JPH07230074A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH07230074A
JPH07230074A JP2231894A JP2231894A JPH07230074A JP H07230074 A JPH07230074 A JP H07230074A JP 2231894 A JP2231894 A JP 2231894A JP 2231894 A JP2231894 A JP 2231894A JP H07230074 A JPH07230074 A JP H07230074A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
scanning
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231894A
Other languages
Japanese (ja)
Inventor
Masuyuki Ota
益幸 太田
Masato Oe
昌人 大江
Katsumi Kondo
克巳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2231894A priority Critical patent/JPH07230074A/en
Publication of JPH07230074A publication Critical patent/JPH07230074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To provide the liquid crystal display device which has high contrast and excellent visual field characteristics at low cost without transparent electrodes by placing the device in operation while the long-axis direction of liquid crystal molecules of a liquid crystal composition material is held almost in parallel to a substrate surface according to electric field intensity based upon the potential difference between pixel electrodes and signal wirings. CONSTITUTION:Linear electrodes 201 and 2092 are formed inside a couple of transparent substrates 203, orientation control films 203 are formed thereupon by coating and oriented, and the liquid crystal composition is sandwiched between them. Rod type liquid crystal molecules 205 are oriented having slight angles to the length direction of the striped electrodes 201 and 202. Then when an electric field 207 is applied, the liquid crystal molecules 205 change their directions to the electric field direction. The polarized light transmission axis of a polarizing plate 206 is arranged at a specific angle 209, and then the light transmittance can be changed by voltage application. In display mode, the long axes of the liquid crystal molecules 205 are always nearly parallel to the substrates 203 and never rise, and then no visual angle dependency is obtained, thereby improving the visual angle characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表示特性が良好かつ量
産性が良好で低コストのアクティブマトリクス型液晶表
示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device having good display characteristics, good mass productivity and low cost.

【0002】[0002]

【従来の技術】従来のアクティブマトリクス型液晶表示
装置では、液晶層を駆動する電極としては2枚の基板界
面上に形成し相対向させた透明電極を用いていた。これ
は、液晶に印加する電界の方向を基板界面にほぼ垂直な
方向とすることで動作する、ツイステッドネマティック
表示方式を採用していることによる。一方、液晶に印加
する電界の方向を基板界面にほぼ平行な方向とする方式
は、例えば、特開昭56−91277 号公報より提案されてい
る。
2. Description of the Related Art In a conventional active matrix type liquid crystal display device, transparent electrodes, which are formed on the interface between two substrates and face each other, are used as electrodes for driving a liquid crystal layer. This is because a twisted nematic display method is adopted, which operates by making the direction of the electric field applied to the liquid crystal substantially perpendicular to the substrate interface. On the other hand, a method of making the direction of the electric field applied to the liquid crystal substantially parallel to the substrate interface has been proposed, for example, in Japanese Patent Laid-Open No. 56-91277.

【0003】[0003]

【発明が解決しようとする課題】しかし、ツイステッド
ネマティック表示方式を用いた従来技術においては、I
TOに代表される透明電極を形成する為にスパッタ等の
真空系製造設備を使用する必要があり、設備コストが巨
額になっていた。また、真空系製造設備の使用は、スル
ープットの低下を引き起こし、このことが製造コストを
著しく引き上げている。また、一般に透明電極はその表
面に数十nm程度の凹凸があり、薄膜トランジスタのよ
うな微細なアクティブ素子の加工を困難にしている。さ
らに、透明電極の凸部はしばしば離脱し電極等の他の部
分に混入し、点状或いは線状の表示欠陥を引き起こし、
歩留まりを著しく低下させていた。これらの為に、マー
ケットニーズに対応した低価格の液晶表示装置を安定的
に提供することが出来ずにいた。また、従来技術では、
画質面でも多くの課題を有していた。特に、視角方向を
変化させた際の輝度変化が著しく、中間調表示を困難に
していた。
However, in the prior art using the twisted nematic display system, I
In order to form a transparent electrode typified by TO, it is necessary to use vacuum-type manufacturing equipment such as sputtering, and the equipment cost is huge. Also, the use of vacuum-based manufacturing equipment causes a reduction in throughput, which significantly increases manufacturing costs. Further, in general, the transparent electrode has irregularities of about several tens of nm on its surface, which makes it difficult to process a fine active element such as a thin film transistor. In addition, the protrusions of the transparent electrode often come off and mix into other parts such as electrodes, causing dot-shaped or line-shaped display defects,
The yield was remarkably reduced. For these reasons, it has been impossible to stably provide a low-cost liquid crystal display device that meets market needs. Moreover, in the conventional technology,
There were many problems in terms of image quality. In particular, the luminance changes significantly when the viewing angle direction is changed, making it difficult to display halftone.

【0004】また、基板界面にほぼ平行な方向の電界を
液晶に印加する方式は、ITOを用いる必要はないが、
従来の公知技術では、共通電極が必要であるため、配線
交差部の短絡確率を増加させ、歩留まりを低下させてい
た。更に共通電極が画素部の一部を占有し、開口率を低
下させていた。また、共通電極を走査配線または信号配
線と共用する方法は、液晶を交流駆動できない、また
は、駆動方法が煩雑になり、駆動回路の回路規模が増大
するという問題があった。
Further, in the method of applying the electric field in the direction substantially parallel to the substrate interface to the liquid crystal, it is not necessary to use ITO,
In the conventional known technology, since a common electrode is required, the probability of short circuit at the wiring intersection is increased and the yield is reduced. Further, the common electrode occupies a part of the pixel portion, thus lowering the aperture ratio. Further, the method of sharing the common electrode with the scanning wiring or the signal wiring has a problem in that the liquid crystal cannot be AC-driven or the driving method is complicated and the circuit scale of the driving circuit increases.

【0005】本発明の目的は、第一に、透明電極がなく
とも高コントラストで、低価格の設備で高い歩留まりで
量産可能な低コストのアクティブマトリクス型液晶表示
装置を提供することにある。第二に、視角特性が良好で
多階調表示が容易であるアクティブマトリクス型液晶表
示装置を提供することにある。第三に、高開口率で明る
いアクティブマトリクス型液晶表示装置を提供すること
にある。更に、第四に、駆動方法が簡単で、更に信号電
圧の低電圧化ができ、低消費電力で、低耐圧の安価なL
SIを用いることができるアクティブマトリクス型液晶
表示装置を提供することにある。
An object of the present invention is, firstly, to provide a low-cost active matrix type liquid crystal display device which has a high contrast without a transparent electrode and which can be mass-produced with a low-cost facility and a high yield. Secondly, it is to provide an active matrix type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display. Third, to provide an active matrix type liquid crystal display device having a high aperture ratio and being bright. Fourthly, the driving method is simple, the signal voltage can be further lowered, the power consumption is low, the withstand voltage is low, and the cost is low.
An object is to provide an active matrix liquid crystal display device that can use SI.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、第一の装置として、一対の基板と、基板
間に挟持された液晶組成物層から成り、一方の基板上に
複数の走査配線と信号配線がマトリクス状に配設され
て、基板上の領域が複数の画素領域に分割されており、
各画素領域には、アクティブ素子と容量素子が互いに電
気的に液晶組成物層と接続された状態で配設され、アク
ティブ素子と容量素子が前記いずれかの配線に接続され
て液晶駆動回路が構成され、各走査配線が走査信号発生
手段に接続され、各信号配線が映像信号発生手段に接続
されて成る液晶表示装置において、液晶組成物層の液晶
分子が、アクティブ素子と接続された画素電極と信号配
線の電位差に従った電界強度に応じて、液晶分子の長軸
方向が前記基板面とほぼ平行を保ちつつ動作することを
特徴とする液晶表示装置を構成した。
In order to achieve the above object, the present invention comprises, as a first device, a pair of substrates and a liquid crystal composition layer sandwiched between the substrates, and one of the substrates is provided on the substrate. A plurality of scanning wirings and signal wirings are arranged in a matrix, and a region on the substrate is divided into a plurality of pixel regions,
In each pixel region, an active element and a capacitive element are arranged in a state of being electrically connected to the liquid crystal composition layer, and the active element and the capacitive element are connected to any of the wirings to form a liquid crystal drive circuit. In the liquid crystal display device in which each scanning wiring is connected to the scanning signal generating means and each signal wiring is connected to the video signal generating means, the liquid crystal molecules of the liquid crystal composition layer are connected to the active element and the pixel electrode connected to the pixel electrode. A liquid crystal display device is constructed which operates in such a manner that the long axis direction of liquid crystal molecules is kept substantially parallel to the substrate surface according to the electric field strength according to the potential difference of the signal wiring.

【0007】第一の装置を含む第二の装置は、容量素子
は画素電極と信号配線で構成されていることを特徴とす
る。
A second device including the first device is characterized in that the capacitive element is composed of a pixel electrode and a signal wiring.

【0008】第一の装置および第二の装置を含む第三の
装置として、アクティブ素子はトランジスタ素子である
ことを特徴とする。
In a third device including the first device and the second device, the active element is a transistor element.

【0009】第一の装置および第二の装置を含む第四の
装置として、アクティブ素子はダイオード素子であるこ
とを特徴とする。
As a fourth device including the first device and the second device, the active element is a diode element.

【0010】第五の装置として、一対の基板と、基板間
に挟持された液晶組成物層から成り、一方の基板上に複
数の走査配線と信号配線がマトリクス状に配設されて、
基板上の領域が複数の画素領域に分割されており、各画
素領域には、トランジスタ素子と容量素子が互いに電気
的に液晶組成物層と接続された状態で配設され、トラン
ジスタ素子と容量素子が前記いずれかの配線に接続され
て液晶駆動回路が構成され、各走査配線が走査信号発生
手段に接続され、各信号配線が映像信号発生手段に接続
されて成る液晶表示装置において、走査信号発生手段に
は、トランジスタ素子をオン状態にするための電圧と、
トランジスタ素子をオフ状態にするための電圧と、画素
電極に入力する電圧を発生する手段を有することを特徴
とする。第五の装置を含む第六の装置として、走査信号
発生手段には、画素電極に入力する電圧を2値以上発生
する手段を有することを特徴とする。
A fifth device is composed of a pair of substrates and a liquid crystal composition layer sandwiched between the substrates, and a plurality of scanning wirings and signal wirings are arranged in a matrix on one substrate,
A region on the substrate is divided into a plurality of pixel regions, and in each pixel region, a transistor element and a capacitor element are arranged in a state of being electrically connected to a liquid crystal composition layer, and the transistor element and the capacitor element are disposed. Is connected to one of the above wirings to form a liquid crystal drive circuit, each scanning wiring is connected to scanning signal generating means, and each signal wiring is connected to video signal generating means. The means includes a voltage for turning on the transistor element,
It is characterized in that it has means for generating a voltage for turning off the transistor element and a voltage to be inputted to the pixel electrode. A sixth device including the fifth device is characterized in that the scanning signal generating means has means for generating two or more values of a voltage input to the pixel electrode.

【0011】[0011]

【作用】次に、本発明の作用を図16を用いて説明す
る。
Next, the operation of the present invention will be described with reference to FIG.

【0012】図16(a),(b)は本発明の液晶パネル
内での液晶の動作を示す側断面を、図16(c),(d)
はその正面図を表す。図16ではアクティブ素子を省略
してある。また、本発明ではストライプ状の電極を構成
して複数の画素を形成するが、ここでは一画素の部分を
示した。電圧無印加時のセル側断面を図16(a)に、
その時の正面図を図16(c)に示す。透明な一対の基
板203の内側に線状の電極201,202が形成さ
れ、その上に配向制御膜204が塗布及び配向処理され
ている。間には液晶組成物が挟持されている。棒状の液
晶分子205は、電界無印加時にはストライプ状の電極
の長手方向に対して若干の角度、即ち、45度≦|電界
方向に対する界面近傍での液晶分子長軸(光学軸)方向
のなす角|<90度、をもつように配向されている。上
下界面上での液晶分子配向方向はここでは平行を例に説
明する。また、液晶組成物の誘電異方性は正を想定して
いる。次に、電界207を印加すると図16(b),
(d)に示したように電界方向に液晶分子がその向きを
変える。偏光板206の偏光透過軸を所定角度209に
配置することで電界印加によって光透過率を変えること
が可能となる。このように、本発明によれば透明電極が
なくともコントラストを与える表示が可能となる。
16 (a) and 16 (b) are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention.
Represents the front view. In FIG. 16, the active element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a striped electrode, but only one pixel portion is shown here. The cross section of the cell when no voltage is applied is shown in FIG.
A front view at that time is shown in FIG. Linear electrodes 201 and 202 are formed on the inner side of a pair of transparent substrates 203, and an alignment control film 204 is applied and aligned on the linear electrodes 201 and 202. A liquid crystal composition is sandwiched between them. The rod-shaped liquid crystal molecule 205 has a slight angle with respect to the longitudinal direction of the striped electrode when no electric field is applied, that is, an angle formed by the liquid crystal molecule major axis (optical axis) direction near the interface with respect to 45 ° ≦ | | <90 degrees. The alignment direction of liquid crystal molecules on the upper and lower interfaces will be described here by taking parallel as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 207 is applied, as shown in FIG.
As shown in (d), the liquid crystal molecules change their directions in the direction of the electric field. By arranging the polarization transmission axis of the polarizing plate 206 at a predetermined angle 209, the light transmittance can be changed by applying an electric field. As described above, according to the present invention, it is possible to provide a display with contrast even without the transparent electrode.

【0013】コントラストを付与する具体的構成は、
上,下基板上の液晶分子配向がほぼ平行な状態を利用し
たモード(複屈折位相差による干渉色を利用するので、
ここでは複屈折モードと呼ぶ)と、上,下基板上の液晶
分子配向方向が交差しセル内での分子配列がねじれた状
態を利用したモード(液晶組成物層内で偏光面が回転す
る旋光性を利用するので、ここでは旋光性モードと呼
ぶ)とがある。複屈折モードでは、電圧印加により分子
長軸(光軸)方向が基板界面にほぼ平行なまま面内でそ
の方位を変え、所定角度に設定された偏光板の軸とのな
す角を変えて光透過率を変える。旋光性モードでも同様
に電圧印加により分子長軸方向の方位のみを変えるが、
こちらの場合はら線がほどけることによる旋光性の変化
を利用する。また、本発明の表示モードでは液晶分子の
長軸は基板と常にほぼ平行であり、立ち上がることがな
く、従って、視角方向を変えた時の明るさの変化が小さ
いので、視角依存性がなく、視角特性が大幅に向上す
る。本表示モードは従来のように電圧印加で複屈折位相
差をほぼ0にすることで暗状態を得るものではなく、液
晶分子長軸と偏光板の軸(吸収あるいは透過軸)とのな
す角を変えるもので、根本的に異なる。従来のTN型の
ように液晶分子長軸を基板界面に垂直に立ち上がらせる
場合は、複屈折位相差が0となる視角方向は正面、即
ち、基板界面に垂直な方向のみであり、僅かでも傾斜す
ると複屈折位相差が現れる。ノーマリオープン型では光
が漏れ、コントラストの低下や階調レベルの反転を引き
起こす。
The specific structure for imparting contrast is as follows.
A mode using a state in which the liquid crystal molecule orientations on the upper and lower substrates are substantially parallel (because the interference color due to the birefringence phase difference is used,
This is called a birefringence mode) and a mode utilizing a state in which the alignment directions of liquid crystal molecules on the upper and lower substrates intersect and the molecular arrangement in the cell is twisted (a rotation plane in which the plane of polarization rotates in the liquid crystal composition layer). Because it utilizes the nature, it is called the optical rotation mode here). In the birefringence mode, the direction of the molecular long axis (optical axis) is changed in the plane while the direction of the molecular long axis (optical axis) is almost parallel to the substrate interface by applying a voltage, and the angle formed by the axis of the polarizing plate set to a predetermined angle is changed. Change the transmittance. Similarly, even in the optical rotation mode, only the orientation of the molecular long axis direction is changed by applying a voltage,
In this case, the change in optical activity due to the unravel of the streak is used. Further, in the display mode of the present invention, the long axis of the liquid crystal molecule is always substantially parallel to the substrate and does not rise, and therefore the change in brightness when the viewing angle direction is changed is small, so there is no viewing angle dependency, The viewing angle characteristics are significantly improved. In this display mode, the dark state is not obtained by making the birefringence phase difference almost zero by applying a voltage as in the conventional case, but the angle formed by the long axis of the liquid crystal molecule and the axis of the polarizing plate (absorption or transmission axis) It changes and is fundamentally different. In the case of raising the liquid crystal molecule long axis perpendicular to the substrate interface as in the conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface, and even if it is slightly inclined. Then, a birefringence phase difference appears. In the normally open type, light leaks, causing a decrease in contrast and inversion of gradation levels.

【0014】更に、本発明の表示モードでは、基板面に
主に平行な電界207で透過率を変化され、電界207
の強度Eは、電極201と電極202の間の距離dによ
って変わる。よって、電極201と電極202の間の距
離dのばらつきが明るさのばらつきを生み、問題とな
る。したがって、電極201と電極202の高いアライ
メント精度が要求される。2枚の基板をはり合わせるア
ライメント精度は、ホトマスクのアライメント精度より
2から3倍悪いので、電極201と電極202は、同一
基板内に形成しなければならない。しかし、電極201
または電極202のどちらかを共通電極として、薄膜ト
ランジスタ素子を形成する基板と同一基板に形成する
と、配線が増加し、走査配線,信号配線との短絡不良の
増加を招き、歩留まりを低下する。本発明の液晶表示装
置の構成は、共通電極を形成する必要がないので、層数
を増やすことなく、歩留まりが向上し、透明電極を用い
ないことと合わせて、さらに低コストの液晶表示装置を
提供することが可能になる。
Further, in the display mode of the present invention, the transmittance is changed by an electric field 207 mainly parallel to the substrate surface, and the electric field 207 is changed.
The intensity E of γ depends on the distance d between the electrodes 201 and 202. Therefore, variations in the distance d between the electrodes 201 and 202 cause variations in brightness, which is a problem. Therefore, high alignment accuracy of the electrodes 201 and 202 is required. Since the alignment accuracy for laminating two substrates is two to three times worse than the alignment accuracy of the photomask, the electrodes 201 and 202 must be formed on the same substrate. However, the electrode 201
Alternatively, when one of the electrodes 202 is used as a common electrode on the same substrate as the substrate on which the thin film transistor element is formed, the number of wirings is increased, short circuits between the scan wirings and the signal wirings are increased, and the yield is lowered. Since the structure of the liquid crystal display device of the present invention does not require the formation of a common electrode, the yield is improved without increasing the number of layers, and in addition to the fact that no transparent electrode is used, a further low cost liquid crystal display device is provided. It will be possible to provide.

【0015】更に、本発明の駆動手段では、走査配線か
ら2種類の基準電圧VR を画素に入力することによっ
て、映像信号発生手段の駆動電圧を低電圧化することが
できるので、低消費電力,低コストの液晶表示装置を提
供することが可能になる。
Furthermore, the driving means of the present invention, by inputting the two kinds of reference voltage V R to the pixel from the scanning line, it is possible to lower the driving voltage of the image signal generating means, low power consumption , It becomes possible to provide a low-cost liquid crystal display device.

【0016】[0016]

【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.

【0017】〔実施例1〕基板には厚みが1.1mm で表
面を研磨したガラス基板を2枚用いる。これらの基板間
に誘電率異方性Δεが正でその値が4.5であり、複屈
折Δnが0.072(589nm,20℃)のネマチッ
ク液晶組成物を挟む。ここでは、誘電率異方性Δεが正
の液晶を用いたが、負の液晶を用いてもよい。基板表面
に塗布したポリイミド系配向制御膜をラビング処理し
て、3.5 度のプレチルト角とする。上,下界面上のラ
ビング方向は互いにほぼ平行で、かつ印加電界方向との
なす角度を85度とした。上下基板のギャップは球形の
ポリマビーズを基板間に分散して挾持し、液晶封入状態
で4.5μmとした。よってΔn・dは0.324μmで
ある。2枚の偏光板〔日東電工社製G1220DU〕で
パネルを挾み、一方の偏光板の偏光透過軸をラビング方
向にほぼ平行(85°)とし、他方をそれに直交(−5
°)とした。これにより、ノーマリクローズ特性を得
た。
Example 1 Two glass substrates having a thickness of 1.1 mm and having a polished surface are used as substrates. A nematic liquid crystal composition having a positive dielectric anisotropy Δε of 4.5 and a birefringence Δn of 0.072 (589 nm, 20 ° C.) is sandwiched between these substrates. Although a liquid crystal having a positive dielectric anisotropy Δε is used here, a negative liquid crystal may be used. The polyimide orientation control film applied on the substrate surface is rubbed to obtain a pretilt angle of 3.5 degrees. The rubbing directions on the upper and lower interfaces were substantially parallel to each other, and the angle formed with the direction of the applied electric field was 85 degrees. The gap between the upper and lower substrates was 4.5 μm when the spherical polymer beads were dispersed and sandwiched between the substrates and the liquid crystal was sealed. Therefore, Δn · d is 0.324 μm. The panel is sandwiched by two polarizing plates [G1220DU manufactured by Nitto Denko Corporation], and the polarization transmission axis of one polarizing plate is made substantially parallel (85 °) to the rubbing direction, and the other is orthogonal to it (-5).
°). As a result, normally closed characteristics were obtained.

【0018】一方の絶縁基板上に、図1のような画素を
構成した。図2に、画素の等価回路、図3に、図1のA
線における断面、図4に、図1B線における断面、図5
に、図1C線における断面を示す。また、図6に本発明
の液晶表示装置のシステム構成を示す。本実施例では、
画素数は640(×3)×480とし、画素ピッチは横
方向は110μm、縦方向は330μmとした。水平方
向にAlを用い走査配線1を形成し、走査配線1と直交
させ、垂直方向にCr用い信号配線2を形成した。さら
に、画素にはアモルファスシリコン5と、走査配線1の
一部(ゲート電極として働く)と、電極3と、電極6を
用いた薄膜トランジスタ素子10を形成した。電極3
(薄膜トランジスタ素子10のソース電極として働く
が、駆動状態によっては、ドレインとして働く)は、一
方の画素電極として働き、走査配線と同層、同一材料で
形成された電極8を介して、電極4(もう一方の画素電
極)と電気的に接続されている。電極6(薄膜トランジ
スタ素子10のドレイン電極として働くが、駆動状態に
よっては、ソースとして働く)は、次行の走査配線から
突起した電極7と電気的に接続されている。図4,図5
に示すように、電極3,4と電極8,電極6と電極7の
コンタクトを取るために、ゲート絶縁膜14にスルーホ
ールを開けた。また、電極8と、信号配線2の交差部
に、薄膜トランジスタ素子10のゲート絶縁膜13(窒
化シリコン)を誘電体として用いて、容量素子11を形
成した。容量素子11は、電極3,4と信号配線2の電
位差を一定に保つために設けており、特に信号配線2の
電位の変動による電圧変動を抑える効果があり、液晶容
量が殆んど無い本表示方式では容量素子は必須である。
A pixel as shown in FIG. 1 was formed on one insulating substrate. FIG. 2 shows an equivalent circuit of the pixel, and FIG. 3 shows A of FIG.
A cross section taken along the line, FIG. 4, a cross section taken along the line 1B in FIG.
1 shows a cross section taken along the line C in FIG. 6 shows the system configuration of the liquid crystal display device of the present invention. In this embodiment,
The number of pixels was 640 (× 3) × 480, and the pixel pitch was 110 μm in the horizontal direction and 330 μm in the vertical direction. The scanning wiring 1 was formed using Al in the horizontal direction, was made orthogonal to the scanning wiring 1, and the signal wiring 2 was formed using Cr in the vertical direction. Further, the thin film transistor element 10 using the amorphous silicon 5, a part of the scanning wiring 1 (acting as a gate electrode), the electrode 3, and the electrode 6 was formed in the pixel. Electrode 3
The electrode 4 (which functions as a source electrode of the thin film transistor element 10 but functions as a drain depending on the driving state) functions as one of the pixel electrodes, and the electrode 4 (via the electrode 8 formed in the same layer and the same material as the scanning wiring). The other pixel electrode) is electrically connected. The electrode 6 (which functions as the drain electrode of the thin film transistor element 10 but functions as the source depending on the driving state) is electrically connected to the electrode 7 protruding from the scanning wiring of the next row. 4 and 5
As shown in FIG. 5, through holes were formed in the gate insulating film 14 in order to make contact between the electrodes 3 and 4 and the electrode 8 and between the electrode 6 and the electrode 7. Further, at the intersection of the electrode 8 and the signal wiring 2, the gate insulating film 13 (silicon nitride) of the thin film transistor element 10 was used as a dielectric to form the capacitor element 11. The capacitance element 11 is provided in order to keep the potential difference between the electrodes 3 and 4 and the signal wiring 2 constant, and has the effect of suppressing the voltage fluctuation due to the fluctuation of the potential of the signal wiring 2 in particular. A capacitive element is essential in the display method.

【0019】ここで、液晶層の液晶分子の配向は、主に
電極3,4と信号配線2の間の電位差(電圧)によって
制御する。電極3,4と信号配線2の間の距離は、それ
ぞれ25μmとした。光は、電極3,4と信号配線2の
間を透過し、液晶層に入射,変調されるので、透光性の
ある画素電極(例えばITO等の透明電極)は特に設け
る必要はなく、従来のアクティブマトリックス型液晶表
示装置の断面構造から、2層の透明電極層をなくすこと
ができる。工程を短縮し、マスクのアライメント精度に
よる液晶層に印加される電界Eのばらつきを抑制するた
めに、電極3,4と信号配線2は同層,同一材料,同一
フォトマスクで形成した。
Here, the orientation of the liquid crystal molecules in the liquid crystal layer is controlled mainly by the potential difference (voltage) between the electrodes 3 and 4 and the signal wiring 2. The distance between the electrodes 3 and 4 and the signal wiring 2 was 25 μm. Light is transmitted between the electrodes 3 and 4 and the signal wiring 2 and is incident on the liquid crystal layer to be modulated. Therefore, it is not necessary to provide a pixel electrode having a light-transmitting property (for example, a transparent electrode such as ITO). From the sectional structure of the active matrix type liquid crystal display device, it is possible to eliminate the two transparent electrode layers. In order to shorten the process and suppress the variation of the electric field E applied to the liquid crystal layer due to the alignment accuracy of the mask, the electrodes 3 and 4 and the signal wiring 2 are formed in the same layer, the same material, and the same photomask.

【0020】さらに、薄膜トランジスタ素子10上に
は、薄膜トランジスタ素子10を保護するように窒化シ
リコンで保護膜14を形成した。また、薄膜トランジス
タ素子郡を有する基板に相対向する基板62(以下、対
向基板と称する。)にストライプ状のR,G,B3色の
カラーフィルタ15を備えた。カラーフィルタ15の上
には表面を平坦化する透明樹脂16を積層した。透明樹
脂16の材料はエポキシ樹脂を用いた。更に、透明樹脂
16上と薄膜トランジスタ素子群を有する基板62上に
ポリイミド系の配向制御膜17,18を塗布した。一般
に従来方式であるTN型では、配向制御膜に要求される
特性が多岐にわたり、それら全てを満足する必要があ
り、そのためポリイミド等の一部の材料に限られてい
た。特に重要な特性は、傾き角である。しかし、本発明
の表示モードでは大きな傾き角を必要とせず、従って、
材料の選択幅が著しく改善される。また、配向不良領域
の影響によるコントラストの低下を解消するため、非導
電性の遮光膜19(本実施例では有機ポリマ)をガラス
基板上に形成した。これにより、対向基板62上には一
切導電性の物質は存在しなくなる。本実施例では仮に製
造工程中に導電性の異物が混入したとしても、対向基板
62を介しての電極間接触の可能性がなく、それによる
不良率がゼロに抑制される。したがって、配向膜の形
成,ラビング,液晶封入工程などのクリーン度の裕度が
広がり、製造工程の簡略化ができる。さらに遮光膜19
を黒色色素を含んだ有機ポリマで形成しているので外光
の反射によるぎらぎらや、コントラスの低下が防止でき
る。さらに遮光膜19を、ストライプ状にレイアウトす
ることによって、印刷プロセスを用いることができる。
これにより、更に製造工程を簡略化でき低コスト化が図
れる。以上のように、形成した薄膜トランジスタ基板6
1に駆動LSI63,64を接続して、駆動した。
Further, a protective film 14 made of silicon nitride was formed on the thin film transistor element 10 so as to protect the thin film transistor element 10. A substrate 62 (hereinafter, referred to as a counter substrate) opposite to the substrate having the thin film transistor elements is provided with striped R, G, and B color filters 15. A transparent resin 16 for flattening the surface is laminated on the color filter 15. An epoxy resin was used as the material of the transparent resin 16. Further, polyimide-based alignment control films 17 and 18 were applied on the transparent resin 16 and the substrate 62 having the thin film transistor element group. Generally, in the TN type which is the conventional method, the characteristics required for the orientation control film are diverse, and it is necessary to satisfy all of them, so that it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, the display mode of the present invention does not require a large tilt angle, and therefore,
The choice of materials is significantly improved. Further, in order to eliminate the decrease in contrast due to the influence of the defective alignment region, a non-conductive light-shielding film 19 (organic polymer in this embodiment) was formed on the glass substrate. As a result, no conductive substance is present on the counter substrate 62. In this embodiment, even if a conductive foreign substance is mixed in during the manufacturing process, there is no possibility of inter-electrode contact via the counter substrate 62, and the defective rate due to this is suppressed to zero. Therefore, the margin of cleanliness such as alignment film formation, rubbing, and liquid crystal encapsulation process is widened, and the manufacturing process can be simplified. Further, the light shielding film 19
Since it is made of an organic polymer containing a black pigment, it is possible to prevent glare due to reflection of external light and a decrease in contrast. Further, by laying out the light shielding film 19 in a stripe shape, a printing process can be used.
As a result, the manufacturing process can be further simplified and the cost can be reduced. The thin film transistor substrate 6 formed as described above
The drive LSIs 63 and 64 were connected to 1 and driven.

【0021】次に駆動方式を述べる。図7に各電極に印
加される電圧の波形を示す。1行毎に、信号が書き込ま
れる線順次駆動を行っている。走査配線1の電位(ゲー
ト電位)がオンレベルVG-ONになると、次行の走査配線
9の電位VR と信号配線2の電位VDの電位差|VD−V
R|=VSIGが薄膜トランジスタ素子10を通して、容量
素子11に書き込まれる。その行の書き込み期間(オン
レベル)が終わると、ゲート電位がオフレベルVG-OFF
まで立ち下がり、薄膜トランジスタ素子10はオフ状態
になり、書き込まれた電圧を保持する。液晶は直流で駆
動すると劣化が激しいため、交流駆動を行わなければな
らない。そのため、次行の走査配線9の電位VRをオン
レベルVG-ONとオフレベルVG-OFFの中間の電位(ここ
では、VR=(VG-ON+VG-OFF)/2)に設定し、±V
SIGの電圧が液晶に印加されるようにした。つまり、次
行の走査配線9の電位VR は従来構造の共通電極電位の
役割を果たす。また、ゲート電位のオフレベルVG-OFF
までの立ち下がりと次行のゲート電位のオンレベルV
G-ONまでの立ち上がりのタイミングには一定時間tdの
間隔を設け、本実施例では、tdは3μsとした。
Next, the drive system will be described. FIG. 7 shows the waveform of the voltage applied to each electrode. Line-sequential driving in which signals are written is performed for each row. When the potential of the scanning line 1 (gate potential) becomes the on level V G-ON , the potential difference | V D −V between the potential V R of the scanning line 9 in the next row and the potential V D of the signal line 2
R | = V SIG is written in the capacitive element 11 through the thin film transistor element 10. When the writing period (on level) of the row ends, the gate potential turns off level VG -OFF.
Then, the thin film transistor element 10 is turned off and holds the written voltage. Since the liquid crystal is severely deteriorated when it is driven by direct current, it must be driven by alternating current. Therefore, the potential V R of the scanning line 9 in the next row is set to an intermediate potential between the on level V G-ON and the off level V G-OFF (here, V R = (V G-ON + V G-OFF ) / 2). Set to ± V
The voltage of SIG was applied to the liquid crystal. That is, the potential V R of the scanning line 9 in the next row plays the role of the common electrode potential of the conventional structure. Also, the gate potential off level V G-OFF
To V and on level V of the gate potential of the next row
The rising timing until G-ON is provided with a certain time interval td, and in the present embodiment, td is 3 μs.

【0022】以上の様に、本実施例では透明電極が無い
ため、製造プロセスが簡単化できかつ歩留まりも向上
し、著しくコストが低減できる。特に、透明電極を形成
するための設備,工程が不要になり、製造設備投資額の
大幅低減と工程数の削減から、それによる低コスト化が
可能となる。また、共通電極を必要としないため、共通
電極を形成する工程の削減でき、共通電極と他の電極と
の接触不良がゼロになり、歩留まりが向上でき、それに
よる低コスト化が可能になる。
As described above, in this embodiment, since there is no transparent electrode, the manufacturing process can be simplified, the yield can be improved, and the cost can be remarkably reduced. In particular, the equipment and process for forming the transparent electrode are not required, and the cost for manufacturing can be reduced because the investment cost for manufacturing equipment is greatly reduced and the number of processes is reduced. Further, since the common electrode is not required, the step of forming the common electrode can be reduced, the contact failure between the common electrode and another electrode can be zero, the yield can be improved, and the cost can be reduced accordingly.

【0023】本実施例における液晶への印加電圧と明る
さの関係を示す電気光学特性を図8に示す。コントラス
ト比は7V駆動時に150以上となり、視角を左右,上
下に変えた場合のカーブの差は従来方式(比較例1に示
す)に比べて極めて小さく、視角を変化させても表示特
性はほとんど変化しなかった。また、液晶配向性も良好
で、配向不良ドメインは発生しなかった。
FIG. 8 shows the electro-optical characteristics showing the relationship between the voltage applied to the liquid crystal and the brightness in this embodiment. The contrast ratio is 150 or more when driven by 7V, and the difference in the curves when the viewing angle is changed to the left and right and up and down is extremely small compared to the conventional method (shown in Comparative Example 1), and the display characteristics change almost even when the viewing angle is changed. I didn't. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0024】本実施例では、配線材料に、Al,Crを
用いたが、特に材料は限定しない。また、本実施例で
は、アモルファスシリコン薄膜トランジスタ素子を用い
るが、他にポリシリコン薄膜トランジスタ素子,反射型
表示装置の場合はシリコンウエハ上のMOSトランジス
タでもよい。
In this embodiment, Al and Cr are used as the wiring material, but the material is not particularly limited. In addition, although an amorphous silicon thin film transistor element is used in this embodiment, a polysilicon thin film transistor element or a MOS transistor on a silicon wafer may be used in the case of a reflective display device.

【0025】また、本実施例では、配向制御膜を形成し
たが、平坦化膜の上に配向制御膜として、別の膜を形成
せずに平坦化膜の表面を直接ラビングしてもよい。この
場合、このエポキシ樹脂は平坦化と液晶分子の配向制御
の両方の機能を兼ね備えている。これにより、配向膜を
塗布する工程がなくなり、製造がより容易かつ短くな
る。同様に、薄膜トランジスタを保護する保護膜をエポ
キシ樹脂にし、ラビング処理をすることもできる。
Although the orientation control film is formed in this embodiment, the surface of the flattening film may be directly rubbed as an orientation control film on the flattening film without forming another film. In this case, this epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. This eliminates the step of applying the alignment film, and makes the manufacturing easier and shorter. Similarly, a rubbing treatment can be performed by using an epoxy resin as a protective film for protecting the thin film transistor.

【0026】〔比較例〕従来方式であるツイステッドネ
マチック(TN)型を比較例とする。実施例1に比べ透
明電極があるため、構造が複雑かつ製造工程が長い。ネ
マチック液晶組成物としては、実施例1と同一の誘電異
方性Δεが正でその値が4.5 で、屈折率異方性Δnが
0.072(589nm,20℃)のものを用い、ギャッ
プは7.3μm,ツイスト角は90度とした。よってΔn
・dは0.526μm である。
Comparative Example A conventional twisted nematic (TN) type is used as a comparative example. Since the transparent electrode is provided as compared with the first embodiment, the structure is complicated and the manufacturing process is long. As the nematic liquid crystal composition, the one having the same dielectric anisotropy Δε as in Example 1 and a positive value of 4.5 and a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) was used. The gap was 7.3 μm and the twist angle was 90 degrees. Therefore Δn
・ D is 0.526 μm.

【0027】電気光学特性図を図9に示す。視角方向で
激しくカーブが変化した。また、薄膜トランジスタの隣
接部の断差構造のある付近で、周辺部とは液晶分子の配
向方向が異なる配向不良ドメインが生じた。
An electro-optical characteristic diagram is shown in FIG. The curve changed drastically in the viewing direction. In addition, an alignment defect domain in which the alignment direction of liquid crystal molecules was different from that in the peripheral portion was generated in the vicinity of the gap structure in the adjacent portion of the thin film transistor.

【0028】〔実施例2〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 2] The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0029】一方の絶縁基板上に、図10のような画素
を構成した。図11に、画素の等価回路、図12に、図
10のD線における断面図、図13に、図10E線にお
ける断面図を示す。
A pixel as shown in FIG. 10 was formed on one insulating substrate. FIG. 11 shows an equivalent circuit of the pixel, FIG. 12 shows a sectional view taken along line D of FIG. 10, and FIG. 13 shows a sectional view taken along line E of FIG.

【0030】走査配線1と電極23と絶縁膜21で薄膜
ダイオード素子20(Metal−Insulator−Metal)を形成
した。走査配線1には、Taを用い、絶縁膜21には、
Taを陽極化成したTaOxを用いた。走査配線1と信
号配線2の間は絶縁膜22(本実施例では窒化シリコ
ン)で絶縁した。電極23,24と信号配線2との間の
電位差で液晶の配向を制御する。また、容量素子11
は、信号配線2と、電極23と画素電極24を接続する
電極25(走査配線1を形成するときに同時に形成し
た)と、絶縁膜22で形成した。図12,図13に示す
ように、電極23と絶縁膜21,電極23,24と電極
25のコンタクトを取るためにゲート絶縁膜22にスル
−ホ−ルを開けた。本実施例では絶縁膜22にスル−ホ
−ルを開けたが、走査配線1と信号配線2の交差部,信
号配線2と電極25の交差部のみに絶縁膜22が残るよ
うにしてもよい。
A thin film diode element 20 (Metal-Insulator-Metal) was formed by the scanning wiring 1, the electrode 23 and the insulating film 21. Ta is used for the scanning wiring 1, and the insulating film 21 is
TaOx in which Ta was anodized was used. The scanning wiring 1 and the signal wiring 2 are insulated by an insulating film 22 (silicon nitride in this embodiment). The orientation of the liquid crystal is controlled by the potential difference between the electrodes 23 and 24 and the signal wiring 2. In addition, the capacitive element 11
Are formed of the signal line 2, the electrode 25 connecting the electrode 23 and the pixel electrode 24 (formed at the same time when the scanning line 1 is formed), and the insulating film 22. As shown in FIGS. 12 and 13, through holes were formed in the gate insulating film 22 to make contact between the electrode 23 and the insulating film 21 and between the electrodes 23 and 24 and the electrode 25. In this embodiment, the through hole is formed in the insulating film 22, but the insulating film 22 may be left only at the intersection of the scanning wiring 1 and the signal wiring 2 and the intersection of the signal wiring 2 and the electrode 25. .

【0031】本実施例の駆動電圧波形を図14に示す。
駆動方法は、走査配線1に走査パルスが印加され、走査
配線1と画素電極23の間に十分な電圧が印加され、薄
膜ダイオード素子20が導通状態になると、走査配線1
と信号配線2の間の電圧が、容量素子11に充電され
る。薄膜ダイオード素子20が非導通状態になった後
は、実施例1と同様に、信号配線2の電位は変動する
が、画素電極23,24の電位も容量素子により同じ様
に変動するので、信号配線2がどのように変動しても、
画素電極23,24と信号配線2の間の電位差は一定で
ある。
The drive voltage waveform of this embodiment is shown in FIG.
The driving method is as follows: when a scan pulse is applied to the scan line 1, a sufficient voltage is applied between the scan line 1 and the pixel electrode 23, and the thin film diode element 20 becomes conductive.
The voltage between the signal line 2 and the signal line 2 charges the capacitor 11. After the thin-film diode element 20 is turned off, the potential of the signal wiring 2 changes as in the first embodiment, but the potentials of the pixel electrodes 23 and 24 also change in the same manner depending on the capacitance element. No matter how the wiring 2 changes,
The potential difference between the pixel electrodes 23 and 24 and the signal line 2 is constant.

【0032】本実施例では、実施例1と同等の効果が得
られ、更に、薄膜ダイオ−ト素子を用いることによって
画素内の配線が簡略化され、画素の平面構造が簡単にな
り、それによる歩留まり向上が図れた。また、光を透過
する有効部分(開口部)の面積を約30%増やすことが
でき、透過率をアップすることにより、更に明るい液晶
表示装置を得ることができた。
In this embodiment, the same effect as that of the first embodiment can be obtained. Further, by using the thin film diode element, the wiring in the pixel is simplified, and the planar structure of the pixel is simplified. The yield was improved. In addition, the area of the effective portion (opening) that transmits light can be increased by about 30%, and by increasing the transmittance, a brighter liquid crystal display device could be obtained.

【0033】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Third Embodiment] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0034】図15に本実施例の駆動電圧波形を示す。
走査配線1の電位(ゲート電位)がオンレベルVG-ON
なると、次行の走査配線7の電位VR±VBと信号配線2
の電位VDの電位差|VD−(VR±VB)|=VSIG が薄
膜トランジスタ素子を通して、容量素子11に書き込ま
れる。したがって、信号配線2の電位VDは、VSIGW
R−VB〜−VSIGW+VR+VBの電位の範囲であればよ
い。ここで、VSIGWは白を表示するために必要な液晶印
加電圧である。したがって、信号配線2の最高電位V
Dmaxと最低電位VDminの電位差は2(VSIG−VB)であ
り、信号側の駆動LSI64は2(VSIG−VB)の電圧
が出力可能であればよい。
FIG. 15 shows the drive voltage waveform of this embodiment.
When the potential (gate potential) of the scanning wiring 1 becomes the on level V G-ON , the potential V R ± V B of the scanning wiring 7 in the next row and the signal wiring 2
Potential difference V D − (V R ± V B ) | = V SIG of the potential V D of V is written in the capacitive element 11 through the thin film transistor element. Therefore, the potential V D of the signal wiring 2 is V SIGW +
It suffices if the potential is in the range of V R −V B to −V SIGW + V R + V B. Here, V SIGW is a liquid crystal applied voltage necessary for displaying white. Therefore, the maximum potential V of the signal wiring 2
The potential difference between Dmax and the minimum potential V Dmin is 2 (V SIG −V B ), and the signal side drive LSI 64 may output a voltage of 2 (V SIG −V B ).

【0035】したがって、VSIGW=7Vとし、VB を5
V設定すると、2(VSIG−VB)=4Vとなり、信号側
駆動LSI64の最大振幅は4Vになったので、本実施
例では、信号側駆動LSI64に通常のプロセスによる
LSI(5V耐圧のLSI)が使用できる。したがっ
て、大幅な信号側駆動LSI64のコスト低減ができ
る。さらに、消費電力も電圧の2乗に比例するので、信
号側で消費される電力は、約33%に低減できる。
Therefore, V SIGW = 7V and V B is set to 5
When V is set, 2 (V SIG −V B ) = 4 V, and the maximum amplitude of the signal side drive LSI 64 becomes 4 V. Therefore, in this embodiment, the signal side drive LSI 64 is an LSI (5 V withstand voltage LSI) formed by a normal process. ) Can be used. Therefore, the cost of the signal side drive LSI 64 can be significantly reduced. Furthermore, since the power consumption is also proportional to the square of the voltage, the power consumed on the signal side can be reduced to about 33%.

【0036】本実施例では、実施例1の効果に加え、信
号側駆動LSI64の大幅なコスト低減ができ、消費電
力も大幅に低減できる。
In this embodiment, in addition to the effects of the first embodiment, the cost of the signal side drive LSI 64 can be greatly reduced, and the power consumption can be greatly reduced.

【0037】[0037]

【発明の効果】本発明によれば、画素電極は透明である
必要がなく、不透明な金属電極を用いることができ、低
価格の設備で高い歩留まりで量産可能な低価格のアクテ
ィブマトリクス型液晶表示装置が得られる。また、共通
電極を形成する必要がなく、共通電極の形成にまつわる
工程を削減または共通電極の形成にまつわる歩留まり低
下を解消でき、低価格の設備で高い歩留まりで量産可能
な低価格のアクティブマトリクス型液晶表示装置が得ら
れる。更に、駆動回路が簡潔で、低電圧かつ低消費電力
のアクティブマトリクス型液晶表示装置が得られる。一
方、視角特性が良好で多階調表示が容易であるアクティ
ブマトリクス型液晶表示装置も同時に得られる。
According to the present invention, the pixel electrode does not need to be transparent, an opaque metal electrode can be used, and a low-cost active matrix liquid crystal display capable of mass production with low-cost equipment and high yield. The device is obtained. In addition, there is no need to form a common electrode, the number of steps involved in the formation of the common electrode can be reduced, and the reduction in the yield associated with the formation of the common electrode can be solved. The device is obtained. Further, an active matrix type liquid crystal display device having a simple driving circuit and low voltage and low power consumption can be obtained. On the other hand, an active matrix type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display can be obtained at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の画素部の平面図。FIG. 1 is a plan view of a pixel portion according to a first embodiment of the present invention.

【図2】図1の等価回路図。FIG. 2 is an equivalent circuit diagram of FIG.

【図3】図1のA線における断面図。FIG. 3 is a sectional view taken along the line A in FIG.

【図4】図1のB線における断面図。FIG. 4 is a sectional view taken along line B of FIG.

【図5】図1のC線における断面図。5 is a sectional view taken along line C of FIG.

【図6】本発明の液晶表示装置の説明図。FIG. 6 is an explanatory diagram of a liquid crystal display device of the present invention.

【図7】図1の各電極に印加される電圧波形図。FIG. 7 is a voltage waveform diagram applied to each electrode of FIG.

【図8】本発明の液晶表示装置の視角依存性を示す特性
FIG. 8 is a characteristic diagram showing viewing angle dependence of the liquid crystal display device of the present invention.

【図9】従来の液晶表示装置の視角依存性を示す特性
図。
FIG. 9 is a characteristic diagram showing viewing angle dependence of a conventional liquid crystal display device.

【図10】本発明の実施例2の画素部の平面図。FIG. 10 is a plan view of a pixel portion according to a second embodiment of the present invention.

【図11】図10の等価回路図。11 is an equivalent circuit diagram of FIG.

【図12】図10のD線における断面図。12 is a sectional view taken along the line D in FIG.

【図13】図10のE線における断面図。13 is a sectional view taken along the line E of FIG.

【図14】図10の各電極に印加される電圧波形図。14 is a voltage waveform diagram applied to each electrode of FIG.

【図15】本発明の実施例3の各電極に印加される電圧
波形図。
FIG. 15 is a voltage waveform diagram applied to each electrode of Example 3 of the present invention.

【図16】本発明の液晶表示装置における液晶動作を示
す説明図。
FIG. 16 is an explanatory diagram showing a liquid crystal operation in the liquid crystal display device of the present invention.

【符号の説明】[Explanation of symbols]

1…走査配線、2…信号配線、3,4…画素電極、5…
半導体薄膜、6…薄膜トランジスタ素子のドレイン電
極、7…次行の走査配線から突起した電極、8…電極。
1 ... Scan wiring, 2 ... Signal wiring, 3, 4 ... Pixel electrode, 5 ...
Semiconductor thin film, 6 ... Drain electrode of thin film transistor element, 7 ... Electrode protruding from the scanning wiring of the next row, 8 ... Electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一対の基板と、前記基板間に挟持された液
晶組成物層から成り、一方の前記基板上に複数の走査配
線と信号配線がマトリクス状に配設されて、前記基板上
の領域が複数の画素領域に分割されており、前記各画素
領域には、アクティブ素子と容量素子が互いに電気的に
前記液晶組成物層と接続された状態で配設され、前記ア
クティブ素子と前記容量素子が前記いずれかの配線に接
続されて液晶駆動回路が構成され、前記各走査配線が走
査信号発生手段に接続され、前記各信号配線が映像信号
発生手段に接続されて成る液晶表示装置において、 前記液晶組成物層の液晶分子が、前記アクティブ素子と
接続された画素電極と前記信号配線の電位差に従った電
界強度に応じて、前記液晶分子の長軸方向が前記基板面
とほぼ平行を保ちつつ動作することを特徴とする液晶表
示装置。
1. A pair of substrates and a liquid crystal composition layer sandwiched between the substrates, wherein a plurality of scanning wirings and signal wirings are arranged in a matrix on one of the substrates, The region is divided into a plurality of pixel regions, and in each of the pixel regions, an active element and a capacitive element are arranged in a state of being electrically connected to the liquid crystal composition layer, and the active element and the capacitive element are provided. A liquid crystal display device comprising an element connected to any one of the wirings to form a liquid crystal drive circuit, each scanning wiring connected to a scanning signal generating means, and each signal wiring connected to a video signal generating means, The liquid crystal molecules of the liquid crystal composition layer maintain the major axis direction of the liquid crystal molecules substantially parallel to the substrate surface according to the electric field strength according to the potential difference between the pixel electrode connected to the active element and the signal wiring. While A liquid crystal display device which operates.
【請求項2】請求項1において、前記容量素子は画素電
極と信号配線で構成されている液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the capacitive element includes a pixel electrode and a signal line.
【請求項3】請求項1または2において、前記アクティ
ブ素子はトランジスタ素子である液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the active element is a transistor element.
【請求項4】請求項1または2において、前記アクティ
ブ素子はダイオード素子である液晶表示装置。
4. The liquid crystal display device according to claim 1, wherein the active element is a diode element.
【請求項5】一対の基板と、前記基板間に挟持された液
晶組成物層から成り、一方の前記基板上に複数の走査配
線と信号配線がマトリクス状に配設されて、前記基板上
の領域が複数の画素領域に分割されており、前記各画素
領域には、トランジスタ素子と容量素子が互いに電気的
に前記液晶組成物層と接続された状態で配設され、前記
トランジスタ素子と前記容量素子が前記いずれかの配線
に接続されて液晶駆動回路が構成され、前記各走査配線
が走査信号発生手段に接続され、前記各信号配線が映像
信号発生手段に接続されて成る液晶表示装置において、 前記走査信号発生手段には、前記トランジスタ素子をオ
ン状態にするための電圧と、前記トランジスタ素子をオ
フ状態にするための電圧と、画素電極に入力する電圧を
発生する手段を有することを特徴とする液晶表示装置。
5. A pair of substrates and a liquid crystal composition layer sandwiched between the substrates, wherein a plurality of scanning wirings and signal wirings are arranged in a matrix on one of the substrates, and the scanning wirings and the signal wirings are arranged on the substrate. The region is divided into a plurality of pixel regions, and in each of the pixel regions, a transistor element and a capacitor element are arranged in a state of being electrically connected to the liquid crystal composition layer, and the transistor element and the capacitor element are provided. A liquid crystal display device comprising an element connected to any one of the wirings to form a liquid crystal drive circuit, each scanning wiring connected to a scanning signal generating means, and each signal wiring connected to a video signal generating means, The scanning signal generating means has means for generating a voltage for turning on the transistor element, a voltage for turning off the transistor element, and a voltage to be input to the pixel electrode. A liquid crystal display device comprising:
【請求項6】請求項5において、前記走査信号発生手段
には、前記画素電極に入力する電圧を2値以上発生する
手段を有する液晶表示装置。
6. The liquid crystal display device according to claim 5, wherein said scanning signal generating means has means for generating a binary value or more of a voltage input to said pixel electrode.
JP2231894A 1994-02-21 1994-02-21 Liquid crystal display device Pending JPH07230074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231894A JPH07230074A (en) 1994-02-21 1994-02-21 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231894A JPH07230074A (en) 1994-02-21 1994-02-21 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH07230074A true JPH07230074A (en) 1995-08-29

Family

ID=12079382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231894A Pending JPH07230074A (en) 1994-02-21 1994-02-21 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH07230074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995182A (en) * 1996-06-11 1999-11-30 Nec Corporation Liquid crystal display with light shield containing discontinuous metal pattern and nonconductive opaque resin
KR100272538B1 (en) * 1997-08-14 2000-11-15 구본준 In-plane switching mode lcd device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995182A (en) * 1996-06-11 1999-11-30 Nec Corporation Liquid crystal display with light shield containing discontinuous metal pattern and nonconductive opaque resin
KR100272538B1 (en) * 1997-08-14 2000-11-15 구본준 In-plane switching mode lcd device

Similar Documents

Publication Publication Date Title
KR100356604B1 (en) LCD Display
JP3143925B2 (en) Active matrix type liquid crystal display
JP2940354B2 (en) Liquid crystal display
KR100282934B1 (en) Transverse electric field type liquid crystal display device composed of liquid crystal molecules having two or more kinds of reorientation directions and manufacturing method thereof
JP2701698B2 (en) Liquid crystal display
JP3127640B2 (en) Active matrix type liquid crystal display
US20120062451A1 (en) Liquid crystal display device
KR100778952B1 (en) Liquid crystal display device and method of manufacturing the same
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
KR100469341B1 (en) In-plane switching mode liquid crystal display device and method for manufacturing the same
JP3804910B2 (en) Liquid crystal display
JP3625283B2 (en) Active matrix liquid crystal display device
JP3164987B2 (en) Active matrix type liquid crystal display
JPH07230074A (en) Liquid crystal display device
JPH09230364A (en) Liquid crystal display device
JPH0980383A (en) Liquid crystal display device
JP3441999B2 (en) Liquid crystal display
JP3811695B2 (en) Liquid crystal display
JP2000147462A (en) Active matrix type liquid crystal display element
JP2004310141A (en) Liquid crystal display device
JP2002082350A (en) Liquid crystal display
JP2003287741A (en) Liquid crystal display device
JPH0943638A (en) Liquid crystal display element
JPH08334783A (en) Liquid crystal display element