electrode 12 and a common electrode 2 which are extending over plural picture elements and a source electrode 1 extending in a direction same as that of the electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、量産性が良好で低コス
トで視角特性が良好な薄膜トランジスタ型液晶表示装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor type liquid crystal display device having good mass productivity, low cost and good viewing angle characteristics.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタ型液晶表示装置
では、液晶層を駆動する電極としては2枚の基板界面上
に形成し相対向させた透明電極を用いていた。これは、
液晶に印加する電界の方向を基板界面にほぼ垂直な方向
とすることで動作する、ツイステッドネマチック表示方
式に代表される表示方式を採用していることによる。一
方、液晶に印加する電界の方向を基板界面にほぼ平行な
方向とする方式として、櫛歯電極対を用いた方式が、例
えば特公昭63−21907 号により提案されている。この場
合、電極は透明である必要は無く導電性が高く不透明な
金属電極を用いることが可能である。
2. Description of the Related Art In a conventional thin film transistor type liquid crystal display device, transparent electrodes which are formed on the interface between two substrates and face each other are used as electrodes for driving a liquid crystal layer. this is,
This is because a display method typified by a twisted nematic display method is adopted, which operates by making the direction of the electric field applied to the liquid crystal substantially perpendicular to the substrate interface. On the other hand, as a method for making the direction of the electric field applied to the liquid crystal substantially parallel to the substrate interface, a method using a comb-teeth electrode pair has been proposed in, for example, Japanese Patent Publication No. 63-21907. In this case, the electrodes do not have to be transparent, and it is possible to use an opaque metal electrode having high conductivity.

【0003】[0003]

【発明が解決しようとする課題】前記の従来技術におい
ては、ITOに代表される透明電極を形成する為にスパ
ッタリング装置等の真空系製造設備を使用する必要があ
り、設備コストが巨額になっていた。また、真空系製造
設備の使用には真空炉内の汚染を除去する作業を伴い、
その為に多大な時間を要し、このことが製造コストを著
しく引き上げている。また、一般に透明電極はその表面
に数10nm程度の凹凸があり、薄膜トランジスタのよ
うな微細なアクティブ素子の加工を困難にしている。さ
らに、透明電極の凸部はしばしば離脱し電極等の他の部
分に混入し、点状或いは線状の表示欠陥を引き起こし、
歩留まりを著しく低下させていた。これらの為に、マー
ケットニーズに対応した低価格の液晶表示装置を安定的
に提供することが出来ずにいた。また、前記の従来技術
においては、画質面でも多くの課題を有していた。特
に、視角方向を変化させた際の輝度変化が著しく、中間
調表示を行った場合、強い各方向により階調レベルが反
転してしまうなど、実用上問題であった。さらに、薄膜
トランジスタ素子の凹凸構造の為にその周辺で配向不良
ドメインが発生し、その対策の為に大きな面積の遮光膜
を要し、光の利用効率も著しく低下させていた。
In the above-mentioned prior art, it is necessary to use a vacuum system manufacturing equipment such as a sputtering apparatus in order to form a transparent electrode typified by ITO, resulting in a huge equipment cost. It was Also, the use of vacuum manufacturing equipment involves the work of removing contamination in the vacuum furnace,
This requires a great deal of time, which significantly increases the manufacturing cost. Further, in general, the transparent electrode has irregularities of about several tens of nm on its surface, which makes it difficult to process a fine active element such as a thin film transistor. In addition, the protrusions of the transparent electrode often come off and mix into other parts such as electrodes, causing dot-shaped or line-shaped display defects,
The yield was remarkably reduced. For these reasons, it has been impossible to stably provide a low-cost liquid crystal display device that meets market needs. Further, the above-mentioned conventional techniques have many problems in terms of image quality. In particular, the change in luminance is remarkable when the viewing angle direction is changed, and when performing halftone display, the gradation level is inverted due to each strong direction, which is a practical problem. Further, due to the concavo-convex structure of the thin film transistor element, an alignment defect domain is generated in the periphery of the thin film transistor element, a light-shielding film having a large area is required as a countermeasure, and the light utilization efficiency is significantly reduced.

【0004】一方、特公昭63−21907 号に示されている
櫛歯電極を用いれば透明電極を使う必要はなくなり、上
記の課題を解決できる可能性があるが、以下の理由によ
り実用化はされていない。即ち、この公知技術に於いて
は相互に咬合する櫛歯電極対を用いているために、画素
内のパターンが微細化かつ複雑化し、量産性が著しく低
い。特に、表示情報量が多く、画素サイズの小さなディ
スプレイでは櫛歯構造の電極を1画素内に入れることは
ほとんど不可能であり、仮に入れたとしても開口率が著
しく低く、ほとんど光が有効に利用できない暗いディス
プレイしか実現できない。原理的には櫛歯電極の電極幅
を1〜2μm程度まで縮小すれば開口率を実用レベルま
で拡大出来るが、実際には大型基板全面にわたってその
ような細線を均一にかつ断線がないように形成すること
は極めて困難である。即ち、上記の従来技術では、相互
に咬合する櫛歯状の電極を用いたために画素開口率と製
造歩留まりがトレ−ドオフの関係となり、明るい画像を
有する液晶表示装置を低コストで提供することは困難で
あった。
On the other hand, if the comb-teeth electrode disclosed in Japanese Patent Publication No. 63-21907 is not used, it is possible to solve the above problems by eliminating the need for using transparent electrodes. Not not. That is, in this known technique, since the comb-teeth electrode pairs that interlock with each other are used, the pattern in the pixel becomes fine and complicated, and the mass productivity is extremely low. In particular, in a display with a large amount of display information and a small pixel size, it is almost impossible to put an electrode having a comb-tooth structure in one pixel. Even if it is put, the aperture ratio is extremely low, and most light can be effectively used. Can only achieve a dark display. In principle, the aperture ratio can be expanded to a practical level by reducing the electrode width of the comb-teeth electrode to about 1 to 2 μm, but in reality, such fine lines are formed uniformly over the entire surface of a large substrate without any breakage. It is extremely difficult to do. That is, in the above-mentioned conventional technology, the pixel aperture ratio and the manufacturing yield have a trade-off relationship because the comb-teeth-shaped electrodes that interlock with each other are used, and it is not possible to provide a liquid crystal display device having a bright image at low cost. It was difficult.

【0005】本発明はこれらの課題を同時に解決するも
ので、その目的とするところは、第一に、透明電極がな
くとも高コントラストで、低価格の設備で高い歩留まり
で量産可能な低コストの薄膜トランジスタ型液晶表示装
置を提供することにある。第二に、低い電圧で駆動がで
きかつ視角特性が良好で多階調表示が容易である薄膜ト
ランジスタ型液晶表示装置を提供することにある。第三
に、使用可能な液晶組成物及び配向膜材料の選択の自由
度を上げ、これにより液晶パネル作製等のプロセスの裕
度を大きくし、高い開口率と画素劣化抑制を両立させ、
光透過率を引上げた、より明るい薄膜トランジスタ型液
晶表示装置を提供することにある。第四に、第一から第
三の目的に加えてより構造が簡素であり、製造歩留まり
が高い薄膜トランジスタ型液晶表示装置を提供すること
にある。
The present invention is intended to solve these problems at the same time. The object of the present invention is, first of all, to achieve high contrast without a transparent electrode and to realize mass production with low cost equipment at high yield and at low cost. An object is to provide a thin film transistor type liquid crystal display device. Secondly, it is to provide a thin film transistor type liquid crystal display device that can be driven at a low voltage, has good viewing angle characteristics, and can easily perform multi-gradation display. Thirdly, the degree of freedom in selecting usable liquid crystal compositions and alignment film materials is increased, thereby increasing the latitude of processes such as liquid crystal panel fabrication, and achieving both high aperture ratio and suppression of pixel deterioration.
Another object of the present invention is to provide a brighter thin film transistor type liquid crystal display device having an increased light transmittance. Fourthly, to provide a thin film transistor type liquid crystal display device having a simple structure and a high manufacturing yield in addition to the first to third objects.

【0006】[0006]

【課題を解決するための手段】前記課題を解決し、上記
目的を達成するために本発明では以下の手段を用いる。
少なくとも一方が透明な一対の基板、該基板間に挾持さ
れ、配向した誘電率異方性と屈折率異方性とを有する液
晶組成物層,偏光手段,マトリクス状に配置された複数
の画素、各画素ごとに備えられ、画素電極,信号配線電
極及び走査配線電極に接続された薄膜トランジスタ素
子、該薄膜トランジスタ素子とは離接した共通電極、前
記画素の光透過率或いは反射率を変化させる電圧信号波
形を印加する手段とを有する液晶表示装置において、前
記画素電極と前記信号配線電極は、電圧信号波形を印加
する手段により前記画素電極と前記共通電極との間に、
基板面にほぼ平行に電界を印加し(この電界を横電界と
称する)、電界の強度に応じ前記画素の光透過率或いは
反射率を変化させるように配置され、 〔手段1〕前記画素電極が前記画素内で第1の方向に伸
びており、前記信号配線電極及び前記共通電極は第1の
方向に、かつ複数の画素間にまたがってそれぞれ表示部
端部にまで伸びていることを特徴とする液晶表示装置。
In order to solve the above problems and achieve the above object, the present invention uses the following means.
A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates and having oriented dielectric anisotropy and refractive index anisotropy, polarizing means, a plurality of pixels arranged in a matrix, A thin film transistor element provided for each pixel and connected to a pixel electrode, a signal wiring electrode and a scanning wiring electrode, a common electrode separated from and in contact with the thin film transistor element, a voltage signal waveform for changing the light transmittance or reflectance of the pixel In the liquid crystal display device having a means for applying, the pixel electrode and the signal wiring electrode are provided between the pixel electrode and the common electrode by means for applying a voltage signal waveform,
An electric field is applied substantially parallel to the surface of the substrate (this electric field is referred to as a lateral electric field), and it is arranged so as to change the light transmittance or reflectance of the pixel according to the strength of the electric field. [Means 1] The pixel electrode In the pixel, it extends in a first direction, and the signal wiring electrode and the common electrode extend in the first direction and across a plurality of pixels to the end of the display portion. Liquid crystal display device.

【0007】〔手段2〕前記画素電極が1画素内で前記
信号配線電極を挟むように対をなし、前記画素及び前記
信号配線電極が1対の共通電極に挟まれてなることを特
徴とする手段1に記載の液晶表示装置。
[Means 2] The pixel electrodes are paired so as to sandwich the signal wiring electrode in one pixel, and the pixel and the signal wiring electrode are sandwiched by a pair of common electrodes. The liquid crystal display device according to means 1.

【0008】〔手段3〕前記画素電極,前記信号配線電
極,前記共通電極及び前記走査配線電極のいずれもが前
記一対の基板の一方に配置されていることを特徴とする
手段1或いは手段2に記載の液晶表示装置。
[Means 3] Means 1 or 2 characterized in that all of the pixel electrode, the signal wiring electrode, the common electrode and the scanning wiring electrode are arranged on one of the pair of substrates. The described liquid crystal display device.

【0009】以上の手段1から手段3により、透明電極
が不要で、かつ櫛歯電極対を用いた従来技術に比べはる
かに簡素な構造を有し、開口率も高く製造歩留まりも高
い、第一及び第四の目的にかなう薄膜トランジスタ型液
晶表示装置が得られる。
By the means 1 to 3 described above, the transparent electrode is unnecessary, and the structure is much simpler than the conventional technique using the comb-teeth electrode pair, and the aperture ratio is high and the manufacturing yield is high. Also, a thin film transistor type liquid crystal display device that meets the fourth object is obtained.

【0010】〔手段4〕前記画素電極と前記共通電極と
が同層であって、前記画素電極,前記共通電極或いは隣
接する画素電極のいずれかひとつと前記走査配線との間
に絶縁物を介して容量素子を形成していることを特徴と
する手段3に記載の液晶表示装置。
[Means 4] The pixel electrode and the common electrode are in the same layer, and an insulator is interposed between any one of the pixel electrode, the common electrode, or an adjacent pixel electrode and the scanning wiring. 4. A liquid crystal display device according to means 3, wherein the liquid crystal display device forms a capacitive element.

【0011】〔手段5〕前記一対の基板のうち前記薄膜
トランジスタ素子を備えた基板に対向した基板上に、色
の異なる少なくとも2種以上のカラーフィルタを備え、
該カラーフィルタの境界が前記画素電極,前記信号配線
電極及び前記共通電極のいずれかと重なることを特徴と
する手段1或いは手段2に記載の液晶表示装置。
[Means 5] At least two kinds of color filters having different colors are provided on a substrate facing the substrate having the thin film transistor element among the pair of substrates.
3. The liquid crystal display device according to means 1 or 2, wherein a boundary of the color filter overlaps any one of the pixel electrode, the signal wiring electrode, and the common electrode.

【0012】手段5によれば、従来は色純度の低いカラ
ーフィルタの境界を覆っていた遮光層を省略でき、より
低コストの薄膜トランジスタ型液晶表示装置が得られ
る。
According to the means 5, the light shielding layer which has conventionally covered the boundary of the color filter having low color purity can be omitted, and a thin film transistor type liquid crystal display device of lower cost can be obtained.

【0013】〔手段6〕前記画素電極,前記信号配線電
極,前記共通電極及び前記走査配線電極を有する基板に
対向する他方の基板上に、色の異なる少なくとも2種以
上のカラーフィルタを備え、該カラーフィルタ上に表面
をより平坦化する有機ポリマを積層し、該有機ポリマが
透明ポリマであり、更に該透明ポリマをその表面をラビ
ング処理することで界面上の液晶分子を所定方向に配向
制御する配向膜として用いることを特徴とする手段3に
記載の液晶表示装置。
[Means 6] At least two kinds of color filters having different colors are provided on the other substrate facing the substrate having the pixel electrode, the signal wiring electrode, the common electrode and the scanning wiring electrode, An organic polymer for flattening the surface is laminated on the color filter, the organic polymer is a transparent polymer, and the surface of the transparent polymer is rubbed to control the alignment of liquid crystal molecules on the interface in a predetermined direction. 4. The liquid crystal display device according to means 3, which is used as an alignment film.

【0014】手段6によればカラーフィルタの凹凸を平
坦化する有機ポリマと液晶分子を配向制御するための配
向膜とが兼用でき、低コスト化に有効である。
According to the means 6, the organic polymer for flattening the unevenness of the color filter can be used also as the alignment film for controlling the alignment of the liquid crystal molecules, which is effective for cost reduction.

【0015】〔手段7〕少なくとも一方が透明な一対の
基板、該基板間に挾持され、配向した誘電率異方性と屈
折率異方性とを有する液晶組成物層,偏光手段,マトリ
クス状に配置された複数の画素、各画素ごとに備えら
れ、画素電極,信号配線電極及び走査配線電極に接続さ
れた薄膜トランジスタ素子,該薄膜トランジスタ素子と
は離接した共通電極,前記画素の光透過率或いは反射率
を変化させる電圧信号波形を印加する手段とを有する液
晶表示装置において、前記画素電極と前記信号配線電極
は、電圧信号波形を印加する手段により前記画素電極と
前記共通電極との間に、基板面にほぼ平行に電界を印加
し、電界の強度に応じ前記画素の光透過率或いは反射率
を変化させるように配置され、前記薄膜トランジスタ素
子及び前記液晶組成物層に直接接する有機絶縁層が備え
られていることを特徴とする液晶表示装置。
[Means 7] A pair of substrates, at least one of which is transparent, a liquid crystal composition layer having a dielectric anisotropy and a refractive index anisotropy which are sandwiched between the substrates and have an orientation, a polarizing means, and a matrix shape. A plurality of arranged pixels, a thin film transistor element provided for each pixel and connected to a pixel electrode, a signal wiring electrode and a scanning wiring electrode, a common electrode separated from and connected to the thin film transistor element, a light transmittance or reflection of the pixel In the liquid crystal display device having a means for applying a voltage signal waveform for changing the rate, the pixel electrode and the signal wiring electrode are provided on the substrate between the pixel electrode and the common electrode by means for applying a voltage signal waveform. The thin film transistor element and the liquid crystal composition are arranged so that an electric field is applied substantially parallel to the surface and the light transmittance or reflectance of the pixel is changed according to the strength of the electric field. The liquid crystal display device, wherein a organic insulating layer in direct contact with the layer are provided.

【0016】〔手段8〕前記薄膜トランジスタ素子を覆
った前記有機絶縁層をラビング処理することで該有機絶
縁層に、前記薄膜トランジスタ素子の保護膜と液晶分子
配向制御膜の両方の機能を持たせたことを特徴とする手
段7に記載の液晶表示装置。
[Means 8] The organic insulating layer covering the thin film transistor element is rubbed so that the organic insulating layer has both functions of a protective film of the thin film transistor element and a liquid crystal molecule alignment control film. 8. A liquid crystal display device according to means 7, characterized in that

【0017】また、手段7から手段8によれば、従来C
VD(Chemical Vapor Deposi-tion)法等の真空系で形成
していた無機の絶縁膜が、より安価に製造できる有機絶
縁層に交換でき、低コスト化に有効である。
According to the means 7 to 8, the conventional C
An inorganic insulating film formed in a vacuum system such as a VD (Chemical Vapor Deposi-tion) method can be replaced with an organic insulating layer that can be manufactured at a lower cost, which is effective for cost reduction.

【0018】手段9以下は、第二の目的である視角特性
が良好で多階調表示能に優れた特性を実現する方法を表
す。
Means 9 and below represent a method for realizing the second object of good viewing angle characteristics and excellent multi-gradation display capability.

【0019】〔手段9〕前記液晶組成物層の誘電率異方
性が正であり、かつ少なくとも一方の基板界面上での液
晶分子配向方向と電界方向とのなす角度|φLC|が45
度以上90度未満であることを特徴とする手段1から手
段4のいずれかに記載の液晶表示装置。ただし、−90
度≦φLC≦90度である。
[Means 9] The dielectric constant anisotropy of the liquid crystal composition layer is positive, and the angle | φ LC | formed between the liquid crystal molecule alignment direction and the electric field direction on at least one substrate interface is 45.
5. The liquid crystal display device according to any one of means 1 to 4, which is not less than 90 degrees and not more than 90 degrees. However, -90
Degree ≦ φ LC ≦ 90 degrees.

【0020】〔手段10〕前記液晶組成物層の誘電率異
方性が負であり、かつ少なくとも一方の基板界面上での
液晶分子配向方向と電界方向とのなす角度|φLC|が0
度を超え45度未満であることを特徴とする手段1から
手段4のいずれかに記載の液晶表示装置。ただし、−9
0度≦φLC≦90度である。
[Means 10] The dielectric constant anisotropy of the liquid crystal composition layer is negative, and the angle | φ LC | formed by the orientation direction of liquid crystal molecules and the electric field direction on at least one substrate interface is 0.
5. The liquid crystal display device according to any one of means 1 to 4, wherein the liquid crystal display device is above 45 degrees and above 45 degrees. However, -9
0 degree ≦ φ LC ≦ 90 degrees.

【0021】〔手段11〕前記液晶組成物層内の配向に
関して、一方の基板界面上での液晶分子配向方向角度φ
LC1と他方基板界面上での液晶分子配向方向角度φLC2
が互いに略平行(φLC1≒φLC2)であり、かつ前記液晶
組成物層の厚みd及び屈折率異方性Δnの積d・Δnが
0.21μmから0.36μmの間であることを特徴とす
る手段9あるいは10に記載の液晶表示装置。
[Means 11] Regarding the orientation in the liquid crystal composition layer, the angle φ of the orientation direction of the liquid crystal molecules on the interface of one of the substrates.
LC1 and the liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface are substantially parallel to each other (φ LC1 ≈ φ LC2 ), and the product d · of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn. 11. The liquid crystal display device according to means 9 or 10, characterized in that Δn is between 0.21 μm and 0.36 μm.

【0022】〔手段12〕前記液晶組成物層の厚みd及
び屈折率異方性Δnの積d・Δnよりも低い位相差Rf
を有する光学的異方性媒質を液晶組成物層により生じた
位相差を補償するように挿入し、かつその絶対値の差|
d・Δn|−|Rf|を0.21μmから0.36μm の
間としたことを特徴とする手段11に記載の液晶表示装
置。
[Means 12] A retardation R f lower than the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn.
Is inserted so as to compensate for the phase difference caused by the liquid crystal composition layer, and the difference in absolute value |
12. The liquid crystal display device according to means 11, characterized in that d · Δn | − | R f | is set between 0.21 μm and 0.36 μm.

【0023】手段9から手段12によれば、複屈折モー
ドによる高いコントラストと広い視角特性が得られる。
According to the means 9 to 12, high contrast and wide viewing angle characteristics due to the birefringence mode can be obtained.

【0024】〔手段13〕前記液晶組成物層内の配向に
関して、一方の基板界面上での液晶分子配向方向角度φ
LC1と他方基板界面上での液晶分子配向方向角度φLC2
が互いに交差し、その角度|φLC1−φLC2|が80度以
上100度以下であり、かつ前記液晶組成物層の厚みd
及び屈折率異方性Δnの積d・Δnが0.40μm から
0.60μm の間であることを特徴とする手段9或いは
10に記載の液晶表示装置。
[Means 13] Regarding the orientation in the liquid crystal composition layer, the angle φ of the orientation direction of the liquid crystal molecules on the interface of one substrate.
Intersects the liquid crystal molecular alignment direction angle phi LC2 and each other in LC1 and the other substrate surface, the angle | φ LC1LC2 | is less than 100 degrees 80 degrees, and the thickness d of the liquid crystal composition layer
And the product d · Δn of the refractive index anisotropy Δn is between 0.40 μm and 0.60 μm.

【0025】手段13によれば、旋光性モードによる高
いコントラストと広い視角特性が得られる。
According to the means 13, a high contrast and a wide viewing angle characteristic due to the optical rotation mode can be obtained.

【0026】〔手段14〕液晶分子の傾き角が、いずれ
の界面上に於いても4度以下であることを特徴とする手
段11あるいは13に記載の液晶表示装置。
[Means 14] The liquid crystal display device according to means 11 or 13, wherein the tilt angle of the liquid crystal molecules is 4 degrees or less on any interface.

【0027】〔手段15〕前記液晶組成物層の誘電率異
方性が正であり、前記偏光手段が前記液晶組成物層を挟
む一対の偏光板であり、前記界面上の液晶分子の長軸方
向と電界方向とのなす角φLCが該一対の偏光板のうちの
一方の偏光板Aの透過軸(或いは吸収軸)の角度φP
りも大きく、かつその差|φLC−φP|が3度以上15
度以下であることを特徴とする手段9に記載の液晶表示
装置。
[Means 15] The dielectric constant anisotropy of the liquid crystal composition layer is positive, the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the long axis of the liquid crystal molecules on the interface. The angle φ LC formed by the direction and the electric field direction is larger than the angle φ P of the transmission axis (or the absorption axis) of one of the pair of polarizing plates A, and the difference | φ LC −φ P | Is more than 3 times 15
10. The liquid crystal display device according to means 9, wherein the liquid crystal display device has a temperature of not more than 100 degrees.

【0028】〔手段16〕前記液晶組成物層の誘電率異
方性が負であり、前記偏光手段が前記液晶組成物層を挟
む一対の偏光板であり、前記界面上の液晶分子の長軸方
向と電界方向とのなす角φLC が該偏光板の吸収軸或い
は透過軸の角度φPよりも小さく、かつその差|φP−φ
LC|が3度以上15度以下であることを特徴とする手段
10に記載の液晶表示装置。
[Means 16] The dielectric constant anisotropy of the liquid crystal composition layer is negative, the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the long axis of the liquid crystal molecules on the interface. Angle φ LC between the direction of the electric field and the direction of the electric field is smaller than the angle φ P of the absorption axis or the transmission axis of the polarizing plate, and the difference | φ P −φ
11. The liquid crystal display device according to means 10, characterized in that LC | is 3 degrees or more and 15 degrees or less.

【0029】〔手段17〕前記第2の電極に画像信号を
印加し、かつ前記液晶組成物層に印加される電圧がより
高まるように前記コモン電極にも電圧信号波形を印加す
ることを特徴とする手段15或いは16に記載の液晶表
示装置。
[Means 17] An image signal is applied to the second electrode, and a voltage signal waveform is applied to the common electrode so that the voltage applied to the liquid crystal composition layer is further increased. 17. The liquid crystal display device according to the means 15 or 16.

【0030】〔手段18〕前記偏光手段が前記液晶組成
物層を挟む一対の偏光板であり、それらを低電圧VL
加時に明状態、高電圧VH印加時に暗状態となる配置に
設定し、前記一対の偏光板間に、VH 印加時の液晶層の
界面残留位相差を補償する透明媒体を挿入したことを特
徴とする手段11或いは13に記載の液晶表示装置。
[Means 18] The polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the polarizing means is set to a bright state when a low voltage V L is applied and a dark state when a high voltage V H is applied. 14. A liquid crystal display device according to means 11 or 13, wherein a transparent medium for compensating for the residual phase difference at the interface of the liquid crystal layer when V H is applied is inserted between the pair of polarizing plates.

【0031】手段14から手段18は、本発明の基本構
成である横電界駆動を採用した際に、しきい値電圧が上
昇し、より高い耐圧を有する駆動回路を用いる必要があ
るという課題を対策するものである。これによれば、実
施例にもあるように10ボルト未満の十分低い出力電圧
の駆動回路でも動作が可能となる。
The means 14 to 18 solve the problem that the threshold voltage rises when the lateral electric field drive which is the basic constitution of the present invention is adopted and it is necessary to use a drive circuit having a higher breakdown voltage. To do. According to this, as in the embodiment, it is possible to operate even a drive circuit having a sufficiently low output voltage of less than 10 volts.

【0032】[0032]

【作用】先ず初めに、電界方向に対する、偏光板の偏光
透過軸のなす角φP ,界面近傍での液晶分子長軸(光学
軸)方向のなす角φLC,一対の偏光板間に挿入した位相
差板の進相軸のなす角φR の定義を示す(図6)。偏光
板及び液晶界面はそれぞれ上下に一対あるので必要に応
じてφP1,φP2,φLC1,φLC2と表記する。尚、図6は
後述する図1の正面図に対応する。
First, the angle φ P formed by the polarization transmission axis of the polarizing plate with respect to the direction of the electric field, the angle φ LC formed by the liquid crystal molecule major axis (optical axis) direction near the interface, and inserted between the pair of polarizing plates. The definition of the angle φ R formed by the fast axis of the retardation plate is shown (Fig. 6). Since there are a pair of the polarizing plate and the liquid crystal interface above and below, respectively, they are denoted as φ P1 , φ P2 , φ LC1 , and φ LC2 as necessary. 6 corresponds to the front view of FIG. 1 described later.

【0033】次に本発明の作用を図1を用いて説明す
る。
Next, the operation of the present invention will be described with reference to FIG.

【0034】図1(a),(b)は本発明の液晶パネル内
での液晶の動作を示す側断面を、図1(c),(d)はそ
の正面図を表す。図1では薄膜トランジスタ素子を省略
してある。また、本発明ではストライプ状の電極を構成
して複数の画素を形成するが、ここでは一画素の部分を
示した。電圧無印加時のセル側断面を図1(a)に、そ
の時の正面図を図1(c)に示す。透明な一対の基板の
内側に線状の電極1,2が形成され、その上に配向制御
膜4が塗布及び配向処理されている。間には液晶組成物
が挟持されている。棒状の液晶分子5は、電界無印加時
には電極1,2の長手方向に対して若干の角度、即ち4
5度≦|φLC|<90度、をもつように配向されてい
る。上下界面上での液晶分子配向方向はここでは平行、
即ちφLC1=φLC2 を例に説明する。また、液晶組成物
の誘電異方性は正を想定している。次に、電界7を印加
すると図1(b),(d)に示したように電界方向に液晶
分子がその向きを変える。偏光板6を所定角度9に配置
することで電界印加によって光透過率を変えることが可
能となる。このように、本発明によれば透明電極がなく
ともコントラストを与える表示が可能となる。尚、図1
(b)では基板表面と電界方向とのなす角が大きく、平
行ではないように見えるが、これは厚み方向を拡大して
表した結果で、実際には20度以下である。以後本発明
では、20度以下のものを総称して横電界と表現する。
また、図1では電極1,2を上下基板に分けて形成した
が、一方の基板に備えてもなんら効果は変わるものでは
ない。むしろ配線等のパターンが微細化する場合や熱,
外力等による種々の変形等を鑑みると、一方の基板に備
えたほうがより高精度なアライメントが可能となり、望
ましい。また、液晶組成物の誘率異方性は正を想定した
が、負であっても構わない。その場合には初期配向状態
を電極1,2の長手方向に垂直な方向(電界方向7)から
若干の角度|φLC|(即ち、0度<|φLC|≦45度)
を持つように配向させる。
1 (a) and 1 (b) are side cross sections showing the operation of the liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1 (c) and 1 (d) are front views thereof. In FIG. 1, the thin film transistor element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a striped electrode, but only one pixel portion is shown here. FIG. 1A shows a cross section of the cell side when no voltage is applied, and FIG. 1C shows a front view at that time. Linear electrodes 1 and 2 are formed inside a pair of transparent substrates, and an alignment control film 4 is applied and aligned on the linear electrodes 1 and 2. A liquid crystal composition is sandwiched between them. The rod-shaped liquid crystal molecules 5 have a slight angle with respect to the longitudinal direction of the electrodes 1 and 2, that is, 4
Oriented such that 5 ° ≦ | φ LC | <90 °. The orientation directions of liquid crystal molecules on the upper and lower interfaces are parallel here,
That is, φ LC1 = φ LC2 will be described as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. By arranging the polarizing plate 6 at a predetermined angle 9, the light transmittance can be changed by applying an electric field. As described above, according to the present invention, it is possible to provide a display with contrast even without the transparent electrode. Incidentally, FIG.
In (b), the angle between the surface of the substrate and the direction of the electric field is large and it does not seem to be parallel, but this is the result of enlarging the thickness direction and is actually 20 degrees or less. Hereinafter, in the present invention, those of 20 degrees or less are collectively referred to as a lateral electric field.
Further, in FIG. 1, the electrodes 1 and 2 are formed separately on the upper and lower substrates, but the effect does not change even if they are provided on one substrate. Rather, when patterns such as wiring are miniaturized, heat,
In consideration of various deformations due to external force and the like, it is preferable to equip one of the substrates because more accurate alignment is possible. Although the dielectric anisotropy of the liquid crystal composition is assumed to be positive, it may be negative. In that case, the initial orientation state is slightly different from the direction (electric field direction 7) perpendicular to the longitudinal direction of the electrodes 1 and 2 | φ LC | (that is, 0 degree <| φ LC | ≦ 45 degree)
To be oriented.

【0035】以下、本発明の3つの目的それぞれに応じ
て、その作用について説明する。
The operation will be described below according to each of the three objects of the present invention.

【0036】(1)透明電極を備えない状態での高コン
トラスト化 コントラストを付与する具体的構成としては、上下基板
上の液晶分子配向がほぼ平行な状態を利用したモード
(複屈折位相差による干渉色を利用するので、ここでは
複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方
向が交差しセル内での分子配列がねじれた状態を利用し
たモード(液晶組成物層内で偏光面が回転する旋光性を
利用するので、ここでは旋光性モードと呼ぶ)とがあ
る。複屈折モードでは、電圧印加により分子長軸(光
軸)方向が基板界面にほぼ平行なまま面内でその方位を
変え、所定角度に設定された偏光板の軸とのなす角を変
えて光透過率を変える。旋光性モードでも同様に電圧印
加により分子長軸方向の方位のみを変えるが、こちらの
場合はら線がほどけることによる旋光性の変化を利用す
る。
(1) High Contrast without Transparent Electrode As a specific structure for imparting contrast, a mode utilizing a state in which liquid crystal molecule alignments on the upper and lower substrates are substantially parallel (interference due to birefringence phase difference) Since color is used, this is called a birefringence mode) and a mode in which the alignment of liquid crystal molecules on the upper and lower substrates intersects and the molecular arrangement in the cell is twisted (polarization plane in the liquid crystal composition layer). Since it uses the optical rotation that rotates, it is called the optical rotation mode here). In the birefringence mode, the direction of the molecular long axis (optical axis) is changed in the plane while the direction of the molecular long axis (optical axis) is almost parallel to the substrate interface by applying a voltage, and the angle formed by the axis of the polarizing plate set to a predetermined angle is changed. Change the transmittance. Similarly, even in the optical rotatory mode, only the orientation of the molecular long axis direction is changed by applying a voltage, but in this case, the change in optical rotatory power due to the unwinding of the line is used.

【0037】次に表示を無彩色にしコントラスト比をあ
げる定量的構成および作用について、以下複屈折モード
を用いる場合と旋光性モードを用いる場合の2つのケー
スに分けて述べる。
Next, the quantitative structure and operation for making the display achromatic and increasing the contrast ratio will be described below in two cases of using the birefringence mode and the optical rotation mode.

【0038】I.複屈折モードで表示する場合 一般に一軸性複屈折性媒体を直交配置した2枚の偏光板
の間に挿入した時の光透過率T/Toは次式で表され
る。ここで、χeffは液晶組成物層の実効的な光軸方向
(光軸と偏光透過軸とのなす角)、deff は複屈折性を
有する実効的な液晶組成物層の厚み、Δnは屈折率異方
性、λは光の波長を表す。ここで、液晶組成物層の光軸
方向を実効的な値とした目的は、実際のセル内では界面
上では液晶分子が固定されており、電界印加時にはセル
内で全ての液晶分子が互いに平行かつ一様に配向してい
るのではなく、特に界面近傍では大きな変形が起こって
いることを鑑み、それらの平均値として一様状態を想定
した時の見かけの値で取り扱うことにある。
I. Display in Birefringence Mode Generally, the light transmittance T / T o when a uniaxial birefringent medium is inserted between two polarizing plates arranged orthogonally is expressed by the following equation. Here, χ eff is the effective optical axis direction of the liquid crystal composition layer (angle formed by the optical axis and the polarization transmission axis), d eff is the thickness of the effective liquid crystal composition layer having birefringence, and Δn is Refractive index anisotropy, λ represents the wavelength of light. Here, the purpose of making the optical axis direction of the liquid crystal composition layer an effective value is that the liquid crystal molecules are fixed on the interface in the actual cell and all the liquid crystal molecules are parallel to each other in the cell when an electric field is applied. In view of the fact that a large amount of deformation occurs, especially in the vicinity of the interface, rather than being oriented uniformly, it is treated as an average value of the apparent values when assuming a uniform state.

【0039】 T/To=sin2(2χeff)・sin2(πdeff・Δn/λ) …(1) 低電圧VL印加時に暗、高電圧VH印加時に明状態となる
ノーマリクローズ特性を得るには偏光板の配置としては
一方の偏光板の透過軸(あるいは吸収軸)を液晶分子配
向方向(ラビング軸)にほぼ平行、即ちφP1≒φLC1
φLC2とし、他方の偏光板の透過軸をそれに垂直、即ち
φP2=φP1+90度とすればよい。電界無印加時には、
(1)式におけるχeffが0であるので光透過率T/To
も0となる。一方電界印加時にはその強度に応じてχ
eff の値が増大し、45度の時に最大なる。この時、光
の波長を0.555μm と想定すると無彩色でかつ透過
率を最大とするには実効的なdeff・Δnを2分の1波
長である0.28μmとすれば良い。現実には裕度があ
るために、0.21から0.36μmの間に入っていれば
良いが、望ましくは0.24から0.33μmの間の値に
設定すると良い。
T / T o = sin 2 (2χ eff ) · sin 2 (πd eff · Δn / λ) (1) Normally closed, which is dark when a low voltage V L is applied and bright when a high voltage V H is applied To obtain the characteristics, the polarizing plate should be arranged so that the transmission axis (or absorption axis) of one polarizing plate is almost parallel to the liquid crystal molecule alignment direction (rubbing axis), that is, φ P1 ≈ φ LC1 =
φ LC2 and the transmission axis of the other polarizing plate may be perpendicular to it, that is, φ P2 = φ P1 +90 degrees. When no electric field is applied,
Since χ eff in equation (1) is 0, the light transmittance T / T o
Also becomes 0. On the other hand, when an electric field is applied, χ
The value of eff increases and reaches a maximum at 45 degrees. At this time, assuming that the wavelength of the light is 0.555 μm, the effective d eff · Δn may be set to 0.28 μm, which is a half wavelength, in order to obtain an achromatic color and maximize the transmittance. In reality, since there is a margin, it may be in the range of 0.21 to 0.36 μm, but it is desirable to set the value in the range of 0.24 to 0.33 μm.

【0040】一方低電圧VL印加時に明、高電圧VH印加
時に暗状態となるノーマリオープン特性を得るには電界
無印加時あるいは低電界印加時に、(1)式におけるχ
effがほぼ45度となるように偏光板配置を設定すれば
良い。電界印加時にはノーマリクローズの場合とは逆に
その強度に応じてχeff の値が減少する。しかしなが
ら、χeff が最小(即ち0)になっても界面近傍で固定
されている液晶分子の残留位相差のために、このままで
はかなりの光が漏れてしまう。d・Δnを0.27から0.
37μm の間に設定し、3〜10Vの実効電圧を印加
した本発明者等の実験によれば界面残留位相差の値は
0.02から0.06μm程度であった。よって、0.0
2から0.06μm程度の複屈折位相差を有する位相差
板(この位相差をRf と表す)を界面残留位相差を補償
するように挿入することで、暗状態が沈み込み、高コン
トラスト比が得られる。位相差板の進相軸の角度φ
R は、電圧印加時の液晶組成物層の実効的な光軸χeff
に平行にする。より完全に暗状態の明るさを沈み込ませ
るには、暗状態を表示するための電圧を印加したときの
残留位相差にきちっと合わせれば良い。以上より、暗状
態の沈み込みと明状態の透過率,白色度を両立するに
は、次式の関係を満たせば良い。
On the other hand, in order to obtain a normally open characteristic in which a bright state is applied when a low voltage V L is applied and a dark state is applied when a high voltage V H is applied, χ in equation (1) is applied when no electric field is applied or when a low electric field is applied.
The polarizing plate arrangement may be set so that eff is approximately 45 degrees. Contrary to the case of normally closed when the electric field is applied, the value of χ eff decreases according to its strength. However, even if χ eff becomes minimum (that is, 0), a considerable amount of light leaks due to the residual phase difference of the liquid crystal molecules fixed near the interface. d · Δn from 0.27 to 0.
According to an experiment conducted by the inventors of the present invention in which the voltage is set to 37 μm and an effective voltage of 3 to 10 V is applied, the value of the interface residual phase difference is about 0.02 to 0.06 μm. Therefore, 0.0
By inserting a retardation plate having a birefringence retardation of about 2 to 0.06 μm (this retardation is represented by R f ) so as to compensate for the interface residual retardation, the dark state sinks and a high contrast ratio is obtained. Is obtained. Angle φ of the fast axis of the retardation plate
R is the effective optical axis χ eff of the liquid crystal composition layer when a voltage is applied.
Parallel to. In order to completely sink the brightness of the dark state, it is necessary to exactly match the residual phase difference when the voltage for displaying the dark state is applied. From the above, in order to achieve both the sinking in the dark state and the transmittance and the whiteness in the bright state, it is sufficient to satisfy the following equation.

【0041】 0.21μm<(d・Δn−Rf)<0.36μm …(2) 望ましくは、 0.23μm<(d・Δn−Rf)<0.33μm …(3) II.旋光性モードで表示する場合 従来方式であるツイステッドネマチック(Twisted Nemat
ic:TN)方式では一般に知られているようにd・Δn
をファーストミニマム条件である0.50μm近傍に設
定した時に、高透過率,無彩色となる。その裕度を考慮
するとTN方式では0.40から0.60μmの間に設定
すると良い。偏光板の配置としては一方の偏光板の透過
軸(あるいは吸収軸)を界面上の液晶分子配向方向(ラ
ビング軸)にほぼ平行、即ちφLC1≒φLC2とする。ノー
マリクローズ型を実現するためには、他方の偏光板の透
過軸をそれに平行とすれば良く、ノーマリオープン型と
するには垂直とすればよい。
[0041] 0.21μm <(d · Δn-R f) <0.36μm ... (2) preferably, 0.23μm <(d · Δn- R f) <0.33μm ... (3) II. When displaying in the optical rotation mode Twisted Nemat
In the ic: TN) method, d.Δn as is generally known.
When the value is set near 0.50 μm, which is the first minimum condition, high transmittance and achromatic color are obtained. Considering the margin, in the TN method, it may be set between 0.40 and 0.60 μm. Regarding the arrangement of the polarizing plates, the transmission axis (or absorption axis) of one polarizing plate is set substantially parallel to the liquid crystal molecule orientation direction (rubbing axis) on the interface, that is, φ LC1 ≈φ LC2 . In order to realize the normally closed type, the transmission axis of the other polarizing plate may be parallel to it, and to make it the normally open type, it may be vertical.

【0042】尚、完全に旋光性を消失させるには、上下
基板界面近傍での液晶配向方向をほぼ平行となるように
する必要があり、90度TNモードを想定すると、一方
の基板側の液晶分子を90度近く回転させなくてはなら
ない。複屈折モードで表示する場合には液晶分子回転角
は45度程度で良く、ことしきい値電圧に関しては複屈
折モードのほうが低くなる。
In order to completely eliminate the optical rotatory power, it is necessary to make the liquid crystal alignment directions near the upper and lower substrate interfaces substantially parallel to each other. Assuming a 90 ° TN mode, the liquid crystal on one substrate side is assumed. You have to rotate the molecule close to 90 degrees. In the case of displaying in the birefringence mode, the liquid crystal molecule rotation angle may be about 45 degrees, and the threshold voltage is lower in the birefringence mode.

【0043】(2)視角特性の改善 本発明の表示モードでは液晶分子の長軸は基板と常にほ
ぼ平行であり、立ち上がることがなく、従って視角方向
を変えた時の明るさの変化が小さい。本表示モードは従
来のように電圧印加で複屈折位相差をほぼ0にすること
で暗状態を得るものではなく、液晶分子長軸と偏光板の
軸(吸収あるいは透過軸)とのなす角を変えるもので、
根本的に異なる。従来のTN型のように液晶分子長軸を
基板界面に垂直に立ち上がらせる場合だと、複屈折位相
差が0となる視角方向は正面即ち基板界面に垂直な方向
のみであり、僅かでも傾斜すると複屈折位相差が現れ、
ノーマリオープン型では光が漏れ、コントラストの低下
や階調レベルの反転を引き起こす。
(2) Improvement of viewing angle characteristics In the display mode of the present invention, the major axis of the liquid crystal molecules is almost parallel to the substrate and does not rise, and therefore the change in brightness when changing the viewing angle direction is small. In this display mode, the dark state is not obtained by making the birefringence phase difference almost zero by applying a voltage as in the conventional case, but the angle formed by the long axis of the liquid crystal molecule and the axis of the polarizing plate (absorption or transmission axis) is Change things,
Fundamentally different. In the case of raising the liquid crystal molecule long axis perpendicularly to the substrate interface as in the conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface, and even if slightly inclined. Birefringence phase difference appears,
In the normally open type, light leaks, causing a decrease in contrast and inversion of gradation levels.

【0044】(3)配向膜材料と液晶材料の選択の自由
度改善及びそれによるプロセス裕度の拡大 さらに、このように液晶分子が立ち上がらない為に、従
来のような大きな傾き角(液晶分子長軸と界面とのなす
角)を与える配向膜を必要としない。従来方式では、傾
き角が不足すると傾く方向の異なる2状態及びそれらの
境界部のドメインが生じ、表示不良となる可能性があ
る。本方式では、傾き角を付与する代わりに基板界面上
での液晶分子長軸方向(ラビング方向)を電界方向にに
対して0度あるいは90度からずらした所定方向に設定
すれば良い。例えば、液晶組成物の誘電率異方性が負の
場合、電界方向と基板界面上での液晶分子長軸方向とが
なす角φLCLC>0度と定義する)を0度以上(実質
的には0.5度以上)、望ましくは2度以上にすれば良
い。もし完全に0度とすると、方向の異なる2種の変形
が生じ異なる2状態及びそれらの境界部のドメインが生
じ、表示不良となる可能性がある。0.5 度以上であれ
ば電界印加及びその強度の増大により見かけの液晶分子
長軸方向(φLC(V)と定義する)が一様に増加して行
き、逆方向への傾斜、即ちφLC(V)<0度になることは
ない。本方式ではこのように、界面と液晶分子とのなす
角(傾き角)が小さくともドメインが生じずに動作する
ことから、低めの傾き角に設定することが可能である。
液晶分子配向の均一性は低めの傾き角に設定するほどラ
ビング等のプロセス裕度が上がり、良好である。従っ
て、界面に平行に電界を印加する本方式に、低傾き角を
組み合わせれば液晶分子配向はより均一化し、同程度の
製造プロセス変動があっても、従来方式よりも表示むら
が低く抑えられる。一般に高い傾き角を付与する配向膜
の種類は、低い傾き角を付与するものに比べて少なく、
本方式を用いれば配向膜材料の選択の自由度も高くな
る。例えばカラーフィルタ上の平坦化膜,薄膜トランジ
スタ上の保護膜に有機ポリマを用い、それを直接ラビン
グ等の表面配向処理を行っても、傾き角が不要なので配
向膜との兼用がより容易になり、更にプロセスの簡易化
とそれに伴うコストの低減が可能となる。製造プロセス
変動による表示むらを抑制するには傾き角を4度以下、
望ましくは2度以下にすれば良い。
(3) Improving the degree of freedom in selection of the alignment film material and the liquid crystal material and thereby expanding the process margin. Further, since the liquid crystal molecules do not rise in this way, a large tilt angle (liquid crystal molecule length) as in the conventional case is obtained. An alignment film that provides the angle between the axis and the interface) is not required. In the conventional method, if the tilt angle is insufficient, two states having different tilt directions and domains at their boundaries may be generated, which may result in display failure. In this method, instead of giving a tilt angle, the liquid crystal molecule major axis direction (rubbing direction) on the substrate interface may be set to a predetermined direction deviated from 0 degree or 90 degrees with respect to the electric field direction. For example, when the dielectric anisotropy of the liquid crystal composition is negative, the angle φ LC (defined as φ LC > 0 degree) formed by the direction of the electric field and the long axis direction of the liquid crystal molecules on the substrate interface is 0 degree or more ( Substantially 0.5 degrees or more), preferably 2 degrees or more. If it is completely 0 degrees, two kinds of deformation in different directions occur, two different states and domains of their boundaries occur, which may result in display failure. If it is 0.5 degrees or more, the apparent liquid crystal molecule major axis direction (defined as φ LC (V)) increases uniformly due to the application of the electric field and its strength, and the tilt in the opposite direction, that is, φ LC (V) never reaches 0 degree. According to the present method, even if the angle (tilt angle) formed by the interface and the liquid crystal molecules is small in this way, the operation is performed without the domain being generated, and thus it is possible to set a lower tilt angle.
The uniformity of the liquid crystal molecule alignment is good because the process latitude such as rubbing increases as the tilt angle is set to a lower value. Therefore, if this method of applying an electric field parallel to the interface is combined with a low tilt angle, the liquid crystal molecule alignment becomes more uniform, and even if the manufacturing process changes to the same degree, the display unevenness can be suppressed lower than that of the conventional method. . In general, the types of alignment films that give a high tilt angle are less than those that give a low tilt angle,
If this method is used, the degree of freedom in selecting the alignment film material is increased. For example, even if the organic polymer is used for the flattening film on the color filter and the protective film on the thin film transistor and the surface alignment treatment such as rubbing is directly performed, the inclination angle is not necessary, and thus the combined use with the alignment film becomes easier. Further, it is possible to simplify the process and reduce the cost associated therewith. To suppress display unevenness due to manufacturing process fluctuations, the tilt angle should be 4 degrees or less,
It is desirable to set it to 2 degrees or less.

【0045】また、液晶材料についても下記の理由によ
りその選択の自由度が上がる。即ち、本発明では画素電
極と共通電極は液晶組成物層に対して主として基板界面
に平行な電界を印加する構造を有しており、電極間の距
離は従来の縦電界方式のアクティブマトリクス型液晶表
示装置における相対向させた透明電極間の距離に比べて
大きくとることができる。また、等価的な電極の断面積
は従来のものより小さく抑えることができる。したがっ
て、本発明による対をなす画素電極間の電気抵抗は従来
のアクティブマトリクス型液晶表示装置における相対向
させた透明電極間の電気抵抗は桁違いに大きくすること
ができる。さらに、本発明による画素電極と共通電極間
の静電容量は容量素子と並列接続になり、電気抵抗も十
分高い容量素子を実現できる。これらにより、画素電極
に蓄積された電荷を保持することが容易になり、従来開
口率を犠牲にしていた容量素子の面積を小さくしても十
分な保持特性が得られる。また、液晶組成物の方も従来
は例えば1012Ωcmといった極めて高い比抵抗を有する
ものが必要であるのに対して、より低い比抵抗の液晶組
成物であっても問題にならない。このことは、単に液晶
材料の選択の自由度が上がるのみならず、プロセス裕度
も引き上げる。即ち、プロセスの途中で液晶が汚染して
も画質不良となりにくい。特に、前述の配向膜との界面
上での変動に対する裕度が上がり、界面起因の不良はほ
とんどなくなる。よって、検査やエージングといった工
程を大幅に簡略化することができ、薄膜トランジスタ型
液晶表示装置の低コスト化に大きく寄与する。また、本
発明による画素電極は櫛歯状電極対に比べて単純な形状
であるため、光の利用効率を向上させる。従来方式のよ
うに十分な量の電荷を蓄積できる容量素子を得るために
開口部を犠牲にする必要がない。さらに、薄膜トランジ
スタを保護する絶縁膜を有機物にすれば、無機物に比べ
て誘電率が低くできるため、画素電極近傍において発生
する基板界面に垂直な方向の電界成分を横電界成分に比
べて小さく抑えることが可能になり、より広い領域で液
晶が動作する。このことも明るさ向上に寄与する。ま
た、共通電極を、隣接する画素の共通電極と共用した場
合には、従来のアクティブマトリクス型液晶表示装置に
おける共通電極とほぼ同等の作用をし、かつより構造を
更に簡単化することができ更に開口率を上げることが可
能である。
Further, the degree of freedom in selection of the liquid crystal material is increased due to the following reasons. That is, in the present invention, the pixel electrode and the common electrode have a structure in which an electric field is applied to the liquid crystal composition layer mainly in parallel to the substrate interface, and the distance between the electrodes is a conventional vertical electric field type active matrix liquid crystal. The distance can be made larger than the distance between the transparent electrodes facing each other in the display device. Further, the equivalent electrode cross-sectional area can be suppressed smaller than that of the conventional one. Therefore, the electric resistance between the pair of pixel electrodes according to the present invention can be increased by an order of magnitude higher than the electric resistance between the transparent electrodes facing each other in the conventional active matrix liquid crystal display device. Furthermore, the capacitance between the pixel electrode and the common electrode according to the present invention is connected in parallel with the capacitance element, and a capacitance element having a sufficiently high electric resistance can be realized. As a result, it becomes easy to hold the charges accumulated in the pixel electrode, and sufficient holding characteristics can be obtained even if the area of the capacitive element, which has conventionally sacrificed the aperture ratio, is reduced. Further, conventionally, a liquid crystal composition also needs to have an extremely high specific resistance of, for example, 10 12 Ωcm, whereas a liquid crystal composition having a lower specific resistance is not a problem. This not only increases the degree of freedom in selecting the liquid crystal material, but also increases the process margin. That is, even if the liquid crystal is contaminated during the process, the image quality is unlikely to be poor. In particular, the margin for fluctuations on the interface with the alignment film described above increases, and defects due to the interface are almost eliminated. Therefore, steps such as inspection and aging can be greatly simplified, which greatly contributes to cost reduction of the thin film transistor type liquid crystal display device. Further, since the pixel electrode according to the present invention has a simpler shape than the comb-teeth-shaped electrode pair, the light utilization efficiency is improved. There is no need to sacrifice the opening to obtain a capacitive element that can store a sufficient amount of electric charges as in the conventional method. Furthermore, if the insulating film that protects the thin film transistor is made of an organic material, the dielectric constant can be made lower than that of an inorganic material, so that the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface can be suppressed smaller than the lateral electric field component. The liquid crystal operates in a wider area. This also contributes to the improvement of brightness. Further, when the common electrode is shared with the common electrode of the adjacent pixel, the same action as the common electrode in the conventional active matrix type liquid crystal display device can be obtained, and the structure can be further simplified. It is possible to increase the aperture ratio.

【0046】(4)簡素で開口率の高い薄膜トランジス
タ構造の実現及びそれによる明るさの向上 薄膜トランジスタを含む画素内の構造に関して、公知例
(特公昭63−21907号)に示されている櫛歯電極を用いる
場合は開口率が著しく低下し、それにより明るさが低下
してしまうという問題が生じる。量産性を考慮すると櫛
歯電極1本の幅は8μm程度、最小でも4μm以上必要
であり、特公昭63−21907 号に示されている例えば図7
のような櫛歯が合計17本もあるような構造で対角9.
4 インチカラーVGAクラスの0.3×0.1mm2 の画
素を構成することは不可能である。本発明は上記
(1),(2)の利点を保ちつつも開口率を十分に保持す
るための手段を考案したものである。櫛歯のように開口
率を下げざるを得ない構造に替わって、より単純な電極
構造により、実用性のある高い開口率が実現できてい
る。手段1から手段5は、共通電極を対向基板上或い
は、画素電極を同層上に形成した場合の構造に関する。
前記公知例(特公昭63−21907 号)では櫛歯電極を形成
するために、信号配線と共通電極それぞれの引き出し方
向を直交させている。即ち、信号配線を第1の方向(Y
方向)に、共通電極をそれに直交する方向(X方向)に
引き伸ばしている。それに対し、本発明は、手段1にあ
るように信号配線,画素電極,共通電極のいずれをも第
1の方向に伸ばすことで、櫛歯のような複雑な構造を回
避している。尚、液晶のしきい値電圧を下げ、応答時間
を短縮するには画素電極と共通電極の間隔を詰めれば良
いが、そのためには手段2の方法を採用すれば良く、櫛
歯のような複雑な構造とする必要はない。
(4) Realization of a simple thin film transistor structure with a high aperture ratio and improvement of brightness thereof A comb-shaped electrode disclosed in a known example (Japanese Patent Publication No. 63-21907) concerning a structure in a pixel including a thin film transistor. In the case of using, the aperture ratio is remarkably lowered, which causes a problem that the brightness is lowered. Considering mass productivity, the width of one comb-teeth electrode is required to be about 8 μm, and at least 4 μm or more. For example, as shown in Japanese Patent Publication No. 63-21907, see FIG.
Diagonal with a structure with a total of 17 comb teeth like 9.
It is impossible to construct a pixel of 0.3 × 0.1 mm 2 of 4-inch color VGA class. The present invention has devised means for maintaining a sufficient aperture ratio while maintaining the advantages (1) and (2). In place of the structure in which the aperture ratio has to be lowered like comb teeth, a simpler electrode structure has realized a high aperture ratio with practicality. Means 1 to 5 relate to a structure in which the common electrode is formed on the counter substrate or the pixel electrode is formed on the same layer.
In the above-mentioned known example (Japanese Patent Publication No. 63-21907), in order to form the comb-teeth electrode, the lead-out directions of the signal wiring and the common electrode are orthogonal to each other. That is, the signal wiring is arranged in the first direction (Y
Direction), the common electrode is extended in a direction (X direction) orthogonal to the common electrode. On the other hand, according to the present invention, by extending all of the signal wiring, the pixel electrode, and the common electrode in the first direction as in the means 1, a complicated structure such as comb teeth is avoided. The threshold voltage of the liquid crystal can be lowered and the response time can be shortened by narrowing the interval between the pixel electrode and the common electrode. For that purpose, the method of the means 2 can be adopted, which is complicated like comb teeth. It is not necessary to have a simple structure.

【0047】[0047]

【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.

【0048】〔実施例1〕基板としては厚みが1.1mm
で表面を研磨した透明なガラス基板を2枚用いる。これ
らの基板間に誘電率異方性Δεが正でその値が4.5 で
あり、屈折率異方性Δnが0.072(589nm,20
℃)のネマチック液晶組成物を挟む。基板表面に塗布し
たポリイミド系配向制御膜をラビング処理して、3.5
度のプレチルト角とする。上下界面上のラビング方向は
互いにほぼ平行で、かつ印加電界方向とのなす角度を8
5度(φLC1=φLC2=85°)とした。ギャップdは球
形のポリマビーズを基板間に分散して挾持し、液晶封入
状態で4.5μm とした。よってΔn・dは0.324
μmである。2枚の偏光板〔日東電工社製G1220DU〕で
パネルを挾み、一方の偏光板の偏光透過軸をラビング方
向にほぼ平行、即ちφP1=85°とし、他方をそれに直
交、即ちφP2=−5°とした。これにより、ノーマリク
ローズ特性を得た。
Example 1 A substrate having a thickness of 1.1 mm
Two transparent glass substrates whose surfaces have been polished by are used. Between these substrates, the dielectric anisotropy Δε is positive and its value is 4.5, and the refractive index anisotropy Δn is 0.072 (589 nm, 20
(° C) between the nematic liquid crystal compositions. Rubbing the polyimide-based orientation control film applied to the substrate surface for 3.5
The pre-tilt angle in degrees. The rubbing directions on the upper and lower interfaces are substantially parallel to each other, and the angle formed with the direction of the applied electric field is 8
It was set to 5 degrees (φ LC1 = φ LC2 = 85 °). The gap d was 4.5 μm when spherical polymer beads were dispersed and sandwiched between the substrates and the liquid crystal was sealed. Therefore, Δn · d is 0.324.
μm. The panel is sandwiched between two polarizing plates [G1220DU manufactured by Nitto Denko Corporation], and the polarization transmission axis of one polarizing plate is almost parallel to the rubbing direction, that is, φ P1 = 85 °, and the other is orthogonal thereto, that is, φ P2 = It was set to -5 °. As a result, normally closed characteristics were obtained.

【0049】薄膜トランジスタ及び各種電極の構造は図
2(a)(正面図)及び図2(b)(側断面)に示すよ
うに、薄膜トランジスタ素子(図2の斜線部)が画素電
極(ソース電極)1と信号電極(ドレイン電極)12、
及び走査電極(ゲート電極)10を有し、画素電極1が第
1の方向(図2では紙面内で上下の方向を意味する)に伸
びており、信号電極12及び共通電極2が複数の画素間
(図2では紙面内で上下の方向に並んだ画素を意味す
る)に渡って第1の方向伸び、薄膜トランジスタ素子が
共通電極の間に配置されている。
As for the structure of the thin film transistor and various electrodes, as shown in FIG. 2A (front view) and FIG. 2B (side cross section), the thin film transistor element (hatched portion in FIG. 2) is a pixel electrode (source electrode). 1 and the signal electrode (drain electrode) 12,
And a scanning electrode (gate electrode) 10, the pixel electrode 1 extends in a first direction (which means an up and down direction in the drawing of FIG. 2), and the signal electrode 12 and the common electrode 2 include a plurality of pixels. The thin film transistor elements are arranged between the common electrodes, extending in the first direction over the space (in FIG. 2, meaning pixels arranged in the vertical direction on the paper surface).

【0050】信号電極12には情報を有する信号波形が
印加され、走査電極10には走査波形が信号波形と同期
をとって印加される。アモルファスシリコン(a−S
i)からなるチャネル層16及び窒化シリコン(Si
N)の保護絶縁膜15からなる薄膜トランジスタは隣接
する共通電極の間に配置されている。信号電極12から
薄膜トランジスタを介して画素電極1に情報信号が伝達
され、共通電極2との間で液晶部分に電圧が印加され
る。本実施例では共通電極を対向基板側に配置し、図2
(b)では厚み方向を拡大して表した為、電界方向7が
傾斜しているように見えるが、実際には幅が48μmに
対して液晶層5の厚みが6μm程度であり、傾斜はほと
んどなく、印加電界方向は基板面にほぼ平行である。
A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a-S
i) channel layer 16 and silicon nitride (Si
The thin film transistor including the protective insulating film 15 of N) is arranged between the common electrodes adjacent to each other. An information signal is transmitted from the signal electrode 12 to the pixel electrode 1 through the thin film transistor, and a voltage is applied to the liquid crystal portion between the signal electrode 12 and the common electrode 2. In this embodiment, the common electrode is arranged on the counter substrate side, and
In (b), since the thickness direction is enlarged and shown, the electric field direction 7 seems to be inclined. However, in reality, the thickness of the liquid crystal layer 5 is about 6 μm with respect to the width of 48 μm, and the inclination is almost the same. The applied electric field direction is almost parallel to the substrate surface.

【0051】容量素子12は、図1(c)に示すよう
に、画素電極1を特記部を形成した走査配線10の上に
ゲート絶縁膜13を挟む構造として形成した。この容量
素子12の静電容量は約21fFになった。各走査配線
10および各信号電極駆動回路21にはそれぞれ走査配
線駆動用LSIおよび信号配線駆動用LSIを接続し
た。
As shown in FIG. 1C, the capacitive element 12 has a structure in which the pixel electrode 1 has a structure in which a gate insulating film 13 is sandwiched on the scanning wiring 10 in which a special portion is formed. The capacitance of the capacitive element 12 was about 21 fF. A scanning wiring driving LSI and a signal wiring driving LSI were connected to each scanning wiring 10 and each signal electrode driving circuit 21, respectively.

【0052】画素電極1に蓄積された電荷は、画素電極
1と共通電極2の間の静電容量と付加容量素子11を並
列接続した容量である約24fFに蓄積されることにな
り、液晶組成物50の比抵抗が5×1010Ωcmであって
も画素電極1の電圧変動を抑制することができる。この
ため、画質劣化を防止することができた。
The electric charge accumulated in the pixel electrode 1 is accumulated in about 24 fF which is the capacitance between the pixel electrode 1 and the common electrode 2 and the additional capacitance element 11 connected in parallel. Even if the specific resistance of the object 50 is 5 × 10 10 Ωcm, the voltage fluctuation of the pixel electrode 1 can be suppressed. Therefore, it is possible to prevent the deterioration of image quality.

【0053】画素数は40(×3)×30で、画素ピッ
チは横方向(即ち共通電極間)は80μm、縦方向(即
ち走査電極間)は240μmである。走査電極の幅は1
2μmで隣接する走査電極の間隙を68μmとし、50
%という高い開口率を確保した。また薄膜トランジスタ
を有する基板に相対向する基板上にストライプ状のR,
G,B3色のカラーフィルタを備えた。カラーフィルタ
の上には表面を平坦化する透明樹脂を積層した。透明樹
脂の材料としてはエポキシ樹脂を用いた。更に、この透
明樹脂上ポリイミド系の配向制御膜を塗布した。パネル
には駆動回路が接続されている。本実施例の駆動回路シ
ステムの構成を図8に示す。信号電極23及び共通電極
31は表示部端部にまで伸びている。図9及び図10は
光学システムの構成を表し、図9が透過型、図10が反
射型を表す。
The number of pixels is 40 (× 3) × 30, and the pixel pitch is 80 μm in the horizontal direction (that is, between the common electrodes) and 240 μm in the vertical direction (that is, between the scanning electrodes). The width of the scanning electrode is 1
The gap between adjacent scanning electrodes is 2 μm and 68 μm.
A high aperture ratio of 100% was secured. In addition, stripe-shaped R,
A color filter of three colors G and B was provided. A transparent resin for flattening the surface was laminated on the color filter. An epoxy resin was used as the material of the transparent resin. Further, a polyimide-based orientation control film on this transparent resin was applied. A drive circuit is connected to the panel. The configuration of the drive circuit system of this embodiment is shown in FIG. The signal electrode 23 and the common electrode 31 extend to the end of the display unit. 9 and 10 show the configuration of the optical system. FIG. 9 shows a transmissive type, and FIG. 10 shows a reflective type.

【0054】本実施例では透明電極を必要としないた
め、製造プロセスが簡単化できかつ歩留まりも向上し、
著しくコストが低減できる。特に、透明電極を形成する
ための真空炉を有する極めて高価な設備が不要になり、
製造設備投資額の大幅低減とそれによる低コスト化が可
能となる。本実施例における画素への印加電圧実効値と
明るさの関係を示す電気光学特性を図3(a)に示す。
コントラスト比は7V駆動時に150以上となり、視角
を左右,上下に変えた場合のカーブの差は従来方式(比
較例1に示す)に比べて極めて小さく、視角を変化させ
ても表示特性はほとんど変化しなかった。また、液晶配
向性も良好で、配向不良ドメインは発生しなかった。ま
た、開口率は薄膜トランジスタ及び電極構造の簡単化に
より50%と十分に高い値を確保し、明るいディスプレ
イを実現した。パネル全体の平均透過率は8.4% とな
った。尚、ここで明るさとは2枚の偏光板を平行に配置
したときの輝度透過率で定義した。
Since the transparent electrode is not required in this embodiment, the manufacturing process can be simplified and the yield can be improved.
The cost can be significantly reduced. In particular, the need for extremely expensive equipment having a vacuum furnace for forming transparent electrodes is eliminated,
It is possible to significantly reduce the amount of manufacturing equipment investment and thereby reduce costs. FIG. 3A shows electro-optical characteristics showing the relationship between the effective value of the voltage applied to the pixel and the brightness in this example.
The contrast ratio is 150 or more when driven by 7V, and the difference in the curves when the viewing angle is changed to the left and right and up and down is extremely small compared to the conventional method (shown in Comparative Example 1), and the display characteristics change almost even when the viewing angle is changed. I didn't. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated. In addition, the aperture ratio secured a sufficiently high value of 50% by simplifying the thin film transistor and electrode structure, and realized a bright display. The average transmittance of the entire panel was 8.4%. The brightness here is defined as the luminance transmittance when two polarizing plates are arranged in parallel.

【0055】〔実施例2〕本実施例では実施例1で対抗
基板側に配置し走査電極を同一基板側に配置した。他の
構成は実施例1と同一である。薄膜トランジスタ及び電
極の断面構造を図4に示す。画素電極1,信号電極1
2,走査電極はいずれもアルミニウムで、同時に成膜及
びエッチングをして形成した。対向基板上には一切導電
性の物質は存在しない。従って、本実施例の構成におい
ては仮に製造工程中に導電性の異物が混入したとして
も、上下電極間タッチの可能性がなく、上下電極間タッ
チの不良率がゼロに抑制される。なお、電極用の材料と
しては電気抵抗の低い金属性のものであれば特に材料の
制約はなく、クロム,銅等でもよい。
[Embodiment 2] In this embodiment, the scanning electrodes are arranged on the opposite substrate side and the scanning electrodes are arranged on the same substrate side in the first embodiment. Other configurations are the same as those in the first embodiment. A cross-sectional structure of the thin film transistor and the electrode is shown in FIG. Pixel electrode 1, signal electrode 1
2. All the scanning electrodes were made of aluminum, and were formed by film formation and etching at the same time. There is no conductive substance on the counter substrate. Therefore, in the configuration of the present embodiment, even if a conductive foreign substance is mixed in during the manufacturing process, there is no possibility of touch between the upper and lower electrodes, and the defective rate of the touch between the upper and lower electrodes is suppressed to zero. The material for the electrode is not particularly limited as long as it is a metallic material having a low electric resistance, and chromium, copper or the like may be used.

【0056】一般にフォトマスクのアライメント精度は
対向する2枚のガラス基板間の組合わせのアライメント
精度に比べて著しく高い。従って、本実施例のように4
種の電極群のいずれをも一方の基板上に形成した方が、
各電極の形成時のアライメントがフォトマスクのみで行
われるため、電極間のアライメントずれが小さく抑制さ
れる。従って、本実施例は走査電極を対向基板上に形成
する場合に比べて、より高精細なパターンを形成するの
に有効である。
Generally, the alignment accuracy of the photomask is significantly higher than the alignment accuracy of the combination between the two glass substrates facing each other. Therefore, as in this embodiment, 4
It is better to form any of the seed electrode groups on one substrate,
Since the alignment at the time of forming each electrode is performed only by the photomask, the misalignment between the electrodes is suppressed to be small. Therefore, this embodiment is effective in forming a finer pattern than in the case where the scanning electrodes are formed on the counter substrate.

【0057】実施例1と同様に広い視角特性を有する明
るい表示を得た。
Similar to Example 1, a bright display having a wide viewing angle characteristic was obtained.

【0058】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Third Embodiment] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0059】薄膜トランジスタ及び各種電極の構造を図
5に示すように、対をなす画素電極1の間に信号電極1
2を配置し、さらに対をなす共通電極2をこれらの電極
の外側に配置した。信号電極12には情報を有する信号
波形が印加され、走査電極10には走査波形が信号波形
と同期をとって印加される。アモルファスシリコン(a
−Si)16及び窒化シリコン(SiN)の保護絶縁膜
15からなる薄膜トランジスタは対をなす共通電極のほ
ぼ中央部に配置されている。信号電極12から2個の薄
膜トランジスタを介して2個の第1の電極1に同じ情報
信号が伝達され、電位を同じくした両側の共通電極との
間で液晶部分に同じ電圧信号が印加される。このように
することで薄膜トランジスタ及び電極構造を複雑化せず
に電極間隔を半分程度にでき、同一電圧でより高い電界
を印加することができるようになり、駆動電圧の低減及
び高速応答化が実現される。
The structure of the thin film transistor and various electrodes is shown in FIG. 5, and the signal electrode 1 is provided between the pair of pixel electrodes 1.
2 were arranged, and a pair of common electrodes 2 were arranged outside these electrodes. A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a
The thin film transistor including the -Si) 16 and the protective insulating film 15 of silicon nitride (SiN) is arranged substantially in the center of the pair of common electrodes. The same information signal is transmitted from the signal electrode 12 to the two first electrodes 1 through the two thin film transistors, and the same voltage signal is applied to the liquid crystal portion between the common electrodes on both sides having the same potential. By doing this, the electrode spacing can be reduced to about half without complicating the thin film transistor and electrode structure, and a higher electric field can be applied at the same voltage, thus reducing the drive voltage and achieving high-speed response. To be done.

【0060】実施例1の広い視角特性と明るさは本実施
例でも実現される。
The wide viewing angle characteristics and brightness of the first embodiment are also realized in this embodiment.

【0061】〔実施例4〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 4] The structure of this embodiment is the same as that of the embodiment 1 except for the following requirements.

【0062】カラーフィルタ上に有機絶縁層として透明
ポリマからなる平坦化膜14(図2(b))を積層し、
その上に配向制御膜としての別の膜を形成せずに表面を
直接ラビングした。透明ポリマの材料としてはエポキシ
樹脂を用いた。このエポキシ樹脂は平坦化と液晶分子の
配向制御の両方の機能を兼ね備えている。液晶組成物層
はエポキシ樹脂に直接接し、界面での傾き角は0.5 度
であった。これにより、配向膜を塗布する工程がなくな
り、製造がより容易かつ短くなった。一般に従来方式で
あるTN型では、配向制御膜に要求される特性が多岐に
わたり、それら全てを満足する必要があり、そのためポ
リイミド等の一部の材料に限られていた。特に重要な特
性は、傾き角である。しかし、作用のところで述べたよ
うに、本発明では大きな傾き角を必要とせず、従って、
材料の選択幅が著しく改善される。
A flattening film 14 (FIG. 2B) made of a transparent polymer is laminated as an organic insulating layer on the color filter,
The surface was directly rubbed without forming another film as an orientation control film on it. An epoxy resin was used as the material of the transparent polymer. This epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. The liquid crystal composition layer was in direct contact with the epoxy resin, and the inclination angle at the interface was 0.5 degree. As a result, the step of applying the alignment film was eliminated, and the manufacturing process became easier and shorter. Generally, in the TN type which is the conventional method, the characteristics required for the orientation control film are diverse, and it is necessary to satisfy all of them, so that it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, as mentioned in the operation, the present invention does not require a large tilt angle, and therefore,
The choice of materials is significantly improved.

【0063】本実施例における電気光学特性を測定した
ところ、実施例1と同様に視角を左右,上下に変えた場
合のカーブの差が極めて小さく、表示特性はほとんど変
化しないという結果を得た。また、傾き角が0.5 度と
小さいにもかかわらず液晶配向性も良好で、配向不良ド
メインは発生しなかった。
When the electro-optical characteristics in this example were measured, the difference in the curves when the viewing angle was changed to the left, right and up and down was very small as in Example 1, and the display characteristics were hardly changed. Further, although the tilt angle was as small as 0.5 degree, the liquid crystal alignment was good and no misalignment domain was generated.

【0064】〔実施例5〕実施例4の平坦化する為の透
明ポリマをエポキシ樹脂からポリイミド樹脂に変えた。
同様にポリイミド樹脂の表面を直接ラビングし、平坦化
と液晶分子の配向制御の両方の機能を兼ね備えた。界面
での傾き角は2度であった。他の実施例と比較して、表
示特性はほとんど変化しないという結果を得た。また、
液晶配向性も良好で、配向不良ドメインは発生しなかっ
た。
[Embodiment 5] The transparent polymer for flattening of Embodiment 4 is changed from epoxy resin to polyimide resin.
Similarly, the surface of the polyimide resin was directly rubbed to have both the functions of flattening and controlling the alignment of liquid crystal molecules. The tilt angle at the interface was 2 degrees. As a result, the display characteristics hardly changed as compared with the other examples. Also,
The liquid crystal alignment was also good and no misaligned domains were generated.

【0065】〔実施例6〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 6] The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0066】薄膜トランジスタを保護する保護絶縁膜1
5(図2(b))を窒化シリコンからエポキシ樹脂から
なる有機絶縁層に交換し、その上を直接ラビング処理
し、有機絶縁層に保護膜と液晶分子配向制御膜の両方の
機能を持たせた。傾き角は0.5度である。
Protective insulating film 1 for protecting thin film transistors
5 (FIG. 2 (b)) was replaced with an organic insulating layer made of epoxy resin from silicon nitride, and the organic insulating layer was directly rubbed to give the organic insulating layer both functions of a protective film and a liquid crystal molecule alignment control film. It was The tilt angle is 0.5 degrees.

【0067】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例4と同様に、傾き角が0.5
度と小さいにもかかわらず液晶配向性も良好で、配向不
良ドメインは発生しなかった。
When the electro-optical characteristics in this example were measured, display characteristics which were almost the same as those in Example 1 were obtained. Further, as in the case of Example 4, the tilt angle is 0.5.
Although the liquid crystal orientation was small, the liquid crystal orientation was good and no misaligned domains were generated.

【0068】〔実施例7〕実施例6で保護膜に用いたエ
ポキシ樹脂を同様に有機絶縁層となるポリイミドに変え
た。
[Embodiment 7] The epoxy resin used for the protective film in Embodiment 6 was changed to polyimide, which similarly serves as an organic insulating layer.

【0069】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例6に比べ、傾き角は2.0 度
と若干上昇した。液晶配向性は良好で、配向不良ドメイ
ンは発生しなかった。
When the electro-optical characteristics in this example were measured, display characteristics which were almost the same as those in Example 1 were obtained. Further, the tilt angle was slightly increased to 2.0 degrees as compared with Example 6. The liquid crystal alignment was good and no misaligned domains were generated.

【0070】〔実施例8〜12〕これらの実施例の構成
は下記の要件を除けば、実施例7と同一である。
[Embodiments 8 to 12] The structures of these embodiments are the same as those of the embodiment 7 except for the following requirements.

【0071】実施例8では上下界面上の液晶分子長軸方
向(ラビング方向)は互いにほぼ平行で、かつ印加電界
方向とのなす角度を89.5度(φLC1=φLC2=89.5
°)、一方の偏光板の偏光透過軸をラビング方向にほぼ
平行(φP1=89.5°)とし、他方をそれに直交(φP2
=−0.5°)とした。
In Example 8, the liquid crystal molecule major axis directions (rubbing directions) on the upper and lower interfaces are substantially parallel to each other, and the angle formed by the applied electric field direction is 89.5 degrees (φ LC1 = φ LC2 = 89.5).
), The polarization transmission axis of one polarizing plate is almost parallel to the rubbing direction (φ P1 = 89.5 °), and the other is orthogonal to it (φ P2
= -0.5 °).

【0072】同様に実施例9ではφLC1=φLC2=φP1
88°,φP2=−2.0°とした。同様に実施例10で
はφLC1=φLC2=φP1=75°,φP2=−25°とし
た。同様に実施例11ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。同様に実施例12ではφ
LC1=φLC2=φP1=30°,φP2=−60°とした。こ
れらの実施例における電気光学特性の測定結果を図7に
まとめて表す。尚ここでは明るさを印加電圧が0ボルト
から10ボルト(実効値Vrms)の範囲で最大となるとき
を100%、最小となるときを0%とした規格化した値
で表した。角度φLCを大きくすることで、しきい値特性
のカーブがより急峻になる傾向を示した。中間調表示を
大きな電圧裕度を持って行うには、φLCを小さくすれば
良いが、45度以下になると明るさが低下する傾向を示
した。角度φLCの最適な値は、表示する中間調レベルの
数,明るさに対する要求値,駆動する電圧,コモン電極
に電圧を印加するか否かによって代わる。設計者は、φ
LCの選択により大きな範囲でしきい値特性が制御でき
る。明るさを考慮すると、望ましくはφLCを45度以上
とすると良い。また更により望ましくは60度から8
9.5 度の間とすると良い。
Similarly, in the ninth embodiment, φ LC1 = φ LC2 = φ P1 =
It was set to 88 ° and φ P2 = −2.0 °. Similarly, in Example 10, φ LC1 = φ LC2 = φ P1 = 75 ° and φ P2 = −25 °. Similarly, in Example 11, φ LC1 = φ LC2 = φ P1 = 45
And φ P2 = −45 °. Similarly, in Example 12, φ
LC1 = φ LC2 = φ P1 = 30 ° and φ P2 = −60 °. The measurement results of the electro-optical characteristics in these examples are collectively shown in FIG. Here, the brightness is expressed as a standardized value in which 100% is the maximum when the applied voltage is in the range of 0 V to 10 V (effective value V rms ) and 0% is the minimum. By increasing the angle φ LC , the curve of the threshold characteristic tended to become steeper. In order to perform halftone display with a large voltage tolerance, it is sufficient to reduce φ LC , but when it becomes 45 degrees or less, the brightness tends to decrease. The optimum value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not the voltage is applied to the common electrode. The designer is φ
The threshold characteristic can be controlled in a large range by selecting LC . Considering brightness, it is desirable to set φ LC to 45 degrees or more. And even more preferably from 60 degrees to 8
It is good to set it between 9.5 degrees.

【0073】視角特性を測定したところ、いずれの場合
も実施例1と同様に視角を左右,上下に変えた場合のカ
ーブの差が極めて小さく、表示特性はほとんど変化しな
いという結果を得た。また、液晶配向性も良好で、配向
不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, it was found that the difference in the curves when the viewing angle was changed to the left, right and up and down was very small in all cases, and the display characteristics were hardly changed. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0074】〔実施例13〜16〕以上の実施例と本実
施例の最大の相違点は、液晶組成物層の誘電率異方性の
値を負にし、それに合わせてラビング方向を変えた点で
ある。Δεが−4.8 ,Δnが0.0437(589n
m,20℃)のネマチック液晶組成物(メルク社製,Z
LI−2806)を用いた。実施例13〜16の実施例
に於いては、いずれも上下界面上の液晶分子長軸方向
(ラビング方向φLC1,φLC2)を互いにほぼ平行(φLC1
=φLC2)とし、印加電界方向とのなす角度φLC1を0度
を超え45度未満である範囲とした。また一方の偏光板
の偏光透過軸(φP1)はラビング方向にほぼ平行とし、
他方(φP2)をそれに直交とした。
[Examples 13 to 16] The greatest difference between the above examples and this example is that the value of the dielectric anisotropy of the liquid crystal composition layer is made negative and the rubbing direction is changed accordingly. Is. Δε is -4.8, Δn is 0.0437 (589n)
m, 20 ° C.) nematic liquid crystal composition (Merck, Z
LI-2806) was used. In any of Examples 13 to 16, the liquid crystal molecule major axis directions (rubbing directions φ LC1 and φ LC2 ) on the upper and lower interfaces are substantially parallel to each other (φ LC1
= Φ LC2 ), and the angle φ LC1 formed with the direction of the applied electric field is in the range of more than 0 degrees and less than 45 degrees. Also, the polarization transmission axis (φ P1 ) of one polarizing plate is set to be substantially parallel to the rubbing direction,
The other (φ P2 ) was orthogonal to it.

【0075】即ち、実施例13ではφLC1=φLC2=φP1
=1.5°,φP2=−88.5°とした。
That is, in the thirteenth embodiment, φ LC1 = φ LC2 = φ P1
= 1.5 ° and φ P2 = −88.5 °.

【0076】実施例14ではφLC1=φLC2=φP1=15
°,φP2=−75°とした。
In Example 14, φ LC1 = φ LC2 = φ P1 = 15
And φ P2 = −75 °.

【0077】実施例15ではφLC1=φLC2=φP1=30
°,φP2=−60°とした。
In Example 15, φ LC1 = φ LC2 = φ P1 = 30
And φ P2 = -60 °.

【0078】実施例16ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。
In Example 16, φ LC1 = φ LC2 = φ P1 = 45
And φ P2 = −45 °.

【0079】ギャップdは液晶封入状態で6.3μmと
し、Δn・dを0.275μmとした。薄膜トランジス
タ,電極の構造等の以外の条件は実施例3と同じであ
る。
The gap d was set to 6.3 μm when the liquid crystal was sealed, and Δn · d was set to 0.275 μm. The conditions other than the structure of the thin film transistor and the electrode are the same as those in the third embodiment.

【0080】これらの実施例における電気光学特性の測
定結果を図11にまとめて表す。誘電率異方性が正の場
合とは逆に、角度φLCを小さくするに従い、しきい値特
性のカーブがより急峻になる傾向を示した。中間調表示
を大きな電圧裕度を持って行うには、φLCを大きくすれ
ば良いが、45度以上になると明るさが低下する傾向を
示した。誘電率異方性が正の場合と同様に、角度φLC
最適な値は、表示する中間調レベルの数,明るさに対す
る要求値,駆動する電圧,共通電極に電圧を印加するか
否かによって代わる。設計者は、φLCの選択により大き
な範囲でしきい値特性が制御できる。明るさを考慮する
と、より望ましくはφLCを45度以下とすると良い。
The measurement results of the electro-optical characteristics in these examples are collectively shown in FIG. Contrary to the case where the dielectric anisotropy was positive, the curve of the threshold characteristic tended to become steeper as the angle φ LC was decreased. In order to perform halftone display with a large voltage margin, it is sufficient to increase φ LC , but when it becomes 45 degrees or more, the brightness tends to decrease. As with the case where the dielectric anisotropy is positive, the optimum value of the angle φ LC is the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not to apply a voltage to the common electrode. Replaced by. The designer can control the threshold characteristic in a large range by selecting φ LC . Considering brightness, it is more desirable to set φ LC to 45 degrees or less.

【0081】尚、視角特性を測定したところ、いずれの
場合も実施例1と同様に視角を左右,上下に変えた場合
のカーブの差が極めて小さく、表示特性はほとんど変化
しないという結果を得た。特に中間調表示(8階調)し
たときのレベルの反転が上下,左右ともに±50度の範
囲内ではまったく見られなかった。また、液晶配向性も
良好で、配向不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, it was found that the difference in the curves when the viewing angle was changed to the left, right, up and down was very small and the display characteristics were hardly changed in all cases. . In particular, no level reversal was observed at half-range display (8 gradations) within ± 50 degrees both vertically and horizontally. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0082】〔実施例17〜19〕本実施例では、実施
例13〜16に於いて最も特性が良好であった実施例1
4(φLC1=φLC2=φP1=15°,φP2=−75°)と
液晶分子長軸方向,偏光板配置を同一とし、液晶組成物
層の厚みdと屈折率異方性Δnの積d・Δnを変えた。
実施例17,18,19それぞれの液晶組成物層の厚み
dを4.0,4.9,7.2μm、即ちd・Δnをそれぞ
れ0.1748,0.2141,0.3146μmとし
た。尚、ここでは屈折率異方性Δnを一定とし、液晶組
成物層の厚みdのみを変えたが、他の液晶表示方式(例
えば、90度ツイステッドネマチック方式)と同様に、
屈折率異方性Δnを変えても明るさの最適値については
同様の結果が得られる。また、液晶組成物層の誘電率異
方性の値を正にしても同様の結果が得られる。結果を実
施例14の結果も含めて、図12にまとめて示す。図1
2(a)は横軸を印加電圧とし、図12(b)は図12
(a)に於いて印加電圧を7ボルトに固定して横軸をd
・Δnにして表したものである。図12(b)から明ら
かなように、明るさはd・Δn強く依存し、かつ最適な
値が存在する。明るさを実用性のある30%以上とする
にはd・Δnを0.21から0.36μmの間にすれば良
く、さらに明るさを50%以上に引き上げるには0.2
3から0.33μmの間にすれば良い。また、液晶の封
入時間や液晶組成物層の厚みの制御等、量産性を考慮す
るとdの値を5.0μm以上とし、Δnを本実施例のよ
うに0.08以下とすることが望ましい。
[Examples 17 to 19] In this example, Example 1 was the best in Examples 13 to 16.
4 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = −75 °) and the liquid crystal molecule major axis direction and the polarizing plate arrangement are the same, and the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn are The product d · Δn was changed.
The thickness d of the liquid crystal composition layer of each of Examples 17, 18 and 19 was 4.0, 4.9 and 7.2 μm, that is, d · Δn was 0.1748, 0.2141 and 0.3146 μm, respectively. Although the refractive index anisotropy Δn is constant and only the thickness d of the liquid crystal composition layer is changed here, like other liquid crystal display methods (for example, 90 ° twisted nematic method),
Even if the refractive index anisotropy Δn is changed, similar results can be obtained for the optimum value of brightness. Similar results can be obtained even when the value of the dielectric anisotropy of the liquid crystal composition layer is positive. The results are collectively shown in FIG. 12, including the results of Example 14. Figure 1
2 (a) shows the applied voltage on the horizontal axis, and FIG.
In (a), the applied voltage is fixed to 7 volts and the horizontal axis is d.
-It is expressed as Δn. As is clear from FIG. 12B, the brightness strongly depends on d · Δn, and there is an optimum value. To achieve a practical brightness of 30% or higher, d · Δn should be set between 0.21 and 0.36 μm, and to raise the brightness to 50% or higher, 0.2
It should be between 3 and 0.33 μm. Further, considering mass productivity such as control of the liquid crystal filling time and the thickness of the liquid crystal composition layer, it is desirable that the value of d be 5.0 μm or more and Δn be 0.08 or less as in the present embodiment.

【0083】〔実施例20〜22〕実施例17〜19の
結果から明らかなように、d・Δnの最適値は0.21
から0.36μmの間、望ましくは0.23から0.33
μm の間にある。量産性のある液晶組成物層の厚みが
5.0μm 以上であることを鑑みると、屈折率異方性Δ
nの値は0.072以下、望ましくは0.066以下でな
くてはならない。ところが、このように極めてΔnの低
い液晶化合物の種類は非常に少なく、十分に他の実用上
の要求特性と両立することが困難である。そこで液晶組
成物層のd・Δnをやや高めに設定しておき、最適値よ
りも超過した分をこの液晶組成物層のd・Δn よりも
低い位相差Rfを有する光学的異方性媒質を液晶組成物
層により生じた位相差を補償するように挿入し、その結
果液晶組成物層と光学的異方性媒質とで合わせた実効的
な位相差が最適値である0.21から0.36μmの間に
入るようにする方法を考案した。
[Embodiments 20 to 22] As is clear from the results of Embodiments 17 to 19, the optimum value of d · Δn is 0.21.
To 0.36 μm, preferably 0.23 to 0.33
between μm. Considering that the thickness of the liquid crystal composition layer having mass productivity is 5.0 μm or more, the refractive index anisotropy Δ
The value of n must be 0.072 or less, preferably 0.066 or less. However, there are very few kinds of liquid crystal compounds having such an extremely low Δn, and it is difficult to be sufficiently compatible with other practically required properties. Therefore, d · Δn of the liquid crystal composition layer is set to be slightly high, and an optically anisotropic medium having a retardation R f lower than d · Δn of the liquid crystal composition layer is exceeded. Is inserted so as to compensate for the phase difference caused by the liquid crystal composition layer, and as a result, the effective phase difference of the liquid crystal composition layer and the optically anisotropic medium is 0.21 to 0, which is the optimum value. I devised a method to make it enter between 0.36 μm.

【0084】実施例20〜22では下記に示す条件以外
は実施例3と同じ構成とした。液晶組成物層の厚みをそ
れぞれ5.0,5.2,5.5μm とした。屈折率異方性
Δnが0.072(589nm,20℃)のネマチック液
晶組成物を用いている為、d・Δnの値は0.360,
0.3744,0.396μm である。このままでは、
明るさ及び色調が良好な0.21から0.36μmの範囲
よりも高い値となっている為、オレンジ色に着色してい
る。この液晶セルにポリビニルアルコール製一軸延伸フ
ィルムの光学的異方性媒質を、低電圧駆動時(ここでは
0ボルト)に液晶の複屈折位相差を補償するように積層
した。即ち、φRをφLC1(=φLC2)と同じ85度とし
た。位相差はRfはそれぞれ0.07,0.08,0.10
μm とし、(d・Δn−Rf)の値を0.29,0.30
44,0.296μmと明るさ及び色調が良好な0.21
から0.36μmの範囲に入るようにした。
In Examples 20 to 22, the same constitution as that of Example 3 was adopted except for the following conditions. The thickness of the liquid crystal composition layer was set to 5.0, 5.2 and 5.5 μm, respectively. Since a nematic liquid crystal composition having a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) is used, the value of d · Δn is 0.360.
It is 0.3744, 0.396 μm. If this goes on,
The value is higher than the range of 0.21 to 0.36 μm in which the brightness and the color tone are good, so that it is colored orange. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol was laminated on this liquid crystal cell so as to compensate the birefringence phase difference of the liquid crystal when driven at a low voltage (here, 0 V). That is, φ R was set to 85 °, which is the same as φ LC1 (= φ LC2 ). The phase difference R f is 0.07, 0.08, and 0.10, respectively.
μm, and the value of (d · Δn−R f ) is 0.29, 0.30.
44, 0.296 μm, with good brightness and color tone of 0.21
To 0.36 μm.

【0085】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display with no coloring and a brightness of 50% or more was obtained.

【0086】〔実施例23〕実施例20の液晶組成物層
を誘電率異方性Δεが負で、その値が−2.5 であり、
Δnが0.0712(589nm,20℃)のネマチック
液晶組成物(メルク社製,ZLI−4518)に変え
た。他の構成は下記を除けば実施例14と同じである。
液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3
916μmである。この液晶セルに位相差Rfが0.11
μmであるポリビニルアルコール製一軸延伸フィルムの
光学的異方性媒質を積層し、(d・Δn−Rf)の値を0.
2816μmと明るさ及び色調が良好な0.21から0.36
μmの範囲に入るようにした。
Example 23 The liquid crystal composition layer of Example 20 had a negative dielectric anisotropy Δε and a value of −2.5,
The nematic liquid crystal composition (ZLI-4518, manufactured by Merck & Co., Inc.) having Δn of 0.0712 (589 nm, 20 ° C.) was used. The other structure is the same as that of the 14th embodiment except the following.
The thickness of the liquid crystal composition layer is 5.5 μm, that is, d · Δn is 0.3.
916 μm. This liquid crystal cell has a phase difference R f of 0.11.
The optically anisotropic medium of polyvinyl alcohol uniaxially stretched film having a thickness of μm is laminated, and the value of (d · Δn−R f ) is set to 0.
Good brightness and color tone of 2816μm from 0.21 to 0.36
It was set to be in the range of μm.

【0087】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display with no coloring and a brightness of 50% or more was obtained.

【0088】〔実施例24〕本実施例の構成は下記の要
件を除けば、実施例8と同一である。
[Embodiment 24] The structure of the present embodiment is the same as that of the embodiment 8 except for the following requirements.

【0089】液晶組成物層のΔnは0.072でギャッ
プdは7.0μmとした。よってΔn・dは0.504μ
mである。φLC1を89.5 度とし、上下基板上の液晶
分子配向方向を互いに交差させ、|φLC1−φLC2|=9
0度とした。偏光板の配置は互いに直交(|φP2−φP1
|=90°)させかつ液晶分子配向方向との関係を旋光
モードとなるようにφLC1=φP1 とした。この結果、ノ
ーマリオープン型が得られた。
The liquid crystal composition layer had a Δn of 0.072 and a gap d of 7.0 μm. Therefore Δn · d is 0.504μ
m. φ LC1 is set to 89.5 degrees and the liquid crystal molecule alignment directions on the upper and lower substrates are made to intersect with each other, and | φ LC1 −φ LC2 | = 9
It was 0 degree. The polarizing plates are arranged at right angles to each other (| φ P2 −φ P1
│ = 90 °) and φ LC1 = φ P1 so that the relationship with the liquid crystal molecule alignment direction is the optical rotation mode. As a result, a normally open type was obtained.

【0090】本実施例における電気光学特性を測定した
ところ、複屈折モードである他の実施例に比べてしきい
値電圧V10,V90が約2倍になった点を除けば、同じく
明るさも50%以上で、視角を左右,上下に変えた場合
のカーブの差も極めて小さく、表示特性はほとんど変化
しないという結果を得た。また、液晶配向性も良好で、
配向不良ドメインは発生しなかった。
When the electro-optical characteristics in this example were measured, it was found that the brightness was the same except that the threshold voltages V 10 and V 90 were about doubled as compared with the other examples in the birefringence mode. The result is that the difference is 50% or more, the difference between the curves when the viewing angle is changed to the left and right and up and down is very small, and the display characteristics are hardly changed. Also, the liquid crystal alignment is good,
No misaligned domains were generated.

【0091】〔実施例25,26〕本実施例の構成は下
記の要件を除けば、実施例1と同一である。
[Embodiments 25 and 26] The construction of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0092】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φLC1−φP1|を実施例25,26でそれぞれ5
度,15度とし、|φP2−φP1|=90度とした。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was not 0 but slightly applied. That is, | φ LC1 −φ P1 | is 5 in each of Examples 25 and 26.
And 15 degrees, and | φ P2 −φ P1 | = 90 degrees.

【0093】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。また、液晶配向性も良好
で、配向不良ドメインは発生しなかった。
Similar to the other examples, good display characteristics were obtained in terms of both brightness and viewing angle. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0094】〔実施例27,28〕本実施例の構成は下
記の要件を除けば、実施例14と同一である。
[Embodiments 27 and 28] The construction of this embodiment is the same as that of Embodiment 14 except for the following requirements.

【0095】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φP1−φLC1|を実施例27,28でそれぞれ5
度,7度とし、|φP2−φP1|=90度とした。また、
液晶組成物層の厚みdは6.3μmとした。よって、Δ
n・dは0.275μmである。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was not 0 but slightly applied. That is, | φ P1 −φ LC1 | is 5 in each of Examples 27 and 28.
7 degrees, and | φ P2 −φ P1 | = 90 degrees. Also,
The thickness d of the liquid crystal composition layer was 6.3 μm. Therefore, Δ
n · d is 0.275 μm.

【0096】本実施例における電気光学特性の測定結果
を図13に示す。実施例27の場合、暗状態となる電圧
OFFは3.0ボルト、最も明るくなる電圧VONは9.2
ボルトであった。駆動をVOFF とVONの間で行えば、十
分に高いコントラストが得られる。同様に、実施例28
の場合はVOFF は5.0ボルト、VONは9.0ボルトであ
った。
The measurement results of the electro-optical characteristics in this example are shown in FIG. In the case of the twenty-seventh embodiment, the dark state voltage V OFF is 3.0 V and the brightest voltage V ON is 9.2.
It was a bolt. If driving is performed between V OFF and V ON , a sufficiently high contrast can be obtained. Similarly, Example 28
In this case, V OFF was 5.0 V and V ON was 9.0 V.

【0097】VOFF とVONの間で駆動した場合、他の実
施例と同じく、明るさ,視角両面で良好な表示特性が得
られた。また、液晶配向性も良好で、配向不良ドメイン
は発生しなかった。
When driven between V OFF and V ON , good display characteristics in terms of both brightness and viewing angle were obtained as in the other examples. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0098】〔実施例29〕本実施例の構成は下記の要
件を除けば、実施例27と同一である。
[Embodiment 29] The construction of the present embodiment is the same as that of the embodiment 27 except for the following requirements.

【0099】信号電極に画像信号を印加すると共に、共
通電極に3.0V の交流波形を印加した。その結果、信
号電極に供給する電圧の低電圧化(8.3V⇒6.2V)
が実現した。
An image signal was applied to the signal electrode and an AC waveform of 3.0 V was applied to the common electrode. As a result, the voltage supplied to the signal electrode is lowered (8.3V⇒6.2V).
Was realized.

【0100】このようにしてVOFF とVONの間で駆動を
行い、他の実施例と同じく、明るさ,視角両面で良好な
表示特性を得た。また、液晶配向性も良好で、配向不良
ドメインは発生しなかった。
In this way, driving was performed between V OFF and V ON , and good display characteristics were obtained in terms of both brightness and viewing angle, as in the other examples. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0101】〔実施例30〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Embodiment 30] The construction of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0102】偏光板の配置を、電界が0ではなく印加さ
れた状態で暗状態が得られるように、設定した。即ち、
LC1−φP1|を45度、|φP2−φP1|を90度とし
た。これにより、低電圧印加時に明状態、高電圧印加時
に暗状態となった。この時の明るさの電圧依存性の測定
結果を図14で実線で示した。
The arrangement of the polarizing plates was set so that a dark state could be obtained when an electric field was applied instead of 0. That is,
| φ LC1 −φ P1 | was set to 45 degrees and | φ P2 −φ P1 | was set to 90 degrees. As a result, a bright state was applied when a low voltage was applied, and a dark state was applied when a high voltage was applied. The measurement result of the voltage dependence of the brightness at this time is shown by the solid line in FIG.

【0103】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。コントラスト比は35とな
った。また、液晶配向性も良好で、配向不良ドメインは
発生しなかった。
Similar to the other examples, good display characteristics were obtained in terms of both brightness and viewing angle. The contrast ratio was 35. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0104】〔実施例31〕実施例30の構成に於い
て、2枚の偏光板の間に界面残留位相差を補償する複屈
折媒体(一軸延伸したポリビニルアルコールフィルム)
を挿入した。このフィルムの延伸方向φR は−45度と
し、偏光板透過軸に直交させた。また、位相差Rfは1
5nmである。
[Example 31] A birefringent medium (uniaxially stretched polyvinyl alcohol film) for compensating for an interface residual retardation between two polarizing plates in the configuration of Example 30.
Inserted. The stretching direction φ R of this film was set to −45 degrees, and was orthogonal to the polarizing plate transmission axis. The phase difference R f is 1
It is 5 nm.

【0105】図14の点線で示したように、実施例30
に比べて高電圧印加時の光漏れが抑制され、コントラス
ト比は150に更に改善された。
As shown by the dotted line in FIG. 14, Example 30 was used.
Compared with the above, light leakage at the time of applying a high voltage was suppressed, and the contrast ratio was further improved to 150.

【0106】[0106]

【発明の効果】本発明によれば、第一に、透明電極がな
くとも高コントラストで、低価格の設備で高い歩留まり
で量産可能な低コストの薄膜トランジスタ型液晶表示装
置を提供することができ、第二に、視角特性が良好で多
階調表示が容易である薄膜トランジスタ型液晶表示装置
を提供することができ、第三に、液晶配向に関するプロ
セス及び材料の裕度が大きく、そのため開口率が高くで
き、光透過率を引上げた、より明るい薄膜トランジスタ
型液晶表示装置を提供することができ、第四に、第一か
ら第三の効果に加えてより構造が簡素である薄膜トラン
ジスタ構造を提供し、開口率を高くし、光透過率を引上
げた、より明るい薄膜トランジスタ型液晶表示装置を提
供することができる。
According to the present invention, firstly, it is possible to provide a low-cost thin film transistor type liquid crystal display device which can be mass-produced with high contrast without a transparent electrode and with a high yield in a low-cost facility. Secondly, it is possible to provide a thin film transistor type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display. Thirdly, there is a large process and material margin regarding liquid crystal alignment, and therefore a high aperture ratio. It is possible to provide a brighter thin film transistor type liquid crystal display device with increased light transmittance. Fourth, in addition to the first to third effects, a thin film transistor structure having a simpler structure is provided. It is possible to provide a brighter thin film transistor type liquid crystal display device having a higher light transmittance and a higher light transmittance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示装置における液晶の動作を示
す図。
FIG. 1 is a diagram showing an operation of liquid crystal in a liquid crystal display device of the present invention.

【図2】本発明の薄膜トランジスタの一例を示す図。FIG. 2 is a diagram showing an example of a thin film transistor of the invention.

【図3】本発明(a)及び比較例(b)の電気光学特性
(視角方向依存性)を示す図。
FIG. 3 is a diagram showing electro-optical characteristics (viewing angle direction dependency) of the present invention (a) and a comparative example (b).

【図4】薄膜トランジスタにおいて画素電極(ソース電
極),共通電極,走査電極,信号電極(ドレイン電極)
をいずれも一方の基板上に配置した本発明の一実施例を
示す図。
FIG. 4 is a pixel electrode (source electrode), a common electrode, a scanning electrode, a signal electrode (drain electrode) in a thin film transistor.
The figure which shows one Example of this invention which all arrange | positioned on one board | substrate.

【図5】画素電極(ソース電極),信号電極(ドレイン
電極)を画素の中央に配置し、一画素を2分割した本発
明の一実施例を示す図。
FIG. 5 is a diagram showing an embodiment of the present invention in which a pixel electrode (source electrode) and a signal electrode (drain electrode) are arranged in the center of a pixel and one pixel is divided into two.

【図6】電界方向に対する、界面上の分子長軸配向方向
φLC,偏光板偏光軸φP,位相板進相軸φRのなす角を示
す図。
FIG. 6 is a diagram showing an angle formed by a molecular long axis orientation direction φ LC , a polarizing plate polarization axis φ P , and a phase plate fast axis φ R with respect to an electric field direction.

【図7】界面上の分子長軸配向方向φLCを変えた種々の
実施例における電気光学特性を示す図。誘電率異方性が
正の場合。
FIG. 7 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis orientation direction φ LC on the interface is changed. When the dielectric anisotropy is positive.

【図8】本発明の液晶表示駆動回路システムを表す図。FIG. 8 is a diagram showing a liquid crystal display drive circuit system of the present invention.

【図9】本発明の液晶表示透過型光学システムを表す
図。
FIG. 9 is a diagram showing a liquid crystal display transmission type optical system of the present invention.

【図10】本発明の液晶表示反射型光学システムを表す
図。
FIG. 10 is a view showing a liquid crystal display reflection type optical system of the present invention.

【図11】界面上の分子長軸配向方向φLCを変えた種々
の実施例における電気光学特性を示す図。誘電率異方性
が負の場合。
FIG. 11 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis orientation direction φ LC on the interface is changed. When the dielectric anisotropy is negative.

【図12】液晶組成物層の厚みdを変えた種々の実施例
における電気光学特性を示す図。誘電率異方性が負の場
合。
FIG. 12 is a diagram showing electro-optical characteristics in various examples in which the thickness d of the liquid crystal composition layer is changed. When the dielectric anisotropy is negative.

【図13】偏光板の配置を、電界が0ではなくやや印加
された状態で暗状態が得られるように設定した時の電気
光学特性を示す図。
FIG. 13 is a diagram showing electro-optical characteristics when the arrangement of polarizing plates is set so that a dark state can be obtained when an electric field is applied rather than 0.

【図14】ノーマリオープン型の特性及び界面残留位相
差を補償した時の特性を表す図。
FIG. 14 is a diagram showing a normally open type characteristic and a characteristic when an interface residual phase difference is compensated.

【符号の説明】[Explanation of symbols]

1…画素電極(ソース電極)、2…共通電極(コモン電
極)、3…基板、4…配向膜、5…液晶組成物層中の液
晶分子、6…偏光板、7…電界方向、8…界面上の分子
長軸配向方向(ラビング方向)、9…偏光板偏光軸方
向、10…ゲート電極(走査配線)、11…付加容量素
子、12…信号電極(ドレイン電極)、13…ゲート絶
縁膜、14…平坦化膜、15…保護絶縁膜、16…アモ
ルファスシリコン、17…カラーフィルタ、18…遮光
層、19…偏光板偏光透過軸、20…位相差板進相軸、
21…信号電極駆動回路、22…走査電極駆動回路、2
3…信号電極、24…走査電極、25…下側基板、26
…上側基板、27…コントロール回路、28…位相差
板、29…バックライト、30…反射板、31…液晶組
成物層。
1 ... Pixel electrode (source electrode), 2 ... Common electrode (common electrode), 3 ... Substrate, 4 ... Alignment film, 5 ... Liquid crystal molecules in liquid crystal composition layer, 6 ... Polarizing plate, 7 ... Electric field direction, 8 ... Molecular major axis orientation direction on interface (rubbing direction), 9 ... Polarizing axis direction of polarizing plate, 10 ... Gate electrode (scanning wiring), 11 ... Additional capacitance element, 12 ... Signal electrode (drain electrode), 13 ... Gate insulating film , 14: flattening film, 15: protective insulating film, 16: amorphous silicon, 17: color filter, 18: light shielding layer, 19: polarizing plate polarization transmission axis, 20: retardation plate fast axis,
21 ... Signal electrode drive circuit, 22 ... Scan electrode drive circuit, 2
3 ... Signal electrode, 24 ... Scan electrode, 25 ... Lower substrate, 26
... upper substrate, 27 ... control circuit, 28 ... retardation plate, 29 ... backlight, 30 ... reflector, 31 ... liquid crystal composition layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 益幸 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 鈴木 堅吉 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masuyuki Ota 4026 Kujimachi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory Ltd. Within

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が透明な一対の基板、該基
板間に挾持され、配向した誘電率異方性と屈折率異方性
とを有する液晶組成物層,偏光手段,マトリクス状に配
置された複数の画素、各画素ごとに備えられ、画素電
極,信号配線電極及び走査配線電極に接続された薄膜ト
ランジスタ素子、該薄膜トランジスタ素子とは離接した
共通電極、前記画素の光透過率或いは反射率を変化させ
る電圧信号波形を印加する手段とを有する液晶表示装置
において、 前記画素電極と前記信号配線電極は、電圧信号波形を印
加する手段により前記画素電極と前記共通電極との間
に、基板面にほぼ平行に電界を印加し、電界の強度に応
じ前記画素の光透過率或いは反射率を変化させるように
配置され、 前記画素電極が前記画素内で第1の方向に伸びており、
前記信号配線電極及び前記共通電極は第1の方向に、か
つ複数の画素間にまたがってそれぞれ表示部端部にまで
伸びていることを特徴とする液晶表示装置。
1. A pair of substrates, at least one of which is transparent, said substrate
Dielectric anisotropy and refractive index anisotropy sandwiched between the plates and oriented
A liquid crystal composition layer having
Multiple pixels placed, each pixel has a pixel
Thin film transistor connected to electrodes, signal wiring electrodes and scanning wiring electrodes
Separated from the transistor element and the thin film transistor element
Change the light transmittance or reflectance of the common electrode and the pixel.
Display device having means for applying a voltage signal waveform
In, the pixel electrode and the signal wiring electrode are printed with a voltage signal waveform.
Between the pixel electrode and the common electrode by adding means.
, An electric field is applied almost parallel to the substrate surface, and
To change the light transmittance or reflectance of the pixel
And the pixel electrode extends in the pixel in a first direction,
The signal wiring electrode and the common electrode are arranged in the first direction.
Across multiple pixels to the end of the display
A liquid crystal display device characterized by growth.
【請求項2】前記画素電極が1画素内で前記信号配線電
極を挟むように対をなし、前記画素及び前記信号配線電
極が1対の共通電極に挟まれてなることを特徴とする請
求項1項に記載の液晶表示装置。
2. The pixel electrodes are paired so as to sandwich the signal wiring electrode in one pixel, and the pixel and the signal wiring electrode are sandwiched by a pair of common electrodes. The liquid crystal display device according to item 1.
【請求項3】前記画素電極,前記信号配線電極,前記共
通電極及び前記走査配線電極のいずれもが前記一対の基
板の一方に配置されていることを特徴とする請求項1項
或いは2項に記載の液晶表示装置。
3. The pixel electrode, the signal wiring electrode, the common electrode, and the scanning wiring electrode are all arranged on one of the pair of substrates. The described liquid crystal display device.
【請求項4】前記画素電極と前記共通電極とが同層であ
って、前記画素電極と前記走査配線との間に絶縁物を介
して容量素子を形成していることを特徴とする請求項1
項或いは2項に記載の液晶表示装置。
4. The pixel electrode and the common electrode are in the same layer, and a capacitive element is formed between the pixel electrode and the scanning wiring with an insulator interposed therebetween. 1
Item 3. The liquid crystal display device according to item 2.
【請求項5】前記一対の基板のうち前記薄膜トランジス
タ素子を備えた基板に対向した基板上に、色の異なる少
なくとも2種以上のカラーフィルタを備え、該カラーフ
ィルタの境界が前記画素電極,前記信号配線電極及び前
記共通電極のいずれかと重なることを特徴とする請求項
1項或いは2項に記載の液晶表示装置。
5. A color filter having at least two kinds of different colors is provided on a substrate facing the substrate having the thin film transistor element among the pair of substrates, and a boundary of the color filters is the pixel electrode and the signal. The liquid crystal display device according to claim 1, wherein the liquid crystal display device overlaps with either the wiring electrode or the common electrode.
【請求項6】前記画素電極,前記信号配線電極,前記共
通電極及び前記走査配線電極を有する基板に対向する他
方の基板上に、色の異なる少なくとも2種以上のカラー
フィルタを備え、該カラーフィルタ上に表面をより平坦
化する有機ポリマを積層し、該有機ポリマが透明ポリマ
であり、更に該透明ポリマをその表面をラビング処理す
ることで界面上の液晶分子を所定方向に配向制御する配
向膜として用いることを特徴とする請求項1項から3項
のいずれかに記載の液晶表示装置。
6. A color filter comprising at least two kinds of color filters having different colors on the other substrate facing the substrate having the pixel electrode, the signal wiring electrode, the common electrode and the scanning wiring electrode. An alignment film in which an organic polymer for flattening the surface is laminated on the organic polymer, and the organic polymer is a transparent polymer, and the surface of the transparent polymer is rubbed to control the alignment of liquid crystal molecules on the interface in a predetermined direction. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is used as a liquid crystal display device.
【請求項7】少なくとも一方が透明な一対の基板、該基
板間に挾持され、配向した誘電率異方性と屈折率異方性
とを有する液晶組成物層,偏光手段,マトリクス状に配
置された複数の画素、各画素ごとに備えられ、画素電
極,信号配線電極及び走査配線電極に接続された薄膜ト
ランジスタ素子、該薄膜トランジスタ素子とは離接した
共通電極、前記画素の光透過率或いは反射率を変化させ
る電圧信号波形を印加する手段とを有する液晶表示装置
において、 前記画素電極と前記信号配線電極は、電圧信号波形を印
加する手段により前記画素電極と前記共通電極との間
に、基板面にほぼ平行に電界を印加し、電界の強度に応
じ前記画素の光透過率或いは反射率を変化させるように
配置され、 前記薄膜トランジスタ素子及び前記液晶組成物層に直接
接する有機絶縁層が備えられていることを特徴とする液
晶表示装置。
7. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates and having oriented dielectric anisotropy and refractive index anisotropy, polarizing means, and arranged in a matrix. A plurality of pixels, a thin film transistor element provided for each pixel and connected to a pixel electrode, a signal wiring electrode and a scanning wiring electrode, a common electrode separated from and in contact with the thin film transistor element, and a light transmittance or a reflectance of the pixel. In the liquid crystal display device having a means for applying a changing voltage signal waveform, the pixel electrode and the signal wiring electrode are provided on the substrate surface between the pixel electrode and the common electrode by means for applying a voltage signal waveform. An electric field is applied substantially parallel to the thin film transistor element and the liquid crystal composition layer so as to change the light transmittance or the reflectance of the pixel according to the strength of the electric field. The liquid crystal display device, characterized in that the organic insulating layer is provided in contact.
【請求項8】前記薄膜トランジスタ素子を覆った前記有
機絶縁層をラビング処理することで該有機絶縁層に、前
記薄膜トランジスタ素子の保護膜と液晶分子配向制御膜
の両方の機能を持たせたことを特徴とする請求項7項に
記載の液晶表示装置。
8. The organic insulating layer covering the thin film transistor element is subjected to a rubbing treatment so that the organic insulating layer has functions of both a protective film of the thin film transistor element and a liquid crystal molecule alignment control film. The liquid crystal display device according to claim 7.
【請求項9】前記液晶組成物層の誘電率異方性が正であ
り、かつ少なくとも一方の基板界面上での液晶分子配向
方向と電界方向とのなす角度|φLC|が45度以上90
度未満であることを特徴とする請求項1項から4項のい
ずれかに記載の液晶表示装置。ただし、−90度≦φLC
≦90度である。
9. The liquid crystal composition layer has a positive dielectric anisotropy, and an angle | φ LC | formed between the liquid crystal molecule alignment direction and the electric field direction on at least one substrate interface is 45 degrees or more 90.
The liquid crystal display device according to any one of claims 1 to 4, wherein the liquid crystal display device has a power of less than 100 degrees. However, -90 degrees ≤ φ LC
≦ 90 degrees.
【請求項10】前記液晶組成物層の誘電率異方性が負で
あり、かつ少なくとも一方の基板界面上での液晶分子配
向方向と電界方向とのなす角度|φLC|が0度を超え4
5度未満であることを特徴とする請求項1項から4項の
いずれかに記載の液晶表示装置。ただし、−90度≦φ
LC≦90度である。
10. The liquid crystal composition layer has a negative dielectric anisotropy, and an angle | φ LC | formed between the liquid crystal molecule alignment direction and the electric field direction on at least one substrate interface exceeds 0 degree. Four
The liquid crystal display device according to claim 1, wherein the liquid crystal display device is less than 5 degrees. However, -90 degrees ≤ φ
LC ≤ 90 degrees.
【請求項11】前記液晶組成物層内の配向に関して、一
方の基板界面上での液晶分子配向方向角度φLC1と他方
基板界面上での液晶分子配向方向角度φLC2とが互いに
略平行(φLC1≒φLC2)であり、かつ前記液晶組成物層
の厚みd及び屈折率異方性Δnの積d・Δnが0.21
μmから0.36μmの間であることを特徴とする請求
項10項あるいは11項に記載の液晶表示装置。
11. Regarding orientation in the liquid crystal composition layer, a liquid crystal molecule orientation direction angle φ LC1 on one substrate interface and a liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface are substantially parallel to each other (φ LC1 ≈ φ LC2 ) and the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn is 0.21.
The liquid crystal display device according to claim 10 or 11, wherein the thickness is in the range of µm to 0.36 µm.
【請求項12】前記液晶組成物層の厚みd及び屈折率異
方性Δnの積d・Δnよりも低い位相差Rf を有する光
学的異方性媒質を液晶組成物層により生じた位相差を補
償するように挿入し、かつその絶対値の差|d・Δn|
−|Rf|を0.21μmから0.36μm の間としたこ
とを特徴とする請求項11項に記載の液晶表示装置。
12. A retardation produced by a liquid crystal composition layer is an optically anisotropic medium having a retardation R f lower than a product d · Δn of a thickness d of the liquid crystal composition layer and a refractive index anisotropy Δn. , And the difference in absolute value | d · Δn |
12. The liquid crystal display device according to claim 11, wherein − | R f | is set between 0.21 μm and 0.36 μm.
【請求項13】前記液晶組成物層内の配向に関して、一
方の基板界面上での液晶分子配向方向角度φLC1と他方
基板界面上での液晶分子配向方向角度φLC2とが互いに
交差し、その角度|φLC1−φLC2|が80度以上100
度以下であり、かつ前記液晶組成物層の厚みd及び屈折
率異方性Δnの積d・Δnが0.40μmから0.60μ
mの間であることを特徴とする請求項10項或いは11
項に記載の液晶表示装置。
13. Regarding the orientation in the liquid crystal composition layer, a liquid crystal molecule orientation direction angle φ LC1 on one substrate interface and a liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface cross each other, and Angle | φ LC1 −φ LC2 | is 80 degrees or more 100
And the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn is 0.40 μm to 0.60 μm.
It is between m, The claim 10 or 11 characterized by the above-mentioned.
The liquid crystal display device according to item.
【請求項14】液晶分子の傾き角が、いずれの界面上に
於いても4度以下であることを特徴とする請求項11あ
るいは13項記載の液晶表示装置。
14. The liquid crystal display device according to claim 11, wherein the tilt angle of the liquid crystal molecules is 4 degrees or less on any interface.
【請求項15】前記液晶組成物層の誘電率異方性が正で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、前記界面上の液晶分子の長軸方向と電界方
向とのなす角φLCが該一対の偏光板のうちの一方の偏光
板Aの透過軸(或いは吸収軸)の角度φPよりも大き
く、かつその差|φLC−φP|が3度以上15度以下で
あることを特徴とする請求項10項に記載の液晶表示装
置。
15. The liquid crystal composition layer has a positive dielectric anisotropy, and the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer. The angle φ LC formed with the direction of the electric field is larger than the angle φ P of the transmission axis (or the absorption axis) of one of the pair of polarizing plates A, and the difference | φ LC −φ P | is 3 The liquid crystal display device according to claim 10, wherein the liquid crystal display device has an angle of not less than 15 degrees and not more than 15 degrees.
【請求項16】前記液晶組成物層の誘電率異方性が負で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、前記界面上の液晶分子の長軸方向と電界方
向とのなす角φLCが該偏光板の吸収軸或いは透過軸の角
度φP よりも小さく、かつその差|φP−φLC|が3度以
上15度以下であることを特徴とする請求項11項に記
載の液晶表示装置。
16. The liquid crystal composition layer has a negative dielectric anisotropy, and the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer. The angle φ LC formed with the electric field direction is smaller than the angle φ P of the absorption axis or the transmission axis of the polarizing plate, and the difference | φ P −φ LC | is 3 degrees or more and 15 degrees or less. The liquid crystal display device according to claim 11.
【請求項17】前記第2の電極に画像信号を印加し、か
つ前記液晶組成物層に印加される電圧がより高まるよう
に前記コモン電極にも電圧信号波形を印加することを特
徴とする請求項15項或いは16項に記載の液晶表示装
置。
17. An image signal is applied to the second electrode, and a voltage signal waveform is applied to the common electrode so that the voltage applied to the liquid crystal composition layer is further increased. Item 15. The liquid crystal display device according to item 15 or 16.
【請求項18】前記偏光手段が前記液晶組成物層を挟む
一対の偏光板であり、それらを低電圧VL印加時に明状
態、高電圧VH印加時に暗状態となる配置に設定し、前
記一対の偏光板間に、VH 印加時の液晶層の界面残留位
相差を補償する透明媒体を挿入したことを特徴とする請
求項11或いは13項に記載の液晶表示装置。
18. The polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the polarizing means is set to a bright state when a low voltage V L is applied and a dark state when a high voltage V H is applied, 14. The liquid crystal display device according to claim 11, wherein a transparent medium for compensating for the residual phase difference at the interface of the liquid crystal layer when VH is applied is inserted between the pair of polarizing plates.
JP22546293A 1992-09-18 1993-09-10 Liquid crystal display Expired - Lifetime JP2940354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24993892 1992-09-18
JP4-249938 1992-09-18
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP9064154A Division JPH09230364A (en) 1997-03-18 1997-03-18 Liquid crystal display device
JP11045299A Division JP3441999B2 (en) 1992-09-18 1999-04-19 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH06160878A true JPH06160878A (en) 1994-06-07
JP2940354B2 JP2940354B2 (en) 1999-08-25

Family

ID=26526653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22546293A Expired - Lifetime JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2940354B2 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010530A1 (en) * 1995-09-14 1997-03-20 Hitachi, Ltd. Active matrix liquid crystal display
JPH09105918A (en) * 1995-10-12 1997-04-22 Hitachi Ltd Liquid crystal display device
JPH11149076A (en) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd Liquid crystal display device
JPH11202323A (en) * 1998-01-19 1999-07-30 Nec Corp Liquid crystal display device and its manufacture
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US5977562A (en) * 1995-11-14 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6034757A (en) * 1995-10-12 2000-03-07 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging electricity
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US6052168A (en) * 1997-11-20 2000-04-18 Nec Corporation Active matrix liquid-crystal display with verticle alignment, positive anisotropy and opposing electrodes below pixel electrode
US6097467A (en) * 1996-08-05 2000-08-01 Nec Corporation Latitudinal LCD with cylindrical and eliptical spacers at intersection of signal and gate lines
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
KR100265878B1 (en) * 1996-09-20 2000-09-15 가네꼬 히사시 Liquid crystal display and menufacturing method thereof
US6130737A (en) * 1997-01-21 2000-10-10 Hitachi, Ltd. Lateral electric field switching mode liquid crystal display apparatus without black stains
US6130739A (en) * 1996-10-04 2000-10-10 Sharp Kabushiki Kaisha Matrix driving transverse electric field liquid crystal display device and homeotropically-oriented nematic liquid crystal material
US6141078A (en) * 1997-07-14 2000-10-31 Mitsubishi Denki Kabushiki Kaisha IPS type liquid crystal display apparatus having in-plane retardation value of less than zero and not more than 20
US6147738A (en) * 1998-02-09 2000-11-14 Nec Corporation Liquid crystal display device and manufacturing method for same
US6160600A (en) * 1995-11-17 2000-12-12 Semiconductor Energy Laboratory Co., Ltd. Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride
KR100282331B1 (en) * 1997-08-01 2001-02-15 구본준 In-plane switching mode liquid crystal device
US6195145B1 (en) 1996-10-04 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display device
US6222602B1 (en) 1995-10-12 2001-04-24 Hitachi, Ltd Liquid crystal display apparatus and a method for manufacturing the same
US6243064B1 (en) 1995-11-07 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
KR100293432B1 (en) * 1997-08-26 2001-08-07 구본준, 론 위라하디락사 An in-plane switching mode liquid crystal display device
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6300992B1 (en) 1997-07-15 2001-10-09 Nec Corporation Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6337726B1 (en) 1998-02-24 2002-01-08 Kabushiki Kaisha Toshiba Array substrate for liquid crystal display element
US6346932B1 (en) 1996-03-14 2002-02-12 Seiko Epson Corporation Liquid crystal device and electronic equipment
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6384888B2 (en) 1997-07-12 2002-05-07 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6498634B1 (en) 1995-12-20 2002-12-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US6525798B1 (en) 1999-10-21 2003-02-25 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6590627B2 (en) 2001-02-28 2003-07-08 Hitachi, Ltd. Liquid crystal display
US6618100B2 (en) 1997-07-23 2003-09-09 Seiko Epson Corporation Liquid crystal device, liquid crystal device manufacturing method and electronic apparatus
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
KR100394760B1 (en) * 1994-08-24 2003-11-17 가부시끼가이샤 히다치 세이사꾸쇼 Active Matrix Liquid Crystal Display
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
US6756089B2 (en) 1996-05-08 2004-06-29 Hitachi, Ltd. Active-matrix liquid crystal display
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6850303B2 (en) 2000-09-27 2005-02-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device having additional storage capacitance
US6859194B2 (en) 2001-03-29 2005-02-22 Hitachi, Ltd. Liquid crystal display apparatus
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
US6911962B1 (en) 1996-03-26 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
KR100497691B1 (en) * 1997-08-21 2005-07-01 가부시키가이샤 히타치세이사쿠쇼 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
JP2005222004A (en) * 2003-08-15 2005-08-18 Fuji Photo Film Co Ltd Liquid crystal display
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
KR100759093B1 (en) * 1998-05-08 2007-09-19 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
CN100409082C (en) * 2002-11-02 2008-08-06 默克专利股份有限公司 Optically compensated electro-optical light modulation element with optically isotropic phase
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
KR100900625B1 (en) * 2004-06-29 2009-06-02 샤프 가부시키가이샤 Phase difference film, polarization film, liquid crystal display unit, and method of designing phase difference film
US7548289B2 (en) 2005-01-19 2009-06-16 Future Vision Inc. LCD device with film member attached to polarizing element and satisfies a predetermined contast ratio to be equal or greater than 0.025 for all azimuth angels
US7615260B2 (en) 1996-05-08 2009-11-10 Hitachi, Ltd. Active-matrix liquid crystal display
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US7630043B2 (en) 2006-07-19 2009-12-08 Hitachi Displays, Ltd. Liquid display device and fabrication method thereof
US7663726B2 (en) 2006-12-08 2010-02-16 Epson Imaging Devices Corporation Liquid crystal apparatus and electronic apparatus
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US7799390B2 (en) 2007-03-30 2010-09-21 Sony Corporation Liquid crystal display device and liquid crystal display
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
US7961263B2 (en) 1997-11-20 2011-06-14 Samsung Electronics Co., Ltd. Liquid crystal displays and manufacturing methods thereof
JP2012014200A (en) * 2011-10-18 2012-01-19 Semiconductor Energy Lab Co Ltd Active matrix liquid crystal display device
JP2012088743A (en) * 2012-01-25 2012-05-10 Semiconductor Energy Lab Co Ltd Liquid crystal display device, liquid crystal display module, and electronic appliance
US20120182501A1 (en) * 2011-01-19 2012-07-19 Nobuko Fukuoka Liquid crystal display device
JP2012150498A (en) * 2012-03-12 2012-08-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2012190040A (en) * 2012-05-16 2012-10-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
US8305334B2 (en) 2008-02-14 2012-11-06 Hitachi Displays, Ltd. Liquid crystal display device
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
JP2013205652A (en) * 2012-03-28 2013-10-07 Japan Display Inc Liquid crystal display
US8659728B2 (en) 2005-05-09 2014-02-25 Lg Display Co., Ltd. Liquid crystal display device comprising compensation films having negative photo-elastic constant
JP2014081637A (en) * 2013-11-25 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
KR20160008954A (en) 2014-07-15 2016-01-25 제이엔씨 주식회사 Diamins, polyamicacids or the dirivatives, liquid crystal aligning agents, liquid crystal alignment films, and liquid crystal display devices
WO2016017570A1 (en) * 2014-07-28 2016-02-04 Dic株式会社 Liquid crystal display element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281770B2 (en) 2016-03-11 2019-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
JP6859563B2 (en) 2016-08-18 2021-04-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display element and manufacturing method of liquid crystal display element
JP6924588B2 (en) 2017-02-28 2021-08-25 エルジー ディスプレイ カンパニー リミテッド Manufacturing method of liquid crystal display device and liquid crystal table device
JP7092461B2 (en) 2017-02-28 2022-06-28 エルジー ディスプレイ カンパニー リミテッド Manufacturing method of liquid crystal display device and liquid crystal table device
US11099434B2 (en) 2019-02-04 2021-08-24 Sharp Kabushiki Kaisha Liquid crystal display panel

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394760B1 (en) * 1994-08-24 2003-11-17 가부시끼가이샤 히다치 세이사꾸쇼 Active Matrix Liquid Crystal Display
KR100412933B1 (en) * 1995-09-14 2004-03-22 가부시끼가이샤 히다치 세이사꾸쇼 Active matrix type liquid crystal display
WO1997010530A1 (en) * 1995-09-14 1997-03-20 Hitachi, Ltd. Active matrix liquid crystal display
US6108066A (en) * 1995-10-12 2000-08-22 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging with electricity
US6034757A (en) * 1995-10-12 2000-03-07 Hitachi, Ltd. In-plane field type liquid crystal display device comprising a structure which is prevented from charging electricity
US6236441B1 (en) 1995-10-12 2001-05-22 Hitachi, Ltd. Liquid crystal display apparatus and a method for manufacturing the same
US6222602B1 (en) 1995-10-12 2001-04-24 Hitachi, Ltd Liquid crystal display apparatus and a method for manufacturing the same
JPH09105918A (en) * 1995-10-12 1997-04-22 Hitachi Ltd Liquid crystal display device
US6621102B2 (en) 1995-11-04 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6456269B2 (en) 1995-11-07 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US6243064B1 (en) 1995-11-07 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
US5977562A (en) * 1995-11-14 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6268617B1 (en) 1995-11-14 2001-07-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6160600A (en) * 1995-11-17 2000-12-12 Semiconductor Energy Laboratory Co., Ltd. Interlayer insulation of TFT LCD device having of silicon oxide and silicon nitride
US6963382B1 (en) 1995-11-17 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving same
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving
US6498634B1 (en) 1995-12-20 2002-12-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US7692749B2 (en) 1995-12-20 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6914655B2 (en) 1995-12-20 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US9182642B2 (en) 1995-12-20 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US7327412B2 (en) 1995-12-20 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8339558B2 (en) 1995-12-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8040450B2 (en) 1995-12-20 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
US6346932B1 (en) 1996-03-14 2002-02-12 Seiko Epson Corporation Liquid crystal device and electronic equipment
US6657608B2 (en) 1996-03-14 2003-12-02 Seiko Epson Corporation Liquid crystal device and electronic equipment
USRE40770E1 (en) 1996-03-14 2009-06-23 Seiko Epson Corporation Liquid crystal device and electronic equipment
US7336249B2 (en) 1996-03-26 2008-02-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
US6911962B1 (en) 1996-03-26 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US6493055B1 (en) 1996-04-10 2002-12-10 Sharp Kabushiki Kaisha Homeo-tropically-oriented nematic liquid crystal material
US6756089B2 (en) 1996-05-08 2004-06-29 Hitachi, Ltd. Active-matrix liquid crystal display
US7615260B2 (en) 1996-05-08 2009-11-10 Hitachi, Ltd. Active-matrix liquid crystal display
US6097467A (en) * 1996-08-05 2000-08-01 Nec Corporation Latitudinal LCD with cylindrical and eliptical spacers at intersection of signal and gate lines
US6191837B1 (en) 1996-09-20 2001-02-20 Nec Corporation IPS LCD having an organic conductive layer outside the subtrate
KR100265878B1 (en) * 1996-09-20 2000-09-15 가네꼬 히사시 Liquid crystal display and menufacturing method thereof
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6130739A (en) * 1996-10-04 2000-10-10 Sharp Kabushiki Kaisha Matrix driving transverse electric field liquid crystal display device and homeotropically-oriented nematic liquid crystal material
US6195145B1 (en) 1996-10-04 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display device
US6663795B2 (en) 1996-10-04 2003-12-16 Sharp Kabushiki Kaisha Liquid crystal display device and liquid crystal material
US6130737A (en) * 1997-01-21 2000-10-10 Hitachi, Ltd. Lateral electric field switching mode liquid crystal display apparatus without black stains
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
US6587170B2 (en) 1997-01-23 2003-07-01 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US7551256B1 (en) 1997-05-19 2009-06-23 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6384888B2 (en) 1997-07-12 2002-05-07 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6741312B2 (en) 1997-07-12 2004-05-25 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6141078A (en) * 1997-07-14 2000-10-31 Mitsubishi Denki Kabushiki Kaisha IPS type liquid crystal display apparatus having in-plane retardation value of less than zero and not more than 20
US6680768B2 (en) 1997-07-15 2004-01-20 Nec Lcd Technologies, Ltd. Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6300992B1 (en) 1997-07-15 2001-10-09 Nec Corporation Liquid crystal display device having characteristic of viewing angle which is right-and-left symmetrical and up-and-down symmetrical
US6618100B2 (en) 1997-07-23 2003-09-09 Seiko Epson Corporation Liquid crystal device, liquid crystal device manufacturing method and electronic apparatus
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
KR100282331B1 (en) * 1997-08-01 2001-02-15 구본준 In-plane switching mode liquid crystal device
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
KR100497691B1 (en) * 1997-08-21 2005-07-01 가부시키가이샤 히타치세이사쿠쇼 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
KR100293432B1 (en) * 1997-08-26 2001-08-07 구본준, 론 위라하디락사 An in-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
JPH11149076A (en) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd Liquid crystal display device
US7961263B2 (en) 1997-11-20 2011-06-14 Samsung Electronics Co., Ltd. Liquid crystal displays and manufacturing methods thereof
US6052168A (en) * 1997-11-20 2000-04-18 Nec Corporation Active matrix liquid-crystal display with verticle alignment, positive anisotropy and opposing electrodes below pixel electrode
US6285429B1 (en) 1998-01-19 2001-09-04 Nec Corporation Liquid crystal display device and method for its production
JPH11202323A (en) * 1998-01-19 1999-07-30 Nec Corp Liquid crystal display device and its manufacture
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6628362B2 (en) 1998-01-23 2003-09-30 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device having a high aperture ratio
US6147738A (en) * 1998-02-09 2000-11-14 Nec Corporation Liquid crystal display device and manufacturing method for same
US6337726B1 (en) 1998-02-24 2002-01-08 Kabushiki Kaisha Toshiba Array substrate for liquid crystal display element
KR100759093B1 (en) * 1998-05-08 2007-09-19 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US7145627B2 (en) 1998-07-07 2006-12-05 Lg.Philips Lcd. Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US6833881B2 (en) 1998-07-07 2004-12-21 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
US6950168B2 (en) 1999-05-20 2005-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
US7701541B2 (en) 1999-05-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. In-plane switching display device having electrode and pixel electrode in contact with an upper surface of an organic resin film
US7126661B2 (en) 1999-05-20 2006-10-24 Semiconductor Energy Laboratory Co., Ltd In-plane switching display device having common electrode overlapping channel forming region, and double gate TFT
US6525798B1 (en) 1999-10-21 2003-02-25 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
US6850303B2 (en) 2000-09-27 2005-02-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device having additional storage capacitance
US6958799B2 (en) 2001-02-28 2005-10-25 Hitachi, Ltd. Liquid crystal display
US6590627B2 (en) 2001-02-28 2003-07-08 Hitachi, Ltd. Liquid crystal display
US6859194B2 (en) 2001-03-29 2005-02-22 Hitachi, Ltd. Liquid crystal display apparatus
US7180490B2 (en) 2001-03-29 2007-02-20 Hitachi, Ltd. Liquid crystal display apparatus
CN100409082C (en) * 2002-11-02 2008-08-06 默克专利股份有限公司 Optically compensated electro-optical light modulation element with optically isotropic phase
US8758871B2 (en) 2002-12-09 2014-06-24 Japan Display Inc. Liquid crystal display and method for manufacturing same
US11520186B2 (en) 2002-12-09 2022-12-06 Nissan Chemical Corporation Liquid crystal display and method for manufacturing same
US8025939B2 (en) 2002-12-09 2011-09-27 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US9405152B2 (en) 2002-12-09 2016-08-02 Japan Display Inc. Liquid crystal display and method for manufacturing same
JP2005222004A (en) * 2003-08-15 2005-08-18 Fuji Photo Film Co Ltd Liquid crystal display
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
JP2005258397A (en) * 2004-02-12 2005-09-22 Chisso Corp Liquid crystal aligner, alignment layer, and liquid crystal display element having the alignment layer
JP4586503B2 (en) * 2004-02-12 2010-11-24 チッソ株式会社 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film
JP4620438B2 (en) * 2004-02-27 2011-01-26 チッソ株式会社 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
US8284358B2 (en) 2004-06-29 2012-10-09 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US8031308B2 (en) 2004-06-29 2011-10-04 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
KR100900625B1 (en) * 2004-06-29 2009-06-02 샤프 가부시키가이샤 Phase difference film, polarization film, liquid crystal display unit, and method of designing phase difference film
US8139188B2 (en) 2004-06-29 2012-03-20 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US7948591B2 (en) 2004-06-29 2011-05-24 Sharp Kabushiki Kaisha Retardation film, polarizing film, liquid crystal display, and method of designing retardation film
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US7548289B2 (en) 2005-01-19 2009-06-16 Future Vision Inc. LCD device with film member attached to polarizing element and satisfies a predetermined contast ratio to be equal or greater than 0.025 for all azimuth angels
US8659728B2 (en) 2005-05-09 2014-02-25 Lg Display Co., Ltd. Liquid crystal display device comprising compensation films having negative photo-elastic constant
JP2007248637A (en) * 2006-03-14 2007-09-27 National Institute For Materials Science Liquid crystal alignment layer, liquid crystal aligning agent and liquid crystal display device
US7630043B2 (en) 2006-07-19 2009-12-08 Hitachi Displays, Ltd. Liquid display device and fabrication method thereof
US7663726B2 (en) 2006-12-08 2010-02-16 Epson Imaging Devices Corporation Liquid crystal apparatus and electronic apparatus
US7799390B2 (en) 2007-03-30 2010-09-21 Sony Corporation Liquid crystal display device and liquid crystal display
US8305334B2 (en) 2008-02-14 2012-11-06 Hitachi Displays, Ltd. Liquid crystal display device
US20120182501A1 (en) * 2011-01-19 2012-07-19 Nobuko Fukuoka Liquid crystal display device
JP2012150268A (en) * 2011-01-19 2012-08-09 Japan Display Central Co Ltd Liquid crystal display apparatus
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
CN102608813A (en) * 2011-01-19 2012-07-25 东芝移动显示器有限公司 Liquid crystal display device
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
JP2012014200A (en) * 2011-10-18 2012-01-19 Semiconductor Energy Lab Co Ltd Active matrix liquid crystal display device
JP2012088743A (en) * 2012-01-25 2012-05-10 Semiconductor Energy Lab Co Ltd Liquid crystal display device, liquid crystal display module, and electronic appliance
JP2012150498A (en) * 2012-03-12 2012-08-09 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
JP2013205652A (en) * 2012-03-28 2013-10-07 Japan Display Inc Liquid crystal display
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
JP2012190040A (en) * 2012-05-16 2012-10-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and electronic appliance
JP2014081637A (en) * 2013-11-25 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
KR20160008954A (en) 2014-07-15 2016-01-25 제이엔씨 주식회사 Diamins, polyamicacids or the dirivatives, liquid crystal aligning agents, liquid crystal alignment films, and liquid crystal display devices
WO2016017570A1 (en) * 2014-07-28 2016-02-04 Dic株式会社 Liquid crystal display element
JPWO2016017570A1 (en) * 2014-07-28 2017-04-27 Dic株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
JP2940354B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JP2940354B2 (en) Liquid crystal display
KR100356604B1 (en) LCD Display
KR100225910B1 (en) Lcd device
US6829028B2 (en) Wide-viewing angle display device and fabrication method for thereof
US6573965B1 (en) Multi-domain wide viewing angle liquid crystal display having slits on electrodes and bumps above the slits
EP2345927B1 (en) Liquid crystal display device
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
JPH0772491A (en) Simple matrix type liquid crystal display device
JP2006201451A (en) Liquid crystal display
US6873377B2 (en) Liquid crystal display device
JPH02176625A (en) Liquid crystal display device
JPH09197420A (en) Liquid crystal element
JP2004151525A (en) Liquid crystal display
CN100374943C (en) In-plane switching mode liquid crystal display device
JP2002214613A (en) Liquid crystal display
JPH07318959A (en) Liquid crystal display device
JPH09230364A (en) Liquid crystal display device
KR20060083643A (en) Liquid crystal display
JP3441999B2 (en) Liquid crystal display
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
CN102422211A (en) Liquid crystal display device
JPH0829790A (en) Liquid crystal display device
JPH0980383A (en) Liquid crystal display device
KR100773875B1 (en) In Plane Switching mode Liquid crystal display device
JP3811695B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250