JP2002082350A - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2002082350A
JP2002082350A JP2001226970A JP2001226970A JP2002082350A JP 2002082350 A JP2002082350 A JP 2002082350A JP 2001226970 A JP2001226970 A JP 2001226970A JP 2001226970 A JP2001226970 A JP 2001226970A JP 2002082350 A JP2002082350 A JP 2002082350A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
alignment
electrodes
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001226970A
Other languages
Japanese (ja)
Inventor
Katsumi Kondo
克己 近藤
Hiroshi Terao
寺尾  弘
Hidetoshi Abe
英俊 阿部
Masuyuki Ota
益幸 太田
Kenkichi Suzuki
堅吉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001226970A priority Critical patent/JP2002082350A/en
Publication of JP2002082350A publication Critical patent/JP2002082350A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably provide a bright liquid crystal display having high image quality. SOLUTION: This is a liquid crystal display, having a pair of substrates and a liquid crystal layer held between the pair of substrates; one of the substrates is provided with plural signal electrodes arranged in a 1st direction and plural scanning electrodes arranged in a 2nd direction to cross the plural signal electrodes; pixels are formed corresponding to the regions surrounded by the plural signal electrodes and the plural scanning electrodes; each pixel is provided with a thin-film transistor, arranged near the intersection of a signal electrode and a scanning electrode and a pixel electrode connected with this-thin film transistor and arranged in the 1st direction; and a common electrode is arranged in the 1st direction cross over the plural pixels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、量産性が良好で低
コストで視角特性が良好な薄膜トランジスタ型液晶表示
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor type liquid crystal display device having good mass productivity, low cost and good viewing angle characteristics.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタ型液晶表示装置
では、液晶層を駆動する電極としては2枚の基板界面上
に形成し相対向させた透明電極を用いていた。これは、
液晶に印加する電界の方向を基板界面にほぼ垂直な方向
とすることで動作する、ツイステッドネマチック表示方
式に代表される表示方式を採用していることによる。一
方、液晶に印加する電界の方向を基板界面にほぼ平行な
方向とする方式として、櫛歯電極対を用いた方式が、例
えば特公昭63−21907 号により提案されている。この場
合、電極は透明である必要は無く導電性が高く不透明な
金属電極を用いることが可能である。
2. Description of the Related Art In a conventional thin film transistor type liquid crystal display device, transparent electrodes formed on the interface between two substrates and opposed to each other are used as electrodes for driving a liquid crystal layer. this is,
This is because a display method typified by a twisted nematic display method, which operates by setting the direction of an electric field applied to the liquid crystal to a direction substantially perpendicular to the substrate interface, is employed. On the other hand, as a method of making the direction of the electric field applied to the liquid crystal substantially parallel to the interface of the substrate, a method using a pair of comb electrodes is proposed, for example, in Japanese Patent Publication No. 63-21907. In this case, the electrode does not need to be transparent, and an opaque metal electrode having high conductivity can be used.

【0003】[0003]

【発明が解決しようとする課題】前記の従来技術におい
ては、ITOに代表される透明電極を形成する為にスパ
ッタリング装置等の真空系製造設備を使用する必要があ
り、設備コストが巨額になっていた。また、真空系製造
設備の使用には真空炉内の汚染を除去する作業を伴い、
その為に多大な時間を要し、このことが製造コストを著
しく引き上げている。また、一般に透明電極はその表面
に数10nm程度の凹凸があり、薄膜トランジスタのよ
うな微細なアクティブ素子の加工を困難にしている。さ
らに、透明電極の凸部はしばしば離脱し電極等の他の部
分に混入し、点状或いは線状の表示欠陥を引き起こし、
歩留まりを著しく低下させていた。これらの為に、マー
ケットニーズに対応した低価格の液晶表示装置を安定的
に提供することが出来ずにいた。また、前記の従来技術
においては、画質面でも多くの課題を有していた。特
に、視角方向を変化させた際の輝度変化が著しく、中間
調表示を行った場合、強い各方向により階調レベルが反
転してしまうなど、実用上問題であった。さらに、薄膜
トランジスタ素子の凹凸構造の為にその周辺で配向不良
ドメインが発生し、その対策の為に大きな面積の遮光膜
を要し、光の利用効率も著しく低下させていた。
In the above-mentioned prior art, it is necessary to use a vacuum manufacturing equipment such as a sputtering apparatus to form a transparent electrode typified by ITO, and the equipment cost is enormous. Was. In addition, the use of vacuum manufacturing equipment involves work to remove contamination in the vacuum furnace,
This requires a great deal of time, which significantly increases manufacturing costs. In general, the surface of a transparent electrode has irregularities of about several tens of nm, which makes it difficult to process a fine active element such as a thin film transistor. In addition, the protruding portions of the transparent electrode are often detached and mixed into other parts such as the electrode, causing a dot-like or linear display defect,
The yield was significantly reduced. For these reasons, it has not been possible to stably provide a low-cost liquid crystal display device that meets market needs. In addition, the above-described prior art has many problems in terms of image quality. In particular, the luminance changes when the viewing angle direction is changed is remarkable, and when halftone display is performed, there is a practical problem such that the grayscale level is inverted in each strong direction. Further, the uneven structure of the thin-film transistor element causes an alignment defect domain around the thin-film transistor element, a light-shielding film having a large area is required for the countermeasure, and the light use efficiency is remarkably reduced.

【0004】一方、特公昭63−21907 号に示されている
櫛歯電極を用いれば透明電極を使う必要はなくなり、上
記の課題を解決できる可能性があるが、以下の理由によ
り実用化はされていない。即ち、この公知技術に於いて
は相互に咬合する櫛歯電極対を用いているために、画素
内のパターンが微細化かつ複雑化し、量産性が著しく低
い。特に、表示情報量が多く、画素サイズの小さなディ
スプレイでは櫛歯構造の電極を1画素内に入れることは
ほとんど不可能であり、仮に入れたとしても開口率が著
しく低く、ほとんど光が有効に利用できない暗いディス
プレイしか実現できない。原理的には櫛歯電極の電極幅
を1〜2μm程度まで縮小すれば開口率を実用レベルま
で拡大出来るが、実際には大型基板全面にわたってその
ような細線を均一にかつ断線がないように形成すること
は極めて困難である。即ち、上記の従来技術では、相互
に咬合する櫛歯状の電極を用いたために画素開口率と製
造歩留まりがトレードオフの関係となり、明るい画像を
有する液晶表示装置を低コストで提供することは困難で
あった。
On the other hand, the use of a comb-shaped electrode disclosed in Japanese Patent Publication No. 63-21907 eliminates the need to use a transparent electrode, which may solve the above-mentioned problem. However, it has been put to practical use for the following reasons. Not. That is, in this known technique, since the interdigitated comb-teeth electrode pair is used, the pattern in the pixel becomes fine and complicated, and the mass productivity is extremely low. In particular, in a display having a large amount of display information and a small pixel size, it is almost impossible to insert an electrode having a comb-teeth structure in one pixel. Even if it is inserted, the aperture ratio is extremely low, and almost all light is effectively used. Only a dark display that cannot be realized can be realized. In principle, the aperture ratio can be increased to a practical level if the electrode width of the comb electrode is reduced to about 1 to 2 μm. However, in practice, such fine lines are formed uniformly and without breakage over the entire large substrate. It is extremely difficult to do. That is, in the above-described conventional technology, since the interdigitating comb-shaped electrodes are used, the pixel aperture ratio and the manufacturing yield are in a trade-off relationship, and it is difficult to provide a liquid crystal display device having a bright image at low cost. Met.

【0005】本発明はこれらの課題を同時に解決するも
ので、その目的とするところは、第一に、透明電極がな
くとも高コントラストで、低価格の設備で高い歩留まり
で量産可能な低コストの薄膜トランジスタ型液晶表示装
置を提供することにある。第二に、低い電圧で駆動がで
きかつ視角特性が良好で多階調表示が容易である薄膜ト
ランジスタ型液晶表示装置を提供することにある。第三
に、使用可能な液晶組成物及び配向膜材料の選択の自由
度を上げ、これにより液晶パネル作製等のプロセスの裕
度を大きくし、高い開口率と画素劣化抑制を両立させ、
光透過率を引上げた、より明るい薄膜トランジスタ型液
晶表示装置を提供することにある。第四に、第一から第
三の目的に加えてより構造が簡素であり、製造歩留まり
が高い薄膜トランジスタ型液晶表示装置を提供すること
にある。
The present invention solves these problems at the same time. The object of the present invention is, firstly, to provide a high-contrast, low-cost facility that can be mass-produced with a high yield without using a transparent electrode. An object of the present invention is to provide a thin film transistor type liquid crystal display device. Second, it is an object of the present invention to provide a thin film transistor type liquid crystal display device which can be driven at a low voltage, has good viewing angle characteristics, and can easily perform multi-tone display. Third, the degree of freedom in selecting usable liquid crystal compositions and alignment film materials is increased, thereby increasing the latitude of processes such as liquid crystal panel manufacturing, and achieving both a high aperture ratio and suppression of pixel deterioration.
It is an object of the present invention to provide a brighter thin film transistor type liquid crystal display device having a higher light transmittance. Fourth, in addition to the first to third objects, it is an object of the present invention to provide a thin film transistor type liquid crystal display device having a simpler structure and a high production yield.

【0006】[0006]

【課題を解決するための手段】本発明の一つの実施態様
によれば、一対の基板と、この一対の基板に挾持された
液晶層とを有する液晶表示装置で、一対の基板の一方に
は、第1の方向に配置した複数の信号電極と、複数の信
号電極に交差する第2の方向に配置された複数の走査電
極とを有し、複数の信号電極及び複数の走査電極に囲ま
れた領域に対応して画素が形成されており、各画素に
は、信号電極と走査電極の交点付近に配置した薄膜トラ
ンジスタと、この薄膜トランジスタに接続され、第1の
方向に配置された画素電極とが配置されており、複数の
画素間に渡って、第1の方向に共通電極を配置したとい
うものである。
According to one embodiment of the present invention, there is provided a liquid crystal display device having a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates. , A plurality of signal electrodes arranged in a first direction, and a plurality of scan electrodes arranged in a second direction intersecting the plurality of signal electrodes, and are surrounded by the plurality of signal electrodes and the plurality of scan electrodes. A pixel is formed corresponding to the region, and each pixel includes a thin film transistor arranged near an intersection of a signal electrode and a scanning electrode, and a pixel electrode connected to the thin film transistor and arranged in a first direction. The common electrodes are arranged in a first direction across a plurality of pixels.

【0007】さらに、各画素における画素電極及び共通
電極に、電位を与えることにより液晶層に電界を形成し
て表示の制御を行うというものである。
Further, by applying a potential to a pixel electrode and a common electrode in each pixel, an electric field is formed in a liquid crystal layer to control display.

【0008】本発明の別の一つの実施態様を説明する。[0008] Another embodiment of the present invention will be described.

【0009】複数の薄膜トランジスタを有する液晶表示
装置において、一対の基板と、この一対の基板に挾持さ
れた液晶層と、前記一対の基板の一方の基板に形成さ
れ、前記基板に対して支配的に平行な成分を持った電界
を前記液晶層に発生させる電極構造と、前記液晶層に接
する非導電層と、その非導電層の層上に配置されたカラ
ーフィルタとを有し、前記非導電層の前記カラーフィル
タに接する面はこのカラーフィルタを平坦化し、前記液
晶層に接する面はこの液晶層の液晶の配向を制御する構
造とする。
In a liquid crystal display device having a plurality of thin film transistors, a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a liquid crystal layer formed on one of the pair of substrates are formed so as to dominate the substrates. An electrode structure for generating an electric field having a parallel component in the liquid crystal layer, a non-conductive layer in contact with the liquid crystal layer, and a color filter disposed on the non-conductive layer; The surface in contact with the color filter planarizes the color filter, and the surface in contact with the liquid crystal layer has a structure for controlling the orientation of the liquid crystal in the liquid crystal layer.

【0010】そのカラーフィルタは前記一対の基板の他
方に形成してもよい。
[0010] The color filter may be formed on the other of the pair of substrates.

【0011】また、上記非導電層は少なくとも1層の有
機ポリマ層を有することが望ましく、さらに、その有機
ポリマ層がエポキシ樹脂か、若しくはポリイミド樹脂を
含むことが望ましい。
The non-conductive layer preferably has at least one organic polymer layer, and the organic polymer layer preferably contains an epoxy resin or a polyimide resin.

【0012】また、その非導電層は少なくとも1層の無
機物層を有することが望ましい。
It is desirable that the non-conductive layer has at least one inorganic layer.

【0013】このように形成することによって、カラー
フィルタの凹凸を平坦化する有機ポリマと液晶分子を配
向制御するための配向膜とが兼用でき、低コスト化に有
効である。
By forming in this manner, the organic polymer for flattening the unevenness of the color filter and the alignment film for controlling the alignment of the liquid crystal molecules can also be used, which is effective in reducing the cost.

【0014】また、同様に配向膜と絶縁膜を兼用させる
構造として、複数の薄膜トランジスタを有する液晶表示
装置において、一対の基板と、この一対の基板に挾持さ
れた液晶層と、前記基板に対して支配的に平行な成分を
持った電界を前記液晶層に発生させる電極構造と、前記
電極構造及び前記複数の薄膜トランジスタ上に形成され
た絶縁膜とを有し、前記液晶層に接する前記絶縁膜の一
方の面はこの液晶層の液晶分子の配向を制御するような
構成とする。
In a liquid crystal display device having a plurality of thin film transistors, a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and An electrode structure for generating an electric field having a predominantly parallel component in the liquid crystal layer; and an insulating film formed on the electrode structure and the plurality of thin film transistors. One surface is configured to control the alignment of liquid crystal molecules in the liquid crystal layer.

【0015】それらの薄膜トランジスタに接する前記絶
縁膜の他方の面はこれらの薄膜トランジスタを平坦化す
ることが望ましい。
It is desirable that the other surface of the insulating film in contact with the thin film transistors be flattened.

【0016】その絶縁膜は少なくとも1層の有機ポリマ
層を有することが望ましく、さらに、その有機ポリマが
エポキシ樹脂、若しくはポリイミド樹脂を含むことが望
ましい。
The insulating film desirably has at least one organic polymer layer, and the organic polymer desirably includes an epoxy resin or a polyimide resin.

【0017】また、その絶縁膜は少なくとも1層の無機
物層を有することが望ましい。
It is desirable that the insulating film has at least one inorganic layer.

【0018】このように、薄膜トランジスタ素子を覆っ
た有機絶縁層をラビング処理することで有機絶縁層に、
薄膜トランジスタ素子の保護膜と液晶分子配向制御膜の
両方の機能を持たせることができる。
As described above, by rubbing the organic insulating layer covering the thin film transistor element,
Both functions of the protective film of the thin film transistor element and the liquid crystal molecule alignment control film can be provided.

【0019】また、絶縁膜として有機ポリマを用い、そ
れを直接ラビング等の表面配向処理を行うとき、基板界
面に平行に電界を印加する本方式では、低傾き角の液晶
分子などでよいので、配向はより均一化し、従来方式よ
りも表示むらが低く抑えられるので配向膜材料の選択の
自由度が上がる。
When an organic polymer is used as an insulating film and the surface is subjected to a surface alignment treatment such as rubbing, an electric field is applied in parallel to the substrate interface. In this method, liquid crystal molecules having a low tilt angle may be used. Since the orientation is made more uniform and the display unevenness is suppressed lower than in the conventional method, the degree of freedom in selecting the material of the orientation film is increased.

【0020】さらに、前述の配向膜との界面上での変動
に対する裕度が上がり、界面起因の不良はほとんどなく
なるので、検査やエージングといった工程を大幅に簡略
化することができ、製造コストを低減できる。
Further, since the tolerance for the fluctuation on the interface with the above-mentioned alignment film is increased and the defect caused by the interface is almost eliminated, the steps of inspection and aging can be greatly simplified, and the manufacturing cost can be reduced. it can.

【0021】また、本発明によって、従来CVD(Chemi
cal Vapor Deposi−tion)法等の真空系で形成していた
無機の絶縁膜が、より安価に製造できる有機絶縁層に交
換でき、低コスト化に有効である。
Further, according to the present invention, conventional CVD (Chemi
An inorganic insulating film formed by a vacuum system such as a cal-vapor deposition method can be replaced with an organic insulating layer that can be manufactured at lower cost, which is effective for cost reduction.

【0022】[0022]

【発明の実施の形態】先ず初めに、電界方向に対する、
偏光板の偏光透過軸のなす角φP ,界面近傍での液晶分
子長軸(光学軸)方向のなす角φLC,一対の偏光板間に
挿入した位相差板の進相軸のなす角φR の定義を示す
(図6)。偏光板及び液晶界面はそれぞれ上下に一対あ
るので必要に応じてφP1,φP2,φLC1,φLC2と表記す
る。尚、図6は後述する図1の正面図に対応する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, with respect to the direction of an electric field,
The angle φ P formed by the polarization transmission axis of the polarizing plate, the angle φ LC formed by the direction of the long axis (optical axis) of the liquid crystal molecule near the interface, and the angle φ formed by the fast axis of the phase difference plate inserted between a pair of polarizing plates. The definition of R is shown (FIG. 6). Phi P1 optionally Since the polarizer and the liquid crystal interface is a pair up and down, respectively, φ P2, φ LC1, referred to as phi LC2. FIG. 6 corresponds to a front view of FIG. 1 described later.

【0023】次に本発明の作用を図1を用いて説明す
る。
Next, the operation of the present invention will be described with reference to FIG.

【0024】図1(a),(b)は本発明の液晶パネル内
での液晶の動作を示す側断面を、図1(c),(d)はそ
の正面図を表す。図1では薄膜トランジスタ素子を省略
してある。また、本発明ではストライプ状の電極を構成
して複数の画素を形成するが、ここでは1画素の部分を
示した。電圧無印加時のセル側断面を図1(a)に、そ
の時の正面図を図1(c)に示す。透明な一対の基板の
内側に線状の電極1,2が形成され、その上に配向制御
膜4が塗布及び配向処理されている。間には液晶組成物
が挟持されている。棒状の液晶分子5は、電界無印加時
には電極1,2の長手方向に対して若干の角度、即ち4
5度≦|φLC|<90度、をもつように配向されてい
る。上下界面上での液晶分子配向方向はここでは平行、
即ちφLC1=φLC2 を例に説明する。また、液晶組成物
の誘電異方性は正を想定している。次に、電界7を印加
すると図1(b),(d)に示したように電界方向に液晶
分子がその向きを変える。偏光板6を偏光板偏光軸方向
9に配置することで電界印加によって光透過率を変える
ことが可能となる。このように、本発明によれば透明電
極がなくともコントラストを与える表示が可能となる。
尚、図1(b)では基板表面と電界方向とのなす角が大
きく、平行ではないように見えるが、これは厚み方向を
拡大して表した結果で、実際には20度以下である。以
後本発明では、20度以下のものを総称して横電界と表
現する。また、図1では電極1,2を上下基板に分けて
形成したが、一方の基板に備えてもなんら効果は変わる
ものではない。むしろ配線等のパターンが微細化する場
合や熱,外力等による種々の変形等を鑑みると、一方の
基板に備えたほうがより高精度なアライメントが可能と
なり、望ましい。また、液晶組成物の誘率異方性は正を
想定したが、負であっても構わない。その場合には初期
配向状態を電極1,2の長手方向に垂直な方向(電界方
向7)から若干の角度|φLC|(即ち、0度<|φLC|≦
45度)を持つように配向させる。
FIGS. 1A and 1B are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1C and 1D are front views thereof. In FIG. 1, the thin film transistor element is omitted. Further, in the present invention, a plurality of pixels are formed by forming a stripe-shaped electrode. Here, one pixel portion is shown. FIG. 1A shows a cross section of the cell when no voltage is applied, and FIG. 1C shows a front view at that time. Linear electrodes 1 and 2 are formed inside a pair of transparent substrates, and an alignment control film 4 is coated and aligned thereon. A liquid crystal composition is sandwiched between the two. The rod-shaped liquid crystal molecules 5 have a slight angle with respect to the longitudinal direction of the electrodes 1 and 2 when no electric field is applied, that is, 4 degrees.
It is oriented so that 5 degrees ≦ | φ LC | <90 degrees. Here, the liquid crystal molecule alignment directions on the upper and lower interfaces are parallel,
That is, φ LC1 = φ LC2 will be described as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. 1 (b) and 1 (d). By disposing the polarizing plate 6 in the polarizing axis direction 9 of the polarizing plate, the light transmittance can be changed by applying an electric field. As described above, according to the present invention, it is possible to provide a display that provides a contrast without a transparent electrode.
In FIG. 1B, the angle between the substrate surface and the direction of the electric field is large and does not seem to be parallel. However, this is the result of the enlargement in the thickness direction, and is actually 20 degrees or less. Hereinafter, in the present invention, those having an angle of 20 degrees or less are collectively referred to as a lateral electric field. Although the electrodes 1 and 2 are formed separately on the upper and lower substrates in FIG. 1, the effect does not change even if the electrodes are provided on one substrate. Rather, in consideration of the case where the pattern of wiring or the like becomes finer or various deformations due to heat, external force, and the like, it is desirable to provide the alignment on the one substrate because more accurate alignment is possible. In addition, the dielectric anisotropy of the liquid crystal composition is assumed to be positive, but may be negative. In this case, the initial alignment state is changed from a direction perpendicular to the longitudinal direction of the electrodes 1 and 2 (electric field direction 7) to a slight angle | φ LC | (that is, 0 degrees <| φ LC | ≦
45 °).

【0025】以下、本発明の3つの目的それぞれに応じ
て、その作用について説明する。
The operation of the present invention will be described below according to the three objects.

【0026】(1)透明電極を備えない状態での高コン
トラスト化 コントラストを付与する具体的構成としては、上下基板
上の液晶分子配向がほぼ平行な状態を利用したモード
(複屈折位相差による干渉色を利用するので、ここでは
複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方
向が交差しセル内での分子配列がねじれた状態を利用し
たモード(液晶組成物層内で偏光面が回転する旋光性を
利用するので、ここでは旋光性モードと呼ぶ)とがあ
る。複屈折モードでは、電圧印加により分子長軸(光
軸)方向が基板界面にほぼ平行なまま面内でその方位を
変え、所定角度に設定された偏光板の軸とのなす角を変
えて光透過率を変える。旋光性モードでも同様に電圧印
加により分子長軸方向の方位のみを変えるが、こちらの
場合はら線がほどけることによる旋光性の変化を利用す
る。
(1) Higher Contrast without a Transparent Electrode As a specific configuration for imparting contrast, a mode (interference due to birefringence phase difference) utilizing a state in which liquid crystal molecules on upper and lower substrates are substantially parallel to each other is used. In this case, the color is used, which is referred to as a birefringence mode), and a mode in which the liquid crystal molecules on the upper and lower substrates intersect and the molecular arrangement in the cell is twisted (the polarization plane in the liquid crystal composition layer). Uses the optical rotation that rotates, so that it is called an optical rotation mode here). In the birefringence mode, the direction of the molecular long axis (optical axis) is changed in the plane by applying a voltage while the direction of the molecular long axis (optical axis) is substantially parallel to the substrate interface, and the angle formed with the axis of the polarizing plate set at a predetermined angle is changed. Change the transmittance. In the optical rotation mode, similarly, only the orientation in the molecular major axis direction is changed by applying a voltage, but in this case, the change in optical rotation caused by the loosening of the helical line is used.

【0027】次に表示を無彩色にしコントラスト比をあ
げる定量的構成および作用について、以下複屈折モード
を用いる場合と旋光性モードを用いる場合の2つのケー
スに分けて述べる。
Next, the quantitative structure and operation for increasing the contrast ratio by making the display an achromatic color will be described below in two cases, that is, the case where the birefringence mode is used and the case where the optical rotation mode is used.

【0028】I.複屈折モードで表示する場合 一般に一軸性複屈折性媒体を直交配置した2枚の偏光板
の間に挿入した時の光透過率T/Toは次式で表され
る。ここで、χeffは液晶組成物層の実効的な光軸方向
(光軸と偏光透過軸とのなす角)、deff は複屈折性を
有する実効的な液晶組成物層の厚み、Δnは屈折率異方
性、λは光の波長を表す。ここで、液晶組成物層の光軸
方向を実効的な値とした目的は、実際のセル内では界面
上では液晶分子が固定されており、電界印加時にはセル
内で全ての液晶分子が互いに平行かつ一様に配向してい
るのではなく、特に界面近傍では大きな変形が起こって
いることを鑑み、それらの平均値として一様状態を想定
した時の見かけの値で取り扱うことにある。
I. Display in Birefringence Mode Generally, the light transmittance T / To when a uniaxial birefringent medium is inserted between two polarizing plates arranged orthogonally is expressed by the following equation. Here, Δeff is the effective optical axis direction (the angle between the optical axis and the polarization transmission axis) of the liquid crystal composition layer, deff is the effective thickness of the birefringent liquid crystal composition layer, and Δn is the refractive index Anisotropy and λ represent the wavelength of light. Here, the purpose of setting the optical axis direction of the liquid crystal composition layer as an effective value is that liquid crystal molecules are fixed on the interface in the actual cell, and all liquid crystal molecules are parallel to each other in the cell when an electric field is applied. In addition, in consideration of the fact that the orientation is not uniform and large deformation occurs particularly in the vicinity of the interface, the average value thereof is treated as an apparent value when a uniform state is assumed.

【0029】 T/To=sin2(2χeff)・sin2(πdeff・Δn/λ) …(1) 低電圧VL 印加時に暗、高電圧VH 印加時に明状態とな
るノーマリクローズ特性を得るには偏光板の配置として
は一方の偏光板の透過軸(あるいは吸収軸)を液晶分子
配向方向(ラビング軸)にほぼ平行、即ちφP1≒φLC1
=φLC2とし、他方の偏光板の透過軸をそれに垂直、即
ちφP2=φP1+90度とすればよい。電界無印加時に
は、(1)式におけるχeffが0であるので光透過率T
/Toも0となる。一方電界印加時にはその強度に応じ
てχeff の値が増大し、45度の時に最大となる。この
時、光の波長を0.555μm と想定すると無彩色でか
つ透過率を最大とするには実効的なdeff・Δnを2分
の1波長である0.28μmとすれば良い。現実には裕
度があるために、0.21から0.36μmの間に入って
いれば良いが、望ましくは0.24から0.33μmの間
の値に設定すると良い。
T / To = sin 2 (2χeff) · sin 2 (πdeff · Δn / λ) (1) Obtain a normally closed characteristic that is dark when a low voltage V L is applied and bright when a high voltage V H is applied. As for the arrangement of the polarizing plate, the transmission axis (or absorption axis) of one polarizing plate is almost parallel to the liquid crystal molecule alignment direction (rubbing axis), that is, φ P1 ≒ φ LC1
= Φ LC2, and the transmission axis of the other polarizing plate may be perpendicular to it, that is, φ P2 = φ P1 +90 degrees. When no electric field is applied, Δeff in equation (1) is 0, so that the light transmittance T
/ To also becomes 0. On the other hand, when an electric field is applied, the value of χeff increases according to the intensity, and reaches a maximum at 45 degrees. At this time, assuming that the wavelength of the light is 0.555 μm, the effective deff · Δn may be 0.28 μm, which is a half wavelength, in order to maximize the transmittance with achromatic color. Actually, since there is a margin, it is sufficient that the distance is between 0.21 and 0.36 μm, but it is desirable to set a value between 0.24 and 0.33 μm.

【0030】一方低電圧VL 印加時に明、高電圧VH
加時に暗状態となるノーマリオープン特性を得るには電
界無印加時あるいは低電界印加時に、(1)式における
χeffがほぼ45度となるように偏光板配置を設定すれ
ば良い。電界印加時にはノーマリクローズの場合とは逆
にその強度に応じてχeff の値が減少する。しかしなが
ら、χeff が最小(即ち0)になっても界面近傍で固定
されている液晶分子の残留位相差のために、このままで
はかなりの光が漏れてしまう。d・Δnを0.27から0.
37μm の間に設定し、3〜10Vの実効電圧を印加
した本発明者等の実験によれば界面残留位相差の値は
0.02から0.06μm程度であった。よって、0.0
2から0.06μm程度の複屈折位相差を有する位相差
板(この位相差をRfと表す)を界面残留位相差を補償
するように挿入することで、暗状態が沈み込み、高コン
トラスト比が得られる。位相差板の進相軸の角度φR
は、電圧印加時の液晶組成物層の実効的な光軸χeff に
平行にする。より完全に暗状態の明るさを沈み込ませる
には、暗状態を表示するための電圧を印加したときの残
留位相差にきちっと合わせれば良い。以上より、暗状態
の沈み込みと明状態の透過率,白色度を両立するには、
次式の関係を満たせば良い。
On the other hand, in order to obtain a normally open characteristic in which a bright state is obtained when the low voltage V L is applied and a dark state is obtained when the high voltage V H is applied, Δeff in the equation (1) is approximately 45 degrees when no electric field is applied or when a low electric field is applied. What is necessary is just to set a polarizing plate arrangement so that it may become. When an electric field is applied, the value of χeff decreases in accordance with the strength, contrary to the case of normally closed. However, even if χeff becomes minimum (that is, 0), considerable light leaks as it is because of the residual phase difference of the liquid crystal molecules fixed near the interface. d.Δn is 0.27 to 0.2.
According to experiments performed by the present inventors in which the effective voltage was set to 37 μm and an effective voltage of 3 to 10 V was applied, the value of the interface residual phase difference was about 0.02 to 0.06 μm. Therefore, 0.0
By inserting a retardation plate having a birefringence retardation of about 2 to 0.06 μm (this retardation is represented by Rf) so as to compensate for the interface residual retardation, the dark state sinks and the high contrast ratio is reduced. can get. Angle of the fast axis of the retardation plate phi R
Is made parallel to the effective optical axis χeff of the liquid crystal composition layer when a voltage is applied. In order to reduce the brightness of the dark state more completely, it is sufficient to exactly match the residual phase difference when a voltage for displaying the dark state is applied. From the above, to achieve both the sinking in the dark state and the transmittance and whiteness in the bright state,
It suffices if the following relationship is satisfied.

【0031】 0.21μm<(d・Δn−Rf)<0.36μm …(2) 望ましくは、 0.23μm<(d・Δn−Rf)<0.33μm …(3) II.旋光性モードで表示する場合 従来方式であるツイステッドネマチック(Twisted Nemat
ic:TN)方式では一般に知られているようにd・Δn
をファーストミニマム条件である0.50μm近傍に設
定した時に、高透過率,無彩色となる。その裕度を考慮
するとTN方式では0.40から0.60μmの間に設定
すると良い。偏光板の配置としては一方の偏光板の透過
軸(あるいは吸収軸)を界面上の液晶分子配向方向(ラ
ビング軸)にほぼ平行、即ちφLC1≒φLC2とする。ノー
マリクローズ型を実現するためには、他方の偏光板の透
過軸をそれに平行とすれば良く、ノーマリオープン型と
するには垂直とすればよい。
0.21 μm <(d · Δn−Rf) <0.36 μm (2) Desirably, 0.23 μm <(d · Δn−Rf) <0.33 μm (3) II. Displaying in optical rotation mode Twisted Nemat (conventional method)
ic: TN) system, as generally known, d · Δn
Is set near 0.50 μm, which is the first minimum condition, high transmittance and achromatic color are obtained. In consideration of the margin, in the TN system, it is preferable to set the distance between 0.40 and 0.60 μm. The polarizing plate is arranged such that the transmission axis (or absorption axis) of one of the polarizing plates is substantially parallel to the liquid crystal molecule alignment direction (rubbing axis) on the interface, that is, φ LC1 ≒ φ LC2 . In order to realize a normally closed type, the transmission axis of the other polarizing plate may be made parallel to it, and to make it a normally open type, it may be made vertical.

【0032】尚、完全に旋光性を消失させるには、上下
基板界面近傍での液晶配向方向をほぼ平行となるように
する必要があり、90度TNモードを想定すると、一方
の基板側の液晶分子を90度近く回転させなくてはなら
ない。複屈折モードで表示する場合には液晶分子回転角
は45度程度で良く、ことしきい値電圧に関しては複屈
折モードのほうが低くなる。
In order to completely eliminate the optical rotatory power, it is necessary to make the liquid crystal alignment directions near the interface between the upper and lower substrates almost parallel. You have to rotate the molecule by almost 90 degrees. When displaying in the birefringent mode, the liquid crystal molecule rotation angle may be about 45 degrees, and the threshold voltage is lower in the birefringent mode.

【0033】(2)視角特性の改善 本発明の表示モードでは液晶分子の長軸は基板と常にほ
ぼ平行であり、立ち上がることがなく、従って視角方向
を変えた時の明るさの変化が小さい。本表示モードは従
来のように電圧印加で複屈折位相差をほぼ0にすること
で暗状態を得るものではなく、液晶分子長軸と偏光板の
軸(吸収あるいは透過軸)とのなす角を変えるもので、
根本的に異なる。従来のTN型のように液晶分子長軸を
基板界面に垂直に立ち上がらせる場合だと、複屈折位相
差が0となる視角方向は正面即ち基板界面に垂直な方向
のみであり、僅かでも傾斜すると複屈折位相差が現れ、
ノーマリオープン型では光が漏れ、コントラストの低下
や階調レベルの反転を引き起こす。
(2) Improvement of Viewing Angle Characteristics In the display mode of the present invention, the major axis of the liquid crystal molecules is always substantially parallel to the substrate, and does not rise, so that the change in brightness when the viewing angle direction is changed is small. In this display mode, a dark state is not obtained by making the birefringence phase difference substantially zero by applying a voltage as in the prior art, and the angle between the long axis of the liquid crystal molecules and the axis (absorption or transmission axis) of the polarizing plate is formed. To change,
Fundamentally different. In the case where the long axis of the liquid crystal molecule rises perpendicularly to the substrate interface as in a conventional TN type, the viewing angle direction in which the birefringence phase difference becomes 0 is only the front direction, that is, the direction perpendicular to the substrate interface. Birefringence phase difference appears,
In the normally open type, light leaks, causing a decrease in contrast and a reversal of a gradation level.

【0034】(3)配向膜材料と液晶材料の選択の自由
度改善及びそれによるプロセス裕度の拡大 さらに、このように液晶分子が立ち上がらない為に、従
来のような大きな傾き角(液晶分子長軸と界面とのなす
角)を与える配向膜を必要としない。従来方式では、傾
き角が不足すると傾く方向の異なる2状態及びそれらの
境界部のドメインが生じ、表示不良となる可能性があ
る。本方式では、傾き角を付与する代わりに基板界面上
での液晶分子長軸方向(ラビング方向)を電界方向に対
して0度あるいは90度からずらした所定方向に設定す
れば良い。例えば、液晶組成物の誘電率異方性が負の場
合、電界方向と基板界面上での液晶分子長軸方向とがな
す角φLCLC>0度と定義する)を0度以上(実質的
には0.5度以上)、望ましくは2度以上にすれば良
い。もし完全に0度とすると、方向の異なる2種の変形
が生じ異なる2状態及びそれらの境界部のドメインが生
じ、表示不良となる可能性がある。0.5 度以上であれ
ば電界印加及びその強度の増大により見かけの液晶分子
長軸方向(φLC(V)と定義する)が一様に増加して行
き、逆方向への傾斜、即ちφLC(V)<0度になることは
ない。本方式ではこのように、界面と液晶分子とのなす
角(傾き角)が小さくともドメインが生じずに動作する
ことから、低めの傾き角に設定することが可能である。
液晶分子配向の均一性は低めの傾き角に設定するほどラ
ビング等のプロセス裕度が上がり、良好である。従っ
て、界面に平行に電界を印加する本方式に、低傾き角を
組み合わせれば液晶分子配向はより均一化し、同程度の
製造プロセス変動があっても、従来方式よりも表示むら
が低く抑えられる。一般に高い傾き角を付与する配向膜
の種類は、低い傾き角を付与するものに比べて少なく、
本方式を用いれば配向膜材料の選択の自由度も高くな
る。例えばカラーフィルタ上の平坦化膜,薄膜トランジ
スタ上の保護膜に有機ポリマを用い、それを直接ラビン
グ等の表面配向処理を行っても、傾き角が不要なので配
向膜との兼用がより容易になり、更にプロセスの簡易化
とそれに伴うコストの低減が可能となる。製造プロセス
変動による表示むらを抑制するには傾き角を4度以下、
望ましくは2度以下にすれば良い。
(3) Improving the degree of freedom in selecting an alignment film material and a liquid crystal material and thereby increasing the process latitude. Further, since the liquid crystal molecules do not rise, a large tilt angle (the liquid crystal molecule length) as in the related art is required. An orientation film that gives the angle between the axis and the interface) is not required. In the conventional method, if the inclination angle is insufficient, two states having different inclination directions and a domain at a boundary between the two states are generated, which may cause a display failure. In this method, instead of giving an inclination angle, the long axis direction of liquid crystal molecules (rubbing direction) on the substrate interface may be set to a predetermined direction shifted from 0 or 90 degrees with respect to the direction of the electric field. For example, when the dielectric anisotropy of the liquid crystal composition is negative, the angle φ LC (defined as φ LC > 0 degree) between the direction of the electric field and the direction of the long axis of the liquid crystal molecule on the substrate interface is 0 degree or more ( (Substantially 0.5 degrees or more), and preferably 2 degrees or more. If the angle is completely 0 degrees, two types of deformation in different directions occur, and two different states and domains at their boundaries occur, which may result in display failure. If it is 0.5 degrees or more, the apparent liquid crystal molecule major axis direction (defined as φ LC (V)) uniformly increases due to the application of an electric field and an increase in the intensity, and the tilt in the opposite direction, that is, φ LC (V) <0 degrees. As described above, in the present method, even when the angle (inclination angle) between the interface and the liquid crystal molecule is small, the operation is performed without generating a domain, and therefore, it is possible to set a lower inclination angle.
The uniformity of the liquid crystal molecule alignment is better as the lower the inclination angle, the higher the process margin such as rubbing. Therefore, if a low tilt angle is combined with the present method in which an electric field is applied in parallel to the interface, the liquid crystal molecule alignment becomes more uniform, and the display unevenness can be suppressed to be lower than in the conventional method even if there is a similar manufacturing process variation. . Generally, the types of alignment films that provide a high tilt angle are fewer than those that provide a low tilt angle,
The use of this method increases the degree of freedom in selecting the alignment film material. For example, even if an organic polymer is used for the flattening film on the color filter and the protective film on the thin film transistor, and it is directly subjected to a surface alignment treatment such as rubbing, the tilt angle is unnecessary, and the dual use of the alignment film becomes easier. Further, it is possible to simplify the process and reduce the cost associated therewith. In order to suppress display unevenness due to manufacturing process fluctuation, the tilt angle should be 4 degrees or less,
Desirably, the temperature may be set to twice or less.

【0035】また、液晶材料についても下記の理由によ
りその選択の自由度が上がる。即ち、本発明では画素電
極と共通電極は液晶組成物層に対して主として基板界面
に平行な電界を印加する構造を有しており、電極間の距
離は従来の縦電界方式のアクティブマトリクス型液晶表
示装置における相対向させた透明電極間の距離に比べて
大きくとることができる。また、等価的な電極の断面積
は従来のものより小さく抑えることができる。したがっ
て、本発明による対をなす画素電極間の電気抵抗は従来
のアクティブマトリクス型液晶表示装置における相対向
させた透明電極間の電気抵抗は桁違いに大きくすること
ができる。さらに、本発明による画素電極と共通電極間
の静電容量は容量素子と並列接続になり、電気抵抗も十
分高い容量素子を実現できる。これらにより、画素電極
に蓄積された電荷を保持することが容易になり、従来開
口率を犠牲にしていた容量素子の面積を小さくしても十
分な保持特性が得られる。また、液晶組成物の方も従来
は例えば1012Ωcmといった極めて高い比抵抗を有する
ものが必要であるのに対して、より低い比抵抗の液晶組
成物であっても問題にならない。このことは、単に液晶
材料の選択の自由度が上がるのみならず、プロセス裕度
も引き上げる。即ち、プロセスの途中で液晶が汚染して
も画質不良となりにくい。特に、前述の配向膜との界面
上での変動に対する裕度が上がり、界面起因の不良はほ
とんどなくなる。よって、検査やエージングといった工
程を大幅に簡略化することができ、薄膜トランジスタ型
液晶表示装置の低コスト化に大きく寄与する。また、本
発明による画素電極は櫛歯状電極対に比べて単純な形状
であるため、光の利用効率を向上させる。従来方式のよ
うに十分な量の電荷を蓄積できる容量素子を得るために
開口部を犠牲にする必要がない。さらに、薄膜トランジ
スタを保護する絶縁膜を有機物にすれば、無機物に比べ
て誘電率が低くできるため、画素電極近傍において発生
する基板界面に垂直な方向の電界成分を横電界成分に比
べて小さく抑えることが可能になり、より広い領域で液
晶が動作する。このことも明るさ向上に寄与する。ま
た、共通電極を、隣接する画素の共通電極と共用した場
合には、従来のアクティブマトリクス型液晶表示装置に
おける共通電極とほぼ同等の作用をし、かつより構造を
更に簡単化することができ更に開口率を上げることが可
能である。
The degree of freedom in selecting a liquid crystal material is increased for the following reasons. That is, in the present invention, the pixel electrode and the common electrode have a structure in which an electric field is applied to the liquid crystal composition layer mainly in parallel with the substrate interface, and the distance between the electrodes is a conventional vertical electric field type active matrix type liquid crystal. The distance can be larger than the distance between the opposed transparent electrodes in the display device. Further, the equivalent electrode cross-sectional area can be suppressed smaller than that of the conventional electrode. Therefore, the electric resistance between the pair of pixel electrodes according to the present invention can be increased by an order of magnitude between the opposed transparent electrodes in the conventional active matrix type liquid crystal display device. Furthermore, the capacitance between the pixel electrode and the common electrode according to the present invention is connected in parallel with the capacitance element, and a capacitance element with sufficiently high electric resistance can be realized. Accordingly, it is easy to hold the charge accumulated in the pixel electrode, and sufficient holding characteristics can be obtained even if the area of the capacitor which has conventionally sacrificed the aperture ratio is reduced. In addition, conventionally, a liquid crystal composition having a very high specific resistance of, for example, 10 12 Ωcm is required, but a liquid crystal composition having a lower specific resistance does not pose a problem. This not only increases the degree of freedom in selecting the liquid crystal material, but also increases the process latitude. That is, even if the liquid crystal is contaminated during the process, the image quality is not likely to be poor. In particular, the tolerance for the variation on the interface with the alignment film described above is increased, and defects due to the interface are almost eliminated. Therefore, steps such as inspection and aging can be greatly simplified, which greatly contributes to the cost reduction of the thin film transistor type liquid crystal display device. Further, since the pixel electrode according to the present invention has a simpler shape than the comb-like electrode pair, the light use efficiency is improved. There is no need to sacrifice the opening to obtain a capacitor capable of storing a sufficient amount of charges as in the conventional method. Furthermore, if the insulating film that protects the thin film transistor is made of an organic material, the dielectric constant can be made lower than that of an inorganic material. Therefore, the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface is suppressed to be smaller than the horizontal electric field component. And the liquid crystal operates in a wider area. This also contributes to brightness improvement. Further, when the common electrode is shared with the common electrode of an adjacent pixel, the same operation as the common electrode in the conventional active matrix type liquid crystal display device can be performed, and the structure can be further simplified. It is possible to increase the aperture ratio.

【0036】(4)簡素で開口率の高い薄膜トランジス
タ構造の実現及びそれによる明るさの向上 薄膜トランジスタを含む画素内の構造に関して、公知例
(特公昭63−21907号)に示されている櫛歯電極を用いる
場合は開口率が著しく低下し、それにより明るさが低下
してしまうという問題が生じる。量産性を考慮すると櫛
歯電極1本の幅は8μm程度、最小でも4μm以上必要
であり、特公昭63−21907 号に示されている例えば図7
のような櫛歯が合計17本もあるような構造で対角9.
4 インチカラーVGAクラスの0.3×0.1mm2 の画
素を構成することは不可能である。本発明は上記
(1),(2)の利点を保ちつつも開口率を十分に保持す
るための手段を考案したものである。櫛歯のように開口
率を下げざるを得ない構造に替わって、より単純な電極
構造により、実用性のある高い開口率が実現できてい
る。本発明は、共通電極を対向基板上或いは、画素電極
を同層上に形成した場合の構造を有する。前記公知例
(特公昭63−21907 号)では櫛歯電極を形成するため
に、信号配線と共通電極それぞれの引き出し方向を直交
させている。即ち、信号配線を第1の方向(Y方向)
に、共通電極をそれに直交する方向(X方向)に引き伸
ばしている。それに対し、本発明のように信号配線,画
素電極,共通電極のいずれをも第1の方向に伸ばすこと
で、櫛歯のような複雑な構造を回避している。尚、液晶
のしきい値電圧を下げ、応答時間を短縮するには画素電
極と共通電極の間隔を詰めればよいが、櫛歯のような複
雑な構造とする必要はない。
(4) Realization of a Simple Thin Film Transistor Structure with High Aperture Ratio and Improvement of Brightness Therefor With respect to the structure in a pixel including a thin film transistor, a comb-shaped electrode disclosed in a known example (Japanese Patent Publication No. 63-21907). In the case of using, there is a problem that the aperture ratio is remarkably reduced, whereby the brightness is reduced. In consideration of mass productivity, the width of one comb tooth electrode is required to be about 8 μm and at least 4 μm or more. For example, as shown in FIG.
The structure is such that there are a total of 17 comb teeth like diagonal 9.
It is impossible to form a 0.3 × 0.1 mm 2 pixel of the 4-inch color VGA class. The present invention has been devised as means for maintaining the aperture ratio sufficiently while maintaining the advantages of the above (1) and (2). Instead of a structure in which the aperture ratio has to be reduced like a comb tooth, a practically high aperture ratio can be realized by a simpler electrode structure. The present invention has a structure in which a common electrode is formed on a counter substrate or a pixel electrode is formed on the same layer. In the above-mentioned known example (Japanese Patent Publication No. 63-21907), in order to form a comb-tooth electrode, the leading directions of the signal wiring and the common electrode are made orthogonal. That is, the signal wiring is moved in the first direction (Y direction).
Then, the common electrode is stretched in a direction (X direction) orthogonal to the common electrode. On the other hand, a complicated structure such as a comb tooth is avoided by extending all of the signal wiring, the pixel electrode, and the common electrode in the first direction as in the present invention. In order to reduce the threshold voltage of the liquid crystal and shorten the response time, the interval between the pixel electrode and the common electrode may be reduced, but it is not necessary to use a complicated structure like a comb.

【0037】本発明を実施例により具体的に説明する。The present invention will be specifically described with reference to examples.

【0038】〔実施例1〕基板としては厚みが1.1mm
で表面を研磨した透明なガラス基板を2枚用いる。これ
らの基板間に誘電率異方性Δεが正でその値が4.5 で
あり、屈折率異方性Δnが0.072(589nm,20
℃)のネマチック液晶組成物を挟む。基板表面に塗布し
たポリイミド系配向制御膜をラビング処理して、3.5
度のプレチルト角とする。上下界面上のラビング方向は
互いにほぼ平行で、かつ印加電界方向とのなす角度を8
5度(φLC1=φLC2=85°)とした。ギャップdは球
形のポリマビーズを基板間に分散して挾持し、液晶封入
状態で4.5μm とした。よってΔn・dは0.324
μmである。2枚の偏光板〔日東電工社製G1220DU〕で
パネルを挾み、一方の偏光板の偏光透過軸をラビング方
向にほぼ平行、即ちφP1=85°とし、他方をそれに直
交、即ちφP2=−5°とした。これにより、ノーマリク
ローズ特性を得た。
[Example 1] The substrate had a thickness of 1.1 mm.
Use two transparent glass substrates whose surfaces have been polished. The dielectric anisotropy Δε is positive and 4.5 between these substrates, and the refractive index anisotropy Δn is 0.072 (589 nm, 20 nm).
C)). Rubbing the polyimide alignment control film applied to the substrate surface to 3.5
Degree of pretilt angle. The rubbing directions on the upper and lower interfaces are almost parallel to each other, and the angle between the rubbing directions and the direction of the applied electric field is 8 °.
5 degrees (φ LC1 = φ LC2 = 85 °). The gap d was 4.5 μm in a state in which liquid crystal was sealed, with spherical polymer beads dispersed and sandwiched between substrates. Therefore, Δn · d is 0.324
μm. The panel is sandwiched between two polarizing plates (G1220DU manufactured by Nitto Denko Corporation), and the polarizing transmission axis of one of the polarizing plates is substantially parallel to the rubbing direction, that is, φ P1 = 85 °, and the other is orthogonal to it, ie, φ P2 = −5 °. As a result, normally closed characteristics were obtained.

【0039】薄膜トランジスタ及び各種電極の構造は図
2(a)(正面図)及び図2(b)(側断面)に示すよ
うに、薄膜トランジスタ素子(図2の斜線部)が画素電
極(ソース電極)1と信号電極(ドレイン電極)12、
及び走査電極(ゲート電極)10を有し、画素電極1が第
1の方向(図2では紙面内で上下の方向を意味する)に伸
びており、信号電極12及び共通電極2が複数の画素間
(図2では紙面内で上下の方向に並んだ画素を意味す
る)に渡って第1の方向伸び、薄膜トランジスタ素子が
共通電極の間に配置されている。
As shown in FIG. 2A (front view) and FIG. 2B (side sectional view), the structure of the thin film transistor and various electrodes is such that the thin film transistor element (shaded portion in FIG. 2) is a pixel electrode (source electrode). 1, a signal electrode (drain electrode) 12,
And a scanning electrode (gate electrode) 10, the pixel electrode 1 extends in a first direction (in FIG. 2, means a vertical direction in the plane of FIG. 2), and the signal electrode 12 and the common electrode 2 The thin film transistor element extends between the common electrodes in the first direction extending between them (in FIG. 2, it means pixels arranged vertically in the plane of the paper).

【0040】信号電極12には情報を有する信号波形が
印加され、走査電極10には走査波形が信号波形と同期
をとって印加される。アモルファスシリコン(a−Si)
16からなるチャンネル層及び窒化シリコン(SiN)
の保護絶縁膜15からなる薄膜トランジスタは隣接する
共通電極の間に配置されている。信号電極12から薄膜
トランジスタを介して画素電極1に情報信号が伝達さ
れ、共通電極2との間で液晶部分に電圧が印加される。
本実施例では共通電極を対向基板側に配置し、図2
(b)では厚み方向を拡大して表した為、電界方向7が
傾斜しているように見えるが、実際には幅が48μmに
対して液晶層の厚みが6μm程度であり、傾斜はほとん
どなく、印加電界方向は基板面にほぼ平行である。
A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a-Si)
16 channel layer and silicon nitride (SiN)
The thin film transistor comprising the protective insulating film 15 is disposed between adjacent common electrodes. An information signal is transmitted from the signal electrode 12 to the pixel electrode 1 via the thin film transistor, and a voltage is applied between the common electrode 2 and the liquid crystal portion.
In this embodiment, the common electrode is arranged on the counter substrate side, and FIG.
In (b), since the thickness direction is enlarged, it appears that the electric field direction 7 is inclined. However, in practice, the thickness of the liquid crystal layer is about 6 μm with respect to the width of 48 μm, and there is almost no inclination. The direction of the applied electric field is substantially parallel to the substrate surface.

【0041】付加容量素子11は、図2(a)に示すよ
うに、画素電極1を突起部を形成した走査配線10の上
にゲート絶縁膜13を挟む構造として形成した。この付
加容量素子11の静電容量は約21fFになった。各走
査配線10および各信号電極駆動回路21にはそれぞれ
走査配線駆動用LSIおよび信号配線駆動用LSIを接
続した。
As shown in FIG. 2A, the additional capacitance element 11 was formed such that the pixel electrode 1 had a structure in which the gate insulating film 13 was interposed on the scanning wiring 10 on which the projection was formed. The capacitance of the additional capacitance element 11 became about 21 fF. A scanning wiring driving LSI and a signal wiring driving LSI were connected to each scanning wiring 10 and each signal electrode driving circuit 21, respectively.

【0042】画素電極1に蓄積された電荷は、画素電極
1と共通電極2の間の静電容量と付加容量素子11を並
列接続した容量である約24fFに蓄積されることにな
り、液晶組成物50の比抵抗が5×1010Ωcmであって
も画素電極1の電圧変動を抑制することができる。この
ため、画質劣化を防止することができた。
The electric charge accumulated in the pixel electrode 1 is accumulated in the capacitance between the pixel electrode 1 and the common electrode 2 and about 24 fF which is a capacitance in which the additional capacitance element 11 is connected in parallel. Even if the specific resistance of the object 50 is 5 × 10 10 Ωcm, the voltage fluctuation of the pixel electrode 1 can be suppressed. For this reason, it was possible to prevent image quality deterioration.

【0043】画素数は40(×3)×30で、画素ピッ
チは横方向(即ち共通電極間)は80μm、縦方向(即
ち走査電極間)は240μmである。走査電極の幅は1
2μmで隣接する走査電極の間隙を68μmとし、50
%という高い開口率を確保した。また薄膜トランジスタ
を有する基板に相対向する基板上にストライプ状のR,
G,B3色のカラーフィルタを備えた。カラーフィルタ
の上には表面を平坦化する透明樹脂を積層した。透明樹
脂の材料としてはエポキシ樹脂を用いた。更に、この透
明樹脂上ポリイミド系の配向制御膜を塗布した。パネル
には駆動回路が接続されている。本実施例の駆動回路シ
ステムの構成を図8に示す。信号電極23及び共通電極
2は表示部端部にまで伸びている。図9及び図10は光
学システムの構成を表し、図9が透過型、図10が反射
型を表す。
The number of pixels is 40 (× 3) × 30, and the pixel pitch is 80 μm in the horizontal direction (namely, between the common electrodes) and 240 μm in the vertical direction (namely, between the scan electrodes). Scan electrode width is 1
The gap between adjacent scanning electrodes is set to 68 μm at 2 μm, and
%. Also, a stripe-shaped R,
G, B color filters were provided. A transparent resin for flattening the surface was laminated on the color filter. Epoxy resin was used as the material of the transparent resin. Further, a polyimide-based orientation control film was applied on the transparent resin. A drive circuit is connected to the panel. FIG. 8 shows the configuration of the drive circuit system according to the present embodiment. The signal electrode 23 and the common electrode 2 extend to the end of the display unit. 9 and 10 show the configuration of the optical system. FIG. 9 shows a transmission type, and FIG. 10 shows a reflection type.

【0044】本実施例では透明電極を必要としないた
め、製造プロセスが簡単化できかつ歩留まりも向上し、
著しくコストが低減できる。特に、透明電極を形成する
ための真空炉を有する極めて高価な設備が不要になり、
製造設備投資額の大幅低減とそれによる低コスト化が可
能となる。本実施例における画素への印加電圧実効値と
明るさの関係を示す電気光学特性を図3(a)に示す。
コントラスト比は7V駆動時に150以上となり、視角
を左右,上下に変えた場合のカーブの差は従来方式(比
較例1に示す)に比べて極めて小さく、視角を変化させ
ても表示特性はほとんど変化しなかった。また、液晶配
向性も良好で、配向不良ドメインは発生しなかった。ま
た、開口率は薄膜トランジスタ及び電極構造の簡単化に
より50%と十分に高い値を確保し、明るいディスプレ
イを実現した。パネル全体の平均透過率は8.4% とな
った。尚、ここで明るさとは2枚の偏光板を平行に配置
したときの輝度透過率で定義した。
In this embodiment, since a transparent electrode is not required, the manufacturing process can be simplified and the yield can be improved.
The cost can be significantly reduced. In particular, extremely expensive equipment having a vacuum furnace for forming a transparent electrode is not required,
This makes it possible to significantly reduce the amount of investment in manufacturing equipment and thereby reduce costs. FIG. 3A shows the electro-optical characteristics showing the relationship between the effective value of the voltage applied to the pixel and the brightness in this embodiment.
The contrast ratio becomes 150 or more at the time of 7V drive, and the difference between the curves when the viewing angle is changed left and right and up and down is extremely small as compared with the conventional method (shown in Comparative Example 1). Even when the viewing angle is changed, the display characteristics hardly change. Did not. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated. Further, the aperture ratio secured a sufficiently high value of 50% by simplification of the thin film transistor and electrode structure, and a bright display was realized. The average transmittance of the entire panel was 8.4%. Here, the brightness was defined as a luminance transmittance when two polarizing plates were arranged in parallel.

【0045】〔実施例2〕本実施例では実施例1で対向
基板側に配置した共通電極を、走査電極を配置した基板
と同じ基板側に配置した。他の構成は実施例1と同一で
ある。薄膜トランジスタ及び電極の断面構造を図4に示
す。画素電極1,信号電極12,走査電極10はいずれ
もアルミニウムで、同時に成膜及びエッチングをして形
成した。対向基板上には一切導電性の物質は存在しな
い。従って、本実施例の構成においては仮に製造工程中
に導電性の異物が混入したとしても、上下電極間タッチ
の可能性がなく、上下電極間タッチの不良率がゼロに抑
制される。なお、電極用の材料としては電気抵抗の低い
金属性のものであれば特に材料の制約はなく、クロム,
銅等でもよい。
[Embodiment 2] In this embodiment, the common electrode arranged on the counter substrate side in the embodiment 1 is arranged on the same substrate side as the substrate on which the scanning electrodes are arranged. Other configurations are the same as those of the first embodiment. FIG. 4 shows a cross-sectional structure of the thin film transistor and the electrode. The pixel electrode 1, the signal electrode 12, and the scanning electrode 10 were all formed of aluminum, and were simultaneously formed and etched. No conductive substance exists on the opposing substrate. Therefore, in the configuration of the present embodiment, even if conductive foreign matter enters during the manufacturing process, there is no possibility of touch between the upper and lower electrodes, and the failure rate of touch between the upper and lower electrodes is suppressed to zero. The material for the electrode is not particularly limited as long as it is a metallic material having a low electric resistance.
Copper or the like may be used.

【0046】一般にフォトマスクのアライメント精度は
対向する2枚のガラス基板間の組み合わせのアライメン
ト精度に比べて著しく高い。従って、本実施例のように
4種の電極群のいずれをも一方の基板上に形成した方
が、各電極の形成時のアライメントがフォトマスクのみ
で行われるため、電極間のアライメントずれが小さく抑
制される。従って、本実施例は走査電極を対向基板上に
形成する場合に比べて、より高精細なパターンを形成す
るのに有効である。
In general, the alignment accuracy of a photomask is significantly higher than the alignment accuracy of a combination between two opposing glass substrates. Therefore, when all of the four types of electrode groups are formed on one substrate as in the present embodiment, the alignment at the time of forming each electrode is performed only by the photomask. Is suppressed. Therefore, the present embodiment is effective for forming a higher definition pattern as compared with the case where the scanning electrodes are formed on the counter substrate.

【0047】実施例1と同様に広い視角特性を有する明
るい表示を得た。
As in Example 1, a bright display having a wide viewing angle characteristic was obtained.

【0048】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 3] The configuration of this embodiment is the same as Embodiment 1 except for the following requirements.

【0049】薄膜トランジスタ及び各種電極の構造を図
5に示すように、対をなす画素電極1の間に信号電極1
2を配置し、さらに対をなす共通電極2をこれらの電極
の外側に配置した。信号電極12には情報を有する信号
波形が印加され、走査電極10には走査波形が信号波形
と同期をとって印加される。アモルファスシリコン(a
−Si)16及び窒化シリコン(SiN)の保護絶縁膜
15からなる薄膜トランジスタは対をなす共通電極のほ
ぼ中央部に配置されている。信号電極12から2個の薄
膜トランジスタを介して2個の第1の電極1に同じ情報
信号が伝達され、電位を同じくした両側の共通電極との
間で液晶部分に同じ電圧信号が印加される。このように
することで薄膜トランジスタ及び電極構造を複雑化せず
に電極間隔を半分程度にでき、同一電圧でより高い電界
を印加することができるようになり、駆動電圧の低減及
び高速応答化が実現される。
As shown in FIG. 5, the structure of the thin film transistor and various electrodes is such that the signal electrode 1 is located between the pair of pixel electrodes 1.
2 and a pair of common electrodes 2 were arranged outside these electrodes. A signal waveform having information is applied to the signal electrode 12, and a scanning waveform is applied to the scanning electrode 10 in synchronization with the signal waveform. Amorphous silicon (a
-Si) 16 and a thin-film transistor comprising a protective insulating film 15 of silicon nitride (SiN) are arranged substantially at the center of a pair of common electrodes. The same information signal is transmitted from the signal electrode 12 to the two first electrodes 1 via the two thin film transistors, and the same voltage signal is applied to the liquid crystal portion between the common electrodes on both sides having the same potential. By doing so, the electrode spacing can be reduced to about half without complicating the structure of the thin film transistor and the electrode, and a higher electric field can be applied at the same voltage, thereby reducing the driving voltage and achieving a high-speed response. Is done.

【0050】実施例1の広い視角特性と明るさは本実施
例でも実現される。
The wide viewing angle characteristics and brightness of the first embodiment are also realized in this embodiment.

【0051】〔実施例4〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 4] The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0052】カラーフィルタ上に有機絶縁層として透明
ポリマからなる平坦化膜14(図2(b))を積層し、
その上に配向制御膜としての別の膜を形成せずに表面を
直接ラビングした。透明ポリマの材料としてはエポキシ
樹脂を用いた。このエポキシ樹脂は平坦化と液晶分子の
配向制御の両方の機能を兼ね備えている。液晶組成物層
はエポキシ樹脂に直接接し、界面での傾き角は0.5 度
であった。これにより、配向膜を塗布する工程がなくな
り、製造がより容易かつ短くなった。一般に従来方式で
あるTN型では、配向制御膜に要求される特性が多岐に
わたり、それら全てを満足する必要があり、そのためポ
リイミド等の一部の材料に限られていた。特に重要な特
性は、傾き角である。しかし、前述したように、本発明
では大きな傾き角を必要とせず、従って、材料の選択幅
が著しく改善される。
A flattening film 14 (FIG. 2B) made of a transparent polymer is laminated as an organic insulating layer on the color filter.
The surface was directly rubbed without forming another film as an orientation control film thereon. Epoxy resin was used as the material of the transparent polymer. This epoxy resin has both functions of flattening and controlling the alignment of liquid crystal molecules. The liquid crystal composition layer was in direct contact with the epoxy resin, and the tilt angle at the interface was 0.5 degrees. Thereby, the step of applying the alignment film was eliminated, and the production was easier and shorter. Generally, in the conventional TN type, the characteristics required for the orientation control film are diversified, and it is necessary to satisfy all of them. Therefore, it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle. However, as described above, the present invention does not require a large tilt angle, and therefore, the material selection range is significantly improved.

【0053】本実施例における電気光学特性を測定した
ところ、実施例1と同様に視角を左右,上下に変えた場
合のカーブの差が極めて小さく、表示特性はほとんど変
化しないという結果を得た。また、傾き角が0.5 度と
小さいにもかかわらず液晶配向性も良好で、配向不良ド
メインは発生しなかった。
When the electro-optical characteristics in this embodiment were measured, it was found that the difference between the curves when the viewing angle was changed left and right and up and down was extremely small and the display characteristics hardly changed, as in the first embodiment. In addition, although the tilt angle was as small as 0.5 degree, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0054】〔実施例5〕実施例4の平坦化する為の透
明ポリマをエポキシ樹脂からポリイミド樹脂に変えた。
同様にポリイミド樹脂の表面を直接ラビングし、平坦化
と液晶分子の配向制御の両方の機能を兼ね備えた。界面
での傾き角は2度であった。他の実施例と比較して、表
示特性はほとんど変化しないという結果を得た。また、
液晶配向性も良好で、配向不良ドメインは発生しなかっ
た。
Embodiment 5 The transparent polymer for flattening in Embodiment 4 was changed from an epoxy resin to a polyimide resin.
Similarly, the surface of the polyimide resin was directly rubbed to have both functions of flattening and controlling the alignment of liquid crystal molecules. The angle of inclination at the interface was 2 degrees. As a result, the display characteristics were hardly changed as compared with the other examples. Also,
The liquid crystal alignment was good, and no alignment failure domain was generated.

【0055】〔実施例6〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Embodiment 6] The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0056】薄膜トランジスタを保護する保護絶縁膜1
5(図2(b))を窒化シリコンからエポキシ樹脂から
なる有機絶縁層に交換し、その上を直接ラビング処理
し、有機絶縁層に保護膜と液晶分子配向制御膜の両方の
機能を持たせた。傾き角は0.5度である。
A protective insulating film 1 for protecting a thin film transistor
5 (FIG. 2B) is changed from silicon nitride to an organic insulating layer made of epoxy resin, and rubbing is performed directly on the organic insulating layer to make the organic insulating layer have both functions of a protective film and a liquid crystal molecular alignment control film. Was. The tilt angle is 0.5 degrees.

【0057】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例4と同様に、傾き角が0.5
度と小さいにもかかわらず液晶配向性も良好で、配向不
良ドメインは発生しなかった。
When the electro-optical characteristics in this example were measured, display characteristics that were almost the same as those in Example 1 were obtained. Further, similarly to the fourth embodiment, the inclination angle is 0.5.
Despite the small degree, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0058】〔実施例7〕実施例6で保護膜に用いたエ
ポキシ樹脂を同様に有機絶縁層となるポリイミドに変え
た。
Example 7 The epoxy resin used for the protective film in Example 6 was similarly changed to polyimide which would be an organic insulating layer.

【0059】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例6に比べ、傾き角は2.0 度
と若干上昇した。液晶配向性は良好で、配向不良ドメイ
ンは発生しなかった。
When the electro-optical characteristics in this embodiment were measured, display characteristics which were almost the same as those in Example 1 were obtained. In addition, the tilt angle slightly increased to 2.0 degrees as compared with Example 6. The liquid crystal alignment was good, and no alignment defect domain was generated.

【0060】〔実施例8〜12〕これらの実施例の構成
は下記の要件を除けば、実施例7と同一である。
[Embodiments 8 to 12] The construction of these embodiments is the same as that of Embodiment 7 except for the following requirements.

【0061】実施例8では上下界面上の液晶分子長軸方
向(ラビング方向)は互いにほぼ平行で、かつ印加電界
方向とのなす角度を89.5度(φLC1=φLC2=89.5
°)、一方の偏光板の偏光透過軸をラビング方向にほぼ
平行(φP1=89.5°)とし、他方をそれに直交(φP2
=−0.5°)とした。
In Example 8, the major axis directions (rubbing directions) of the liquid crystal molecules on the upper and lower interfaces are substantially parallel to each other, and the angle formed with the direction of the applied electric field is 89.5 degrees (φ LC1 = φ LC2 = 89.5).
°), the polarization transmission axis of one of the polarizing plates is substantially parallel to the rubbing direction (φ P1 = 89.5 °), and the other is perpendicular to it (φ P2
= −0.5 °).

【0062】同様に実施例9ではφLC1=φLC2=φP1
88°,φP2=−2.0° とした。同様に実施例10で
はφLC1=φLC2=φP1=75°,φP2=−25°とし
た。同様に実施例11ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。同様に実施例12ではφ
LC1=φLC2=φP1=30°,φP2=−60°とした。
Similarly, in the ninth embodiment, φ LC1 = φ LC2 = φ P1 =
88 ° and φ P2 = −2.0 °. Similarly, in Example 10, φ LC1 = φ LC2 = φ P1 = 75 ° and φ P2 = −25 °. Similarly, in the eleventh embodiment, φ LC1 = φ LC2 = φ P1 = 45
° and φ P2 = -45 °. Similarly, in Example 12, φ
LC1 = φ LC2 = φ P1 = 30 °, and a φ P2 = -60 °.

【0063】これらの実施例における電気光学特性の測
定結果を図7にまとめて表す。尚ここでは明るさを印加
電圧が0ボルトから10ボルト(実効値Vrms)の範囲で
最大となるときを100%、最小となるときを0%とし
た規格化した値で表した。角度φLCを大きくすること
で、しきい値特性のカーブがより急峻になる傾向を示し
た。中間調表示を大きな電圧裕度を持って行うには、φ
LCを小さくすれば良いが、45度以下になると明るさが
低下する傾向を示した。角度φLCの最適な値は、表示す
る中間調レベルの数,明るさに対する要求値,駆動する
電圧,コモン電極に電圧を印加するか否かによって代わ
る。設計者は、φLCの選択により大きな範囲でしきい値
特性が制御できる。明るさを考慮すると、望ましくはφ
LCを45度以上とすると良い。また更により望ましくは
60度から89.5 度の間とすると良い。
The measurement results of the electro-optical characteristics in these examples are shown in FIG. In this case, the brightness is represented by a standardized value in which the maximum is 100% when the applied voltage is in the range of 0 to 10 volts (effective value Vrms), and the minimum is 0% when the applied voltage is minimum. By increasing the angle φ LC , the threshold characteristic curve tended to be steeper. To perform halftone display with a large voltage tolerance, φ
The LC may be reduced, but the brightness tends to decrease when the angle is 45 degrees or less. The optimum value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not a voltage is applied to the common electrode. The designer can control the threshold characteristics over a large range by selecting φ LC . Considering brightness, preferably φ
It is good to set LC to 45 degrees or more. It is even more desirable that the angle be between 60 degrees and 89.5 degrees.

【0064】視角特性を測定したところ、いずれの場合
も実施例1と同様に視角を左右,上下に変えた場合のカ
ーブの差が極めて小さく、表示特性はほとんど変化しな
いという結果を得た。また、液晶配向性も良好で、配向
不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed left and right and up and down was extremely small, and the result was that the display characteristics hardly changed in any case as in Example 1. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0065】〔実施例13〜16〕以上の実施例と本実
施例の最大の相違点は、液晶組成物層の誘電率異方性の
値を負にし、それに合わせてラビング方向を変えた点で
ある。Δεが−4.8 ,Δnが0.0437(589n
m,20℃)のネマチック液晶組成物(メルク社製,Z
LI−2806)を用いた。実施例13〜16の実施例
に於いては、いずれも上下界面上の液晶分子長軸方向
(ラビング方向φLC1,φLC2)を互いにほぼ平行(φLC1
=φLC2)とし、印加電界方向とのなす角度φLC1を0度
を超え45度未満である範囲とした。また一方の偏光板
の偏光透過軸(φP1)はラビング方向にほぼ平行とし、
他方(φP2)をそれに直交とした。
[Embodiments 13 to 16] The biggest difference between the above embodiments and this embodiment is that the value of the dielectric anisotropy of the liquid crystal composition layer was made negative and the rubbing direction was changed accordingly. It is. Δε is -4.8, Δn is 0.0437 (589n
m, 20 ° C.) nematic liquid crystal composition (manufactured by Merck, Z
LI-2806) was used. In Examples 13 to 16, all of the liquid crystal molecule major axis directions (rubbing directions φ LC1 and φ LC2 ) on the upper and lower interfaces are almost parallel to each other (φ LC1
= Φ LC2 ), and the angle φ LC1 with the direction of the applied electric field was set to a range of more than 0 degree and less than 45 degrees. The polarization transmission axis (φ P1 ) of one polarizing plate is almost parallel to the rubbing direction,
The other (φ P2 ) was made orthogonal to it.

【0066】即ち、実施例13ではφLC1=φLC2=φP1
=1.5°,φP2=−88.5°とした。実施例14では
φLC1=φLC2=φP1=15°,φP2=−75°とした。
実施例15ではφLC1=φLC2=φP1=30°,φP2=−
60°とした。実施例16ではφLC1=φLC2=φP1=4
5°,φP2=−45°とした。
That is, in the thirteenth embodiment, φ LC1 = φ LC2 = φ P1
= 1.5 ° and φ P2 = -88.5 °. In Example 14, φ LC1 = φ LC2 = φ P1 = 15 ° and φ P2 = −75 °.
In Embodiment 15, φ LC1 = φ LC2 = φ P1 = 30 °, φ P2 = −
60 °. In the sixteenth embodiment, φ LC1 = φ LC2 = φ P1 = 4
5 °, φ P2 = −45 °.

【0067】ギャップdは液晶封入状態で6.3μmと
し、Δn・dを0.275μmとした。薄膜トランジス
タ,電極の構造等の以外の条件は実施例3と同じであ
る。
The gap d was 6.3 μm when the liquid crystal was sealed, and Δn · d was 0.275 μm. The conditions other than the structure of the thin film transistor and the electrode are the same as those of the third embodiment.

【0068】これらの実施例における電気光学特性の測
定結果を図11にまとめて表す。誘電率異方性が正の場
合とは逆に、角度φLCを小さくするに従い、しきい値特
性のカーブがより急峻になる傾向を示した。中間調表示
を大きな電圧裕度を持って行うには、φLCを大きくすれ
ば良いが、45度以上になると明るさが低下する傾向を
示した。誘電率異方性が正の場合と同様に、角度φLC
最適な値は、表示する中間調レベルの数,明るさに対す
る要求値,駆動する電圧,共通電極に電圧を印加するか
否かによって代わる。設計者は、φLCの選択により大き
な範囲でしきい値特性が制御できる。明るさを考慮する
と、より望ましくはφLCを45度以下とすると良い。
FIG. 11 shows the measurement results of the electro-optical characteristics in these examples. Contrary to the case where the dielectric anisotropy is positive, the threshold characteristic curve tends to be steeper as the angle φ LC is made smaller. In order to perform the halftone display with a large voltage margin, it is sufficient to increase φ LC , but the brightness tends to decrease when the angle exceeds 45 degrees. As in the case where the dielectric anisotropy is positive, the optimal value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not to apply a voltage to the common electrode. Be replaced by The designer can control the threshold characteristics over a large range by selecting φ LC . In consideration of brightness, it is more preferable to set φ LC to 45 degrees or less.

【0069】尚、視角特性を測定したところ、いずれの
場合も実施例1と同様に視角を左右,上下に変えた場合
のカーブの差が極めて小さく、表示特性はほとんど変化
しないという結果を得た。特に中間調表示(8階調)し
たときのレベルの反転が上下,左右ともに±50度の範
囲内ではまったく見られなかった。また、液晶配向性も
良好で、配向不良ドメインは発生しなかった。
When the viewing angle characteristics were measured, the difference between the curves when the viewing angle was changed to the left, right, up and down was very small, and the display characteristics were hardly changed. . In particular, no inversion of the level in the case of halftone display (8 gradations) was observed at all in the range of ± 50 degrees in the vertical and horizontal directions. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0070】〔実施例17〜19〕本実施例では、実施
例13〜16に於いて最も特性が良好であった実施例1
4(φLC1=φLC2=φP1=15°,φP2=−75°)と
液晶分子長軸方向,偏光板配置を同一とし、液晶組成物
層の厚みdと屈折率異方性Δnの積d・Δnを変えた。
実施例17,18,19それぞれの液晶組成物層の厚み
dを4.0,4.9,7.2μm、即ちd・Δnをそれぞ
れ0.1748,0.2141,0.3146μmとし
た。尚、ここでは屈折率異方性Δnを一定とし、液晶組
成物層の厚みdのみを変えたが、他の液晶表示方式(例
えば、90度ツイステッドネマチック方式)と同様に、
屈折率異方性Δnを変えても明るさの最適値については
同様の結果が得られる。また、液晶組成物層の誘電率異
方性の値を正にしても同様の結果が得られる。結果を実
施例14の結果も含めて、図12にまとめて示す。図1
2(a)は横軸を印加電圧とし、図12(b)は図12
(a)に於いて印加電圧を7ボルトに固定して横軸をd
・Δnにして表したものである。図12(b)から明ら
かなように、明るさはd・Δn強く依存し、かつ最適な
値が存在する。明るさを実用性のある30%以上とする
にはd・Δnを0.21から0.36μmの間にすれば良
く、さらに明るさを50%以上に引き上げるには0.2
3から0.33μmの間にすれば良い。また、液晶の封
入時間や液晶組成物層の厚みの制御等、量産性を考慮す
るとdの値を5.0μm以上とし、Δnを本実施例のよ
うに0.08以下とすることが望ましい。
[Embodiments 17 to 19] In this embodiment, Embodiment 1 in which the characteristics are the best in Embodiments 13 to 16 is shown.
4 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = −75 °) with the same direction of the long axis of the liquid crystal molecules and the arrangement of the polarizing plates, and the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn The product d · Δn was changed.
The thickness d of the liquid crystal composition layer in each of Examples 17, 18, and 19 was 4.0, 4.9, 7.2 μm, that is, d · Δn was 0.1748, 0.2141, 0.3146 μm, respectively. Here, while the refractive index anisotropy Δn was fixed and only the thickness d of the liquid crystal composition layer was changed, similar to other liquid crystal display methods (for example, a 90 degree twisted nematic method),
Even if the refractive index anisotropy Δn is changed, similar results can be obtained for the optimum value of the brightness. Similar results are obtained even when the value of the dielectric anisotropy of the liquid crystal composition layer is made positive. The results, including the results of Example 14, are collectively shown in FIG. FIG.
2A shows the applied voltage on the horizontal axis, and FIG.
In (a), the applied voltage is fixed at 7 volts, and the horizontal axis is d.
It is expressed as Δn. As is clear from FIG. 12B, the brightness strongly depends on d · Δn, and there is an optimum value. To make the brightness 30% or more, which is practical, d.Δn should be between 0.21 and 0.36 μm. To further increase the brightness to 50% or more, 0.2.
What is necessary is just to set it between 3 and 0.33 μm. In consideration of mass productivity such as control of the liquid crystal encapsulation time and the thickness of the liquid crystal composition layer, it is preferable that the value of d be 5.0 μm or more and Δn be 0.08 or less as in this embodiment.

【0071】〔実施例20〜22〕実施例17〜19の
結果から明らかなように、d・Δnの最適値は0.21
から0.36μmの間、望ましくは0.23から0.33
μm の間にある。量産性のある液晶組成物層の厚みが
5.0μm 以上であることを鑑みると、屈折率異方性Δ
nの値は0.072以下、望ましくは0.066以下でな
くてはならない。ところが、このように極めてΔnの低
い液晶化合物の種類は非常に少なく、十分に他の実用上
の要求特性と両立することが困難である。そこで液晶組
成物層のd・Δnをやや高めに設定しておき、最適値よ
りも超過した分をこの液晶組成物層のd・Δnよりも低
い位相差Rfを有する光学的異方性媒質を液晶組成物層
により生じた位相差を補償するように挿入し、その結果
液晶組成物層と光学的異方性媒質とで合わせた実効的な
位相差が最適値である0.21から0.36μmの間に入
るようにする方法を考案した。
[Embodiments 20 to 22] As is clear from the results of Embodiments 17 to 19, the optimum value of d · Δn is 0.21.
To 0.36 μm, preferably 0.23 to 0.33
μm. Considering that the thickness of the mass-producible liquid crystal composition layer is 5.0 μm or more, the refractive index anisotropy Δ
The value of n must be less than 0.072, preferably less than 0.066. However, there are very few types of liquid crystal compounds having such a very low Δn, and it is difficult to sufficiently achieve compatibility with other practically required characteristics. Therefore, d · Δn of the liquid crystal composition layer is set to be slightly higher, and an optical anisotropic medium having a phase difference Rf lower than d · Δn of the liquid crystal composition layer is set to exceed the optimum value. The liquid crystal composition layer is inserted so as to compensate for the phase difference, and as a result, the effective phase difference between the liquid crystal composition layer and the optically anisotropic medium is an optimum value from 0.21 to 0.2. A method was devised so as to be within 36 μm.

【0072】実施例20〜22では下記に示す条件以外
は実施例3と同じ構成とした。液晶組成物層の厚みをそ
れぞれ5.0,5.2,5.5μm とした。屈折率異方性
Δnが0.072(589nm,20℃)のネマチック液
晶組成物を用いている為、d・Δnの値は0.360,
0.3744,0.396μm である。このままでは、
明るさ及び色調が良好な0.21から0.36μmの範囲
よりも高い値となっている為、オレンジ色に着色してい
る。この液晶セルにポリビニルアルコール製一軸延伸フ
ィルムの光学的異方性媒質を、低電圧駆動時(ここでは
0ボルト)に液晶の複屈折位相差を補償するように積層
した。即ち、φRをφLC1(=φLC2)と同じ85度とし
た。位相差Rfはそれぞれ0.07,0.08,0.10
μm とし、(d・Δn−Rf)の値を0.29,0.3
044,0.296μm と明るさ及び色調が良好な0.
21から0.36μmの範囲に入るようにした。
Examples 20 to 22 had the same configuration as that of Example 3 except for the following conditions. The thicknesses of the liquid crystal composition layers were 5.0, 5.2, and 5.5 μm, respectively. Since a nematic liquid crystal composition having a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) is used, the value of d · Δn is 0.360,
0.3744, 0.396 μm. If this goes on,
Since the brightness and the color tone are higher than the good range of 0.21 to 0.36 μm, the color is orange. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol was laminated on the liquid crystal cell so as to compensate for the birefringence phase difference of the liquid crystal during low voltage driving (here, 0 volt). That is, φ R is set to 85 degrees, which is the same as φ LC1 (= φ LC2 ). The phase difference Rf is 0.07, 0.08, 0.10, respectively.
μm, and the value of (d · Δn−Rf) is 0.29, 0.3.
044, 0.296 μm, good brightness and color tone.
The range was from 21 to 0.36 μm.

【0073】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display with no coloration and a brightness of 50% or more was obtained.

【0074】〔実施例23〕実施例20の液晶組成物層
を誘電率異方性Δεが負で、その値が−2.5 であり、
Δnが0.0712(589nm,20℃)のネマチック
液晶組成物(メルク社製,ZLI−4518)に変え
た。他の構成は下記を除けば実施例14と同じである。
液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3
916μmである。この液晶セルに位相差Rfが0.1
1μm であるポリビニルアルコール製一軸延伸フィル
ムの光学的異方性媒質を積層し、(d・Δn−Rf)の
値を0.2816μmと明るさ及び色調が良好な0.21から
0.36μmの範囲に入るようにした。
Example 23 The liquid crystal composition layer of Example 20 had a negative dielectric anisotropy Δε and a value of −2.5,
The composition was changed to a nematic liquid crystal composition having a Δn of 0.0712 (589 nm, 20 ° C.) (manufactured by Merck, ZLI-4518). Other configurations are the same as those of the fourteenth embodiment except for the following.
The thickness of the liquid crystal composition layer is 5.5 μm, that is, d · Δn is 0.3.
916 μm. This liquid crystal cell has a phase difference Rf of 0.1.
An optically anisotropic medium of a 1 μm polyvinyl alcohol uniaxially stretched film is laminated, and the value of (d · Δn−Rf) is 0.2816 μm, and the brightness and color tone are in the range of 0.21 to 0.36 μm, which is good. I tried to enter.

【0075】その結果、着色がなく明るさが50%以上
の明るい表示が得られた。
As a result, a bright display with no coloration and a brightness of 50% or more was obtained.

【0076】〔実施例24〕本実施例の構成は下記の要
件を除けば、実施例8と同一である。
[Embodiment 24] The configuration of this embodiment is the same as Embodiment 8 except for the following requirements.

【0077】液晶組成物層のΔnは0.072でギャッ
プdは7.0μmとした。よってΔn・dは0.504μ
mである。φLC1を89.5 度とし、上下基板上の液晶
分子配向方向を互いに交差させ、|φLC1−φLC2|=9
0度とした。偏光板の配置は互いに直交(|φP2−φP1
|=90°)させかつ液晶分子配向方向との関係を旋光
モードとなるようにφLC1=φP1 とした。この結果、ノ
ーマリオープン型が得られた。
The Δn of the liquid crystal composition layer was 0.072 and the gap d was 7.0 μm. Therefore, Δn · d is 0.504μ
m. φ LC1 is 89.5 degrees, and the liquid crystal molecule alignment directions on the upper and lower substrates are crossed with each other, and | φ LC1 −φ LC2 | = 9
0 degrees. The arrangement of the polarizing plates is orthogonal to each other (| φ P2 −φ P1
| = 90 °), and φ LC1 = φ P1 so that the relationship with the liquid crystal molecule alignment direction becomes an optical rotation mode. As a result, a normally open type was obtained.

【0078】本実施例における電気光学特性を測定した
ところ、複屈折モードである他の実施例に比べてしきい
値電圧V10,V90が約2倍になった点を除けば、同じく
明るさも50%以上で、視角を左右,上下に変えた場合
のカーブの差も極めて小さく、表示特性はほとんど変化
しないという結果を得た。また、液晶配向性も良好で、
配向不良ドメインは発生しなかった。
When the electro-optical characteristics of this embodiment were measured, the brightness was the same except that the threshold voltages V 10 and V 90 were approximately twice as large as those of the other embodiments in the birefringence mode. When the viewing angle was changed to left and right and up and down, the difference between the curves was extremely small, and the display characteristics were hardly changed. In addition, the liquid crystal alignment is good,
No misalignment domain occurred.

【0079】〔実施例25,26〕本実施例の構成は下
記の要件を除けば、実施例1と同一である。
Embodiments 25 and 26 The configuration of this embodiment is the same as Embodiment 1 except for the following requirements.

【0080】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φLC1−φP1|を実施例25,26でそれぞれ5
度,15度とし、|φP2−φP1|=90度とした。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was slightly applied instead of 0. That is, | φ LC1 −φ P1 |
Every time, and 15 degrees, | φ P2P1 | = was 90 degrees.

【0081】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。また、液晶配向性も良好
で、配向不良ドメインは発生しなかった。
As in the other examples, good display characteristics were obtained in both brightness and viewing angle. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0082】〔実施例27,28〕本実施例の構成は下
記の要件を除けば、実施例14と同一である。
Embodiments 27 and 28 The configuration of this embodiment is the same as Embodiment 14 except for the following requirements.

【0083】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φP1−φLC1|を実施例27,28でそれぞれ5
度,7度とし、|φP2−φP1|=90度とした。また、
液晶組成物層の厚みdは6.3μmとした。よって、Δ
n・dは0.275μmである。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was slightly applied instead of 0. That is, | φ P1 −φ LC1 |
And 7 degrees, and | φ P2 −φ P1 | = 90 degrees. Also,
The thickness d of the liquid crystal composition layer was 6.3 μm. Therefore, Δ
n · d is 0.275 μm.

【0084】本実施例における電気光学特性の測定結果
を図13に示す。実施例27の場合、暗状態となる電圧
OFFは3.0ボルト、最も明るくなる電圧VONは9.2
ボルトであった。駆動をVOFF とVONの間で行えば、十
分に高いコントラストが得られる。同様に、実施例28
の場合はVOFF は5.0ボルト、VONは9.0ボルトであ
った。
FIG. 13 shows the measurement results of the electro-optical characteristics in this embodiment. In the case of the twenty-seventh embodiment, the dark state voltage V OFF is 3.0 volts, and the brightest voltage V ON is 9.2.
It was a bolt. If the driving is performed between V OFF and V ON , a sufficiently high contrast can be obtained. Similarly, Example 28
In this case, V OFF was 5.0 volts and V ON was 9.0 volts.

【0085】VOFF とVONの間で駆動した場合、他の実
施例と同じく、明るさ,視角両面で良好な表示特性が得
られた。また、液晶配向性も良好で、配向不良ドメイン
は発生しなかった。
When driving between V OFF and V ON , as in the other embodiments, good display characteristics were obtained in both brightness and viewing angle. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0086】〔実施例29〕本実施例の構成は下記の要
件を除けば、実施例27と同一である。
[Embodiment 29] The structure of this embodiment is the same as Embodiment 27 except for the following requirements.

【0087】信号電極に画像信号を印加すると共に、共
通電極に3.0V の交流波形を印加した。その結果、信
号電極に供給する電圧の低電圧化(8.3V⇒6.2V)
が実現した。
An image signal was applied to the signal electrode, and an AC waveform of 3.0 V was applied to the common electrode. As a result, the voltage supplied to the signal electrode is reduced (from 8.3V to 6.2V).
Was realized.

【0088】このようにしてVOFF とVONの間で駆動を
行い、他の実施例と同じく、明るさ,視角両面で良好な
表示特性を得た。また、液晶配向性も良好で、配向不良
ドメインは発生しなかった。
In this manner, driving was performed between V OFF and V ON , and good display characteristics were obtained in both the brightness and the viewing angle as in the other embodiments. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0089】〔実施例30〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Embodiment 30] The structure of this embodiment is the same as Embodiment 1 except for the following requirements.

【0090】偏光板の配置を、電界が0ではなく印加さ
れた状態で暗状態が得られるように、設定した。即ち、
LC1−φP1|を45度、|φP2−φP1|を90度とし
た。これにより、低電圧印加時に明状態、高電圧印加時
に暗状態となった。この時の明るさの電圧依存性の測定
結果を図14で実線で示した。
The arrangement of the polarizing plates was set so that a dark state was obtained when an electric field was applied instead of 0. That is,
| φ LC1 −φ P1 | was 45 degrees, and | φ P2 −φ P1 | was 90 degrees. This resulted in a bright state when a low voltage was applied and a dark state when a high voltage was applied. The measurement result of the voltage dependence of the brightness at this time is shown by a solid line in FIG.

【0091】他の実施例と同じく、明るさ,視角両面で
良好な表示特性が得られた。コントラスト比は35とな
った。また、液晶配向性も良好で、配向不良ドメインは
発生しなかった。
As in the other examples, good display characteristics were obtained in both the brightness and the viewing angle. The contrast ratio was 35. In addition, the liquid crystal alignment was good, and no alignment defect domain was generated.

【0092】〔実施例31〕実施例30の構成に於い
て、2枚の偏光板の間に界面残留位相差を補償する複屈
折媒体(一軸延伸したポリビニルアルコールフィルム)
を挿入した。このフィルムの延伸方向φR は−45度と
し、偏光板透過軸に直交させた。また、位相差Rfは1
5nmである。
Example 31 In the structure of Example 30, a birefringent medium (uniaxially stretched polyvinyl alcohol film) for compensating for the residual phase difference between the interfaces between the two polarizing plates.
Was inserted. The stretching direction phi R of the film was set to -45 °, it was perpendicular to the polarizer transmission axis. The phase difference Rf is 1
5 nm.

【0093】図14の点線で示したように、実施例30
に比べて高電圧印加時の光漏れが抑制され、コントラス
ト比は150に更に改善された。
As shown by the dotted line in FIG.
The light leakage when a high voltage was applied was suppressed, and the contrast ratio was further improved to 150.

【0094】本発明によれば、第一に、透明電極がなく
とも高コントラストで、低価格の設備で高い歩留まりで
量産可能な低コストの薄膜トランジスタ型液晶表示装置
を提供することができ、第二に、視角特性が良好で多階
調表示が容易である薄膜トランジスタ型液晶表示装置を
提供することができ、第三に、液晶配向に関するプロセ
ス及び材料の裕度が大きく、そのため開口率が高くで
き、光透過率を引上げた、より明るい薄膜トランジスタ
型液晶表示装置を提供することができ、第四に、第一か
ら第三の効果に加えてより構造が簡素である薄膜トラン
ジスタ構造を提供し、開口率を高くし、光透過率を引上
げた、より明るい薄膜トランジスタ型液晶表示装置を提
供することができる。
According to the present invention, firstly, it is possible to provide a low-cost thin film transistor type liquid crystal display device which can be mass-produced with a high yield at a high yield with a low-cost facility without a transparent electrode. In addition, it is possible to provide a thin film transistor type liquid crystal display device having good viewing angle characteristics and easy multi-gradation display, and thirdly, the process and material for liquid crystal alignment have a large margin, so that the aperture ratio can be increased, Fourth, it is possible to provide a brighter thin film transistor type liquid crystal display device with raised light transmittance, and fourthly, to provide a thin film transistor structure having a simpler structure in addition to the first to third effects, and to increase the aperture ratio. It is possible to provide a brighter thin film transistor type liquid crystal display device having a higher light transmittance.

【0095】[0095]

【発明の効果】本発明によれば、量産性が良好で低コス
トで視角特性が良好な薄膜トランジスタ型液晶表示装置
を提供できる。
According to the present invention, it is possible to provide a thin film transistor type liquid crystal display device having good mass productivity, low cost, and good viewing angle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶表示装置における液晶の動作を示
す図。
FIG. 1 is a diagram showing an operation of a liquid crystal in a liquid crystal display device of the present invention.

【図2】本発明の薄膜トランジスタの一例を示す図。FIG. 2 illustrates an example of a thin film transistor of the present invention.

【図3】本発明(a)及び比較例(b)の電気光学特性
(視角方向依存性)を示す図。
FIG. 3 is a diagram showing electro-optical characteristics (viewing angle direction dependence) of the present invention (a) and comparative example (b).

【図4】薄膜トランジスタにおいて画素電極(ソース電
極),共通電極,走査電極,信号電極(ドレイン電極)
をいずれも一方の基板上に配置した本発明の一実施例を
示す図。
FIG. 4 shows a pixel electrode (source electrode), a common electrode, a scanning electrode, and a signal electrode (drain electrode) in a thin film transistor.
FIG. 2 is a diagram showing an embodiment of the present invention in which both are arranged on one substrate.

【図5】画素電極(ソース電極),信号電極(ドレイン
電極)を画素の中央に配置し、1画素を2分割した本発
明の一実施例を示す図。
FIG. 5 is a diagram showing an embodiment of the present invention in which a pixel electrode (source electrode) and a signal electrode (drain electrode) are arranged at the center of a pixel, and one pixel is divided into two.

【図6】電界方向に対する、界面上の分子長軸配向方向
φLC,偏光板偏光軸φP ,位相板進相軸φR のなす角を
示す図。
FIG. 6 is a view showing an angle formed by a molecular long axis alignment direction φ LC , a polarizing plate polarization axis φ P , and a phase plate fast axis φ R with respect to an electric field direction.

【図7】界面上の分子長軸配向方向φLCを変えた種々の
実施例における電気光学特性を示す図。誘電率異方性が
正の場合。
FIG. 7 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is positive.

【図8】本発明の液晶表示駆動回路システムを表す図。FIG. 8 is a diagram showing a liquid crystal display drive circuit system of the present invention.

【図9】本発明の液晶表示透過型光学システムを表す
図。
FIG. 9 is a diagram showing a liquid crystal display transmission type optical system of the present invention.

【図10】本発明の液晶表示反射型光学システムを表す
図。
FIG. 10 is a diagram showing a liquid crystal display reflective optical system of the present invention.

【図11】界面上の分子長軸配向方向φLCを変えた種々
の実施例における電気光学特性を示す図。誘電率異方性
が負の場合。
FIG. 11 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis alignment direction φ LC on the interface is changed. When the dielectric anisotropy is negative.

【図12】液晶組成物層の厚みdを変えた種々の実施例
における電気光学特性を示す図。誘電率異方性が負の場
合。
FIG. 12 is a graph showing electro-optical characteristics in various examples in which the thickness d of the liquid crystal composition layer was changed. When the dielectric anisotropy is negative.

【図13】偏光板の配置を、電界が0ではなくやや印加
された状態で暗状態が得られるように設定した時の電気
光学特性を示す図。
FIG. 13 is a diagram showing electro-optical characteristics when the arrangement of a polarizing plate is set so that a dark state is obtained when an electric field is slightly applied instead of 0.

【図14】ノーマリオープン型の特性及び界面残留位相
差を補償した時の特性を表す図。
FIG. 14 is a diagram illustrating characteristics of a normally open type and characteristics when an interface residual phase difference is compensated.

【符号の説明】[Explanation of symbols]

1…画素電極(ソース電極)、2…共通電極(コモン電
極)、3…基板、4…配向制御膜、5…液晶組成物層中
の液晶分子、6…偏光板、7…電界方向、8…界面上の
分子長軸配向方向(ラビング方向)、9…偏光板偏光軸
方向、10…ゲート電極(走査電極)、11…付加容量
素子、12…信号電極(ドレイン電極)、13…ゲート
絶縁膜、14…平坦化膜、15…保護絶縁膜、16…ア
モルファスシリコン、17…カラーフィルタ、18…遮
光層、19…偏光板偏光透過軸、20…位相差板進相
軸、21…信号電極駆動回路、22…走査電極駆動回
路、23…信号電極、24…走査電極、25…下側基
板、26…上側基板、27…コントロール回路、28…
位相差板、29…バックライト、30…反射板、31…
液晶組成物層。
DESCRIPTION OF SYMBOLS 1 ... Pixel electrode (source electrode), 2 ... Common electrode (common electrode), 3 ... Substrate, 4 ... Alignment control film, 5 ... Liquid crystal molecules in a liquid crystal composition layer, 6 ... Polarizing plate, 7 ... Electric field direction, 8 ... Direction of molecular long axis alignment on interface (rubbing direction), 9: Polarizing plate polarization axis direction, 10: Gate electrode (scanning electrode), 11: Additional capacitance element, 12: Signal electrode (drain electrode), 13: Gate insulation Film: 14: Flattening film, 15: Protective insulating film, 16: Amorphous silicon, 17: Color filter, 18: Light shielding layer, 19: Polarizing plate polarization transmission axis, 20: Phase difference plate fast axis, 21: Signal electrode Drive circuit, 22: scan electrode drive circuit, 23: signal electrode, 24: scan electrode, 25: lower substrate, 26: upper substrate, 27: control circuit, 28:
Retardation plate, 29: backlight, 30: reflection plate, 31 ...
Liquid crystal composition layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 英俊 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 太田 益幸 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 鈴木 堅吉 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 Fターム(参考) 2H092 GA20 GA21 GA30 JA24 JB01 JB02 JB04 JB11 JB13 JB31 JB37 JB58 NA01 NA07 NA19 NA27 NA29 PA02 PA10 PA11 QA05 QA09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidetoshi Abe 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. Hitachi, Ltd.Electronic Device Division (72) Inventor Kenyoshi Suzuki 3300, Hayano, Mobara-shi, Chiba F-term (Reference) 2H092 GA20 GA21 GA30 JA24 JB01 JB02 JB04 JB11 JB13 JB31 JB37 JB58 NA01 NA07 NA19 NA27 NA29 PA02 PA10 PA11 QA05 QA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一対の基板と、この一対の基板に挾持され
た液晶層とを有する液晶表示装置であって、 前記一対の基板の一方には、 第1の方向に配置した複数の信号電極と、該複数の信号
電極に交差する第2の方向に配置された複数の走査電極
とを有し、該複数の信号電極及び複数の走査電極に囲ま
れた領域に対応して画素が形成されており、 前記各画素には、信号電極と走査電極の交点付近に配置
した薄膜トランジスタと、該薄膜トランジスタに接続さ
れ、前記第1の方向に配置された画素電極とが配置され
ており、 複数の画素間に渡って、前記第1の方向に共通電極を配
置したことを特徴とする液晶表示装置。
1. A liquid crystal display device comprising a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates, wherein one of the pair of substrates has a plurality of signal electrodes arranged in a first direction. And a plurality of scan electrodes arranged in a second direction intersecting the plurality of signal electrodes, and a pixel is formed corresponding to a region surrounded by the plurality of signal electrodes and the plurality of scan electrodes. In each of the pixels, a thin film transistor arranged near an intersection of a signal electrode and a scanning electrode, and a pixel electrode connected to the thin film transistor and arranged in the first direction are arranged. A liquid crystal display device, wherein a common electrode is arranged in the first direction over the interval.
【請求項2】前記各画素における画素電極及び共通電極
に、電位を与えることにより前記液晶層に電界を形成し
て表示の制御を行う請求項1の液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein an electric field is formed in said liquid crystal layer by applying a potential to a pixel electrode and a common electrode in each of said pixels to control display.
JP2001226970A 1992-09-18 2001-07-27 Liquid crystal display Pending JP2002082350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226970A JP2002082350A (en) 1992-09-18 2001-07-27 Liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-249938 1992-09-18
JP24993892 1992-09-18
JP2001226970A JP2002082350A (en) 1992-09-18 2001-07-27 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11045299A Division JP3441999B2 (en) 1992-09-18 1999-04-19 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2002082350A true JP2002082350A (en) 2002-03-22

Family

ID=26539559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226970A Pending JP2002082350A (en) 1992-09-18 2001-07-27 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2002082350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207605A (en) * 2010-05-24 2010-09-24 Hitachi Displays Ltd Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207605A (en) * 2010-05-24 2010-09-24 Hitachi Displays Ltd Display device

Similar Documents

Publication Publication Date Title
JP2940354B2 (en) Liquid crystal display
KR100327613B1 (en) Liquid crystal display device
KR100225910B1 (en) Lcd device
US6642985B2 (en) Fringe field mode LCD shielded from electrostatic disturbances
KR100431225B1 (en) Vertical orientation type liquid crystal display
JP2924757B2 (en) Liquid crystal element
US7880822B2 (en) Liquid crystal display panel and liquid crystal display device
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
JP3819561B2 (en) Liquid crystal display
KR100347492B1 (en) Transmission type liquid crystal display
JP2002214613A (en) Liquid crystal display
JPH09230364A (en) Liquid crystal display device
JP3332863B2 (en) Optical modulator
JP3441999B2 (en) Liquid crystal display
JP2002082350A (en) Liquid crystal display
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JP2000162627A (en) Liquid crystal display device
JP3811695B2 (en) Liquid crystal display
JP2006301466A (en) Liquid crystal display device
JPH0980383A (en) Liquid crystal display device
JP2004310141A (en) Liquid crystal display device
JP2003287741A (en) Liquid crystal display device
KR20040100338A (en) In plane switching mode liquid crystal display device and fabrication method thereof
JPH112842A (en) Liquid crystal display device
JPH07230074A (en) Liquid crystal display device