JP2940354B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2940354B2
JP2940354B2 JP22546293A JP22546293A JP2940354B2 JP 2940354 B2 JP2940354 B2 JP 2940354B2 JP 22546293 A JP22546293 A JP 22546293A JP 22546293 A JP22546293 A JP 22546293A JP 2940354 B2 JP2940354 B2 JP 2940354B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
electrodes
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22546293A
Other languages
Japanese (ja)
Other versions
JPH06160878A (en
Inventor
克己 近藤
寺尾  弘
英俊 阿部
益幸 太田
堅吉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22546293A priority Critical patent/JP2940354B2/en
Publication of JPH06160878A publication Critical patent/JPH06160878A/en
Application granted granted Critical
Publication of JP2940354B2 publication Critical patent/JP2940354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain an active matrix type liquid crystal display device having such features that the contrast is high, visual angle property is good, a multi- level display can be easily performed, and that the display is bright and the cost is reduced. CONSTITUTION:The device has such a structure that an electric field 7 parallel to a substrate surface is impressed on a liquid crystal composition layer by a thin film transistor provided with a drain electrode 12 and a common electrode 2 which are extending over plural picture elements and a source electrode 1 extending in a direction same as that of the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、量産性が良好で低コス
トで視角特性が良好な薄膜トランジスタ型液晶表示装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor type liquid crystal display device having good mass productivity, low cost and good viewing angle characteristics.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタ型液晶表示装置
では、液晶層を駆動する電極としては2枚の基板界面上
に形成し相対向させた透明電極を用いていた。これは、
液晶に印加する電界の方向を基板界面にほぼ垂直な方向
とすることで動作する、ツイステッドネマチック表示方
式に代表される表示方式を採用していることによる。一
方、液晶に印加する電界の方向を基板界面にほぼ平行な
方向とする方式として、櫛歯電極対を用いた方式が、例
えば特公昭63−21907 号により提案されている。この場
合、電極は透明である必要は無く導電性が高く不透明な
金属電極を用いることが可能である。
2. Description of the Related Art In a conventional thin film transistor type liquid crystal display device, transparent electrodes formed on the interface between two substrates and opposed to each other are used as electrodes for driving a liquid crystal layer. this is,
This is because a display method typified by a twisted nematic display method, which operates by setting the direction of an electric field applied to the liquid crystal to a direction substantially perpendicular to the substrate interface, is employed. On the other hand, as a method of making the direction of the electric field applied to the liquid crystal substantially parallel to the interface of the substrate, a method using a pair of comb electrodes is proposed, for example, in Japanese Patent Publication No. 63-21907. In this case, the electrode does not need to be transparent, and an opaque metal electrode having high conductivity can be used.

【0003】[0003]

【発明が解決しようとする課題】前記の従来技術におい
ては、ITOに代表される透明電極を形成する為にスパ
ッタリング装置等の真空系製造設備を使用する必要があ
り、設備コストが巨額になっていた。また、真空系製造
設備の使用には真空炉内の汚染を除去する作業を伴い、
その為に多大な時間を要し、このことが製造コストを著
しく引き上げている。また、一般に透明電極はその表面
に数10nm程度の凹凸があり、薄膜トランジスタのよ
うな微細なアクティブ素子の加工を困難にしている。さ
らに、透明電極の凸部はしばしば離脱し電極等の他の部
分に混入し、点状或いは線状の表示欠陥を引き起こし、
歩留まりを著しく低下させていた。これらの為に、マー
ケットニーズに対応した低価格の液晶表示装置を安定的
に提供することが出来ずにいた。また、前記の従来技術
においては、画質面でも多くの課題を有していた。特
に、視角方向を変化させた際の輝度変化が著しく、中間
調表示を行った場合、強い各方向により階調レベルが反
転してしまうなど、実用上問題であった。さらに、薄膜
トランジスタ素子の凹凸構造の為にその周辺で配向不良
ドメインが発生し、その対策の為に大きな面積の遮光膜
を要し、光の利用効率も著しく低下させていた。
In the above-mentioned prior art, it is necessary to use a vacuum manufacturing equipment such as a sputtering apparatus to form a transparent electrode typified by ITO, and the equipment cost is enormous. Was. In addition, the use of vacuum manufacturing equipment involves work to remove contamination in the vacuum furnace,
This requires a great deal of time, which significantly increases manufacturing costs. In general, the surface of a transparent electrode has irregularities of about several tens of nm, which makes it difficult to process a fine active element such as a thin film transistor. In addition, the protruding portions of the transparent electrode are often detached and mixed into other parts such as the electrode, causing a dot-like or linear display defect,
The yield was significantly reduced. For these reasons, it has not been possible to stably provide a low-cost liquid crystal display device that meets market needs. In addition, the above-described prior art has many problems in terms of image quality. In particular, the luminance changes when the viewing angle direction is changed is remarkable, and when halftone display is performed, there is a practical problem such that the grayscale level is inverted in each strong direction. Further, the uneven structure of the thin-film transistor element causes an alignment defect domain around the thin-film transistor element, a light-shielding film having a large area is required for the countermeasure, and the light use efficiency is remarkably reduced.

【0004】一方、特公昭63−21907 号に示されている
櫛歯電極を用いれば透明電極を使う必要はなくなり、上
記の課題を解決できる可能性があるが、以下の理由によ
り実用化はされていない。即ち、この公知技術に於いて
は相互に咬合する櫛歯電極対を用いているために、画素
内のパターンが微細化かつ複雑化し、量産性が著しく低
い。特に、表示情報量が多く、画素サイズの小さなディ
スプレイでは櫛歯構造の電極を1画素内に入れることは
ほとんど不可能であり、仮に入れたとしても開口率が著
しく低く、ほとんど光が有効に利用できない暗いディス
プレイしか実現できない。原理的には櫛歯電極の電極幅
を1〜2μm程度まで縮小すれば開口率を実用レベルま
で拡大出来るが、実際には大型基板全面にわたってその
ような細線を均一にかつ断線がないように形成すること
は極めて困難である。即ち、上記の従来技術では、相互
に咬合する櫛歯状の電極を用いたために画素開口率と製
造歩留まりがトレ−ドオフの関係となり、明るい画像を
有する液晶表示装置を低コストで提供することは困難で
あった。
On the other hand, the use of a comb-shaped electrode disclosed in Japanese Patent Publication No. 63-21907 eliminates the need to use a transparent electrode, which may solve the above-mentioned problem. However, it has been put to practical use for the following reasons. Not. That is, in this known technique, since the interdigitated comb-teeth electrode pair is used, the pattern in the pixel becomes fine and complicated, and the mass productivity is extremely low. In particular, in a display having a large amount of display information and a small pixel size, it is almost impossible to insert an electrode having a comb-teeth structure in one pixel. Even if it is inserted, the aperture ratio is extremely low, and almost all light is effectively used. Only a dark display that cannot be realized can be realized. In principle, the aperture ratio can be increased to a practical level if the electrode width of the comb electrode is reduced to about 1 to 2 μm. However, in practice, such fine lines are formed uniformly and without breakage over the entire large substrate. It is extremely difficult to do. That is, in the above-described conventional technology, since the interdigitated comb-shaped electrodes are used, the pixel aperture ratio and the manufacturing yield are in a trade-off relationship, and it is not possible to provide a liquid crystal display device having a bright image at low cost. It was difficult.

【0005】本発明はこれらの課題を同時に解決するも
ので、その目的とするところは、第一に、透明電極がな
くとも高コントラストで、低価格の設備で高い歩留まり
で量産可能な低コストの薄膜トランジスタ型液晶表示装
置を提供することにある。第二に、低い電圧で駆動がで
きかつ視角特性が良好で多階調表示が容易である薄膜ト
ランジスタ型液晶表示装置を提供することにある。第三
に、使用可能な液晶組成物及び配向膜材料の選択の自由
度を上げ、これにより液晶パネル作製等のプロセスの裕
度を大きくし、高い開口率と画素劣化抑制を両立させ、
光透過率を引上げた、より明るい薄膜トランジスタ型液
晶表示装置を提供することにある。第四に、第一から第
三の目的に加えてより構造が簡素であり、製造歩留まり
が高い薄膜トランジスタ型液晶表示装置を提供すること
にある。
The present invention solves these problems at the same time. The object of the present invention is, firstly, to provide a high-contrast, low-cost facility that can be mass-produced with a high yield without using a transparent electrode. An object of the present invention is to provide a thin film transistor type liquid crystal display device. Second, it is an object of the present invention to provide a thin film transistor type liquid crystal display device which can be driven at a low voltage, has good viewing angle characteristics, and can easily perform multi-tone display. Third, the degree of freedom in selecting usable liquid crystal compositions and alignment film materials is increased, thereby increasing the latitude of processes such as liquid crystal panel manufacturing, and achieving both a high aperture ratio and suppression of pixel deterioration.
It is an object of the present invention to provide a brighter thin film transistor type liquid crystal display device having a higher light transmittance. Fourth, in addition to the first to third objects, it is an object of the present invention to provide a thin film transistor type liquid crystal display device having a simpler structure and a high production yield.

【0006】[0006]

【課題を解決するための手段】本発明の液晶表示装置
は、少なくとも一方が透明な一対の基板と、その一対の
基板に挟持された液晶層を有し、前記一対の基板の一方
には、複数の信号配線電極と、その複数の信号配線電極
とマトリクス状に形成された複数の走査配線電極と、そ
れぞれの交点に対応して形成された複数の薄膜トランジ
スタを有し、前記複数の信号配線電極と前記複数の走査
配線電極とで囲まれるそれぞれの領域で少なくとも一つ
の画素が構成され、それぞれの画素には少なくとも一つ
の共通電極と、対応する薄膜トランジスタに接続された
少なくとも一つの画素電極とを有し、前記少なくとも一
つの共通電極と前記少なくとも一つの画素電極とは
記複数の走査配線電極の配置された層と異なる層で、前
記走査配線電極が配置された層とは少なくとも絶縁膜を
介して同じ層に形成されており、これらの電極間には前
記一方の基板に対し、支配的に平行な電界が形成される
ように構成する。
The liquid crystal display device of the present invention.
Includes at least one of the pair of transparent substrates, a liquid crystal layer held the pair of substrates, one of said pair of substrates, a plurality of signal wiring electrodes, and the plurality of signal wiring electrode matrix A plurality of scanning wiring electrodes formed in a shape, and a plurality of thin film transistors formed corresponding to respective intersections, in each region surrounded by the plurality of signal wiring electrodes and the plurality of scanning wiring electrodes. at least one pixel arrangement, and one common electrode even without least in each pixel, and at least one pixel electrode connected to the corresponding thin film transistor, said at least one common electrode and the at least one the pixel electrode, and in different layers arranged layers of the plurality of scanning wiring electrodes, before
The layer on which the scanning wiring electrodes are arranged is at least an insulating film.
The electrodes are formed in the same layer, and an electric field predominantly parallel to the one substrate is formed between these electrodes.

【0007】上記信号配線電極方向に隣接する画素にお
いて、対応するそれぞれの共通電極は隣接する画素内の
対応する共通電極と相互に接続される構成にすることが
望ましい。
A pixel adjacent in the direction of the signal wiring electrode is
And each corresponding common electrode is located in an adjacent pixel.
It can be configured to be interconnected with the corresponding common electrode
desirable.

【0008】また、前記複数の共通電極は前記複数の走
査配線電極と同一の基板に形成される構成としてもよ
い。
Further , the plurality of common electrodes are connected to the plurality of scan electrodes.
It may be formed on the same substrate as the wiring electrodes.
No.

【0009】また、複数の画素のそれぞれに対応する信
号配線電極には複数の薄膜トランジスタのドレイン電極
が接続される構成としてもよい。
In addition, signals corresponding to each of a plurality of pixels are provided.
Drain electrodes for multiple thin film transistors
May be connected.

【0010】また、走査配線電極の上方若しくは下方に
絶縁層を形成し、その絶縁層を介して画素電極若しくは
共通電極を重畳させて、容量を形成させる構成としても
よい。
In addition, above or below the scanning wiring electrode,
An insulating layer is formed, and a pixel electrode or
A configuration in which a common electrode is overlapped to form a capacitor
Good.

【0011】以上のような構成にすることで、透明電極
が不要で、かつ櫛歯電極対を用いた従来技術に比べはる
かに簡素な構造を有し、開口率も高く製造歩留まりも高
い液晶表示装置が得られる。
With the above configuration, the transparent electrode
Is unnecessary and compared with the conventional technology using a comb-shaped electrode pair
Has a simple structure, high aperture ratio and high production yield
Liquid crystal display device can be obtained.

【0012】同様に、以下に示す構成を加えることによ
って、視角特性が良好で多階調表示能に優れた特性を実
現することができる。
Similarly, the following configuration is added.
This realizes characteristics with good viewing angle characteristics and excellent multi-gradation display capability.
Can be manifested.

【0013】液晶層の液晶組成物の誘電率異方性が正で
ある場合、少なくとも一方の基板界面上での液晶分子の
配向方向と電界方向とのなす角度|φLC|を45度以上
90度未満とする構成が望ましい。
When the liquid crystal composition of the liquid crystal layer has a positive dielectric anisotropy,
In some cases, liquid crystal molecules on at least one substrate interface
Angle | φLC | between the orientation direction and the electric field direction must be 45 degrees or more
It is desirable that the angle be less than 90 degrees.

【0014】また、液晶層の液晶組成物の誘電率異方性
が負である場合は、少なくとも一方の基板界面上での液
晶分子の配向方向と電界方向とのなす角度|φLC|を0
度を超え45度未満にすることが好ましい。
The dielectric anisotropy of the liquid crystal composition of the liquid crystal layer is
Is negative, the liquid on at least one substrate interface
The angle | φLC |
It is preferable to set the temperature to more than 45 degrees.

【0015】さらに、液晶層の一方の基板界面上での液
晶分子の配向方向の角度φLC1 と他方基板界面上での液
晶分子の配向方向の角度φLC2とが互いに略平行(φLC1
≒φLC2)であり、かつ前記液晶層の厚みd及び屈折率異
方性Δnの積d・Δnが0.21μmから0.36μmの
間にすることが望ましく、さらに、液晶層の厚みd及び
屈折率異方性Δnの積d・Δnよりも低い位相差Rf を
有する光学的異方性媒質を液晶層により生じた位相差を
補償するように挿入し、かつその絶対値の差|d・Δn
|−|Rf|を0.21 μm以上0.36μm以下とする
構成が望ましい。
Further, the liquid on one substrate interface of the liquid crystal layer
ΦLC1 of the orientation direction of the crystal molecules and the liquid on the other substrate interface
The angle φLC2 of the orientation direction of the crystal molecules is substantially parallel to each other (φLC1
≒ φLC2), and the thickness d and the refractive index of the liquid crystal layer are different.
The product d · Δn of anisotropy Δn is from 0.21 μm to 0.36 μm
It is desirable that the thickness d and
The phase difference Rf lower than the product d · Δn of the refractive index anisotropy Δn
The optically anisotropic medium has a phase difference caused by the liquid crystal layer.
Is inserted so as to compensate, and the difference | d · Δn
| − | Rf | is set to 0.21 μm or more and 0.36 μm or less
Configuration is desirable.

【0016】また、液晶層の一方の基板界面上での液晶
分子の配向方向の角度φLC1 と他方基板界面上での液晶
分子の配向方向の角度φLC2 とが互いに交差し、その角
度|φLC1−φLC2|が80度以上100度以下であり、
かつ前記液晶層の厚みd及び屈折率異方性Δnの積d・
Δnが0.40μmから0.60μmの間で形成すること
が好ましい。
The liquid crystal on one substrate interface of the liquid crystal layer
The angle φLC1 of the molecular orientation and the liquid crystal on the other substrate interface
The angle φLC2 of the molecular orientation crosses each other and the angle
Degree | φLC1-φLC2 | is 80 degrees or more and 100 degrees or less,
And the product d · of the thickness d of the liquid crystal layer and the refractive index anisotropy Δn.
Forming Δn between 0.40 μm and 0.60 μm
Is preferred.

【0017】上記の構成を加えることによって、複屈折
モードによるさらに高いコントラストとさらに広い視角
特性を得られる。
By adding the above structure, birefringence
Higher contrast and wider viewing angle depending on the mode
Characteristics can be obtained.

【0018】同様に、前記液晶層の一方の基板界面上で
の液晶分子の配向方向の角度φLC1と他方基板界面上で
の液晶分子の配向方向の角度φLC2とが互いに交差し、
その角度|φLC1−φLC2|が80度以上100度以下で
あり、かつ前記液晶層の厚みd及び屈折率異方性Δnの
積d・Δnが0.40μmから0.60μmの間にするこ
とが望ましい。
Similarly, on one substrate interface of the liquid crystal layer,
Angle LCLC of the orientation direction of the liquid crystal molecules of
And the angle φLC2 of the alignment direction of the liquid crystal molecules intersects each other,
When the angle | φLC1-φLC2 | is 80 degrees or more and 100 degrees or less
And the thickness d of the liquid crystal layer and the refractive index anisotropy Δn
The product d · Δn must be between 0.40 μm and 0.60 μm.
Is desirable.

【0019】この構成を加えると、旋光性モードによる
高いコントラストと広い視角特性が得られる。
When this configuration is added, the optical rotation mode
High contrast and wide viewing angle characteristics can be obtained.

【0020】上記一対の基板の少なくとも一方の外側に
偏光手段を有し、その偏光手段が前記液晶層を挟む一対
の偏光板であり、液晶層の液晶組成物の誘電率異方性が
正である場合は、基板界面上の液晶分子の長軸方向と電
界方向とのなす角φLCが該一対の偏光板のうちの一方の
偏光板Aの透過軸(或いは吸収軸)の角度φP よりも大
きく、かつその差|φLC−φP |が3度以上15度以下
である構成とすることが望ましく、液晶層の液晶組成物
の誘電率異方性が負である場合は、基板界面上の液晶分
子の長軸方向と電界方向とのなす角φLCが該偏光板の吸
収軸或いは透過軸の角度φP よりも小さく、かつその差
|φP −φLC|が3度以上15度以下である構成が好ま
しい。
At least one outside of the pair of substrates is
A pair of polarizing means, the polarizing means sandwiching the liquid crystal layer
Is a polarizing plate, the dielectric anisotropy of the liquid crystal composition of the liquid crystal layer is
If it is positive, the long axis direction of the liquid crystal molecules on the substrate interface
The angle φLC with the field direction is one of the pair of polarizing plates.
Larger than the angle φP of the transmission axis (or absorption axis) of the polarizing plate A
And the difference | φLC−φP | is 3 degrees or more and 15 degrees or less
And a liquid crystal composition of a liquid crystal layer.
If the dielectric anisotropy of the liquid crystal is negative,
The angle φLC between the major axis direction of the element and the electric field direction is the absorption of the polarizing plate.
Smaller than the angle φP of the storage axis or transmission axis and the difference
It is preferable that | φP−φLC | is not less than 3 degrees and not more than 15 degrees.
New

【0021】上記のような、基板に対して支配的に平行
に電界が形成される液晶表示装置においては、前記一対
の基板の少なくとも一方の基板近傍の前記液晶層の液晶
分子はその基板界面に対する傾き角が4度以下にする構
成が望ましい。
As described above, dominantly parallel to the substrate
In a liquid crystal display device in which an electric field is formed,
Liquid crystal of the liquid crystal layer near at least one of the substrates
Molecules should have a tilt angle of 4 degrees or less with respect to the substrate interface.
Is desirable.

【0022】また、複数の信号配線電極に印加される信
号電圧波形に対して同期した電圧を複数の共通電極に印
加すると低い電圧で効率よく電圧を印加することができ
る。
The signal applied to a plurality of signal wiring electrodes is
A voltage synchronized with the signal voltage waveform is applied to multiple common electrodes.
Voltage can be applied efficiently at low voltage.
You.

【0023】また、共通電極の幅は信号配線の電極の幅
以上、3倍以下にすることによって液晶層に効率よく電
界を形成することができる。
The width of the common electrode is the width of the electrode of the signal wiring.
More than three times, the liquid crystal layer is efficiently charged.
A field can be formed.

【0024】また、前記一対の基板を挟持するように一
対の偏光手段を有し、前記偏光手段が一対の偏光板であ
り、それらを低電圧VL 印加時に明状態,高電圧VH 印
加時に暗状態となるように形成し、前記一対の偏光板の
間に、VH 印加時の液晶層の界面残留位相差を補償する
透明媒体を挿入する構成としてもよい。
[0024] Further , the first pair of substrates may be sandwiched.
It has a pair of polarizing means, and the polarizing means is a pair of polarizing plates.
They are in a bright state when the low voltage VL is applied, and are marked with the high voltage VH.
It is formed so as to be in a dark state upon application, and the pair of polarizing plates
In the meantime, compensate the residual phase difference at the interface of the liquid crystal layer when VH is applied.
A configuration in which a transparent medium is inserted may be adopted.

【0025】これらの構成を加えることによって、しき
い値電圧が上昇し、より高い耐圧を有する駆動回路を用
いる必要があるという課題を対策することができる。こ
れによれば、実施例にもあるように10ボルト未満の十
分低い出力電圧の駆動回路でも動作が可能となる。
By adding these structures, the threshold
Use a drive circuit with higher voltage and higher withstand voltage
Issues that need to be available. This
According to this, as in the embodiment, a voltage of less than 10 volts is used.
Operation is possible even with a drive circuit with a lower output voltage.

【0026】また、開口率を上げる別の手段として、少
なくとも一方が透明な一対の基板と、その一対の基板に
挟持された液晶層を有する液晶表示装置において、一対
の基板の一方には、複数の信号配線電極と、その複数の
信号配線電極とマトリクス状に形成された複数の走査配
線電極と、それぞれの交点に形成された複数の薄膜トラ
ンジスタと、それら薄膜トランジスタに形成された複数
の画素電極と、前記複数の信号配線電極と平行に形成さ
れる複数の共通電極とを有し、前記複数の信号配線電極
と前記複数の走査配線電極とで囲まれる領域で複数の画
素が構成され、前記複数の画素電極及び前記複数の共通
電極に電圧が印加されることにより、前記複数の画素電
極と前記複数の共通電極との間で基板面に支配的に平行
な電界が形成される構成にしてもよい。
As another means for increasing the aperture ratio, a small
At least one of them is a pair of transparent substrates and the pair of substrates
In a liquid crystal display device having a sandwiched liquid crystal layer, a pair of
One of the substrates has a plurality of signal wiring electrodes and the plurality of signal wiring electrodes.
A plurality of scanning lines formed in a matrix with signal wiring electrodes
Wire electrode and a plurality of thin film transformers formed at each intersection.
Transistors and a plurality of thin film transistors
Pixel electrodes, and formed in parallel with the plurality of signal wiring electrodes.
A plurality of common electrodes, and the plurality of signal wiring electrodes
And a plurality of scanning wiring electrodes.
The plurality of pixel electrodes and the plurality of common electrodes
By applying a voltage to the electrodes, the plurality of pixel
Dominantly parallel to the substrate surface between the pole and the plurality of common electrodes
A configuration in which an appropriate electric field is formed may be adopted.

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【作用】先ず初めに、電界方向に対する、偏光板の偏光
透過軸のなす角φP ,界面近傍での液晶分子長軸(光学
軸)方向のなす角φLC,一対の偏光板間に挿入した位相
差板の進相軸のなす角φR の定義を示す(図6)。偏光
板及び液晶界面はそれぞれ上下に一対あるので必要に応
じてφP1,φP2,φLC1,φLC2と表記する。尚、図6は
後述する図1の正面図に対応する。
First, the angle φ P formed by the polarization transmission axis of the polarizing plate with respect to the direction of the electric field, the angle φ LC formed by the long axis (optical axis) of the liquid crystal molecule near the interface, and the insertion between the pair of polarizing plates. The angle φ R formed by the fast axis of the phase difference plate is defined (FIG. 6). Phi P1 optionally Since the polarizer and the liquid crystal interface is a pair up and down, respectively, φ P2, φ LC1, referred to as phi LC2. FIG. 6 corresponds to a front view of FIG. 1 described later.

【0033】次に本発明の作用を図1を用いて説明す
る。
Next, the operation of the present invention will be described with reference to FIG.

【0034】図1(a),(b)は本発明の液晶パネル内
での液晶の動作を示す側断面を、図1(c),(d)はそ
の正面図を表す。図1では薄膜トランジスタ素子を省略
してある。また、本発明ではストライプ状の電極を構成
して複数の画素を形成するが、ここでは一画素の部分を
示した。電圧無印加時のセル側断面を図1(a)に、そ
の時の正面図を図1(c)に示す。透明な一対の基板の
内側に線状の電極1,2が形成され、その上に配向制御
膜4が塗布及び配向処理されている。間には液晶組成物
が挟持されている。棒状の液晶分子5は、電界無印加時
には電極1,2の長手方向に対して若干の角度、即ち4
5度≦|φLC|<90度、をもつように配向されてい
る。上下界面上での液晶分子配向方向はここでは平行、
即ちφLC1=φLC2 を例に説明する。また、液晶組成物
の誘電異方性は正を想定している。次に、電界7を印加
すると図1(b),(d)に示したように電界方向に液晶
分子がその向きを変える。偏光板6を所定角度9に配置
することで電界印加によって光透過率を変えることが可
能となる。このように、本発明によれば透明電極がなく
ともコントラストを与える表示が可能となる。尚、図1
(b)では基板表面と電界方向とのなす角が大きく、平
行ではないように見えるが、これは厚み方向を拡大して
表した結果で、実際には20度以下である。以後本発明
では、20度以下のものを総称して横電界と表現する。
また、図1では電極1,2を上下基板に分けて形成した
が、一方の基板に備えてもなんら効果は変わるものでは
ない。むしろ配線等のパターンが微細化する場合や熱,
外力等による種々の変形等を鑑みると、一方の基板に備
えたほうがより高精度なアライメントが可能となり、望
ましい。また、液晶組成物の誘率異方性は正を想定した
が、負であっても構わない。その場合には初期配向状態
を電極1,2の長手方向に垂直な方向(電界方向7)から
若干の角度|φLC|(即ち、0度<|φLC|≦45度)
を持つように配向させる。
FIGS. 1A and 1B are side sectional views showing the operation of a liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1C and 1D are front views thereof. In FIG. 1, the thin film transistor element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a stripe-shaped electrode. Here, one pixel portion is shown. FIG. 1A shows a cross section of the cell when no voltage is applied, and FIG. 1C shows a front view at that time. Linear electrodes 1 and 2 are formed inside a pair of transparent substrates, and an alignment control film 4 is coated and aligned thereon. A liquid crystal composition is sandwiched between the two. The rod-shaped liquid crystal molecules 5 have a slight angle with respect to the longitudinal direction of the electrodes 1 and 2 when no electric field is applied, that is, 4 degrees.
It is oriented so that 5 degrees ≦ | φ LC | <90 degrees. Here, the liquid crystal molecule alignment directions on the upper and lower interfaces are parallel,
That is, φ LC1 = φ LC2 will be described as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. 1 (b) and 1 (d). By arranging the polarizing plate 6 at a predetermined angle 9, the light transmittance can be changed by applying an electric field. As described above, according to the present invention, it is possible to provide a display that provides a contrast without a transparent electrode. FIG.
In (b), the angle between the substrate surface and the direction of the electric field is large and appears to be non-parallel. However, this is the result of the enlargement in the thickness direction, which is actually 20 degrees or less. Hereinafter, in the present invention, those having an angle of 20 degrees or less are collectively referred to as a lateral electric field.
Although the electrodes 1 and 2 are formed separately on the upper and lower substrates in FIG. 1, the effect does not change even if the electrodes are provided on one substrate. Rather, when patterns such as wiring become finer, heat,
In view of various deformations and the like due to external force and the like, it is desirable to provide the one substrate with higher precision because alignment can be performed with higher accuracy. In addition, the dielectric anisotropy of the liquid crystal composition is assumed to be positive, but may be negative. In this case, the initial alignment state is changed from the direction perpendicular to the longitudinal direction of the electrodes 1 and 2 (electric field direction 7) to a slight angle | φ LC | (that is, 0 degrees <| φ LC | ≦ 45 degrees).
Orientation.

【0035】以下、本発明の3つの目的それぞれに応じ
て、その作用について説明する。
The operation of the present invention will be described below in accordance with the three objects.

【0036】(1)透明電極を備えない状態での高コン
トラスト化 コントラストを付与する具体的構成としては、上下基板
上の液晶分子配向がほぼ平行な状態を利用したモード
(複屈折位相差による干渉色を利用するので、ここでは
複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方
向が交差しセル内での分子配列がねじれた状態を利用し
たモード(液晶組成物層内で偏光面が回転する旋光性を
利用するので、ここでは旋光性モードと呼ぶ)とがあ
る。複屈折モードでは、電圧印加により分子長軸(光
軸)方向が基板界面にほぼ平行なまま面内でその方位を
変え、所定角度に設定された偏光板の軸とのなす角を変
えて光透過率を変える。旋光性モードでも同様に電圧印
加により分子長軸方向の方位のみを変えるが、こちらの
場合はら線がほどけることによる旋光性の変化を利用す
る。
(1) High Contrast without a Transparent Electrode As a specific configuration for imparting contrast, a mode utilizing the state in which liquid crystal molecules on upper and lower substrates are almost parallel (interference due to birefringence phase difference) is used. In this case, the color is used, which is referred to as a birefringence mode), and a mode in which the liquid crystal molecules on the upper and lower substrates intersect and the molecular arrangement in the cell is twisted (the polarization plane in the liquid crystal composition layer). Uses the optical rotation that rotates, so that it is called an optical rotation mode here). In the birefringence mode, the direction of the molecular long axis (optical axis) is changed in the plane by applying a voltage while the direction of the molecular long axis (optical axis) is substantially parallel to the substrate interface, and the angle formed with the axis of the polarizing plate set at a predetermined angle is changed. Change the transmittance. In the optical rotation mode, similarly, only the orientation in the molecular major axis direction is changed by applying a voltage, but in this case, the change in optical rotation caused by the loosening of the helical line is used.

【0037】次に表示を無彩色にしコントラスト比をあ
げる定量的構成および作用について、以下複屈折モード
を用いる場合と旋光性モードを用いる場合の2つのケー
スに分けて述べる。
Next, the quantitative structure and operation for increasing the contrast ratio by making the display an achromatic color will be described below in two cases, that is, the case where the birefringence mode is used and the case where the optical rotation mode is used.

【0038】I.複屈折モードで表示する場合 一般に一軸性複屈折性媒体を直交配置した2枚の偏光板
の間に挿入した時の光透過率T/Toは次式で表され
る。ここで、χeffは液晶組成物層の実効的な光軸方向
(光軸と偏光透過軸とのなす角)、deff は複屈折性を
有する実効的な液晶組成物層の厚み、Δnは屈折率異方
性、λは光の波長を表す。ここで、液晶組成物層の光軸
方向を実効的な値とした目的は、実際のセル内では界面
上では液晶分子が固定されており、電界印加時にはセル
内で全ての液晶分子が互いに平行かつ一様に配向してい
るのではなく、特に界面近傍では大きな変形が起こって
いることを鑑み、それらの平均値として一様状態を想定
した時の見かけの値で取り扱うことにある。
I. Light transmission T / T o when generally inserted between two polarizing plates were orthogonally arranged uniaxial birefringent medium when displaying in birefringence mode is expressed by the following equation. Here, χ eff is the effective optical axis direction of the liquid crystal composition layer (the angle between the optical axis and the polarization transmission axis), d eff is the effective thickness of the birefringent liquid crystal composition layer, and Δn is The refractive index anisotropy, λ, represents the wavelength of light. Here, the purpose of setting the optical axis direction of the liquid crystal composition layer as an effective value is that liquid crystal molecules are fixed on the interface in the actual cell, and all liquid crystal molecules are parallel to each other in the cell when an electric field is applied. In addition, in consideration of the fact that the orientation is not uniform and large deformation occurs particularly in the vicinity of the interface, the average value thereof is treated as an apparent value when a uniform state is assumed.

【0039】 T/To=sin2(2χeff)・sin2(πdeff・Δn/λ) …(1) 低電圧VL印加時に暗、高電圧VH印加時に明状態となる
ノーマリクローズ特性を得るには偏光板の配置としては
一方の偏光板の透過軸(あるいは吸収軸)を液晶分子配
向方向(ラビング軸)にほぼ平行、即ちφP1≒φLC1
φLC2とし、他方の偏光板の透過軸をそれに垂直、即ち
φP2=φP1+90度とすればよい。電界無印加時には、
(1)式におけるχeffが0であるので光透過率T/To
も0となる。一方電界印加時にはその強度に応じてχ
eff の値が増大し、45度の時に最大なる。この時、光
の波長を0.555μm と想定すると無彩色でかつ透過
率を最大とするには実効的なdeff・Δnを2分の1波
長である0.28μmとすれば良い。現実には裕度があ
るために、0.21から0.36μmの間に入っていれば
良いが、望ましくは0.24から0.33μmの間の値に
設定すると良い。
T / T o = sin 2 (2χ eff ) · sin 2 (πd eff · Δn / λ) (1) Normally closed, which is dark when a low voltage V L is applied and bright when a high voltage V H is applied. In order to obtain the characteristics, the polarizing plate is arranged such that the transmission axis (or absorption axis) of one of the polarizing plates is substantially parallel to the liquid crystal molecule alignment direction (rubbing axis), that is, φ P1 ≒ φ LC1 =
φ LC2, and the transmission axis of the other polarizing plate may be perpendicular to it, that is, φ P2 = φ P1 +90 degrees. When no electric field is applied,
Since χ eff in equation (1) is 0, the light transmittance T / T o
Is also 0. On the other hand, when an electric field is applied,
The value of eff increases and reaches a maximum at 45 degrees. At this time, assuming that the wavelength of the light is 0.555 μm, the effective d eff · Δn may be set to 0.28 μm, which is a half wavelength, in order to obtain an achromatic color and maximize the transmittance. Actually, since there is a margin, it is sufficient that the distance is between 0.21 and 0.36 μm, but it is desirable to set a value between 0.24 and 0.33 μm.

【0040】一方低電圧VL印加時に明、高電圧VH印加
時に暗状態となるノーマリオープン特性を得るには電界
無印加時あるいは低電界印加時に、(1)式におけるχ
effがほぼ45度となるように偏光板配置を設定すれば
良い。電界印加時にはノーマリクローズの場合とは逆に
その強度に応じてχeff の値が減少する。しかしなが
ら、χeff が最小(即ち0)になっても界面近傍で固定
されている液晶分子の残留位相差のために、このままで
はかなりの光が漏れてしまう。d・Δnを0.27から0.
37μm の間に設定し、3〜10Vの実効電圧を印加
した本発明者等の実験によれば界面残留位相差の値は
0.02から0.06μm程度であった。よって、0.0
2から0.06μm程度の複屈折位相差を有する位相差
板(この位相差をRf と表す)を界面残留位相差を補償
するように挿入することで、暗状態が沈み込み、高コン
トラスト比が得られる。位相差板の進相軸の角度φ
R は、電圧印加時の液晶組成物層の実効的な光軸χeff
に平行にする。より完全に暗状態の明るさを沈み込ませ
るには、暗状態を表示するための電圧を印加したときの
残留位相差にきちっと合わせれば良い。以上より、暗状
態の沈み込みと明状態の透過率,白色度を両立するに
は、次式の関係を満たせば良い。
On the other hand, in order to obtain a normally open characteristic in which a light state is applied when the low voltage V L is applied and a dark state is applied when the high voltage V H is applied, when no electric field is applied or when a low electric field is applied, the following equation (1) is used.
What is necessary is just to set the polarizing plate arrangement so that eff becomes approximately 45 degrees. When an electric field is applied, the value of χ eff decreases in accordance with the strength, contrary to the case of normally closed. However, even when eff eff becomes minimum (ie, 0), considerable light leaks as it is because of the residual phase difference of the liquid crystal molecules fixed near the interface. d.Δn is 0.27 to 0.2.
According to experiments performed by the present inventors in which the effective voltage was set to 37 μm and an effective voltage of 3 to 10 V was applied, the value of the interface residual phase difference was about 0.02 to 0.06 μm. Therefore, 0.0
By inserting a retardation plate having a birefringence retardation of about 2 to 0.06 μm (this retardation is represented as R f ) so as to compensate for the interface residual retardation, the dark state sinks and the high contrast ratio is reduced. Is obtained. The angle φ of the fast axis of the phase difference plate
R is the effective optical axis of the liquid crystal composition layer when voltage is applied χ eff
Parallel to In order to reduce the brightness of the dark state more completely, it is sufficient to exactly match the residual phase difference when a voltage for displaying the dark state is applied. As described above, in order to achieve both the sinking in the dark state and the transmittance and whiteness in the bright state, it is only necessary to satisfy the following equation.

【0041】 0.21μm<(d・Δn−Rf)<0.36μm …(2) 望ましくは、 0.23μm<(d・Δn−Rf)<0.33μm …(3) II.旋光性モードで表示する場合 従来方式であるツイステッドネマチック(Twisted Nemat
ic:TN)方式では一般に知られているようにd・Δn
をファーストミニマム条件である0.50μm近傍に設
定した時に、高透過率,無彩色となる。その裕度を考慮
するとTN方式では0.40から0.60μmの間に設定
すると良い。偏光板の配置としては一方の偏光板の透過
軸(あるいは吸収軸)を界面上の液晶分子配向方向(ラ
ビング軸)にほぼ平行、即ちφLC1≒φLC2とする。ノー
マリクローズ型を実現するためには、他方の偏光板の透
過軸をそれに平行とすれば良く、ノーマリオープン型と
するには垂直とすればよい。
[0041] 0.21μm <(d · Δn-R f) <0.36μm ... (2) preferably, 0.23μm <(d · Δn- R f) <0.33μm ... (3) II. Displaying in optical rotation mode Twisted Nemat (conventional method)
ic: TN) system, as generally known, d · Δn
Is set near 0.50 μm, which is the first minimum condition, high transmittance and achromatic color are obtained. In consideration of the margin, in the TN system, it is preferable to set the distance between 0.40 and 0.60 μm. The polarizing plate is arranged such that the transmission axis (or absorption axis) of one of the polarizing plates is substantially parallel to the liquid crystal molecule alignment direction (rubbing axis) on the interface, that is, φ LC1 ≒ φ LC2 . In order to realize a normally closed type, the transmission axis of the other polarizing plate may be made parallel to it, and to make it a normally open type, it may be made vertical.

【0042】尚、完全に旋光性を消失させるには、上下
基板界面近傍での液晶配向方向をほぼ平行となるように
する必要があり、90度TNモードを想定すると、一方
の基板側の液晶分子を90度近く回転させなくてはなら
ない。複屈折モードで表示する場合には液晶分子回転角
は45度程度で良く、ことしきい値電圧に関しては複屈
折モードのほうが低くなる。
In order to completely eliminate the optical rotatory power, it is necessary to make the liquid crystal alignment directions near the upper and lower substrate interfaces substantially parallel. You have to rotate the molecule by almost 90 degrees. When displaying in the birefringent mode, the liquid crystal molecule rotation angle may be about 45 degrees, and the threshold voltage is lower in the birefringent mode.

【0043】(2)視角特性の改善 本発明の表示モードでは液晶分子の長軸は基板と常にほ
ぼ平行であり、立ち上がることがなく、従って視角方向
を変えた時の明るさの変化が小さい。本表示モードは従
来のように電圧印加で複屈折位相差をほぼ0にすること
で暗状態を得るものではなく、液晶分子長軸と偏光板の
軸(吸収あるいは透過軸)とのなす角を変えるもので、
根本的に異なる。従来のTN型のように液晶分子長軸を
基板界面に垂直に立ち上がらせる場合だと、複屈折位相
差が0となる視角方向は正面即ち基板界面に垂直な方向
のみであり、僅かでも傾斜すると複屈折位相差が現れ、
ノーマリオープン型では光が漏れ、コントラストの低下
や階調レベルの反転を引き起こす。
(2) Improvement of Viewing Angle Characteristics In the display mode of the present invention, the major axis of the liquid crystal molecules is always almost parallel to the substrate and does not rise, so that the change in brightness when the viewing angle direction is changed is small. In this display mode, a dark state is not obtained by making the birefringence phase difference substantially zero by applying a voltage as in the prior art, and the angle between the long axis of the liquid crystal molecules and the axis (absorption or transmission axis) of the polarizing plate is formed. To change,
Fundamentally different. In the case where the long axis of the liquid crystal molecule rises perpendicularly to the substrate interface as in a conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface. Birefringence phase difference appears,
In the normally open type, light leaks, causing a decrease in contrast and a reversal of a gradation level.

【0044】(3)配向膜材料と液晶材料の選択の自由
度改善及びそれによるプロセス裕度の拡大 さらに、このように液晶分子が立ち上がらない為に、従
来のような大きな傾き角(液晶分子長軸と界面とのなす
角)を与える配向膜を必要としない。従来方式では、傾
き角が不足すると傾く方向の異なる2状態及びそれらの
境界部のドメインが生じ、表示不良となる可能性があ
る。本方式では、傾き角を付与する代わりに基板界面上
での液晶分子長軸方向(ラビング方向)を電界方向にに
対して0度あるいは90度からずらした所定方向に設定
すれば良い。例えば、液晶組成物の誘電率異方性が負の
場合、電界方向と基板界面上での液晶分子長軸方向とが
なす角φLCLC>0度と定義する)を0度以上(実質
的には0.5度以上)、望ましくは2度以上にすれば良
い。もし完全に0度とすると、方向の異なる2種の変形
が生じ異なる2状態及びそれらの境界部のドメインが生
じ、表示不良となる可能性がある。0.5 度以上であれ
ば電界印加及びその強度の増大により見かけの液晶分子
長軸方向(φLC(V)と定義する)が一様に増加して行
き、逆方向への傾斜、即ちφLC(V)<0度になることは
ない。本方式ではこのように、界面と液晶分子とのなす
角(傾き角)が小さくともドメインが生じずに動作する
ことから、低めの傾き角に設定することが可能である。
液晶分子配向の均一性は低めの傾き角に設定するほどラ
ビング等のプロセス裕度が上がり、良好である。従っ
て、界面に平行に電界を印加する本方式に、低傾き角を
組み合わせれば液晶分子配向はより均一化し、同程度の
製造プロセス変動があっても、従来方式よりも表示むら
が低く抑えられる。一般に高い傾き角を付与する配向膜
の種類は、低い傾き角を付与するものに比べて少なく、
本方式を用いれば配向膜材料の選択の自由度も高くな
る。例えばカラーフィルタ上の平坦化膜,薄膜トランジ
スタ上の保護膜に有機ポリマを用い、それを直接ラビン
グ等の表面配向処理を行っても、傾き角が不要なので配
向膜との兼用がより容易になり、更にプロセスの簡易化
とそれに伴うコストの低減が可能となる。製造プロセス
変動による表示むらを抑制するには傾き角を4度以下、
望ましくは2度以下にすれば良い。
(3) Improving the degree of freedom in selecting an alignment film material and a liquid crystal material, and thereby increasing the process latitude. Further, since the liquid crystal molecules do not rise, a large inclination angle (the liquid crystal molecule length) as in the related art is used. An orientation film that gives the angle between the axis and the interface) is not required. In the conventional method, if the inclination angle is insufficient, two states having different inclination directions and a domain at a boundary between the two states are generated, which may cause a display failure. In this method, the major axis direction (rubbing direction) of the liquid crystal molecules on the substrate interface may be set to a predetermined direction shifted from 0 or 90 degrees with respect to the electric field direction, instead of providing the tilt angle. For example, when the dielectric anisotropy of the liquid crystal composition is negative, the angle φ LC (defined as φ LC > 0 degree) between the direction of the electric field and the direction of the long axis of the liquid crystal molecule on the substrate interface is 0 degree or more ( (Substantially 0.5 degrees or more), and preferably 2 degrees or more. If the angle is completely 0 degrees, two types of deformation in different directions occur, and two different states and domains at their boundaries occur, which may result in display failure. If it is 0.5 degrees or more, the apparent liquid crystal molecule major axis direction (defined as φ LC (V)) uniformly increases due to the application of an electric field and an increase in the intensity, and the tilt in the opposite direction, that is, φ LC (V) <0 degrees. As described above, in the present method, even when the angle (inclination angle) between the interface and the liquid crystal molecule is small, the operation is performed without generating a domain, and therefore, it is possible to set a lower inclination angle.
The uniformity of the liquid crystal molecule alignment is better as the lower the inclination angle, the higher the process margin such as rubbing. Therefore, if a low tilt angle is combined with the present method in which an electric field is applied in parallel to the interface, the liquid crystal molecule alignment becomes more uniform, and the display unevenness can be suppressed to be lower than in the conventional method even if there is a similar manufacturing process variation. . Generally, the types of alignment films that provide a high tilt angle are fewer than those that provide a low tilt angle,
The use of this method increases the degree of freedom in selecting the alignment film material. For example, even if an organic polymer is used for the flattening film on the color filter and the protective film on the thin film transistor, and it is directly subjected to a surface alignment treatment such as rubbing, the tilt angle is unnecessary, and the dual use of the alignment film becomes easier. Further, it is possible to simplify the process and reduce the cost associated therewith. In order to suppress display unevenness due to manufacturing process fluctuation, the tilt angle should be 4 degrees or less,
Desirably, the temperature may be set to twice or less.

【0045】また、液晶材料についても下記の理由によ
りその選択の自由度が上がる。即ち、本発明では画素電
極と共通電極は液晶組成物層に対して主として基板界面
に平行な電界を印加する構造を有しており、電極間の距
離は従来の縦電界方式のアクティブマトリクス型液晶表
示装置における相対向させた透明電極間の距離に比べて
大きくとることができる。また、等価的な電極の断面積
は従来のものより小さく抑えることができる。したがっ
て、本発明による対をなす画素電極間の電気抵抗は従来
のアクティブマトリクス型液晶表示装置における相対向
させた透明電極間の電気抵抗は桁違いに大きくすること
ができる。さらに、本発明による画素電極と共通電極間
の静電容量は容量素子と並列接続になり、電気抵抗も十
分高い容量素子を実現できる。これらにより、画素電極
に蓄積された電荷を保持することが容易になり、従来開
口率を犠牲にしていた容量素子の面積を小さくしても十
分な保持特性が得られる。また、液晶組成物の方も従来
は例えば1012Ωcmといった極めて高い比抵抗を有する
ものが必要であるのに対して、より低い比抵抗の液晶組
成物であっても問題にならない。このことは、単に液晶
材料の選択の自由度が上がるのみならず、プロセス裕度
も引き上げる。即ち、プロセスの途中で液晶が汚染して
も画質不良となりにくい。特に、前述の配向膜との界面
上での変動に対する裕度が上がり、界面起因の不良はほ
とんどなくなる。よって、検査やエージングといった工
程を大幅に簡略化することができ、薄膜トランジスタ型
液晶表示装置の低コスト化に大きく寄与する。また、本
発明による画素電極は櫛歯状電極対に比べて単純な形状
であるため、光の利用効率を向上させる。従来方式のよ
うに十分な量の電荷を蓄積できる容量素子を得るために
開口部を犠牲にする必要がない。さらに、薄膜トランジ
スタを保護する絶縁膜を有機物にすれば、無機物に比べ
て誘電率が低くできるため、画素電極近傍において発生
する基板界面に垂直な方向の電界成分を横電界成分に比
べて小さく抑えることが可能になり、より広い領域で液
晶が動作する。このことも明るさ向上に寄与する。ま
た、共通電極を、隣接する画素の共通電極と共用した場
合には、従来のアクティブマトリクス型液晶表示装置に
おける共通電極とほぼ同等の作用をし、かつより構造を
更に簡単化することができ更に開口率を上げることが可
能である。
Further, the degree of freedom in selecting a liquid crystal material is increased for the following reasons. That is, in the present invention, the pixel electrode and the common electrode have a structure in which an electric field is applied to the liquid crystal composition layer mainly in parallel with the substrate interface, and the distance between the electrodes is a conventional vertical electric field type active matrix type liquid crystal. The distance can be larger than the distance between the opposed transparent electrodes in the display device. Further, the equivalent electrode cross-sectional area can be suppressed smaller than that of the conventional electrode. Therefore, the electric resistance between the pair of pixel electrodes according to the present invention can be increased by an order of magnitude between the opposed transparent electrodes in the conventional active matrix type liquid crystal display device. Furthermore, the capacitance between the pixel electrode and the common electrode according to the present invention is connected in parallel with the capacitance element, and a capacitance element with sufficiently high electric resistance can be realized. Accordingly, it is easy to hold the charge accumulated in the pixel electrode, and sufficient holding characteristics can be obtained even if the area of the capacitor which has conventionally sacrificed the aperture ratio is reduced. In addition, conventionally, a liquid crystal composition having a very high specific resistance of, for example, 10 12 Ωcm is required, but a liquid crystal composition having a lower specific resistance does not pose a problem. This not only increases the degree of freedom in selecting the liquid crystal material, but also increases the process latitude. That is, even if the liquid crystal is contaminated during the process, the image quality is not likely to be poor. In particular, the tolerance for the variation on the interface with the alignment film described above is increased, and defects due to the interface are almost eliminated. Therefore, steps such as inspection and aging can be greatly simplified, which greatly contributes to the cost reduction of the thin film transistor type liquid crystal display device. Further, since the pixel electrode according to the present invention has a simpler shape than the comb-like electrode pair, the light use efficiency is improved. There is no need to sacrifice the opening to obtain a capacitor capable of storing a sufficient amount of charges as in the conventional method. Furthermore, if the insulating film that protects the thin film transistor is made of an organic material, the dielectric constant can be made lower than that of an inorganic material. Therefore, the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface is suppressed to be smaller than the horizontal electric field component. And the liquid crystal operates in a wider area. This also contributes to brightness improvement. Further, when the common electrode is shared with the common electrode of an adjacent pixel, the same operation as the common electrode in the conventional active matrix type liquid crystal display device can be performed, and the structure can be further simplified. It is possible to increase the aperture ratio.

【0046】(4)簡素で開口率の高い薄膜トランジス
タ構造の実現及びそれによる明るさの向上 薄膜トランジスタを含む画素内の構造に関して、公知例
(特公昭63−21907号)に示されている櫛歯電極を用いる
場合は開口率が著しく低下し、それにより明るさが低下
してしまうという問題が生じる。量産性を考慮すると櫛
歯電極1本の幅は8μm程度、最小でも4μm以上必要
であり、特公昭63−21907 号に示されている例えば図7
のような櫛歯が合計17本もあるような構造で対角9.
4 インチカラーVGAクラスの0.3×0.1mm2 の画
素を構成することは不可能である。本発明は上記
(1),(2)の利点を保ちつつも開口率を十分に保持す
るための手段を考案したものである。櫛歯のように開口
率を下げざるを得ない構造に替わって、より単純な電極
構造により、実用性のある高い開口率が実現できてい
る。手段1から手段5は、共通電極を対向基板上或い
は、画素電極を同層上に形成した場合の構造に関する。
前記公知例(特公昭63−21907 号)では櫛歯電極を形成
するために、信号配線と共通電極それぞれの引き出し方
向を直交させている。即ち、信号配線を第1の方向(Y
方向)に、共通電極をそれに直交する方向(X方向)に
引き伸ばしている。それに対し、本発明は、手段1にあ
るように信号配線,画素電極,共通電極のいずれをも第
1の方向に伸ばすことで、櫛歯のような複雑な構造を回
避している。尚、液晶のしきい値電圧を下げ、応答時間
を短縮するには画素電極と共通電極の間隔を詰めれば良
いが、そのためには手段2の方法を採用すれば良く、櫛
歯のような複雑な構造とする必要はない。
(4) Realization of a Simple Thin Film Transistor Structure with a High Aperture Ratio and Improvement of Brightness Therewith Regarding the structure in a pixel including a thin film transistor, a comb-shaped electrode disclosed in a known example (Japanese Patent Publication No. 63-21907). In the case of using, there is a problem that the aperture ratio is remarkably reduced, whereby the brightness is reduced. In consideration of mass productivity, the width of one comb tooth electrode is required to be about 8 μm and at least 4 μm or more. For example, as shown in FIG.
The structure is such that there are a total of 17 comb teeth like diagonal 9.
It is impossible to form a 0.3 × 0.1 mm 2 pixel of the 4-inch color VGA class. The present invention has been devised as means for maintaining the aperture ratio sufficiently while maintaining the advantages of the above (1) and (2). Instead of a structure in which the aperture ratio has to be reduced like a comb tooth, a practically high aperture ratio can be realized by a simpler electrode structure. Means 1 to 5 relate to the structure when the common electrode is formed on the opposite substrate or the pixel electrode is formed on the same layer.
In the above-mentioned known example (Japanese Patent Publication No. 63-21907), in order to form a comb-tooth electrode, the leading directions of the signal wiring and the common electrode are made orthogonal. That is, the signal wiring is connected in the first direction (Y
Direction), the common electrode is extended in a direction (X direction) orthogonal to the common electrode. On the other hand, the present invention avoids a complicated structure like a comb tooth by extending all of the signal wiring, the pixel electrode, and the common electrode in the first direction as in the means 1. In order to reduce the threshold voltage of the liquid crystal and shorten the response time, the distance between the pixel electrode and the common electrode may be reduced. There is no need for a simple structure.

【0047】[0047]

【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.

【0048】〔実施例1〕基板としては厚みが1.1mm
で表面を研磨した透明なガラス基板を2枚用いる。これ
らの基板間に誘電率異方性Δεが正でその値が4.5 で
あり、屈折率異方性Δnが0.072(589nm,20
℃)のネマチック液晶組成物を挟む。基板表面に塗布し
たポリイミド系配向制御膜をラビング処理して、3.5
度のプレチルト角とする。上下界面上のラビング方向は
互いにほぼ平行で、かつ印加電界方向とのなす角度を8
5度(φLC1=φLC2=85°)とした。ギャップdは球
形のポリマビーズを基板間に分散して挾持し、液晶封入
状態で4.5μm とした。よってΔn・dは0.324
μmである。2枚の偏光板〔日東電工社製G1220DU〕で
パネルを挾み、一方の偏光板の偏光透過軸をラビング方
向にほぼ平行、即ちφP1=85°とし、他方をそれに直
交、即ちφP2=−5°とした。これにより、ノーマリク
ローズ特性を得た。
Example 1 The substrate had a thickness of 1.1 mm.
Use two transparent glass substrates whose surfaces have been polished. The dielectric anisotropy Δε is positive and 4.5 between these substrates, and the refractive index anisotropy Δn is 0.072 (589 nm, 20 nm).
C)). Rubbing the polyimide alignment control film applied to the substrate surface to 3.5
Degree of pretilt angle. The rubbing directions on the upper and lower interfaces are almost parallel to each other, and the angle between the rubbing directions and the direction of the applied electric field is 8 °.
5 degrees (φ LC1 = φ LC2 = 85 °). The gap d was 4.5 μm in a state in which liquid crystal was sealed, with spherical polymer beads dispersed and sandwiched between substrates. Therefore, Δn · d is 0.324
μm. The panel is sandwiched between two polarizing plates (G1220DU manufactured by Nitto Denko Corporation), and the polarizing transmission axis of one of the polarizing plates is substantially parallel to the rubbing direction, that is, φ P1 = 85 °, and the other is orthogonal to it, ie, φ P2 = −5 °. As a result, normally closed characteristics were obtained.

【0049】薄膜トランジスタ及び各種電極の構造は図
2(a)(正面図)及び図2(b)(側断面)に示すよ
うに、薄膜トランジスタ素子(図2の斜線部)が画素電
極(ソース電極)1と信号電極(ドレイン電極)12、
及び走査電極(ゲート電極)10を有し、画素電極1が第
1の方向(図2では紙面内で上下の方向を意味する)に伸
びており、信号電極12及び共通電極2が複数の画素間
(図2では紙面内で上下の方向に並んだ画素を意味す
る)に渡って第1の方向伸び、薄膜トランジスタ素子が
共通電極の間に配置されている。
As shown in FIG. 2A (front view) and FIG. 2B (side sectional view), the structure of the thin film transistor and various electrodes is such that the thin film transistor element (hatched portion in FIG. 2) is a pixel electrode (source electrode). 1, a signal electrode (drain electrode) 12,
And a scanning electrode (gate electrode) 10, the pixel electrode 1 extends in a first direction (in FIG. 2, means a vertical direction in the plane of FIG. 2), and the signal electrode 12 and the common electrode 2 The thin film transistor element extends between the common electrodes in the first direction extending between them (in FIG. 2, it means pixels arranged vertically in the plane of the paper).

【0050】信号電極12には情報を有する信号波形が
印加され、走査電極10には走査波形が信号波形と同期
をとって印加される。アモルファスシリコン(a−S
i)からなるチャネル層16及び窒化シリコン(Si
N)の保護絶縁膜15からなる薄膜トランジスタは隣接
する共通電極の間に配置されている。信号電極12から
薄膜トランジスタを介して画素電極1に情報信号が伝達
され、共通電極2との間で液晶部分に電圧が印加され
る。本実施例では共通電極を対向基板側に配置し、図2
(b)では厚み方向を拡大して表した為、電界方向7が
傾斜しているように見えるが、実際には幅が48μmに
対して液晶層5の厚みが6μm程度であり、傾斜はほと
んどなく、印加電界方向は基板面にほぼ平行である。
A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a-S
i) and a silicon nitride (Si)
The thin film transistor including the N) protective insulating film 15 is disposed between adjacent common electrodes. An information signal is transmitted from the signal electrode 12 to the pixel electrode 1 via the thin film transistor, and a voltage is applied between the common electrode 2 and the liquid crystal portion. In this embodiment, the common electrode is arranged on the counter substrate side, and FIG.
In (b), since the thickness direction is enlarged, it appears that the electric field direction 7 is inclined. However, in practice, the thickness of the liquid crystal layer 5 is about 6 μm with respect to the width of 48 μm, and the inclination is almost zero. Instead, the direction of the applied electric field is substantially parallel to the substrate surface.

【0051】容量素子11は、図2(a)に示すよう
に、画素電極1に突起部を形成し、走査配線10の上に
ゲート絶縁膜13を挟む構造として形成した。この容量
素子11の静電容量は約21fFになった。
The capacitive element 11, as shown in FIG. 2 (a), forming a protrusion on the pixel electrode 1 was formed as a structure sandwiching the gate insulating film 13 on the run査配line 10. The capacitance of the capacitance element 11 became about 21 fF.

【0052】画素電極1に蓄積された電荷は、画素電極
1と共通電極2の間の静電容量と付加容量素子11を並
列接続した容量である約24fFに蓄積されることにな
り、液晶組成物50の比抵抗が5×1010Ωcmであって
も画素電極1の電圧変動を抑制することができる。この
ため、画質劣化を防止することができた。
The electric charge stored in the pixel electrode 1 is stored in the capacitance between the pixel electrode 1 and the common electrode 2 and about 24 fF, which is a capacitance in which the additional capacitance element 11 is connected in parallel. Even if the specific resistance of the object 50 is 5 × 10 10 Ωcm, the voltage fluctuation of the pixel electrode 1 can be suppressed. For this reason, it was possible to prevent image quality deterioration.

【0053】画素数は40(×3)×30で、画素ピッ
チは横方向(即ち共通電極間)は80μm、縦方向(即
ち走査電極間)は240μmである。走査電極の幅は1
2μmで隣接する走査電極の間隙を68μmとし、50
%という高い開口率を確保した。また薄膜トランジスタ
を有する基板に相対向する基板上にストライプ状のR,
G,B3色のカラーフィルタを備えた。カラーフィルタ
の上には表面を平坦化する透明樹脂を積層した。透明樹
脂の材料としてはエポキシ樹脂を用いた。更に、この透
明樹脂上ポリイミド系の配向制御膜を塗布した。パネル
には駆動回路が接続されている。本実施例の駆動回路シ
ステムの構成を図8に示す。信号電極23及び共通電極
31は表示部端部にまで伸びている。図9及び図10は
光学システムの構成を表し、図9が透過型、図10が反
射型を表す。
The number of pixels is 40 (× 3) × 30, and the pixel pitch is 80 μm in the horizontal direction (namely, between the common electrodes) and 240 μm in the vertical direction (namely, between the scan electrodes). Scan electrode width is 1
The gap between adjacent scanning electrodes is set to 68 μm at 2 μm, and
%. Also, a stripe-shaped R,
G, B color filters were provided. A transparent resin for flattening the surface was laminated on the color filter. Epoxy resin was used as the material of the transparent resin. Further, a polyimide-based orientation control film was applied on the transparent resin. A drive circuit is connected to the panel. FIG. 8 shows the configuration of the drive circuit system according to the present embodiment. The signal electrode 23 and the common electrode 31 extend to the end of the display unit. 9 and 10 show the configuration of the optical system. FIG. 9 shows a transmission type, and FIG. 10 shows a reflection type.

【0054】本実施例では透明電極を必要としないた
め、製造プロセスが簡単化できかつ歩留まりも向上し、
著しくコストが低減できる。特に、透明電極を形成する
ための真空炉を有する極めて高価な設備が不要になり、
製造設備投資額の大幅低減とそれによる低コスト化が可
能となる。本実施例における画素への印加電圧実効値と
明るさの関係を示す電気光学特性を図3(a)に示す。
コントラスト比は7V駆動時に150以上となり、視角
を左右,上下に変えた場合のカーブの差は従来方式(比
較例1に示す)に比べて極めて小さく、視角を変化させ
ても表示特性はほとんど変化しなかった。また、液晶配
向性も良好で、配向不良ドメインは発生しなかった。ま
た、開口率は薄膜トランジスタ及び電極構造の簡単化に
より50%と十分に高い値を確保し、明るいディスプレ
イを実現した。パネル全体の平均透過率は8.4% とな
った。尚、ここで明るさとは2枚の偏光板を平行に配置
したときの輝度透過率で定義した。
In this embodiment, since no transparent electrode is required, the manufacturing process can be simplified and the yield can be improved.
The cost can be significantly reduced. In particular, extremely expensive equipment having a vacuum furnace for forming a transparent electrode is not required,
This makes it possible to significantly reduce the amount of investment in manufacturing equipment and thereby reduce costs. FIG. 3A shows the electro-optical characteristics showing the relationship between the effective value of the voltage applied to the pixel and the brightness in this embodiment.
The contrast ratio becomes 150 or more at the time of 7V drive, and the difference between the curves when the viewing angle is changed left and right and up and down is extremely small as compared with the conventional method (shown in Comparative Example 1). Even when the viewing angle is changed, the display characteristics hardly change. Did not. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated. Further, the aperture ratio secured a sufficiently high value of 50% by simplification of the thin film transistor and electrode structure, and a bright display was realized. The average transmittance of the entire panel was 8.4%. Here, the brightness was defined as a luminance transmittance when two polarizing plates were arranged in parallel.

【0055】〔実施例2〕 本実施例では実施例1で対向基板側に配置した共通電極
を、走査電極を配置した基板と基板側に配置した。
他の構成は実施例1と同一である。薄膜トランジスタ及
び電極の断面構造を図4に示す。画素電極1,信号電極
12,走査電極10はいずれもアルミニウムで、同時に
成膜及びエッチングをして形成した。対向基板上には一
切導電性の物質は存在しない。従って、本実施例の構成
においては仮に製造工程中に導電性の異物が混入したと
しても、上下電極間タッチの不良率がゼロに抑制され
る。なお、電極用の材料としては電気抵抗の低い金属性
のものであれば特に材料の制約はなく、クロム,銅等で
もよい。
[Embodiment 2] In this embodiment, the common electrode disposed on the counter substrate side in the embodiment 1
It was placed on the same substrate side and the substrate placing the scan electrodes.
Other configurations are the same as those of the first embodiment. FIG. 4 shows a cross-sectional structure of the thin film transistor and the electrode. The pixel electrode 1, the signal electrode 12, and the scanning electrode 10 were all formed of aluminum, and were simultaneously formed and etched. No conductive substance exists on the opposing substrate. Therefore, in the configuration of the present embodiment, even if conductive foreign matter is mixed during the manufacturing process, the failure rate of the touch between the upper and lower electrodes is suppressed to zero. The material for the electrode is not particularly limited as long as it is a metallic material having a low electric resistance, and may be chromium, copper, or the like.

【0056】一般にフォトマスクのアライメント精度は
対向する2枚のガラス基板間の組合わせのアライメント
精度に比べて著しく高い。従って、本実施例のように4
種の電極群のいずれをも一方の基板上に形成した方が、
各電極の形成時のアライメントがフォトマスクのみで行
われるため、電極間のアライメントずれが小さく抑制さ
れる。従って、本実施例は走査電極を対向基板上に形成
する場合に比べて、より高精細なパターンを形成するの
に有効である。
In general, the alignment accuracy of a photomask is significantly higher than the alignment accuracy of a combination between two glass substrates facing each other. Therefore, as in the present embodiment, 4
It is better to form all kinds of electrode groups on one substrate,
Since the alignment at the time of forming each electrode is performed only by the photomask, the misalignment between the electrodes is suppressed to be small. Therefore, the present embodiment is effective for forming a higher definition pattern as compared with the case where the scanning electrodes are formed on the counter substrate.

【0057】実施例1と同様に広い視角特性を有する明
るい表示を得た。
As in the case of Example 1, a bright display having a wide viewing angle characteristic was obtained.

【0058】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 3] The configuration of this embodiment is the same as Embodiment 1 except for the following requirements.

【0059】薄膜トランジスタ及び各種電極の構造を図
5に示すように、対をなす画素電極1の間に信号電極1
2を配置し、さらに対をなす共通電極2をこれらの電極
の外側に配置した。信号電極12には情報を有する信号
波形が印加され、走査電極10には走査波形が信号波形
と同期をとって印加される。アモルファスシリコン(a
−Si)16及び窒化シリコン(SiN)の保護絶縁膜
15からなる薄膜トランジスタは対をなす共通電極のほ
ぼ中央部に配置されている。信号電極12から2個の薄
膜トランジスタを介して2個の第1の電極1に同じ情報
信号が伝達され、電位を同じくした両側の共通電極との
間で液晶部分に同じ電圧信号が印加される。このように
することで薄膜トランジスタ及び電極構造を複雑化せず
に電極間隔を半分程度にでき、同一電圧でより高い電界
を印加することができるようになり、駆動電圧の低減及
び高速応答化が実現される。
As shown in FIG. 5, the structure of the thin film transistor and the various electrodes is such that the signal electrode 1 is interposed between the pixel electrodes 1 forming a pair.
2 and a pair of common electrodes 2 were arranged outside these electrodes. A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a
-Si) 16 and a thin-film transistor comprising a protective insulating film 15 of silicon nitride (SiN) are arranged substantially at the center of a pair of common electrodes. The same information signal is transmitted from the signal electrode 12 to the two first electrodes 1 via the two thin film transistors, and the same voltage signal is applied to the liquid crystal portion between the common electrodes on both sides having the same potential. By doing so, the electrode spacing can be reduced to about half without complicating the structure of the thin film transistor and the electrode, and a higher electric field can be applied at the same voltage, thereby reducing the driving voltage and achieving a high-speed response. Is done.

【0060】実施例1の広い視角特性と明るさは本実施
例でも実現される。
The wide viewing angle characteristics and brightness of the first embodiment are also realized in this embodiment.

【0061】〔実施例4〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 4] The configuration of this embodiment is the same as Embodiment 1 except for the following requirements.

【0062】カラーフィルタ上に有機絶縁層として透明
ポリマからなる平坦化膜14(図2(b))を積層し、
その上に配向制御膜としての別の膜を形成せずに表面を
直接ラビングした。透明ポリマの材料としてはエポキシ
樹脂を用いた。このエポキシ樹脂は平坦化と液晶分子の
配向制御の両方の機能を兼ね備えている。液晶組成物層
はエポキシ樹脂に直接接し、界面での傾き角は0.5 度
であった。これにより、配向膜を塗布する工程がなくな
り、製造がより容易かつ短くなった。一般に従来方式で
あるTN型では、配向制御膜に要求される特性が多岐に
わたり、それら全てを満足する必要があり、そのためポ
リイミド等の一部の材料に限られていた。特に重要な特
性は、傾き角である。しかし、作用のところで述べたよ
うに、本発明では大きな傾き角を必要とせず、従って、
材料の選択幅が著しく改善される。
A flattening film 14 (FIG. 2B) made of a transparent polymer is laminated as an organic insulating layer on the color filter.
The surface was directly rubbed without forming another film as an orientation control film thereon. Epoxy resin was used as the material of the transparent polymer. This epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. The liquid crystal composition layer was in direct contact with the epoxy resin, and the tilt angle at the interface was 0.5 degrees. Thereby, the step of applying the alignment film was eliminated, and the production was easier and shorter. Generally, in the conventional TN type, the characteristics required for the orientation control film are diversified, and it is necessary to satisfy all of them. Therefore, it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, as mentioned in the operation, the present invention does not require a large tilt angle, and therefore,
The choice of materials is significantly improved.

【0063】本実施例における電気光学特性を測定した
ところ、実施例1と同様に視角を左右,上下に変えた場
合のカーブの差が極めて小さく、表示特性はほとんど変
化しないという結果を得た。また、傾き角が0.5 度と
小さいにもかかわらず液晶配向性も良好で、配向不良ド
メインは発生しなかった。
When the electro-optical characteristics in this embodiment were measured, it was found that the difference between the curves when the viewing angle was changed left and right and up and down was extremely small, and the display characteristics hardly changed, as in the first embodiment. In addition, although the tilt angle was as small as 0.5 degree, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0064】〔実施例5〕実施例4の平坦化する為の透
明ポリマをエポキシ樹脂からポリイミド樹脂に変えた。
同様にポリイミド樹脂の表面を直接ラビングし、平坦化
と液晶分子の配向制御の両方の機能を兼ね備えた。界面
での傾き角は2度であった。他の実施例と比較して、表
示特性はほとんど変化しないという結果を得た。また、
液晶配向性も良好で、配向不良ドメインは発生しなかっ
た。
[Embodiment 5] The transparent polymer for flattening in Embodiment 4 was changed from an epoxy resin to a polyimide resin.
Similarly, the surface of the polyimide resin was directly rubbed to have both functions of flattening and controlling the alignment of liquid crystal molecules. The angle of inclination at the interface was 2 degrees. As a result, the display characteristics were hardly changed as compared with the other examples. Also,
The liquid crystal alignment was good, and no alignment failure domain was generated.

【0065】〔実施例6〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
Embodiment 6 The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0066】薄膜トランジスタを保護する保護絶縁膜1
5(図2(b))を窒化シリコンからエポキシ樹脂から
なる有機絶縁層に交換し、その上を直接ラビング処理
し、有機絶縁層に保護膜と液晶分子配向制御膜の両方の
機能を持たせた。傾き角は0.5度である。
A protective insulating film 1 for protecting a thin film transistor
5 (FIG. 2B) is changed from silicon nitride to an organic insulating layer made of epoxy resin, and rubbing is performed directly on the organic insulating layer to make the organic insulating layer have both functions of a protective film and a liquid crystal molecular alignment control film. Was. The tilt angle is 0.5 degrees.

【0067】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例4と同様に、傾き角が0.5
度と小さいにもかかわらず液晶配向性も良好で、配向不
良ドメインは発生しなかった。
When the electro-optical characteristics in this embodiment were measured, display characteristics which were almost the same as those in Example 1 were obtained. Further, similarly to the fourth embodiment, the inclination angle is 0.5.
Despite the small degree, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0068】〔実施例7〕実施例6で保護膜に用いたエ
ポキシ樹脂を同様に有機絶縁層となるポリイミドに変え
た。
[Example 7] The epoxy resin used for the protective film in Example 6 was similarly changed to polyimide to be an organic insulating layer.

【0069】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例6に比べ、傾き角は2.0 度
と若干上昇した。液晶配向性は良好で、配向不良ドメイ
ンは発生しなかった。
When the electro-optical characteristics in this embodiment were measured, display characteristics which were almost the same as those in Example 1 were obtained. In addition, the tilt angle slightly increased to 2.0 degrees as compared with Example 6. The liquid crystal alignment was good, and no alignment defect domain was generated.

【0070】〔実施例8〜12〕これらの実施例の構成
は下記の要件を除けば、実施例7と同一である。
[Embodiments 8 to 12] The constructions of these embodiments are the same as those of the embodiment 7 except for the following requirements.

【0071】実施例8では上下界面上の液晶分子長軸方
向(ラビング方向)は互いにほぼ平行で、かつ印加電界
方向とのなす角度を89.5度(φLC1=φLC2=89.5
°)、一方の偏光板の偏光透過軸をラビング方向にほぼ
平行(φP1=89.5°)とし、他方をそれに直交(φP2
=−0.5°)とした。
In Example 8, the major axis directions (rubbing directions) of the liquid crystal molecules on the upper and lower interfaces are substantially parallel to each other, and the angle between them and the direction of the applied electric field is 89.5 degrees (φ LC1 = φ LC2 = 89.5).
°), the polarization transmission axis of one of the polarizing plates is substantially parallel to the rubbing direction (φ P1 = 89.5 °), and the other is perpendicular to it (φ P2
= −0.5 °).

【0072】同様に実施例9ではφLC1=φLC2=φP1
88°,φP2=−2.0°とした。同様に実施例10で
はφLC1=φLC2=φP1=75°,φP2=−25°とし
た。同様に実施例11ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。同様に実施例12ではφ
LC1=φLC2=φP1=30°,φP2=−60°とした。こ
れらの実施例における電気光学特性の測定結果を図7に
まとめて表す。尚ここでは明るさを印加電圧が0ボルト
から10ボルト(実効値Vrms)の範囲で最大となるとき
を100%、最小となるときを0%とした規格化した値
で表した。角度φLCを大きくすることで、しきい値特性
のカーブがより急峻になる傾向を示した。中間調表示を
大きな電圧裕度を持って行うには、φLCを小さくすれば
良いが、45度以下になると明るさが低下する傾向を示
した。角度φLCの最適な値は、表示する中間調レベルの
数,明るさに対する要求値,駆動する電圧,コモン電極
に電圧を印加するか否かによって代わる。設計者は、φ
LCの選択により大きな範囲でしきい値特性が制御でき
る。明るさを考慮すると、望ましくはφLCを45度以上
とすると良い。また更により望ましくは60度から8
9.5 度の間とすると良い。
Similarly, in the ninth embodiment, φ LC1 = φ LC2 = φ P1 =
88 ° and φ P2 = −2.0 °. Similarly, in Example 10, φ LC1 = φ LC2 = φ P1 = 75 ° and φ P2 = −25 °. Similarly, in the eleventh embodiment, φ LC1 = φ LC2 = φ P1 = 45
° and φ P2 = -45 °. Similarly, in Example 12, φ
LC1 = φ LC2 = φ P1 = 30 °, and a φ P2 = -60 °. FIG. 7 shows the measurement results of the electro-optical characteristics in these examples. In this case, the brightness is represented by a normalized value in which the maximum is 100% when the applied voltage is in the range of 0 to 10 volts (effective value Vrms ), and the minimum is 0% when the applied voltage is minimum. By increasing the angle φ LC , the threshold characteristic curve tended to be steeper. In order to perform halftone display with a large voltage margin, φ LC may be reduced, but when the angle is 45 degrees or less, the brightness tends to decrease. The optimum value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not a voltage is applied to the common electrode. The designer, φ
The threshold characteristics can be controlled in a large range by selecting the LC . In consideration of brightness, it is desirable to set φ LC to 45 degrees or more. Still more preferably, from 60 degrees to 8
It should be between 9.5 degrees.

【0073】視角特性を測定したところ、いずれの場合
も実施例1と同様に視角を左右,上下に変えた場合のカ
ーブの差が極めて小さく、表示特性はほとんど変化しな
いという結果を得た。また、液晶配向性も良好で、配向
不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed left and right and up and down was extremely small, and the result was that the display characteristics hardly changed in any case, as in the case of Example 1. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0074】〔実施例13〜16〕以上の実施例と本実
施例の最大の相違点は、液晶組成物層の誘電率異方性の
値を負にし、それに合わせてラビング方向を変えた点で
ある。Δεが−4.8 ,Δnが0.0437(589n
m,20℃)のネマチック液晶組成物(メルク社製,Z
LI−2806)を用いた。実施例13〜16の実施例
に於いては、いずれも上下界面上の液晶分子長軸方向
(ラビング方向φLC1,φLC2)を互いにほぼ平行(φLC1
=φLC2)とし、印加電界方向とのなす角度φLC1を0度
を超え45度未満である範囲とした。また一方の偏光板
の偏光透過軸(φP1)はラビング方向にほぼ平行とし、
他方(φP2)をそれに直交とした。
[Embodiments 13 to 16] The biggest difference between the above embodiments and this embodiment is that the value of the dielectric anisotropy of the liquid crystal composition layer was made negative and the rubbing direction was changed accordingly. It is. Δε is -4.8, Δn is 0.0437 (589n
m, 20 ° C.) nematic liquid crystal composition (manufactured by Merck, Z
LI-2806) was used. In Examples 13 to 16, all of the liquid crystal molecule major axis directions (rubbing directions φ LC1 and φ LC2 ) on the upper and lower interfaces are almost parallel to each other (φ LC1
= Φ LC2 ), and the angle φ LC1 with the direction of the applied electric field was set to a range of more than 0 degree and less than 45 degrees. The polarization transmission axis (φ P1 ) of one polarizing plate is almost parallel to the rubbing direction,
The other (φ P2 ) was made orthogonal to it.

【0075】即ち、実施例13ではφLC1=φLC2=φP1
=1.5°,φP2=−88.5°とした。
That is, in the thirteenth embodiment, φ LC1 = φ LC2 = φ P1
= 1.5 ° and φ P2 = -88.5 °.

【0076】実施例14ではφLC1=φLC2=φP1=15
°,φP2=−75°とした。
In the fourteenth embodiment, φ LC1 = φ LC2 = φ P1 = 15
° and φ P2 = -75 °.

【0077】実施例15ではφLC1=φLC2=φP1=30
°,φP2=−60°とした。
In the fifteenth embodiment, φ LC1 = φ LC2 = φ P1 = 30
° and φ P2 = -60 °.

【0078】実施例16ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。
In the sixteenth embodiment, φ LC1 = φ LC2 = φ P1 = 45
° and φ P2 = -45 °.

【0079】ギャップdは液晶封入状態で6.3μmと
し、Δn・dを0.275μmとした。薄膜トランジス
タ,電極の構造等の以外の条件は実施例3と同じであ
る。
The gap d was 6.3 μm when the liquid crystal was sealed, and Δn · d was 0.275 μm. The conditions other than the structure of the thin film transistor and the electrode are the same as those of the third embodiment.

【0080】これらの実施例における電気光学特性の測
定結果を図11にまとめて表す。誘電率異方性が正の場
合とは逆に、角度φLCを小さくするに従い、しきい値特
性のカーブがより急峻になる傾向を示した。中間調表示
を大きな電圧裕度を持って行うには、φLCを大きくすれ
ば良いが、45度以上になると明るさが低下する傾向を
示した。誘電率異方性が正の場合と同様に、角度φLC
最適な値は、表示する中間調レベルの数,明るさに対す
る要求値,駆動する電圧,共通電極に電圧を印加するか
否かによって代わる。設計者は、φLCの選択により大き
な範囲でしきい値特性が制御できる。明るさを考慮する
と、より望ましくはφLCを45度以下とすると良い。
FIG. 11 shows the measurement results of the electro-optical characteristics in these examples. Contrary to the case where the dielectric anisotropy is positive, the threshold characteristic curve tends to be steeper as the angle φ LC is made smaller. In order to perform the halftone display with a large voltage margin, it is sufficient to increase φ LC , but the brightness tends to decrease when the angle exceeds 45 degrees. As in the case where the dielectric anisotropy is positive, the optimal value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not to apply a voltage to the common electrode. Be replaced by The designer can control the threshold characteristics over a large range by selecting φ LC . In consideration of brightness, it is more preferable to set φ LC to 45 degrees or less.

【0081】尚、視角特性を測定したところ、いずれの
場合も実施例1と同様に視角を左右,上下に変えた場合
のカーブの差が極めて小さく、表示特性はほとんど変化
しないという結果を得た。特に中間調表示(8階調)し
たときのレベルの反転が上下,左右ともに±50度の範
囲内ではまったく見られなかった。また、液晶配向性も
良好で、配向不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed to the left, right, up and down was very small, and the result was that the display characteristics hardly changed in any case as in Example 1. . In particular, no inversion of the level in the case of halftone display (8 gradations) was observed at all in the range of ± 50 degrees in the vertical and horizontal directions. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0082】〔実施例17〜19〕本実施例では、実施
例13〜16に於いて最も特性が良好であった実施例1
4(φLC1=φLC2=φP1=15°,φP2=−75°)と
液晶分子長軸方向,偏光板配置を同一とし、液晶組成物
層の厚みdと屈折率異方性Δnの積d・Δnを変えた。
実施例17,18,19それぞれの液晶組成物層の厚み
dを4.0,4.9,7.2μm、即ちd・Δnをそれぞ
れ0.1748,0.2141,0.3146μmとし
た。尚、ここでは屈折率異方性Δnを一定とし、液晶組
成物層の厚みdのみを変えたが、他の液晶表示方式(例
えば、90度ツイステッドネマチック方式)と同様に、
屈折率異方性Δnを変えても明るさの最適値については
同様の結果が得られる。また、液晶組成物層の誘電率異
方性の値を正にしても同様の結果が得られる。結果を実
施例14の結果も含めて、図12にまとめて示す。図1
2(a)は横軸を印加電圧とし、図12(b)は図12
(a)に於いて印加電圧を7ボルトに固定して横軸をd
・Δnにして表したものである。図12(b)から明ら
かなように、明るさはd・Δn強く依存し、かつ最適な
値が存在する。明るさを実用性のある30%以上とする
にはd・Δnを0.21から0.36μmの間にすれば良
く、さらに明るさを50%以上に引き上げるには0.2
3から0.33μmの間にすれば良い。また、液晶の封
入時間や液晶組成物層の厚みの制御等、量産性を考慮す
るとdの値を5.0μm以上とし、Δnを本実施例のよ
うに0.08以下とすることが望ましい。
[Embodiments 17 to 19] In this embodiment, the embodiment 1 having the best characteristics in the embodiments 13 to 16 is shown.
4 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = −75 °) with the same direction of the long axis of the liquid crystal molecules and the arrangement of the polarizing plates, and the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn The product d · Δn was changed.
The thickness d of the liquid crystal composition layer in each of Examples 17, 18, and 19 was 4.0, 4.9, 7.2 μm, that is, d · Δn was 0.1748, 0.2141, 0.3146 μm, respectively. Here, while the refractive index anisotropy Δn was fixed and only the thickness d of the liquid crystal composition layer was changed, similar to other liquid crystal display methods (for example, a 90 degree twisted nematic method),
Even if the refractive index anisotropy Δn is changed, similar results can be obtained for the optimum value of the brightness. Similar results are obtained even when the value of the dielectric anisotropy of the liquid crystal composition layer is made positive. The results, including the results of Example 14, are collectively shown in FIG. FIG.
2A shows the applied voltage on the horizontal axis, and FIG.
In (a), the applied voltage is fixed at 7 volts, and the horizontal axis is d.
It is expressed as Δn. As is clear from FIG. 12B, the brightness strongly depends on d · Δn, and there is an optimum value. To make the brightness 30% or more, which is practical, d.Δn should be between 0.21 and 0.36 μm. To further increase the brightness to 50% or more, 0.2.
What is necessary is just to set it between 3 and 0.33 μm. In consideration of mass productivity such as control of the liquid crystal encapsulation time and the thickness of the liquid crystal composition layer, it is preferable that the value of d be 5.0 μm or more and Δn be 0.08 or less as in this embodiment.

【0083】〔実施例20〜22〕実施例17〜19の
結果から明らかなように、d・Δnの最適値は0.21
から0.36μmの間、望ましくは0.23から0.33
μm の間にある。量産性のある液晶組成物層の厚みが
5.0μm 以上であることを鑑みると、屈折率異方性Δ
nの値は0.072以下、望ましくは0.066以下でな
くてはならない。ところが、このように極めてΔnの低
い液晶化合物の種類は非常に少なく、十分に他の実用上
の要求特性と両立することが困難である。そこで液晶組
成物層のd・Δnをやや高めに設定しておき、最適値よ
りも超過した分をこの液晶組成物層のd・Δn よりも
低い位相差Rfを有する光学的異方性媒質を液晶組成物
層により生じた位相差を補償するように挿入し、その結
果液晶組成物層と光学的異方性媒質とで合わせた実効的
な位相差が最適値である0.21から0.36μmの間に
入るようにする方法を考案した。
[Embodiments 20 to 22] As is clear from the results of Embodiments 17 to 19, the optimum value of d · Δn is 0.21.
To 0.36 μm, preferably 0.23 to 0.33
μm. Considering that the thickness of the mass-producible liquid crystal composition layer is 5.0 μm or more, the refractive index anisotropy Δ
The value of n must be less than 0.072, preferably less than 0.066. However, there are very few types of liquid crystal compounds having such a very low Δn, and it is difficult to sufficiently achieve compatibility with other practically required characteristics. Therefore, the value of d · Δn of the liquid crystal composition layer is set to be slightly higher, and the amount exceeding the optimum value is set to an optically anisotropic medium having a phase difference R f lower than d · Δn of the liquid crystal composition layer. Is inserted so as to compensate for the phase difference caused by the liquid crystal composition layer. As a result, the effective phase difference between the liquid crystal composition layer and the optically anisotropic medium is 0.21 to 0.2, which is the optimum value. A method was devised so as to be between .36 μm.

【0084】実施例20〜22では下記に示す条件以外
は実施例3と同じ構成とした。液晶組成物層の厚みをそ
れぞれ5.0,5.2,5.5μm とした。屈折率異方性
Δnが0.072(589nm,20℃)のネマチック液
晶組成物を用いている為、d・Δnの値は0.360,
0.3744,0.396μm である。このままでは、
明るさ及び色調が良好な0.21から0.36μmの範囲
よりも高い値となっている為、オレンジ色に着色してい
る。この液晶セルにポリビニルアルコール製一軸延伸フ
ィルムの光学的異方性媒質を、低電圧駆動時(ここでは
0ボルト)に液晶の複屈折位相差を補償するように積層
した。即ち、φRをφLC1(=φLC2)と同じ85度とし
た。位相差はRfはそれぞれ0.07,0.08,0.10
μm とし、(d・Δn−Rf)の値を0.29,0.30
44,0.296μmと明るさ及び色調が良好な0.21
から0.36μmの範囲に入るようにした。
In Examples 20 to 22, the configuration was the same as Example 3 except for the following conditions. The thicknesses of the liquid crystal composition layers were 5.0, 5.2, and 5.5 μm, respectively. Since a nematic liquid crystal composition having a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) is used, the value of d · Δn is 0.360,
0.3744, 0.396 μm. If this goes on,
Since the brightness and the color tone are higher than the good range of 0.21 to 0.36 μm, the color is orange. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol was laminated on the liquid crystal cell so as to compensate for the birefringence phase difference of the liquid crystal during low voltage driving (here, 0 volt). That is, φ R is set to 85 degrees, which is the same as φ LC1 (= φ LC2 ). The phase difference R f is 0.07, 0.08, 0.10, respectively.
μm, and the value of (d · Δn−R f ) is 0.29, 0.30
0.21 with good brightness and color tone of 44,0.296 μm
From 0.36 μm.

【0085】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display with no coloration and a brightness of 50% or more was obtained.

【0086】〔実施例23〕実施例20の液晶組成物層
を誘電率異方性Δεが負で、その値が−2.5 であり、
Δnが0.0712(589nm,20℃)のネマチック
液晶組成物(メルク社製,ZLI−4518)に変え
た。他の構成は下記を除けば実施例14と同じである。
液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3
916μmである。この液晶セルに位相差Rfが0.11
μmであるポリビニルアルコール製一軸延伸フィルムの
光学的異方性媒質を積層し、(d・Δn−Rf)の値を0.
2816μmと明るさ及び色調が良好な0.21から0.36
μmの範囲に入るようにした。
Example 23 The liquid crystal composition layer of Example 20 had a negative dielectric anisotropy Δε and a value of −2.5,
The composition was changed to a nematic liquid crystal composition having a Δn of 0.0712 (589 nm, 20 ° C.) (manufactured by Merck, ZLI-4518). Other configurations are the same as those of the fourteenth embodiment except for the following.
The thickness of the liquid crystal composition layer is 5.5 μm, that is, d · Δn is 0.3.
916 μm. This liquid crystal cell has a phase difference R f of 0.11.
The optically anisotropic medium of a polyvinyl alcohol uniaxially stretched film having a thickness of μm is laminated, and the value of (d · Δn−R f ) is set to 0.1.
0.216 to 0.36 with good brightness and color tone of 2816 μm
It was set within the range of μm.

【0087】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display having no coloration and a brightness of 50% or more was obtained.

【0088】〔実施例24〕本実施例の構成は下記の要
件を除けば、実施例8と同一である。
[Embodiment 24] The configuration of this embodiment is the same as Embodiment 8 except for the following requirements.

【0089】液晶組成物層のΔnは0.072でギャッ
プdは7.0μmとした。よってΔn・dは0.504μ
mである。φLC1を89.5 度とし、上下基板上の液晶
分子配向方向を互いに交差させ、|φLC1−φLC2|=9
0度とした。偏光板の配置は互いに直交(|φP2−φP1
|=90°)させかつ液晶分子配向方向との関係を旋光
モードとなるようにφLC1=φP1 とした。この結果、ノ
ーマリオープン型が得られた。
The Δn of the liquid crystal composition layer was 0.072 and the gap d was 7.0 μm. Therefore, Δn · d is 0.504μ
m. φ LC1 is 89.5 degrees, and the liquid crystal molecule alignment directions on the upper and lower substrates are crossed with each other, and | φ LC1 −φ LC2 | = 9
0 degrees. The arrangement of the polarizing plates is orthogonal to each other (| φ P2 −φ P1
| = 90 °), and φ LC1 = φ P1 so that the relationship with the liquid crystal molecule alignment direction becomes an optical rotation mode. As a result, a normally open type was obtained.

【0090】本実施例における電気光学特性を測定した
ところ、複屈折モードである他の実施例に比べてしきい
値電圧V10,V90が約2倍になった点を除けば、同じく
明るさも50%以上で、視角を左右,上下に変えた場合
のカーブの差も極めて小さく、表示特性はほとんど変化
しないという結果を得た。また、液晶配向性も良好で、
配向不良ドメインは発生しなかった。
When the electro-optical characteristics of this embodiment were measured, the brightness was the same except that the threshold voltages V 10 and V 90 were about twice as large as those of the other embodiments in the birefringence mode. When the viewing angle was changed to left and right and up and down, the difference between the curves was extremely small, and the display characteristics were hardly changed. In addition, the liquid crystal alignment is good,
No misalignment domain occurred.

【0091】〔実施例25,26〕本実施例の構成は下
記の要件を除けば、実施例1と同一である。
Embodiments 25 and 26 The configuration of this embodiment is the same as Embodiment 1 except for the following requirements.

【0092】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φLC1−φP1|を実施例25,26でそれぞれ5
度,15度とし、|φP2−φP1|=90度とした。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was slightly applied instead of 0. That is, | φ LC1 −φ P1 |
Every time, and 15 degrees, | φ P2P1 | = was 90 degrees.

【0093】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。また、液晶配向性も良好
で、配向不良ドメインは発生しなかった。
As in the other examples, good display characteristics were obtained in both brightness and viewing angle. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0094】〔実施例27,28〕本実施例の構成は下
記の要件を除けば、実施例14と同一である。
[Embodiments 27 and 28] The structure of this embodiment is the same as that of Embodiment 14 except for the following requirements.

【0095】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φP1−φLC1|を実施例27,28でそれぞれ5
度,7度とし、|φP2−φP1|=90度とした。また、
液晶組成物層の厚みdは6.3μmとした。よって、Δ
n・dは0.275μmである。
The arrangement of the polarizing plates was set so that a dark state was obtained when the electric field was slightly applied instead of 0. That is, | φ P1 −φ LC1 |
And 7 degrees, and | φ P2 −φ P1 | = 90 degrees. Also,
The thickness d of the liquid crystal composition layer was 6.3 μm. Therefore, Δ
n · d is 0.275 μm.

【0096】本実施例における電気光学特性の測定結果
を図13に示す。実施例27の場合、暗状態となる電圧
OFFは3.0ボルト、最も明るくなる電圧VONは9.2
ボルトであった。駆動をVOFF とVONの間で行えば、十
分に高いコントラストが得られる。同様に、実施例28
の場合はVOFF は5.0ボルト、VONは9.0ボルトであ
った。
FIG. 13 shows the measurement results of the electro-optical characteristics in this embodiment. In the case of the twenty-seventh embodiment, the dark state voltage V OFF is 3.0 volts, and the brightest voltage V ON is 9.2.
It was a bolt. If the driving is performed between V OFF and V ON , a sufficiently high contrast can be obtained. Similarly, Example 28
In this case, V OFF was 5.0 volts and V ON was 9.0 volts.

【0097】VOFF とVONの間で駆動した場合、他の実
施例と同じく、明るさ,視角両面で良好な表示特性が得
られた。また、液晶配向性も良好で、配向不良ドメイン
は発生しなかった。
When driven between V OFF and V ON , good display characteristics were obtained in both brightness and viewing angle, as in the other embodiments. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0098】〔実施例29〕本実施例の構成は下記の要
件を除けば、実施例27と同一である。
[Embodiment 29] The structure of this embodiment is the same as Embodiment 27 except for the following requirements.

【0099】信号電極に画像信号を印加すると共に、共
通電極に3.0V の交流波形を印加した。その結果、信
号電極に供給する電圧の低電圧化(8.3V⇒6.2V)
が実現した。
An image signal was applied to the signal electrode, and an AC waveform of 3.0 V was applied to the common electrode. As a result, the voltage supplied to the signal electrode is reduced (from 8.3V to 6.2V).
Was realized.

【0100】このようにしてVOFF とVONの間で駆動を
行い、他の実施例と同じく、明るさ,視角両面で良好な
表示特性を得た。また、液晶配向性も良好で、配向不良
ドメインは発生しなかった。
In this manner, driving was performed between V OFF and V ON , and good display characteristics were obtained in both brightness and viewing angle as in the other embodiments. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0101】〔実施例30〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Embodiment 30] The structure of this embodiment is the same as Embodiment 1 except for the following requirements.

【0102】偏光板の配置を、電界が0ではなく印加さ
れた状態で暗状態が得られるように、設定した。即ち、
LC1−φP1|を45度、|φP2−φP1|を90度とし
た。これにより、低電圧印加時に明状態、高電圧印加時
に暗状態となった。この時の明るさの電圧依存性の測定
結果を図14で実線で示した。
The arrangement of the polarizing plates was set so that a dark state was obtained when an electric field was applied instead of 0. That is,
| φ LC1 −φ P1 | was 45 degrees, and | φ P2 −φ P1 | was 90 degrees. This resulted in a bright state when a low voltage was applied and a dark state when a high voltage was applied. The measurement result of the voltage dependence of the brightness at this time is shown by a solid line in FIG.

【0103】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。コントラスト比は35とな
った。また、液晶配向性も良好で、配向不良ドメインは
発生しなかった。
As in the other examples, good display characteristics were obtained in both the brightness and the viewing angle. The contrast ratio was 35. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0104】〔実施例31〕実施例30の構成に於い
て、2枚の偏光板の間に界面残留位相差を補償する複屈
折媒体(一軸延伸したポリビニルアルコールフィルム)
を挿入した。このフィルムの延伸方向φR は−45度と
し、偏光板透過軸に直交させた。また、位相差Rfは1
5nmである。
[Example 31] In the structure of Example 30, a birefringent medium (uniaxially stretched polyvinyl alcohol film) for compensating for the residual phase difference between interfaces between two polarizing plates.
Was inserted. The stretching direction phi R of the film was set to -45 °, it was perpendicular to the polarizer transmission axis. The phase difference R f is 1
5 nm.

【0105】図14の点線で示したように、実施例30
に比べて高電圧印加時の光漏れが抑制され、コントラス
ト比は150に更に改善された。
As shown by the dotted line in FIG.
The light leakage when a high voltage was applied was suppressed, and the contrast ratio was further improved to 150.

【0106】[0106]

【発明の効果】本発明によれば、第一に、透明電極がな
くとも高コントラストで、低価格の設備で高い歩留まり
で量産可能な低コストの薄膜トランジスタ型液晶表示装
置を提供することができ、第二に、視角特性が良好で多
階調表示が容易である薄膜トランジスタ型液晶表示装置
を提供することができ、第三に、液晶配向に関するプロ
セス及び材料の裕度が大きく、そのため開口率が高くで
き、光透過率を引上げた、より明るい薄膜トランジスタ
型液晶表示装置を提供することができ、第四に、第一か
ら第三の効果に加えてより構造が簡素である薄膜トラン
ジスタ構造を提供し、開口率を高くし、光透過率を引上
げた、より明るい薄膜トランジスタ型液晶表示装置を提
供することができる。
According to the present invention, firstly, it is possible to provide a low-cost thin film transistor type liquid crystal display device which can be mass-produced with a high yield with low cost equipment without using a transparent electrode. Secondly, it is possible to provide a thin film transistor type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display, and thirdly, a process and a material allowance for liquid crystal alignment are large, so that an aperture ratio is high. Fourth, it is possible to provide a brighter thin film transistor type liquid crystal display device with an increased light transmittance. It is possible to provide a brighter thin film transistor type liquid crystal display device having a higher light transmittance and a higher light transmittance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶表示装置における液晶の動作を示
す図。
FIG. 1 is a diagram showing an operation of a liquid crystal in a liquid crystal display device of the present invention.

【図2】本発明の薄膜トランジスタの一例を示す図。FIG. 2 illustrates an example of a thin film transistor of the present invention.

【図3】本発明(a)及び比較例(b)の電気光学特性
(視角方向依存性)を示す図。
FIG. 3 is a diagram showing electro-optical characteristics (viewing angle direction dependence) of the present invention (a) and comparative example (b).

【図4】薄膜トランジスタにおいて画素電極(ソース電
極),共通電極,走査電極,信号電極(ドレイン電極)
をいずれも一方の基板上に配置した本発明の一実施例を
示す図。
FIG. 4 shows a pixel electrode (source electrode), a common electrode, a scanning electrode, and a signal electrode (drain electrode) in a thin film transistor.
FIG. 2 is a diagram showing an embodiment of the present invention in which both are arranged on one substrate.

【図5】画素電極(ソース電極),信号電極(ドレイン
電極)を画素の中央に配置し、一画素を2分割した本発
明の一実施例を示す図。
FIG. 5 is a diagram showing an embodiment of the present invention in which a pixel electrode (source electrode) and a signal electrode (drain electrode) are arranged at the center of a pixel, and one pixel is divided into two.

【図6】電界方向に対する、界面上の分子長軸配向方向
φLC,偏光板偏光軸φP,位相板進相軸φRのなす角を示
す図。
FIG. 6 is a view showing an angle formed by a molecular long axis alignment direction φ LC , a polarizing plate polarization axis φ P , and a phase plate fast axis φ R with respect to an electric field direction.

【図7】界面上の分子長軸配向方向φLCを変えた種々の
実施例における電気光学特性を示す図。誘電率異方性が
正の場合。
FIG. 7 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is positive.

【図8】本発明の液晶表示駆動回路システムを表す図。FIG. 8 is a diagram showing a liquid crystal display drive circuit system of the present invention.

【図9】本発明の液晶表示透過型光学システムを表す
図。
FIG. 9 is a diagram showing a liquid crystal display transmission type optical system of the present invention.

【図10】本発明の液晶表示反射型光学システムを表す
図。
FIG. 10 is a diagram showing a liquid crystal display reflective optical system of the present invention.

【図11】界面上の分子長軸配向方向φLCを変えた種々
の実施例における電気光学特性を示す図。誘電率異方性
が負の場合。
FIG. 11 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is negative.

【図12】液晶組成物層の厚みdを変えた種々の実施例
における電気光学特性を示す図。誘電率異方性が負の場
合。
FIG. 12 is a graph showing electro-optical characteristics in various examples in which the thickness d of the liquid crystal composition layer was changed. When the dielectric anisotropy is negative.

【図13】偏光板の配置を、電界が0ではなくやや印加
された状態で暗状態が得られるように設定した時の電気
光学特性を示す図。
FIG. 13 is a diagram showing electro-optical characteristics when the arrangement of a polarizing plate is set so that a dark state is obtained when an electric field is slightly applied instead of 0.

【図14】ノーマリオープン型の特性及び界面残留位相
差を補償した時の特性を表す図。
FIG. 14 is a diagram illustrating characteristics of a normally open type and characteristics when an interface residual phase difference is compensated.

【符号の説明】[Explanation of symbols]

1…画素電極(ソース電極)、2…共通電極(コモン電
極)、3…基板、4…配向膜、5…液晶組成物層中の液
晶分子、6…偏光板、7…電界方向、8…界面上の分子
長軸配向方向(ラビング方向)、9…偏光板偏光軸方
向、10…ゲート電極(走査配線)、11…付加容量素
子、12…信号電極(ドレイン電極)、13…ゲート絶
縁膜、14…平坦化膜、15…保護絶縁膜、16…アモ
ルファスシリコン、17…カラーフィルタ、18…遮光
層、19…偏光板偏光透過軸、20…位相差板進相軸、
21…信号電極駆動回路、22…走査電極駆動回路、2
3…信号電極、24…走査電極、25…下側基板、26
…上側基板、27…コントロール回路、28…位相差
板、29…バックライト、30…反射板、31…液晶組
成物層。
DESCRIPTION OF SYMBOLS 1 ... Pixel electrode (source electrode), 2 ... Common electrode (common electrode), 3 ... Substrate, 4 ... Alignment film, 5 ... Liquid crystal molecules in a liquid crystal composition layer, 6 ... Polarizing plate, 7 ... Electric field direction, 8 ... Molecular long axis orientation direction (rubbing direction) on the interface, 9: polarization axis direction of polarizing plate, 10: gate electrode (scanning wiring), 11: additional capacitance element, 12: signal electrode (drain electrode), 13: gate insulating film , 14: flattening film, 15: protective insulating film, 16: amorphous silicon, 17: color filter, 18: light shielding layer, 19: polarizing plate polarization transmission axis, 20: retardation plate fast axis,
21: signal electrode drive circuit, 22: scan electrode drive circuit, 2
3 ... signal electrode, 24 ... scanning electrode, 25 ... lower substrate, 26
... upper substrate, 27 ... control circuit, 28 ... phase difference plate, 29 ... backlight, 30 ... reflector, 31 ... liquid crystal composition layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 益幸 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 鈴木 堅吉 千葉県茂原市早野3300番地 株式会社 日立製作所 茂原工場内 (56)参考文献 特公 昭63−21907(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G02F 1/1343 G02F 1/136 500 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masuyuki Ota 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-B-63-21907 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) G02F 1/1343 G02F 1/136 500

Claims (19)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一方が透明な一対の基板と、そ
の一対の基板に挟持された液晶層を有し、前記一対の基
板の一方には、複数の信号配線電極と、その複数の信号
配線電極とマトリクス状に形成された複数の走査配線電
極と、それぞれの交点に対応して形成された複数の薄膜
トランジスタを有し、 前記複数の信号配線電極と前記複数の走査配線電極とで
囲まれるそれぞれの領域で少なくとも一つの画素が構成
され、 それぞれの画素には少なくとも一つの共通電極と、対応
する薄膜トランジスタに接続された少なくとも一つの画
素電極とを有し、 前記少なくとも一つの共通電極と前記少なくとも一つの
画素電極とは前記複数の走査配線電極の配置された層
と異なる層で、前記走査配線電極が配置された層とは少
なくとも絶縁膜を介して同じ層に形成されており、これ
らの電極間には前記一方の基板に対し、支配的に平行な
電界が形成されることを特徴とする液晶表示装置。
At least one of the substrates includes a pair of transparent substrates and a liquid crystal layer sandwiched between the pair of substrates. One of the pair of substrates has a plurality of signal wiring electrodes and a plurality of signal wirings. An electrode and a plurality of scanning wiring electrodes formed in a matrix, and a plurality of thin film transistors formed corresponding to respective intersections, each being surrounded by the plurality of signal wiring electrodes and the plurality of scanning wiring electrodes at least one pixel composed of the region, and one common electrode even without least in each pixel, and at least one pixel electrode connected to the corresponding thin film transistor, said at least one common electrode and the At least one pixel electrode is a layer on which the plurality of scanning wiring electrodes are arranged.
Different from the layer on which the scanning wiring electrodes are arranged.
The liquid crystal display device is formed at least in the same layer via an insulating film, and an electric field predominantly parallel to the one substrate is formed between these electrodes.
【請求項2】請求項1において、前記信号配線電極方向
に隣接する画素において、対応するそれぞれの共通電極
は隣接する画素内の対応する共通電極と相互に接続され
ることを特徴とする液晶表示装置。
2. A liquid crystal display according to claim 1, wherein, in pixels adjacent to each other in the direction of said signal wiring electrode, corresponding common electrodes are mutually connected to corresponding common electrodes in adjacent pixels. apparatus.
【請求項3】請求項1において、前記複数の共通電極は
前記複数の走査配線電極と同一の基板に形成されている
ことを特徴とする液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein said plurality of common electrodes are formed on the same substrate as said plurality of scanning wiring electrodes.
【請求項4】 請求項1において、前記複数の画素のそれ
ぞれに対応する信号配線電極は前記複数の薄膜トランジ
スタのドレイン電極と接続されていることを特徴とする
液晶表示装置。
4. The method of claim 1, the signal wiring electrode corresponding to each of the plurality of pixels liquid crystal display device characterized in that it is connected to the drain electrode of the plurality of thin film transistors.
【請求項5】 請求項1において、前記液晶層の液晶組成
物の誘電率異方性が正であり、かつ少なくとも一方の基
板界面上での液晶分子の配向方向と電界方向とのなす角
度|φLC|が45度以上90度未満であることを特徴と
する液晶表示装置。ただし、−90度≦φLC≦90度で
ある。
5. The method according to claim 1, wherein the liquid crystal composition of the liquid crystal layer has a positive dielectric anisotropy and an angle between an orientation direction of liquid crystal molecules and an electric field direction on at least one substrate interface. φLC | is 45 degrees or more and less than 90 degrees. However, -90 degrees ≦ φLC ≦ 90 degrees.
【請求項6】 請求項1において、前記液晶層の液晶組成
物の誘電率異方性が負であり、かつ少なくとも一方の基
板界面上での液晶分子の配向方向と電界方向とのなす角
度|φLC|が0度を超え45度未満であることを特徴と
する液晶表示装置。ただし、−90度≦φLC≦90度で
ある。
6. The method according to claim 1, wherein the liquid crystal composition of the liquid crystal layer has a negative dielectric anisotropy and an angle between an orientation direction of liquid crystal molecules and an electric field direction on at least one substrate interface. A liquid crystal display device wherein φLC | is more than 0 degree and less than 45 degrees. However, -90 degrees ≦ φLC ≦ 90 degrees.
【請求項7】 請求項またはにおいて、前記液晶層の
一方の基板上での液晶分子の配向方向の角度φLC1と他
方基板面上での液晶分子の配向方向の角度φLC2とが互
いに略平行(φLC1≒φLC2)であり、かつ前記液晶層の
厚みd及び屈折率異方性Δnの積d・Δnが0.21μ
mから0.36μmの間であることを特徴とする液晶表
示装置。
7. The method of claim 5 or 6, substantially parallel to the angle of the orientation direction of the liquid crystal molecules in the orientation direction angle φLC1 the other substrate plane of liquid crystal molecules on one substrate of the liquid crystal layer φLC2 each other (ΦLC1 ≒ φLC2), and the product d · Δn of the thickness d of the liquid crystal layer and the refractive index anisotropy Δn is 0.21 μm.
A liquid crystal display device characterized by being between m and 0.36 μm.
【請求項8】 請求項において、前記液晶層の厚みd及
び屈折率異方性Δnの積d・Δnよりも低い位相差Rf
を有する光学的異方性媒質を液晶層により生じた位相差
を補償するように挿入し、かつその絶対値の差|d・Δ
n|−|Rf|を0.21μm以上0.36μm以下とし
たことを特徴とする液晶表示装置。
8. The method of claim 7, wherein the liquid crystal layer thickness d and refractive index anisotropy [Delta] n of the product d · [Delta] n low retardation Rf than
Is inserted so as to compensate for the phase difference generated by the liquid crystal layer, and the difference | d · Δ
A liquid crystal display device wherein n |-| Rf | is not less than 0.21 μm and not more than 0.36 μm.
【請求項9】 請求項またはにおいて、前記液晶層の
一方の基板界面上での液晶分子の配向方向の角度φLC1
と他方基板界面上での液晶分子の配向方向の角度φLC2
とが互いに交差し、その角度|φLC1−φLC2|が80度
以上100度以下であり、かつ前記液晶層の厚みd及び
屈折率異方性Δnの積d・Δnが0.40μmから0.60
μmの間であることを特徴とする液晶表示装置。
9. The apparatus according to claim 5 or 6, the angle of the orientation direction of the liquid crystal molecules on one substrate surface of the liquid crystal layer φLC1
And the angle φLC2 of the alignment direction of the liquid crystal molecules on the substrate interface
Intersect with each other, the angle | φLC1−φLC2 | is not less than 80 degrees and not more than 100 degrees, and the product d · Δn of the thickness d of the liquid crystal layer and the refractive index anisotropy Δn is 0.40 μm to 0.60 μm.
A liquid crystal display device characterized by being between μm.
【請求項10】 請求項において、前記一対の基板を挟
持するように一対の偏光板を有し、前記界面上の液晶分
子の長軸方向と電界方向とのなす角φLCが前記一対の偏
光板のうち一方の偏光板の透過軸(或いは吸収軸)の角
度φPよりも大きく、かつその差|φLC−φP|が3度以
上15度以下であることを特徴とする液晶表示装置。
10. The method of claim 5, a pair of polarizing plates so as to sandwich the pair of substrates, the long axis direction and angle φLC said pair of polarization of the electric field direction of the liquid crystal molecules on the interface A liquid crystal display device characterized in that the angle | P of the transmission axis (or absorption axis) of one of the polarizing plates is larger than? P and the difference |? LC-? P | is 3 degrees or more and 15 degrees or less.
【請求項11】 請求項において、前記一対の基板を挟
持するように一対の偏光板を有し、前記界面上の液晶分
子の長軸方向と電界方向とのなす角φLCが前記一対の偏
光板のうち一方の偏光板の吸収軸或いは透過軸の角度φ
Pよりも小さく、かつその差|φP−φLC|が3度以上1
5度以下であることを特徴とする液晶表示装置。
11. A liquid crystal display device according to claim 6 , further comprising a pair of polarizing plates sandwiching said pair of substrates, wherein an angle φLC between a major axis direction of liquid crystal molecules on said interface and an electric field direction is set to said pair of polarizing plates. Angle φ of the absorption axis or transmission axis of one of the polarizing plates
Smaller than P and the difference | φP−φLC |
A liquid crystal display device having a temperature of 5 degrees or less.
【請求項12】 請求項乃至11の少なくとも一つにお
いて、前記一対の基板の少なくとも一方の基板近傍の前
記液晶層の液晶分子はその基板界面に対する傾き角が4
度以下であることを特徴とする液晶表示装置。
12. In at least one of claims 5 to 11, the liquid crystal molecules of the liquid crystal layer of at least one of the substrates near the pair of substrates has an inclination angle with respect to the substrate interface 4
A liquid crystal display device characterized by being at most equal to or less than the temperature.
【請求項13】Claim 13 請求項1において、In claim 1, 前記共通電極と前記画素電極は、前記信号配線電極と同The common electrode and the pixel electrode are the same as the signal wiring electrode.
じ方向に伸びている液晶表示装置。Liquid crystal display device extending in the same direction.
【請求項14】14. 少なくとも一方が透明な一対の基板と、A pair of substrates at least one of which is transparent,
その一対の基板に挟持された液晶層を有し、Having a liquid crystal layer sandwiched between the pair of substrates, 前記一対の基板の一方には、複数の信号配線電極と、そA plurality of signal wiring electrodes are provided on one of the pair of substrates.
の複数の信号配線電極とマトリクス状に形成された複数A plurality of signal wiring electrodes and a plurality formed in a matrix
の走査配線電極と、それぞれの交点に対応して形成されScanning wiring electrodes, and are formed corresponding to the respective intersections
た複数の薄膜トランジスタを有し、Having a plurality of thin film transistors, 前記複数の信号配線電極と前記複数の走査配線電極とでThe plurality of signal wiring electrodes and the plurality of scanning wiring electrodes
囲まれるそれぞれの領域で少なくとも一つの画素が構成At least one pixel in each enclosed area
され、And それぞれの画素には少なくとも一つの共通電極と、対応Each pixel has at least one common electrode and a corresponding
する薄膜トランジスタに接続された少なくとも一つの画At least one pixel connected to the
素電極とを有し、And an elementary electrode, 前記少なくとも一つの共通電極と前記少なくとも一つのThe at least one common electrode and the at least one common electrode
画素電極とは、前記複数の走査配線電極の配置された層A pixel electrode is a layer on which the plurality of scanning wiring electrodes are arranged.
と異なる層で、前記走査配線電極が配置された層とは少Different from the layer on which the scanning wiring electrodes are arranged.
なくとも絶縁膜を介して同じ層に形成されており、前記At least in the same layer via an insulating film,
複数の走査配線電極は前記絶縁層を介して前記複数の画The plurality of scanning wiring electrodes are connected to the plurality of pixels via the insulating layer.
素電極と容量を形成することを特徴とする液晶表示装A liquid crystal display device characterized by forming a capacitor with an elementary electrode.
置。Place.
【請求項15】請求項14において、 前記共通電極と前記画素電極は、前記信号配線電極と同
じ方向に伸びている液晶表示装置。
15. The device according to claim 14, wherein the common electrode and the pixel electrode are the same as the signal wiring electrode.
Liquid crystal display device extending in the same direction.
【請求項16】16. 請求項14において、In claim 14, 前記信号配線電極方向に隣接する画素において、対応すIn a pixel adjacent in the signal wiring electrode direction,
るそれぞれの共通電極は隣接する画素内の対応する共通Each common electrode has a corresponding common
電極と相互に接続される液晶表示装置。A liquid crystal display device interconnected with electrodes.
【請求項17】17. 少なくとも一方が透明な一対の基板と、A pair of substrates at least one of which is transparent,
その一対の基板に挟持された液晶層を有し、前記一対のHaving a liquid crystal layer sandwiched between the pair of substrates;
基板の一方には、複数の信号配線電極と、その複数の信One of the substrates has a plurality of signal wiring electrodes and the plurality of signal wiring electrodes.
号配線電極とマトリクス状に形成された複数の走査配線No. wiring electrodes and multiple scanning wirings formed in a matrix
電極と、それぞれの交点に対応して形成された複数の薄An electrode and a plurality of thin films formed corresponding to the respective intersections
膜トランジスタを有し、Having a membrane transistor, 前記複数の信号配線電極と前記複数の走査配線電極とでThe plurality of signal wiring electrodes and the plurality of scanning wiring electrodes
囲まれるそれぞれの領域で少なくとも一つの画素が構成At least one pixel in each enclosed area
され、And それぞれの画素には少なくとも一つの共通電極と、対応Each pixel has at least one common electrode and a corresponding
する薄膜トランジスタに接続された少なくとも一つの画At least one pixel connected to the
素電極とを有し、And an elementary electrode, 前記少なくとも一つの共通電極と前記少なくとも一つのThe at least one common electrode and the at least one common electrode
画素電極とは、前記複数の走査配線電極の配置された層A pixel electrode is a layer on which the plurality of scanning wiring electrodes are arranged.
と異なる層で、前記走査配線電極が配置された層とは少Different from the layer on which the scanning wiring electrodes are arranged.
なくとも絶縁膜を介して同じ層に形成されており、前記At least in the same layer via an insulating film,
複数の走査配線電極は前記絶縁層を介して前記複数の共The plurality of scanning wiring electrodes are shared by the plurality of scanning electrodes via the insulating layer.
通電極と容量を形成することを特徴とする液晶表示装Liquid crystal display device characterized by forming a conductive electrode and a capacitor
置。Place.
【請求項18】18. 請求項17において、In claim 17, 前記共通電極と前記画素電極は、前記信号配線電極と同The common electrode and the pixel electrode are the same as the signal wiring electrode.
じ方向に伸びている液晶表示装置。Liquid crystal display device extending in the same direction.
【請求項19】(19) 請求項17において、In claim 17, 前記信号配線電極方向に隣接する画素において、対応すIn a pixel adjacent in the signal wiring electrode direction,
るそれぞれの共通電極Each common electrode は隣接する画素内の対応する共通Is the corresponding common in adjacent pixels
電極と相互に接続される液晶表示装置。A liquid crystal display device interconnected with electrodes.
JP22546293A 1992-09-18 1993-09-10 Liquid crystal display Expired - Lifetime JP2940354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24993892 1992-09-18
JP4-249938 1992-09-18
JP22546293A JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP9064154A Division JPH09230364A (en) 1997-03-18 1997-03-18 Liquid crystal display device
JP11045299A Division JP3441999B2 (en) 1992-09-18 1999-04-19 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH06160878A JPH06160878A (en) 1994-06-07
JP2940354B2 true JP2940354B2 (en) 1999-08-25

Family

ID=26526653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22546293A Expired - Lifetime JP2940354B2 (en) 1992-09-18 1993-09-10 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2940354B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020875A (en) 2016-08-18 2018-02-28 엘지디스플레이 주식회사 Liquid crystal display device and Method of fabricating the same
KR20180099461A (en) 2017-02-28 2018-09-05 엘지디스플레이 주식회사 Liquid crystal display device and Method of fabricating the same
KR20180099458A (en) 2017-02-28 2018-09-05 엘지디스플레이 주식회사 Liquid Crystal Display Device and Method Of Fabricating The Same
US10281770B2 (en) 2016-03-11 2019-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US11099434B2 (en) 2019-02-04 2021-08-24 Sharp Kabushiki Kaisha Liquid crystal display panel

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289097B (en) * 1994-08-24 1996-10-21 Hitachi Ltd
JP3650405B2 (en) * 1995-09-14 2005-05-18 株式会社 日立製作所 Active matrix liquid crystal display device
TW589472B (en) * 1995-10-12 2004-06-01 Hitachi Ltd In-plane field type liquid crystal display device comprising a structure preventing electricity
JP3458562B2 (en) 1995-10-12 2003-10-20 株式会社日立製作所 Liquid crystal display device and manufacturing method thereof
JP2758864B2 (en) * 1995-10-12 1998-05-28 株式会社日立製作所 Liquid crystal display
US5959599A (en) 1995-11-07 1999-09-28 Semiconductor Energy Laboratory Co., Ltd. Active matrix type liquid-crystal display unit and method of driving the same
TW329500B (en) * 1995-11-14 1998-04-11 Handotai Energy Kenkyusho Kk Electro-optical device
JPH09146108A (en) * 1995-11-17 1997-06-06 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its driving method
JP3963974B2 (en) 1995-12-20 2007-08-22 株式会社半導体エネルギー研究所 Liquid crystal electro-optical device
JP3708620B2 (en) * 1996-03-01 2005-10-19 株式会社半導体エネルギー研究所 Active matrix liquid crystal electro-optical device
KR100474194B1 (en) 1996-03-14 2005-08-01 세이코 엡슨 가부시키가이샤 Liquid crystal devices and electronic devices using them
US6911962B1 (en) 1996-03-26 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Driving method of active matrix display device
JP4026870B2 (en) * 1996-04-04 2007-12-26 エルジー フィリップス エルシーディー カンパニー リミテッド Manufacturing method of liquid crystal display device
JP3465776B2 (en) 1996-10-04 2003-11-10 シャープ株式会社 Liquid crystal display
US7615260B2 (en) 1996-05-08 2009-11-10 Hitachi, Ltd. Active-matrix liquid crystal display
DE69732193T2 (en) 1996-05-08 2005-12-22 Hitachi, Ltd. In-plane active matrix liquid crystal display
JP2907137B2 (en) * 1996-08-05 1999-06-21 日本電気株式会社 Liquid crystal display
JP2845215B2 (en) * 1996-09-20 1999-01-13 日本電気株式会社 Liquid crystal display device and method of manufacturing the same
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
JP3460527B2 (en) 1996-10-04 2003-10-27 シャープ株式会社 Liquid crystal display
JPH10206857A (en) * 1997-01-21 1998-08-07 Hitachi Ltd Liquid crystal display device
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
JP3883244B2 (en) 1997-01-23 2007-02-21 エルジー フィリップス エルシーディー カンパニー リミテッド Liquid crystal display
KR100257370B1 (en) 1997-05-19 2000-05-15 구본준 In plane switching mode liquid crystal display device
JP3107000B2 (en) * 1997-06-30 2000-11-06 日本電気株式会社 Liquid crystal display
KR100251512B1 (en) 1997-07-12 2000-04-15 구본준 In-plane switching mode lcd
JP2991995B2 (en) 1997-07-14 1999-12-20 三菱電機株式会社 Liquid crystal display
JP3176565B2 (en) * 1997-07-14 2001-06-18 三菱電機株式会社 Liquid crystal display
JP3061119B2 (en) 1997-07-15 2000-07-10 日本電気株式会社 Liquid crystal display
KR100514672B1 (en) 1997-07-23 2005-09-13 세이코 엡슨 가부시키가이샤 Liquid crystal display, method of manufacturing the liquid crystal display, and electronic equipment
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
KR100282331B1 (en) * 1997-08-01 2001-02-15 구본준 In-plane switching mode liquid crystal device
KR100255931B1 (en) 1997-08-14 2000-05-01 구본준, 론 위라하디락사 In-plane switching mode lcd
KR100497691B1 (en) * 1997-08-21 2005-07-01 가부시키가이샤 히타치세이사쿠쇼 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
KR100293432B1 (en) * 1997-08-26 2001-08-07 구본준, 론 위라하디락사 An in-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
KR100293434B1 (en) 1997-09-08 2001-08-07 구본준, 론 위라하디락사 In-plane switching mode liquid crystal display device
JP3723336B2 (en) * 1997-11-18 2005-12-07 三洋電機株式会社 Liquid crystal display device
JP3031317B2 (en) * 1997-11-20 2000-04-10 日本電気株式会社 Active matrix liquid crystal display
US6215541B1 (en) 1997-11-20 2001-04-10 Samsung Electronics Co., Ltd. Liquid crystal displays and manufacturing methods thereof
JP3022463B2 (en) * 1998-01-19 2000-03-21 日本電気株式会社 Liquid crystal display device and method of manufacturing the same
KR100293436B1 (en) 1998-01-23 2001-08-07 구본준, 론 위라하디락사 In plane switching mode liquid crystal display device
JP3165100B2 (en) * 1998-02-09 2001-05-14 日本電気株式会社 Liquid crystal display device and manufacturing method thereof
TW569058B (en) 1998-02-24 2004-01-01 Toshiba Corp Array substrate for liquid crystal display element, array substrate for liquid crystal display element and method of manufacturing the same
JPH11326928A (en) * 1998-05-08 1999-11-26 Hitachi Ltd Liquid crystal display device
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
KR100344844B1 (en) 1998-07-07 2002-11-18 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
KR100433596B1 (en) 1999-10-21 2004-05-31 마쯔시다덴기산교 가부시키가이샤 Liquid crystal device
KR100595294B1 (en) 1999-12-14 2006-07-03 엘지.필립스 엘시디 주식회사 Method of manufacturing a color filter array for in-plane switching mode liquid crystal display device
KR100504531B1 (en) 1999-12-15 2005-08-03 엘지.필립스 엘시디 주식회사 An in-plane switching mode liquid crystal display device
TWI284240B (en) 2000-09-27 2007-07-21 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP3750055B2 (en) 2001-02-28 2006-03-01 株式会社日立製作所 Liquid crystal display
JP3788259B2 (en) 2001-03-29 2006-06-21 株式会社日立製作所 Liquid crystal display
DE60321481D1 (en) * 2002-11-02 2008-07-17 Merck Patent Gmbh OPTICALLY COMPACT ELECTROOPTIC LIGHT MODULA
CN100430802C (en) 2002-12-09 2008-11-05 株式会社日立显示器 Liquid crystal display and method for manufacturing same
JP4253259B2 (en) * 2003-08-15 2009-04-08 富士フイルム株式会社 Liquid crystal display
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
JP4586503B2 (en) * 2004-02-12 2010-11-24 チッソ株式会社 Liquid crystal aligning agent, alignment film, and liquid crystal display device having the alignment film
JP4620438B2 (en) * 2004-02-27 2011-01-26 チッソ株式会社 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
KR100979863B1 (en) 2004-06-29 2010-09-02 샤프 가부시키가이샤 Liquid crystal display unit
WO2006061966A1 (en) 2004-12-10 2006-06-15 Adeka Corporation Liquid crystal composition
JP4365792B2 (en) 2005-01-19 2009-11-18 株式会社フューチャービジョン Liquid crystal display
JP5414960B2 (en) 2005-05-09 2014-02-12 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display
JP4775796B2 (en) * 2006-03-14 2011-09-21 独立行政法人物質・材料研究機構 Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP4818839B2 (en) 2006-07-19 2011-11-16 株式会社 日立ディスプレイズ Liquid crystal display device and manufacturing method thereof
US7663726B2 (en) 2006-12-08 2010-02-16 Epson Imaging Devices Corporation Liquid crystal apparatus and electronic apparatus
JP4453041B2 (en) 2007-03-30 2010-04-21 ソニー株式会社 Liquid crystal display element and liquid crystal display device
JP5283255B2 (en) 2008-02-14 2013-09-04 株式会社ジャパンディスプレイ Liquid crystal display
JP5572562B2 (en) * 2011-01-19 2014-08-13 株式会社ジャパンディスプレイ Liquid crystal display
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
JP4920119B2 (en) * 2011-10-18 2012-04-18 株式会社半導体エネルギー研究所 Active matrix liquid crystal display device
JP5079148B2 (en) * 2012-01-25 2012-11-21 株式会社半導体エネルギー研究所 Liquid crystal display device and electronic device
JP5235236B2 (en) * 2012-03-12 2013-07-10 株式会社半導体エネルギー研究所 Liquid crystal display
JP5903309B2 (en) 2012-03-28 2016-04-13 株式会社ジャパンディスプレイ Liquid crystal display
JP5250710B2 (en) * 2012-05-16 2013-07-31 株式会社半導体エネルギー研究所 Liquid crystal display device, electronic equipment
JP5688444B2 (en) * 2013-11-25 2015-03-25 株式会社半導体エネルギー研究所 Semiconductor device
JP6398480B2 (en) 2014-07-15 2018-10-03 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2016017570A1 (en) * 2014-07-28 2016-02-04 Dic株式会社 Liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281770B2 (en) 2016-03-11 2019-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US10558084B2 (en) 2016-03-11 2020-02-11 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
KR20180020875A (en) 2016-08-18 2018-02-28 엘지디스플레이 주식회사 Liquid crystal display device and Method of fabricating the same
KR20180099461A (en) 2017-02-28 2018-09-05 엘지디스플레이 주식회사 Liquid crystal display device and Method of fabricating the same
KR20180099458A (en) 2017-02-28 2018-09-05 엘지디스플레이 주식회사 Liquid Crystal Display Device and Method Of Fabricating The Same
US11099434B2 (en) 2019-02-04 2021-08-24 Sharp Kabushiki Kaisha Liquid crystal display panel

Also Published As

Publication number Publication date
JPH06160878A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
JP2940354B2 (en) Liquid crystal display
KR100327614B1 (en) Liquid crystal display
KR100225910B1 (en) Lcd device
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
JP2924757B2 (en) Liquid crystal element
US7880822B2 (en) Liquid crystal display panel and liquid crystal display device
KR100833955B1 (en) Array substate for In Plane Switching mode Liquid crystal display device
US20010050742A1 (en) Liquid crystal display device
US20080002078A1 (en) In-plane switching active matrix liquid crystal display apparatus
JP3265802B2 (en) Liquid crystal display
JP2002214613A (en) Liquid crystal display
JPH09230364A (en) Liquid crystal display device
KR20060083643A (en) Liquid crystal display
JP3332863B2 (en) Optical modulator
JP3441999B2 (en) Liquid crystal display
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JPH0980383A (en) Liquid crystal display device
KR100773875B1 (en) In Plane Switching mode Liquid crystal display device
JP3811695B2 (en) Liquid crystal display
JP2002055326A (en) Liquid crystal display device
JP2002082350A (en) Liquid crystal display
JP2004310141A (en) Liquid crystal display device
JP2003287741A (en) Liquid crystal display device
JPH07230074A (en) Liquid crystal display device
KR20040100338A (en) In plane switching mode liquid crystal display device and fabrication method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250