JP3625283B2 - Active matrix liquid crystal display device - Google Patents

Active matrix liquid crystal display device Download PDF

Info

Publication number
JP3625283B2
JP3625283B2 JP2002009901A JP2002009901A JP3625283B2 JP 3625283 B2 JP3625283 B2 JP 3625283B2 JP 2002009901 A JP2002009901 A JP 2002009901A JP 2002009901 A JP2002009901 A JP 2002009901A JP 3625283 B2 JP3625283 B2 JP 3625283B2
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
pixel
signal
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002009901A
Other languages
Japanese (ja)
Other versions
JP2002318389A (en
Inventor
益幸 太田
玄士朗 河内
雅明 北島
亨 佐々木
昌人 大江
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002009901A priority Critical patent/JP3625283B2/en
Publication of JP2002318389A publication Critical patent/JP2002318389A/en
Application granted granted Critical
Publication of JP3625283B2 publication Critical patent/JP3625283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブマトリクス型液晶表示装置に関する。
【0002】
【従来の技術】
従来のアクティブマトリクス型液晶表示装置は、液晶層を駆動する電極として2枚の基板界面上に相対向させ形成した透明電極を用いていた。これは、液晶に印加する電界の方向を基板界面にほぼ垂直な方向とすることで動作するツイステッドネマティック表示方式を採用していることによる。
【0003】
一方、液晶に印加する電界の方向を基板界面にほぼ平行な方向とする方式を用いたアクティブマトリクス型液晶表示装置は、例えば、特開昭56−91277号公報により提案されている。
【0004】
【発明が解決しようとする課題】
前記のツイステッドネマティック表示方式を用いた従来技術は、Indium Tin Oxide(ITO)に代表される透明電極を形成しなければならない。しかし、透明電極はその表面に数10nm程度の凹凸があり、薄膜トランジスタ(以下、TFTと云う)のような微細なアクティブ素子の加工を困難にしている。さらに、透明電極の凸部はしばしば離脱し、電極等の他の部分に混入し、点状或いは線状の表示欠陥を引き起こすため、製品の歩留まりを著しく低下させていた。
【0005】
また、前記従来技術においては、画質面でも多くの課題を有していた。特に、視角方向を変化させた際の輝度変化が著しく、中間調表示を困難にしていた。更にまた、スイッチングトランジスタ素子を用いたアクティブマトリクス型表示素子においては、液晶に電圧または電界を印加し、透過光または反射光を変調する画素電極以外に、スイッチングトランジスタ素子を駆動するための走査電極および信号電極が必要である。この走査電極および信号電極は、走査電極−画素電極間の寄生容量Cgs、信号電極−画素電極間の寄生容量Cdsによって、画素電極の電位を変動させる。特に、信号電極の電位は、映像情報によって絶えず変動するので、信号電極−画素電極間の寄生容量Cdsによって、画素電極の電位が変動し、コントラストの低下あるいはクロストークと呼ばれる画質不良を発生させている。
【0006】
液晶に印加する電界の方向を基板界面にほぼ平行な方向とする方式では、ツイステッドネマティック表示方式の場合と比較して、信号電極−画素電極間の寄生容量Cdsが大きくなり、クロストークが激しく、画像パターンによってコントラストが低下するという問題があった。なぜなら、液晶に印加する電界方向を基板界面にほぼ平行とする方式では、ツイステッドネマティック表示方式と異なり、スイッチングトランジスタ素子を有する基板と対向する基板の全面に共通電極を構成していないので、信号電極からの電気力線がシールドされず、画素電極に終端してしまうためである。このため、電界方向を基板界面にほぼ平行とする方式ではアクティブマトリクス駆動は画質面において問題があった。
【0007】
本発明の第一の目的は、透明電極を必要としないアクティブマトリクス型液晶表示装置を提供することにある。
【0008】
本発明の第二の目的は、視角特性が良好で多階調表示が容易であるアクティブマトリクス型液晶表示装置を提供することにある。
【0009】
本発明の第三の目的は、高コントラストでクロストークが生じない高画質のアクティブマトリクス型液晶表示装置を提供することにある。
【0010】
【課題を解決するための手段】
前記目的を達成する本発明の要旨は次のとおりである。
【0011】
(1) 第1と第2の基板間に液晶組成物が挾持され、第1の基板には、マトリクス状に配置された複数の走査電極と信号電極により複数の画素が構成されており、前記画素にはスイッチング素子が設けられているアクティブマトリクス型液晶表示装置において、
前記スイッチング素子は画素電極が接続され、前記画素電極とこれに対向した共通電極により、液晶に印加する電界の方向を基板界面にほぼ平行な方向とするよう構成され、
前記画素には、信号電極、画素電極、および、信号電極と画素電極間との間にシールド電極を有し、
前記シールド電極は第2の基板上に形成され、
前記画素の信号電極と画素電極の間の光透過部、信号電極と共通電極の間の光透過部、スイッチング素子の半導体層上および走査電極からの電気力線が通過する光透過部に、顔料または染料を含む黒色または低光透過率の遮光膜が形成されていることを特徴とするアクティブマトリクス型液晶表示装置。
【0012】
(2) 前記シールド電極が、信号電極と画素電極の間の光透過部、信号電極と共通電極の間の光透過部およびスイッチング素子の半導体層上に形成されている上記アクティブマトリクス型液晶表示装置
【0013】
(3) 前記シールド電極の一部が信号電極と重なるように形成されている上記アクティブマトリクス型液晶表示装置
【0014】
(4) 前記シールド電極は、前記信号電極と前記画素電極の少なくとも1つの部分の間で発生する寄生容量を、前記電極を配置しない場合と比較して低減する上記アクティブマトリクス型液晶表示装置
【0015】
次に本発明の作用を図1(参考例1)を用いて説明する。図1(a),(b)は参考例1の液晶セル内での一画素の側断面を、図1(c),(d)はその平面図である。図1ではアクティブ素子は省略してある。また、本発明では、走査電極と信号電極をマトリクス状に形成して複数の画素を構成するが、ここでは一画素の部分を示した。
【0016】
電圧無印加時のセル側断面図を図1(a)に、その時の平面図を図1(c)に示す。透明な一対の基板8,9の内側にストライプ状の画素電極3、共通電極4、信号電極2、シールド電極5が形成され、その上に配向制御膜14,15(配向方向28)が形成されており、その間に液晶組成物が挟持されている。
【0017】
棒状の液晶分子25は、電界無印加時にはストライプ状の電極の長手方向に対して若干の角度、即ち、45度≦|電界方向に対する界面近傍での液晶分子長軸(光学軸)方向のなす角|<90度、となるように配向されている。なお、ここでは、液晶分子の上下界面での配向方向が平行な場合を例に説明する。また、液晶組成物の誘電異方性は正とする。
【0018】
次に、画素電極3、共通電極4に電界Eを印加すると図1(b)、(d)に示すように、電界Eの方向に液晶分子が向きを変える。偏光板26,27の偏光透過軸29を所定角度となるように配置することで、電界印加によって光透過率を変えることが可能となる。
【0019】
このように、本発明によれば透明電極がなくともコントラストのある表示が可能となる。コントラストを付与する具体的構成としては、上下基板上の液晶分子配向がほぼ平行な状態を利用したモード(複屈折位相差による干渉色を利用するので、ここでは複屈折モードと呼ぶ)と、上下基板上の液晶分子配向方向が交差しセル内での分子配列がねじれた状態を利用したモード(液晶組成物層内で偏光面が回転する旋光性を利用するので、ここでは旋光性モードと呼ぶ)とがある。
【0020】
複屈折モードでは、電圧印加により分子長軸(光軸)方向が基板界面にほぼ平行なままで面内でその方位を変え、所定角度に設定された偏光板26,27の軸(吸収軸あるいは透過軸)とのなす角が変わって光透過率を変える。旋光性モードも同様に電圧印加により分子長軸方向の方位を変えるが、この場合は螺旋が解けることによる旋光性の変化を利用する。
【0021】
液晶に印加する電界の方向を基板界面にほぼ平行とする本表示モードでは、液晶分子の長軸は基板と常にほぼ平行であり、立ち上がることがない。従って、視角方向を変えても明るさの変化が小さく(視角依存性がない)、いわゆる視角特性が優れている。
【0022】
本表示モードは従来のように電圧印加で複屈折位相差をほぼゼロにすることで暗状態を得るものではなく、液晶分子長軸と偏光板の軸(吸収軸あるいは透過軸)とのなす角を変えることで暗状態を得るもので、その作用が基本的に異なる。従来のTN型のように液晶分子長軸を基板界面に垂直に立ち上がらせる場合では、複屈折位相差がゼロとなる視角方向は正面、即ち、基板界面に垂直な方向であり、視角が僅かでも傾斜すると複屈折位相差が現れる。従って、ノーマリオープン型では光が漏れ、コントラストの低下や階調レベルの反転を引き起こす。
【0023】
次に、本発明の液晶表示装置のもう一方の重要な作用を示す。画素電極3が、信号電極2と隣接して構成されると、信号電極2からの電気力線は、画素電極3に終端し、次式よって表されるような信号電極2−画素電極3間の寄生容量Cdsが発生する。
【数1】
【0024】
Wは画素電極3の幅(短手方向の長さ)、dは信号電極2と画素電極3との距離、εは電極間の媒体の誘電率、πは円周率を表し、寄生容量Cdsは単位長あたりの容量を示す。なお、上記においては電極間の媒体の誘電率は一定で、信号電極2の幅が画素電極3の幅と等しいか、それ以上であると仮定している。
【0025】
本発明の液晶表示装置では、信号電極2と画素電極3の間にシールド電極5を設けたため、信号電極2からの電気力線のほとんどが、シールド電極5に終端する。シールド電極5の電位が一定になるように常時外部から電位を付与すれば、信号電極2−画素電極3間の寄生容量Cdsは激減する。これにより、信号電極2の電位が変化しても、画素電極3の電位が変化しないので、クロストークが無くなる。これにより、本表示モードをアクティブマトリクスに適用することができ、視角特性が良好で、高コントラスト、高画質の液晶表示装置を得ることができる。
【0026】
また、シールド電極5を遮光層(ブラックマトリクス)として兼用することもできるので、遮光層の形成の必要がなく、かつ、透明電極を必要としない点と合わせ、製造歩留まりを向上することができる。更にまた、シールド電極に共通電極を兼ねさせることができ、シールド電極は共通電極が占有していた面積を利用できるので開口率が向上し、高輝度または低消費電力とすることができる。
【0027】
【発明の実施の形態】
本発明を実施例により具体的に説明する。なお、以下の実施例では、液晶表示装置の表示パネル面において、信号電極の長手方向と平行(走査電極の長手方向と垂直)な方向を垂直方向、信号電極の長手方向と垂直(走査電極の長手方向と平行)な方向を水平方向とし、マトリクス電極の列方向は前記垂直方向と平行、行方向は前記水平方向と平行な方向とする。また、画素数は640(×3)×480とし、各画素のピッチとしては横方向は110μm、縦方向は330μmとした。
【0028】
〔実施例1〕
図2(a)に本実施例の液晶表示パネルの画素部の模式平面図を、また、図2(b)に図2(a)のA−A'の模式断面図を示す。また、図3に本実施例の液晶表示装置の駆動システムの構成図を示す。なお、基板8,9としては表面を研磨した厚さ1.1mmのガラス基板を用いた。
【0029】
基板8上に、水平方向にCrの走査電極1,17を形成した。また、走査電極1,17と直交させてCr/Alの信号電極2,18を形成した。更に、画素にはアモルファスシリコン6と走査電極1の一部(ゲート電極として働く)と、信号電極2の一部(ドレイン電極またはソース電極として働く)と、画素電極3(ソース電極またはドレイン電極として働く)を用いた薄膜トランジスタ(TFT)素子を形成した。TFT素子のゲート絶縁膜10には窒化シリコン膜を用いた。
【0030】
画素電極3は、信号電極2,18と同一材料で同層に同一工程で、長手方向が垂直方向になるように形成した。また、信号電極2および画素電極3とアモルファスシリコン6との間には、オーミックコンタクトをとるためのn+型アモルファスシリコン7を形成した。
【0031】
共通電極4は、画素電極3、信号電極2,18と同一材料で同層に同一工程で、ストライプ状に形成し、垂直方向に引き出して、他の列の共通電極と共通接続した。
【0032】
液晶層の液晶分子の配向は、主に画素電極3と共通電極4との間の水平方向に印加される電界Eによって制御する。光は、画素電極3と共通電極4の間を透過し、液晶層16に入射し、変調される。従って、画素電極3は特に透光性(例えば、ITO等の透明電極)である必要はない。
【0033】
TFT素子上には、それを保護する窒化シリコンの保護膜11を形成した。また、TFT素子群を設けた基板8(以下、TFT基板と云う)に相対向する基板9(以下、対向基板と称する)上に、シールド電極5を形成した。この時、シールド電極5は、信号電極2と画素電極3との間にストライプ状に配置されるよう形成し、垂直方向に引き出して他の列のシールド電極と共通接続した。
【0034】
更に、対向基板9上には、垂直方向にストライプ状のR,G,Bからなる3色のカラーフィルタ12を形成した。カラーフィルタ12上には表面を平坦化する透明樹脂からなる平坦化膜13を積層した。平坦化膜13の材料としてはエポキシ樹脂を用いた。更に、この平坦化膜13上と保護膜11上にポリイミド系の配向制御膜14,15を塗布,形成した。
【0035】
上記の基板8,9間に誘電率異方性Δεが正で、その値が7.3であり、複屈折Δnが0.073(589nm,20℃)のネマチック液晶組成物16を挟んだ。なお、本実施例では、誘電率異方性Δεが正の液晶を用いたが、負の液晶を用いてもよい。
【0036】
上記配向制御膜14,15をラビング処理し、プレチルト角を1.0度とした。上下界面のラビング方向は互いにほぼ平行で、かつ、印加電界Eとのなす角度を85度とした。また、上下基板のギャップ(d)は球形のポリマビーズを基板間に分散,挾持し、液晶封入状態で4.5μmとした。これによりΔn・dは0.329μmである。
【0037】
2枚の偏光板〔日東電工社製G1220DU〕で上記パネルを挾み(偏光板は図示省略)、一方の偏光板の偏光透過軸をラビング方向にほぼ平行(85度)とし、他方をそれに直交(−5度)とした。これによりノーマリクローズ特性の液晶表示装置を得た。
【0038】
次に、図3に示すような液晶表示パネル22のTFT基板8上に垂直走査回路19、映像信号駆動回路20を接続し、電源およびコントロール回路21から走査信号電圧、映像信号電圧、タイミング信号、共通電極電圧、シールド電極電圧を供給し、アクティブマトリクス駆動した。
【0039】
また、本実施例では、シールド電極電圧と共通電極電圧は独立にし、シールド電極電圧は、TFT基板8から銀ペーストを用いて、対向電極上のシールド電極に電気的に接続し、供給した。なお、本実施例では、アモルファスシリコンTFT素子を用いているがポリシリコンTFT素子でもよい。反射型表示装置の場合はシリコンウエハ上に形成したMOSトランジスタでもよい。配線材料も限定しない。
【0040】
また、本実施例では、配向制御膜を設けたが、平坦化膜13の表面を直接ラビングして配向制御膜を兼ねてもよい。同様に、TFTの保護膜11としてエポキシ樹脂を用い、ラビング処理をすることもできる。
【0041】
次に、本実施例の液晶への印加電圧と明るさの関係を図4に示す。コントラスト比は7V駆動時に150以上となり、視角を左右、上下に変えた場合のカーブの差は従来方式(比較例1)に比べて極めて小さく、視角を変化させても表示特性はほとんど変化しなかった。また、液晶の配向性も良好で、配向不良に基づくドメイン等も発生しなかった。
【0042】
図5に本実施例における信号電極電圧Vdの波形の違いによる信号電圧Vsig−明るさ曲線の変化を示す。なお、図5(a)は電圧波形を、図5(b)は信号電圧Vsig−明るさ曲線の変化を示す。走査電極電圧Vgがオンレベルになり、信号電圧Vsigが書き込まれた後、信号電極電圧Vdを変化させたが、信号電圧Vsig−明るさ曲線には、特に目立った変化は起きなかった。
【0043】
以上、本実施例では、透明電極を用いることなく、透過光の強度を変調させることができ、視角依存性を著しく向上させることができた。更に、電界を基板界面と平行に印加する方式の弱点である垂直方向のクロストークを抑えることができ、高スループット、高歩留りで、かつ、広視角、高コントラストで高画質の液晶表示装置を得ることができた。
【0044】
〔比較例1〕
透明電極を有する従来方式のツイステッドネマチック(TN)型表示装置を作製し、これと前記実施例1と比較した。液晶組成物としては、実施例1で用いた誘電異方性Δεが正のネマチック液晶組成物を用い、ギャップ(d)は7.3μm、ツイスト角は90度とした。よってΔn・dは0.526μmである。
【0045】
電気光学特性を図6に示す。視角方向によりカーブが著しく変化し、また、TFT隣接部の断差部付近で、液晶の配向不良に基づくドメインが生じた。
〔比較例2〕
【0046】
図7に、図2のシールド電極5を形成しない場合の信号電極電圧の変化に伴う信号電圧−明るさ特性の変化を示す。信号電極電圧Vdの波形の違いによって、信号電圧Vsig−明るさ曲線に大きな差が生ずることが分かった。また、画質的には垂直方向のクロストークが発生し、更に図中のVd’の曲線に示されるようにコントラストの低下が著しかった。
【0047】
〔実施例2〕
本実施例の構成は下記の要件を除けば、実施例1と同一である。図8(a)に本実施例の液晶表示パネルの画素の模式平面図を、また、図8(b)に図8(a)のB−B'における模式断面図を示す。本実施例の構成上の特徴は、画素電極3と信号電極2との間、および共通電極4と信号電極18との間の光透過部分の全てを覆うシールド電極5aを形成した点にある。これにより、遮光層を設けなくとも光漏れが生じず、高コントラストを得ることができた。
【0048】
更に、アモルファスシリコン6上も覆ったので、アモルファスシリコンの光によるリーク電流の増加もなく、良好な表示特性を得ることができた。また、信号電極−シールド電極間の容量が可能な限り増大しないように、シールド電極5aの信号電極2,18上の部分にスリット状の開口部を設け、合わせ精度のマージン分の重なりだけになるように、信号電極2,18との重なりを最小限にした。
【0049】
以上、本実施例では、実施例1と同等の効果が得られ、更に高コントラスト、高画質のアクティブマトリクス型液晶表示装置を得ることができた。
【0050】
〔実施例3〕
本実施例の構成は下記の要件を除けば、実施例1と同一である。図9(a)に本実施例の液晶表示パネルの画素の模式平面図を、また、図9(b)に図9(a)のC−C'における模式断面図を示す。本実施例の構成上の特徴は、対向基板9上に黒色の顔料を含む絶縁物で、マトリクス状の遮光膜23(ブラックマトリクス)をカラーフィルタ12aと同層に形成した点にある。
【0051】
絶縁物からなる遮光膜23は、画素電極3と共通電極4との間に印加される電界Eに及ぼす影響がなく、画素電極3と走査電極1,17との間と、共通電極4と走査電極1,17との間の電界による配向不良領域(ドメイン)を覆い隠すことができ、更にコントラストを向上させることができた。
【0052】
また、実施例2と同様にアモルファスシリコン6上も覆うように形成したので、光によるリーク電流の増加もなく、良好な表示特性を得ることができた。本実施例では、黒色顔料を用いているが染料でもよい。なお、黒色でなくとも可視光の透過率が十分低くできるものであればよい。
【0053】
また、信号電極2,18上には電極が存在しないので、実施例2より信号電極−シールド電極間の容量が軽減し、映像信号駆動回路20の負荷が軽くなり、駆動LSIのチップサイズを小さくすることができ、かつ、信号電極の負荷軽減により、消費電力も低減することができた。
【0054】
以上、本実施例では、実施例1、2と同等の効果が得られ、更に高コントラストで低消費電力のアクティブマトリクス型液晶表示装置を得ることができた。
【0055】
〔実施例4〕
本実施例の構成は下記の要件を除けば、実施例1と同一である。図10(a)に本実施例の液晶表示パネルの画素の模式平面図を、また、図10(b)に図10(a)のD−D'における模式断面図を示す。本実施例では、1画素の構成において、2本のシールド電極5a,5bを信号電極2a,18aに隣接するよう対向基板9上に形成し、画素電極3aをシールド電極4aとシールド電極40a間に配置した。
【0056】
これにより、信号電極2a,18aからの電界Eはシールド電極5a,5bに終端し、信号電極と画素電極間の寄生容量Cdsが大幅に低減される。また、画素電極3aが、信号電極2a,18aとの距離が最も離れた場所(信号電極2aと信号電極18aの間の中央部)に配置したので、信号電極2a,18aと画素電極3a間の容量を更に軽減することができた。本実施例の特徴は、共通電極を構成しなくとも、シールド電極5a,5bと画素電極3aの間の電界により、液晶分子の長軸方向を基板面とほぼ平行を保ちながら動作させ、光の透過量をコントロールすることができる点にある。
【0057】
また、本実施例の液晶表示装置の駆動システムの構成を図11に示す。本実施例では、シールド電極5a,5bが共通電極を兼ねるので、共通電極電圧は不要である。本実施例では、画素電極3aを信号電極2aと信号電極18aとの中央に配置し画素を2分割しているが、画素電極を更に複数本設けて4分割以上してもよい。なお、本実施例のようにシールド電極に共通電極を兼用させる方式では、画素の分割数は2n分割になる(nは自然数)。
【0058】
また、本実施例では、共通電極が占有していた画素平面上の面積をシールド電極に利用することができ、更にシールド電極と画素電極間の開口部を利用することによって高開口率になり、高輝度またはバックライトの消費電力が低減でき低消費電力の液晶表示装置を得ることができた。
【0059】
以上、本実施例では、シールド電極に共通電極を兼ねさせることにより、実施例1と同等の効果が得られ、更に高輝度または低消費電力のアクティブマトリクス型液晶表示装置を得ることができた。
【0060】
〔実施例5〕
本実施例の構成は下記の要件を除けば、実施例4と同一である。図12(a)に本実施例の液晶表示パネルの画素の模式平面図を、また、図12(b)に図12(a)のF−F'における模式断面図を示す。本実施例の構成上の特徴は、シールド電極5aと信号電極2a、シールド電極5bと信号電極18aを水平方向に重ねて形成した。
【0061】
これにより、遮光層を設けなくともシールド電極と信号電極の間の余分な光漏れがなく、高コントラストを得ることができた。更に、画素電極3aとシールド電極5a,5b間の距離が長くなり、画素電極3aとシールド電極5a,5b間の光透過部の面積(開口率)が増して透過率が向上した。
【0062】
以上、本実施例では、実施例4と同等の効果が得られ、更に高コントラストで高輝度または低消費電力のアクティブマトリクス型液晶表示装置を得ることができた。
【0063】
〔実施例6〕
本実施例の構成は下記の要件を除けば、実施例4と同一である。図13(a)に本実施例の液晶表示パネルの画素の模式平面図を、また、図13(b)に図13(a)のG−G'における模式断面図を示す。本実施例の構成上の特徴は、対向基板9上に黒色の顔料を含む絶縁物で、マトリクス状の遮光膜23(ブラックマトリクス)をカラーフィルタ12aと同層に形成した点にある。
【0064】
絶縁物からなる遮光膜23は、画素電極3とシールド電極5a,5bとの間に印加される電界Eに及ぼす影響がなく、画素電極3と走査電極1,17間と、シールド電極5a,5bと走査電極1,17との間の電界による配向不良領域(ドメイン)を覆い隠すことができ、更にコントラストを向上させることができた。
【0065】
また、アモルファスシリコン6上も覆うように形成したので、光によるリーク電流の増加もなく、良好な表示特性を得ることができた。また、基板8,9の位置合わせのずれは、水平方向に関しては問題なく、遮光膜23がシールド電極5a,5bの間でずれても開口率が減少しない。なお、本実施例では黒色顔料を用いているが染料でもよい。なお、黒色でなくとも可視光の透過率が十分低くできるものであればよい。
【0066】
以上、本実施例では、実施例4と同等の効果が得られ、更に高コントラストで高画質のアクティブマトリクス型液晶表示装置を得ることができた。
【0067】
参考
参考例の構成は下記の要件を除けば、実施例1と同一である。図14(a)に参考例2の液晶表示パネルの画素の模式平面図を、また、図14(b)に図14(a)のH−H'における模式断面図を示す。本参考例の構成上の特徴は、シールド電極5をTFT基板8の保護膜11上に形成した点にある。
【0068】
そのため、対向基板9上には、一切導電性の物質は存在していない。従って、仮に製造工程中に導電性の異物が混入しても、対向基板9を介しての電極間接触の可能性がなく、それによる不良率はゼロに抑制され、配向膜の形成、ラビング、液晶封入工程などのクリーン度の裕度が広がり、製造工程管理の簡略化を図ることができる。シールド電極5に電位を供給するためのTFT基板8と対向基板9の電気的な接続も不必要となる。
【0069】
以上、本参考例では、実施例1と同等の効果が得られ、更に、製造歩留りを向上することができた。また、本参考例は実施例1を基に述べたが、本参考例のようにシールド電極をTFT基板8上に構成することは実施例2、3、4、5、6においても可能であり,本参考例と同等の効果が得られる。
【0070】
参考例3
参考例の構成は下記の要件を除けば、実施例4と同一である。図15(a)に本参考例の液晶表示パネルの画素の模式平面図を、また、図15(b)に図15(a)のI−I'における模式断面図を示す。本参考例の構成上の特徴は、シールド電極5a,5bを信号電極2a,18aと同材料で同層に同一工程で形成した。共通電極4bとシールド電極5bの電気的な接続は、ゲート絶縁膜11にスルーホール42を穿け、走査電極1,17と同材料で同層に同一工程で形成した配線41を用いた。
【0071】
これにより、シールド電極を別工程で設ける必要がなく、更に、参考と同様に対向基板9上には一切導電性の物質は存在しないので、対向基板9を介しての電極間接触の可能性がない。従って、それによる不良率がゼロに抑制され、配向膜の形成、ラビング、液晶封入工程などのクリーン度の裕度が広がり、製造工程管理の簡略化を図ることができる。
【0072】
電界Eの強度は、画素電極3とシールド電極5aとの距離によって変わる。よって、画素電極とシールド電極の間の距離のバラツキが明るさのバラツキを生み、問題となる。従って、画素電極と共通電極の高いアライメント精度が要求される。それぞれに電極を備えた2枚の基板を貼り合わせる方式では、アライメント精度はホトマスクのアライメント精度より2〜3倍悪くなる。本参考例では画素電極3とシールド電極5a,5bを同材料で同層に同一工程で形成しているので、上記アライメント精度の問題もない。
【0073】
以上、本参考例では、実施例4と同等の効果が得られ、更に高スループット、高歩留まりのアクティブマトリクス型液晶表示装置を得ることができた。また、本参考例は実施例4を基に述べたが、本参考例のようにシールド電極を信号電極と同材料で同層に同一工程で形成することは実施例1、3、6においても可能であり本参考例と同等の効果が得られる。
【0074】
参考例4
参考例の構成は下記の要件を除けば、実施例4と同一である。図16(a)に本参考例の液晶表示パネルの画素の模式平面図を、また、図16(b)に図16(a)のJ−J'における模式断面図を示す。本参考例の構成上の特徴は、シールド電極5を走査電極1,17と同材料で同層に同一工程で形成し、水平方向に電極を引き出し、他の行の共通電極と共通接続した点にある。
【0075】
液晶分子は、長手方向が垂直方向にある画素電極3とシールド電極5の垂直方向に突出した突起部との間の電界Eによって制御する。これにより、参考例3と同様に、シールド電極5を別工程で設ける必要がない。
【0076】
更に、実施例2と同様に対向基板9上には一切導電性の物質は存在しないので、対向基板9を介しての電極間接触の可能性がなく、それに基づく不良率がゼロに抑制される。従って、配向膜の形成、ラビング、液晶封入工程などのクリーン度の裕度が広がり、製造工程管理の簡略化ができた。
【0077】
更に、参考例3の様にスルーホールを設ける必要もなく、共通電極間の接続不良もなくなる。また、本参考例では画素電極3とシールド電極5を同一基板内に形成しているので、画素電極3とシールド電極5のアライメント精度も高い。また、シールド電極5の垂直方向に突出した突起は、信号電極2a,18aと水平方向に重ねて形成してもよい。これにより、実施例5と同様に遮光層を設けなくとも信号電極とシールド電極の間の余分な光漏れが無く、高コントラストを得ることができる。
【0078】
更に、画素電極3と共通電極4の突起間の距離が長くなり、画素電極3とシールド電極5の突起間の光透過部の面積(開口率)が増加し透過率が向上する。また、本参考例ではシールド電極の接続を図16の様にしたが特に接続位置は制限しない。
【0079】
以上、本参考例では、実施例4と同等の効果が得られ、更に高スループット、高歩留まりのアクティブマトリクス型液晶表示装置を得ることができた。また、本参考例は実施例4を基に述べたが、本参考例のようにシールド電極を走査電極と同材料で同層に同一工程で形成することは実施例1、2、3、5、6においても可能であり本参考例と同等の効果が得られる。
【0080】
【発明の効果】
本発明によれば、画素電極は透明である必要がなく、通常の金属電極を用いることができるので、高歩留まりで量産可能なアクティブマトリクス型液晶表示装置が得られる。
また、視角特性が良好で多階調表示が容易なアクティブマトリクス型液晶表示装置が得られる。
【0081】
特に、シールド電極を形成したことにより、信号電極と画素電極の間の寄生容量を軽減することができ、高コントラストで、クロストークのない高画質のアクティブマトリクス型液晶表示装置が得られ、上記2つの効果との両立が得られる。更に、シールド電極が共通電極を兼ねることにより、製造工程数が低減される。
【図面の簡単な説明】
【図1】参考例1の作用の概略を示す図である。
【図2】実施例1の画素部の構成を示す模式図である。
【図3】実施例1〜3、7の駆動システム構成を示す模式図である。
【図4】本発明の液晶表示装置の視角依存性を示す図である。
【図5】本発明の実施例における液晶表示装置の視角依存性を示す図である。
【図6】本発明の液晶表示装置の信号電極電圧の変化に伴う信号電圧−明るさ特性の変化を示す図である。
【図7】従来の液晶表示装置の信号電極電圧の変化に伴う信号電圧−明るさ特性の変化を示す図である。
【図8】実施例2の画素部の構成を示す模式図である。
【図9】実施例3の画素部の構成を示す模式図である。
【図10】実施例4の画素部の構成を示す模式図である。
【図11】実施例4〜6、8〜9の駆動システム構成を示す模式図である。
【図12】実施例5の画素部の構成を示す模式図である。
【図13】実施例6の画素部の構成を示す模式図である。
【図14】参考例2の画素部の構成を示す模式図である。
【図15】参考例3の画素部の構成を示す模式図である。
【図16】参考例4の画素部の構成を示す模式図である。
【符号の説明】
1,17…走査電極、2,18…信号電極、3…画素電極、4…共通電極、5…シールド電極、6…アモルファスシリコン、7…n+型アモルファスシリコン、8,9…基板、10…ゲート絶縁膜、11…保護膜、12…カラーフィルタ、13…平坦化膜、14,15…配向制御膜、16…液晶層、19…垂直走査回路、20…映像信号駆動回路、21…電源およびコントロール回路、22…液晶表示パネル、23…遮光膜、25…液晶分子、26,27…偏向板、28…配向方向、29…偏向透過軸、41…配線、42…スルーホール。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active matrix liquid crystal display device.
[0002]
[Prior art]
A conventional active matrix type liquid crystal display device uses a transparent electrode formed to face each other on the interface between two substrates as an electrode for driving a liquid crystal layer. This is because a twisted nematic display system that operates by setting the direction of the electric field applied to the liquid crystal to a direction substantially perpendicular to the substrate interface is employed.
[0003]
On the other hand, an active matrix type liquid crystal display device using a method in which the direction of the electric field applied to the liquid crystal is substantially parallel to the substrate interface has been proposed by, for example, Japanese Patent Laid-Open No. 56-91277.
[0004]
[Problems to be solved by the invention]
In the prior art using the twisted nematic display method, a transparent electrode typified by Indium Tin Oxide (ITO) must be formed. However, the transparent electrode has irregularities of about several tens of nanometers on its surface, making it difficult to process fine active elements such as thin film transistors (hereinafter referred to as TFTs). Further, the convex portion of the transparent electrode is often separated and mixed into other portions such as the electrode, causing a dot-like or line-like display defect, so that the yield of the product is significantly reduced.
[0005]
The prior art has many problems in terms of image quality. In particular, the change in luminance when the viewing angle direction is changed is significant, making halftone display difficult. Furthermore, in an active matrix display element using a switching transistor element, in addition to a pixel electrode that applies a voltage or an electric field to liquid crystal to modulate transmitted light or reflected light, a scanning electrode for driving the switching transistor element and A signal electrode is required. The scanning electrode and the signal electrode change the potential of the pixel electrode by the parasitic capacitance Cgs between the scanning electrode and the pixel electrode and the parasitic capacitance Cds between the signal electrode and the pixel electrode. In particular, since the potential of the signal electrode constantly fluctuates depending on the video information, the potential of the pixel electrode varies due to the parasitic capacitance Cds between the signal electrode and the pixel electrode, causing image quality defects called contrast reduction or crosstalk. Yes.
[0006]
In the method in which the direction of the electric field applied to the liquid crystal is in a direction substantially parallel to the substrate interface, the parasitic capacitance Cds between the signal electrode and the pixel electrode is increased and the crosstalk is intense as compared with the twisted nematic display method. There is a problem that the contrast is lowered depending on the image pattern. This is because, in the method in which the direction of the electric field applied to the liquid crystal is substantially parallel to the substrate interface, unlike the twisted nematic display method, a common electrode is not formed on the entire surface of the substrate facing the substrate having the switching transistor element. This is because the lines of electric force from are not shielded and terminate in the pixel electrode. For this reason, active matrix driving has a problem in image quality when the electric field direction is substantially parallel to the substrate interface.
[0007]
A first object of the present invention is to provide an active matrix liquid crystal display device that does not require a transparent electrode.
[0008]
A second object of the present invention is to provide an active matrix liquid crystal display device that has good viewing angle characteristics and facilitates multi-gradation display.
[0009]
A third object of the present invention is to provide an active matrix liquid crystal display device with high contrast and high image quality that does not cause crosstalk.
[0010]
[Means for Solving the Problems]
The gist of the present invention for achieving the above object is as follows.
[0011]
(1)A liquid crystal composition is held between the first and second substrates, and a plurality of pixels are configured on the first substrate by a plurality of scanning electrodes and signal electrodes arranged in a matrix. In an active matrix liquid crystal display device provided with a switching element,
The switching element is connected to a pixel electrode, and is configured such that the direction of the electric field applied to the liquid crystal is substantially parallel to the substrate interface by the pixel electrode and a common electrode facing the pixel electrode.
The pixel has a signal electrode, a pixel electrode, and a shield electrode between the signal electrode and the pixel electrode,
The shield electrode is formed on a second substrate;
Pigment in the light transmission part between the signal electrode of the pixel and the pixel electrode, the light transmission part between the signal electrode and the common electrode, the light transmission part on the semiconductor layer of the switching element and the lines of electric force from the scanning electrode Or an active matrix type liquid crystal display device comprising a black or low light transmittance light-shielding film containing a dyePlace.
[0012]
(2)The active matrix liquid crystal display device, wherein the shield electrode is formed on a light transmitting portion between the signal electrode and the pixel electrode, a light transmitting portion between the signal electrode and the common electrode, and a semiconductor layer of the switching element..
[0013]
(3)The active matrix type liquid crystal display device formed so that a part of the shield electrode overlaps with the signal electrode.
[0014]
(4)The active matrix liquid crystal display device, wherein the shield electrode reduces a parasitic capacitance generated between at least one portion of the signal electrode and the pixel electrode as compared with a case where the electrode is not disposed..
[0015]
Next, the operation of the present invention will be described with reference to FIG.(Reference Example 1)Will be described. 1 (a) and 1 (b)Reference Example 1FIGS. 1C and 1D are plan views showing a side cross section of one pixel in the liquid crystal cell. In FIG. 1, active elements are omitted. In the present invention, a plurality of pixels are formed by forming scanning electrodes and signal electrodes in a matrix, but here, only one pixel portion is shown.
[0016]
FIG. 1A shows a cross-sectional side view of the cell when no voltage is applied, and FIG. 1C shows a plan view at that time. Striped pixel electrodes 3, common electrodes 4, signal electrodes 2 and shield electrodes 5 are formed inside a pair of transparent substrates 8 and 9, and alignment control films 14 and 15 (alignment direction 28) are formed thereon. The liquid crystal composition is sandwiched between them.
[0017]
The rod-like liquid crystal molecules 25 have a slight angle with respect to the longitudinal direction of the striped electrode when no electric field is applied, that is, the angle formed by the major axis (optical axis) of the liquid crystal molecule in the vicinity of the interface with respect to the electric field direction. Oriented so that | <90 degrees. Here, a case where the alignment directions at the upper and lower interfaces of the liquid crystal molecules are parallel will be described as an example. The dielectric anisotropy of the liquid crystal composition is positive.
[0018]
Next, when an electric field E is applied to the pixel electrode 3 and the common electrode 4, the liquid crystal molecules change in the direction of the electric field E, as shown in FIGS. By arranging the polarization transmission axes 29 of the polarizing plates 26 and 27 to be at a predetermined angle, the light transmittance can be changed by applying an electric field.
[0019]
Thus, according to the present invention, a display with contrast can be achieved without a transparent electrode. Specific configurations for providing contrast include a mode using a state in which liquid crystal molecular alignments on the upper and lower substrates are substantially parallel (referred to as a birefringence mode because an interference color due to a birefringence phase difference is used), and upper and lower A mode that utilizes a state in which the alignment directions of liquid crystal molecules on the substrate intersect and the molecular arrangement in the cell is twisted (this is referred to as an optical rotation mode because it uses the optical rotation that rotates the polarization plane in the liquid crystal composition layer) )
[0020]
In the birefringence mode, by applying a voltage, the direction of the molecular long axis (optical axis) remains substantially parallel to the substrate interface while changing its orientation in the plane, and the axes of the polarizing plates 26 and 27 (absorption axes or The angle formed with the transmission axis changes to change the light transmittance. Similarly, in the optical rotation mode, the orientation in the molecular long axis direction is changed by applying a voltage. In this case, the change in optical rotation due to the dissolution of the spiral is utilized.
[0021]
In this display mode in which the direction of the electric field applied to the liquid crystal is substantially parallel to the substrate interface, the major axis of the liquid crystal molecules is always substantially parallel to the substrate and does not rise. Therefore, even if the viewing angle direction is changed, the change in brightness is small (no viewing angle dependency), and so-called viewing angle characteristics are excellent.
[0022]
This display mode does not obtain a dark state by making the birefringence phase difference almost zero by applying voltage as in the conventional case, but the angle formed by the liquid crystal molecule long axis and the axis of the polarizing plate (absorption axis or transmission axis). The dark state is obtained by changing, and its action is basically different. In the case where the long axis of the liquid crystal molecule rises perpendicularly to the substrate interface as in the conventional TN type, the viewing angle direction where the birefringence phase difference is zero is the front, that is, the direction perpendicular to the substrate interface, and the viewing angle is slight. When tilted, a birefringence phase difference appears. Therefore, in the normally open type, light leaks, causing a decrease in contrast and inversion of gradation levels.
[0023]
Next, another important operation of the liquid crystal display device of the present invention will be described. When the pixel electrode 3 is configured adjacent to the signal electrode 2, the electric lines of force from the signal electrode 2 terminate at the pixel electrode 3 and between the signal electrode 2 and the pixel electrode 3 as represented by the following equation: Parasitic capacitance Cds is generated.
[Expression 1]
[0024]
W is the width of the pixel electrode 3 (the length in the short direction), d is the distance between the signal electrode 2 and the pixel electrode 3, ε is the dielectric constant of the medium between the electrodes, π is the circular ratio, and the parasitic capacitance Cds Indicates the capacity per unit length. In the above description, it is assumed that the dielectric constant of the medium between the electrodes is constant and the width of the signal electrode 2 is equal to or greater than the width of the pixel electrode 3.
[0025]
In the liquid crystal display device of the present invention, since the shield electrode 5 is provided between the signal electrode 2 and the pixel electrode 3, most of the lines of electric force from the signal electrode 2 terminate at the shield electrode 5. If the potential is always applied from the outside so that the potential of the shield electrode 5 becomes constant, the parasitic capacitance Cds between the signal electrode 2 and the pixel electrode 3 is drastically reduced. Thereby, even if the potential of the signal electrode 2 changes, the potential of the pixel electrode 3 does not change, so that crosstalk is eliminated. As a result, this display mode can be applied to an active matrix, and a liquid crystal display device with good viewing angle characteristics, high contrast, and high image quality can be obtained.
[0026]
Further, since the shield electrode 5 can also be used as a light shielding layer (black matrix), it is not necessary to form a light shielding layer, and the manufacturing yield can be improved in combination with the point that a transparent electrode is not required. Furthermore, the shield electrode can also be used as a common electrode. Since the shield electrode can use the area occupied by the common electrode, the aperture ratio can be improved, and high luminance or low power consumption can be achieved.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to examples. In the following embodiments, on the display panel surface of the liquid crystal display device, the direction parallel to the longitudinal direction of the signal electrode (perpendicular to the longitudinal direction of the scanning electrode) is the vertical direction, and the longitudinal direction of the signal electrode (vertical direction of the scanning electrode) The direction parallel to the longitudinal direction is the horizontal direction, the column direction of the matrix electrodes is parallel to the vertical direction, and the row direction is parallel to the horizontal direction. The number of pixels was 640 (× 3) × 480, and the pitch of each pixel was 110 μm in the horizontal direction and 330 μm in the vertical direction.
[0028]
[Example 1]
FIG. 2A shows a schematic plan view of a pixel portion of the liquid crystal display panel of this embodiment, and FIG. 2B shows a schematic cross-sectional view taken along line AA ′ of FIG. FIG. 3 shows a configuration diagram of a driving system of the liquid crystal display device of this embodiment. The substrates 8 and 9 were 1.1 mm thick glass substrates whose surfaces were polished.
[0029]
On the substrate 8, the scanning electrodes 1 and 17 of Cr were formed in the horizontal direction. Further, Cr / Al signal electrodes 2 and 18 were formed perpendicular to the scanning electrodes 1 and 17. Further, the pixel includes amorphous silicon 6 and a part of the scanning electrode 1 (acting as a gate electrode), a part of the signal electrode 2 (acting as a drain electrode or a source electrode), and a pixel electrode 3 (as a source electrode or a drain electrode). A thin film transistor (TFT) element using the above was formed. A silicon nitride film was used as the gate insulating film 10 of the TFT element.
[0030]
The pixel electrode 3 is formed of the same material as the signal electrodes 2 and 18 in the same layer and in the same process so that the longitudinal direction is the vertical direction. Further, an n + type amorphous silicon 7 for forming an ohmic contact was formed between the signal electrode 2 and the pixel electrode 3 and the amorphous silicon 6.
[0031]
The common electrode 4 was formed in the same material and in the same layer as the pixel electrode 3 and the signal electrodes 2 and 18 in a stripe shape, drawn in the vertical direction, and commonly connected to the common electrodes in other columns.
[0032]
The orientation of the liquid crystal molecules in the liquid crystal layer is controlled mainly by the electric field E applied in the horizontal direction between the pixel electrode 3 and the common electrode 4. The light passes between the pixel electrode 3 and the common electrode 4, enters the liquid crystal layer 16, and is modulated. Therefore, the pixel electrode 3 does not need to be particularly light-transmitting (for example, a transparent electrode such as ITO).
[0033]
A protective film 11 made of silicon nitride for protecting the TFT element was formed on the TFT element. A shield electrode 5 was formed on a substrate 9 (hereinafter referred to as a counter substrate) opposite to a substrate 8 provided with a TFT element group (hereinafter referred to as a TFT substrate). At this time, the shield electrode 5 was formed so as to be arranged in a stripe shape between the signal electrode 2 and the pixel electrode 3, and was drawn out in the vertical direction to be connected in common with the shield electrodes in other columns.
[0034]
Further, on the counter substrate 9, three color filters 12 composed of R, G, and B in a stripe shape in the vertical direction were formed. On the color filter 12, a flattening film 13 made of a transparent resin for flattening the surface was laminated. An epoxy resin was used as the material for the planarizing film 13. Further, polyimide-based orientation control films 14 and 15 were applied and formed on the planarizing film 13 and the protective film 11.
[0035]
A nematic liquid crystal composition 16 having a positive dielectric anisotropy Δε, a value of 7.3, and a birefringence Δn of 0.073 (589 nm, 20 ° C.) was sandwiched between the substrates 8 and 9. In this embodiment, a liquid crystal having a positive dielectric anisotropy Δε is used, but a negative liquid crystal may be used.
[0036]
The alignment control films 14 and 15 were rubbed so that the pretilt angle was 1.0 degree. The rubbing directions of the upper and lower interfaces were substantially parallel to each other, and the angle formed with the applied electric field E was 85 degrees. In addition, the gap (d) between the upper and lower substrates was 4.5 μm in a liquid crystal sealed state in which spherical polymer beads were dispersed and held between the substrates. Accordingly, Δn · d is 0.329 μm.
[0037]
The above panel is sandwiched between two polarizing plates [G1220DU manufactured by Nitto Denko Corporation] (the polarizing plate is not shown), the polarizing transmission axis of one polarizing plate is substantially parallel (85 degrees) to the rubbing direction, and the other is orthogonal to it. (−5 degrees). As a result, a normally closed liquid crystal display device was obtained.
[0038]
Next, a vertical scanning circuit 19 and a video signal driving circuit 20 are connected on the TFT substrate 8 of the liquid crystal display panel 22 as shown in FIG. 3, and a scanning signal voltage, a video signal voltage, a timing signal, A common electrode voltage and a shield electrode voltage were supplied, and active matrix driving was performed.
[0039]
In this example, the shield electrode voltage and the common electrode voltage were made independent, and the shield electrode voltage was electrically connected to the shield electrode on the counter electrode from the TFT substrate 8 using silver paste and supplied. In this embodiment, an amorphous silicon TFT element is used, but a polysilicon TFT element may be used. In the case of a reflective display device, a MOS transistor formed on a silicon wafer may be used. The wiring material is not limited.
[0040]
In this embodiment, the alignment control film is provided. However, the surface of the planarization film 13 may be directly rubbed to serve as the alignment control film. Similarly, an epoxy resin can be used for the protective film 11 of the TFT and a rubbing process can be performed.
[0041]
Next, FIG. 4 shows the relationship between the voltage applied to the liquid crystal of this embodiment and the brightness. The contrast ratio is 150 or more when driven at 7V, and the curve difference when the viewing angle is changed to the left, right, up and down is extremely small compared to the conventional method (Comparative Example 1), and the display characteristics hardly change even when the viewing angle is changed. It was. In addition, the orientation of the liquid crystal was good, and no domain or the like based on poor alignment was generated.
[0042]
FIG. 5 shows a change in the signal voltage Vsig-brightness curve due to the difference in the waveform of the signal electrode voltage Vd in this embodiment. 5A shows a voltage waveform, and FIG. 5B shows a change in the signal voltage Vsig-brightness curve. After the scanning electrode voltage Vg was turned on and the signal voltage Vsig was written, the signal electrode voltage Vd was changed, but no noticeable change occurred in the signal voltage Vsig-brightness curve.
[0043]
As described above, in this example, the intensity of transmitted light can be modulated without using a transparent electrode, and the viewing angle dependency can be remarkably improved. Furthermore, vertical crosstalk, which is a weak point of the method of applying an electric field in parallel with the substrate interface, can be suppressed, and a high-throughput, high yield, wide viewing angle, high contrast, high-quality liquid crystal display device is obtained. I was able to.
[0044]
[Comparative Example 1]
A conventional twisted nematic (TN) type display device having a transparent electrode was prepared and compared with the first embodiment. As the liquid crystal composition, the nematic liquid crystal composition having a positive dielectric anisotropy Δε used in Example 1 was used, the gap (d) was 7.3 μm, and the twist angle was 90 degrees. Therefore, Δn · d is 0.526 μm.
[0045]
The electro-optical characteristics are shown in FIG. The curve changed remarkably depending on the viewing angle direction, and a domain based on poor alignment of the liquid crystal occurred in the vicinity of the gap between the adjacent portions of the TFT.
[Comparative Example 2]
[0046]
FIG. 7 shows changes in the signal voltage-brightness characteristics accompanying changes in the signal electrode voltage when the shield electrode 5 of FIG. 2 is not formed. It was found that the signal voltage Vsig-brightness curve has a large difference due to the difference in the waveform of the signal electrode voltage Vd. In terms of image quality, vertical crosstalk occurred, and the contrast was significantly lowered as shown by the Vd 'curve in the figure.
[0047]
[Example 2]
The configuration of the present embodiment is the same as that of the first embodiment except for the following requirements. FIG. 8A is a schematic plan view of a pixel of the liquid crystal display panel of this embodiment, and FIG. 8B is a schematic cross-sectional view taken along the line BB ′ of FIG. The structural feature of the present embodiment is that a shield electrode 5 a is formed that covers all of the light transmission portions between the pixel electrode 3 and the signal electrode 2 and between the common electrode 4 and the signal electrode 18. As a result, light leakage did not occur without providing a light shielding layer, and high contrast could be obtained.
[0048]
Furthermore, since the amorphous silicon 6 was also covered, there was no increase in leakage current due to the light of the amorphous silicon, and good display characteristics could be obtained. In addition, a slit-like opening is provided in the portion of the shield electrode 5a on the signal electrodes 2 and 18 so that the capacitance between the signal electrode and the shield electrode does not increase as much as possible, and only an overlap for a margin of alignment accuracy is provided. Thus, the overlap with the signal electrodes 2 and 18 was minimized.
[0049]
As described above, in this example, an effect equivalent to that of Example 1 was obtained, and an active matrix liquid crystal display device with higher contrast and higher image quality could be obtained.
[0050]
Example 3
The configuration of the present embodiment is the same as that of the first embodiment except for the following requirements. FIG. 9A shows a schematic plan view of a pixel of the liquid crystal display panel of this embodiment, and FIG. 9B shows a schematic cross-sectional view taken along CC ′ of FIG. 9A. A structural feature of the present embodiment is that a matrix-like light-shielding film 23 (black matrix) is formed in the same layer as the color filter 12a on the counter substrate 9 with an insulator containing a black pigment.
[0051]
The light shielding film 23 made of an insulator has no influence on the electric field E applied between the pixel electrode 3 and the common electrode 4, and between the pixel electrode 3 and the scan electrodes 1, 17 and between the common electrode 4 and the scan. The poor alignment region (domain) due to the electric field between the electrodes 1 and 17 could be covered and the contrast could be further improved.
[0052]
Further, since it was formed so as to cover the amorphous silicon 6 as in Example 2, there was no increase in leakage current due to light, and good display characteristics could be obtained. In this embodiment, a black pigment is used, but a dye may be used. Note that the visible light transmittance is not limited to black and may be sufficiently low.
[0053]
Further, since no electrode is present on the signal electrodes 2 and 18, the capacitance between the signal electrode and the shield electrode is reduced as compared with the second embodiment, the load on the video signal drive circuit 20 is reduced, and the chip size of the drive LSI is reduced. In addition, the power consumption can be reduced by reducing the load on the signal electrode.
[0054]
As described above, in this example, the same effects as those in Examples 1 and 2 were obtained, and an active matrix type liquid crystal display device with high contrast and low power consumption could be obtained.
[0055]
Example 4
The configuration of the present embodiment is the same as that of the first embodiment except for the following requirements. FIG. 10A is a schematic plan view of a pixel of the liquid crystal display panel of this embodiment, and FIG. 10B is a schematic cross-sectional view taken along DD ′ of FIG. In this embodiment, in the configuration of one pixel, two shield electrodes 5a and 5b are formed on the counter substrate 9 so as to be adjacent to the signal electrodes 2a and 18a, and the pixel electrode 3a is formed between the shield electrode 4a and the shield electrode 40a. Arranged.
[0056]
As a result, the electric field E from the signal electrodes 2a and 18a terminates at the shield electrodes 5a and 5b, and the parasitic capacitance Cds between the signal electrode and the pixel electrode is greatly reduced. In addition, since the pixel electrode 3a is disposed at a position where the distance from the signal electrodes 2a and 18a is farthest (a central portion between the signal electrode 2a and the signal electrode 18a), the pixel electrode 3a is disposed between the signal electrodes 2a and 18a and the pixel electrode 3a. The capacity could be further reduced. The feature of this embodiment is that even if the common electrode is not configured, the electric field between the shield electrodes 5a and 5b and the pixel electrode 3a is operated while the major axis direction of the liquid crystal molecules is kept substantially parallel to the substrate surface. The amount of transmission can be controlled.
[0057]
FIG. 11 shows the configuration of the drive system of the liquid crystal display device of this embodiment. In the present embodiment, since the shield electrodes 5a and 5b also serve as a common electrode, no common electrode voltage is required. In this embodiment, the pixel electrode 3a is arranged at the center of the signal electrode 2a and the signal electrode 18a to divide the pixel into two, but a plurality of pixel electrodes may be provided to divide into four or more. Note that in the method in which the common electrode is also used as the shield electrode as in this embodiment, the number of divided pixels is 2n (n is a natural number).
[0058]
Further, in this embodiment, the area on the pixel plane occupied by the common electrode can be used for the shield electrode, and further, by using the opening between the shield electrode and the pixel electrode, a high aperture ratio is obtained. A liquid crystal display device with high luminance or low power consumption and low power consumption can be obtained.
[0059]
As described above, in this example, the shield electrode is also used as the common electrode, so that the same effect as that of Example 1 was obtained, and an active matrix liquid crystal display device with higher luminance or lower power consumption could be obtained.
[0060]
Example 5
The configuration of this example is the same as that of Example 4 except for the following requirements. FIG. 12A shows a schematic plan view of a pixel of the liquid crystal display panel of this embodiment, and FIG. 12B shows a schematic cross-sectional view taken along line FF ′ of FIG. The structural feature of this example is that the shield electrode 5a and the signal electrode 2a, and the shield electrode 5b and the signal electrode 18a are overlapped in the horizontal direction.
[0061]
As a result, there was no excessive light leakage between the shield electrode and the signal electrode without providing a light shielding layer, and high contrast could be obtained. Further, the distance between the pixel electrode 3a and the shield electrodes 5a and 5b is increased, and the area (aperture ratio) of the light transmission portion between the pixel electrode 3a and the shield electrodes 5a and 5b is increased, thereby improving the transmittance.
[0062]
As described above, in this example, an effect equivalent to that of Example 4 was obtained, and an active matrix type liquid crystal display device with high contrast, high luminance, and low power consumption could be obtained.
[0063]
Example 6
The configuration of this example is the same as that of Example 4 except for the following requirements. FIG. 13A is a schematic plan view of a pixel of the liquid crystal display panel of this embodiment, and FIG. 13B is a schematic cross-sectional view taken along line GG ′ in FIG. A structural feature of the present embodiment is that a matrix-like light-shielding film 23 (black matrix) is formed in the same layer as the color filter 12a on the counter substrate 9 with an insulator containing a black pigment.
[0064]
The light shielding film 23 made of an insulator has no influence on the electric field E applied between the pixel electrode 3 and the shield electrodes 5a and 5b, and between the pixel electrode 3 and the scanning electrodes 1 and 17, and between the shield electrodes 5a and 5b. In addition, it was possible to cover up a misalignment region (domain) due to the electric field between the scanning electrode 1 and the scanning electrode 1 and 17, and to further improve the contrast.
[0065]
Further, since the amorphous silicon 6 was also formed so as to cover it, a good display characteristic could be obtained without an increase in leakage current due to light. Further, misalignment of the substrates 8 and 9 has no problem in the horizontal direction, and the aperture ratio does not decrease even if the light shielding film 23 is displaced between the shield electrodes 5a and 5b. In this embodiment, a black pigment is used, but a dye may be used. Note that the visible light transmittance is not limited to black and may be sufficiently low.
[0066]
As described above, in this example, an effect equivalent to that of Example 4 was obtained, and an active matrix liquid crystal display device with higher contrast and higher image quality could be obtained.
[0067]
[referenceExample2]
BookreferenceThe configuration of the example is the same as that of the first embodiment except for the following requirements. In FIG.referenceA schematic plan view of a pixel of the liquid crystal display panel of Example 2 is shown, and FIG. 14B is a schematic cross-sectional view taken along line HH ′ of FIG. The structural feature of this reference example is that the shield electrode 5 is formed on the protective film 11 of the TFT substrate 8.
[0068]
Therefore, no conductive substance is present on the counter substrate 9. Therefore, even if conductive foreign matter is mixed during the manufacturing process, there is no possibility of contact between the electrodes through the counter substrate 9, thereby the defect rate is suppressed to zero, formation of an alignment film, rubbing, The degree of cleanliness, such as the liquid crystal sealing process, is widened, and the manufacturing process management can be simplified. Electrical connection between the TFT substrate 8 and the counter substrate 9 for supplying a potential to the shield electrode 5 is also unnecessary.
[0069]
This is the bookreferenceIn the example, the same effect as in Example 1 was obtained, and the manufacturing yield could be improved. Also bookreferenceAlthough the example has been described based on Example 1, it is possible in Examples 2, 3, 4, 5, and 6 that the shield electrode is formed on the TFT substrate 8 as in this reference example.referenceThe same effect as the example can be obtained.
[0070]
[Reference example 3]
BookreferenceThe configuration of the example is the same as that of the fourth embodiment except for the following requirements. Figure 15 (a) shows the bookreferenceA schematic plan view of a pixel of an example liquid crystal display panel is shown, and FIG. 15B is a schematic cross-sectional view taken along line II ′ of FIG. BookreferenceThe structural feature of the example is that the shield electrodes 5a and 5b are formed of the same material and in the same layer as the signal electrodes 2a and 18a in the same process. For the electrical connection between the common electrode 4b and the shield electrode 5b, a through hole 42 was formed in the gate insulating film 11, and a wiring 41 formed of the same material and in the same layer as the scanning electrodes 1 and 17 in the same process was used.
[0071]
This eliminates the need to provide a shield electrode in a separate process.referenceExample2Similarly to the above, since no conductive substance is present on the counter substrate 9, there is no possibility of contact between the electrodes through the counter substrate 9. Therefore, the defect rate due to this is suppressed to zero, and the degree of cleanliness such as alignment film formation, rubbing, and liquid crystal encapsulation process is widened, and manufacturing process management can be simplified.
[0072]
The intensity of the electric field E varies depending on the distance between the pixel electrode 3 and the shield electrode 5a. Therefore, the variation in the distance between the pixel electrode and the shield electrode causes a variation in brightness, which becomes a problem. Accordingly, high alignment accuracy between the pixel electrode and the common electrode is required. In the method of bonding two substrates each having an electrode, the alignment accuracy is two to three times worse than the alignment accuracy of the photomask. In this reference example, since the pixel electrode 3 and the shield electrodes 5a and 5b are formed of the same material and in the same layer in the same process, there is no problem of the alignment accuracy.
[0073]
This is the bookreferenceIn the example, the same effect as in Example 4 was obtained, and an active matrix type liquid crystal display device with higher throughput and higher yield could be obtained. Also bookreferenceThe example was described based on Example 4, but thisreferenceIn the first, third and sixth embodiments, it is possible to form the shield electrode in the same layer and in the same layer as the signal electrode as in the example.referenceThe same effect as the example can be obtained.
[0074]
[Reference example 4]
BookreferenceThe configuration of the example is the same as that of the fourth embodiment except for the following requirements. Figure 16 (a) shows the bookreferenceA schematic plan view of a pixel of an example liquid crystal display panel is shown, and FIG. 16B is a schematic cross-sectional view taken along line JJ ′ of FIG. BookreferenceThe structural feature of the example is that the shield electrode 5 is formed of the same material and in the same layer as the scanning electrodes 1 and 17 in the same process, is drawn out in the horizontal direction, and is commonly connected to the common electrode in other rows. .
[0075]
The liquid crystal molecules are controlled by an electric field E between the pixel electrode 3 whose longitudinal direction is in the vertical direction and the protrusion protruding in the vertical direction of the shield electrode 5. ThisReference example 3Similarly to the above, it is not necessary to provide the shield electrode 5 in a separate process.
[0076]
Further, since there is no conductive substance on the counter substrate 9 as in the second embodiment, there is no possibility of electrode-to-electrode contact through the counter substrate 9, and the defect rate based thereon is suppressed to zero. . Therefore, the tolerance of cleanliness such as alignment film formation, rubbing, and liquid crystal sealing process has been expanded, and manufacturing process management has been simplified.
[0077]
Furthermore,Reference example 3Thus, there is no need to provide a through hole, and there is no connection failure between the common electrodes. Also bookreferenceIn the example, since the pixel electrode 3 and the shield electrode 5 are formed on the same substrate, the alignment accuracy of the pixel electrode 3 and the shield electrode 5 is also high. Further, the protrusion protruding in the vertical direction of the shield electrode 5 may be formed so as to overlap the signal electrodes 2a and 18a in the horizontal direction. As a result, as in the fifth embodiment, there is no extra light leakage between the signal electrode and the shield electrode without providing a light shielding layer, and a high contrast can be obtained.
[0078]
Further, the distance between the projections of the pixel electrode 3 and the common electrode 4 is increased, the area (aperture ratio) of the light transmission portion between the projections of the pixel electrode 3 and the shield electrode 5 is increased, and the transmittance is improved. Also bookreferenceIn the example, the shield electrode is connected as shown in FIG. 16, but the connection position is not particularly limited.
[0079]
This is the bookreferenceIn the example, the same effect as in Example 4 was obtained, and an active matrix type liquid crystal display device with higher throughput and higher yield could be obtained. Also bookreferenceThe example was described based on Example 4, but thisreferenceIt is possible in Examples 1, 2, 3, 5, and 6 that the shield electrode is formed of the same material and in the same layer as the scan electrode as in the example.referenceThe same effect as the example can be obtained.
[0080]
【The invention's effect】
According to the present invention, since the pixel electrode does not need to be transparent and a normal metal electrode can be used, an active matrix liquid crystal display device that can be mass-produced with a high yield can be obtained.
Further, an active matrix liquid crystal display device with favorable viewing angle characteristics and easy multi-gradation display can be obtained.
[0081]
In particular, by forming the shield electrode, the parasitic capacitance between the signal electrode and the pixel electrode can be reduced, and an active matrix liquid crystal display device with high contrast and no crosstalk can be obtained. Both effects can be achieved. Furthermore, since the shield electrode also serves as the common electrode, the number of manufacturing steps is reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of the operation of Reference Example 1. FIG.
FIG. 2 is a schematic diagram illustrating a configuration of a pixel unit according to the first exemplary embodiment.
FIG. 3 is a schematic diagram showing a drive system configuration of Examples 1-3, 7;
FIG. 4 is a view showing the viewing angle dependency of the liquid crystal display device of the present invention.
[Figure 5]In an embodiment of the present inventionIt is a figure which shows the viewing angle dependence of a liquid crystal display device.
FIG. 6 is a diagram showing a change in signal voltage-brightness characteristics accompanying a change in signal electrode voltage of the liquid crystal display device of the present invention.
FIG. 7 is a diagram illustrating a change in signal voltage-brightness characteristics accompanying a change in signal electrode voltage of a conventional liquid crystal display device.
FIG. 8 is a schematic diagram illustrating a configuration of a pixel unit according to the second exemplary embodiment.
FIG. 9 is a schematic diagram illustrating a configuration of a pixel unit according to a third embodiment.
10 is a schematic diagram illustrating a configuration of a pixel portion according to Embodiment 4. FIG.
FIG. 11 is a schematic diagram showing a drive system configuration of Examples 4 to 6 and 8 to 9.
12 is a schematic diagram illustrating a configuration of a pixel portion according to Embodiment 5. FIG.
13 is a schematic diagram illustrating a configuration of a pixel portion according to Embodiment 6. FIG.
FIG. 14reference6 is a schematic diagram illustrating a configuration of a pixel unit in Example 2. FIG.
FIG. 15reference10 is a schematic diagram illustrating a configuration of a pixel unit in Example 3. FIG.
FIG. 16reference10 is a schematic diagram illustrating a configuration of a pixel unit in Example 4. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,17 ... Scan electrode, 2,18 ... Signal electrode, 3 ... Pixel electrode, 4 ... Common electrode, 5 ... Shield electrode, 6 ... Amorphous silicon, 7 ... N + type amorphous silicon, 8, 9 ... Substrate, 10 ... Gate Insulating film, 11 ... protective film, 12 ... color filter, 13 ... flattening film, 14, 15 ... orientation control film, 16 ... liquid crystal layer, 19 ... vertical scanning circuit, 20 ... video signal drive circuit, 21 ... power supply and control Circuit, 22 ... Liquid crystal display panel, 23 ... Light shielding film, 25 ... Liquid crystal molecule, 26, 27 ... Deflection plate, 28 ... Orientation direction, 29 ... Deflection transmission axis, 41 ... Wiring, 42 ... Through hole.

Claims (4)

第1と第2の基板間に液晶組成物が挾持され、第1の基板には、マトリクス状に配置された複数の走査電極と信号電極により複数の画素が構成されており、前記画素にはスイッチング素子が設けられているアクティブマトリクス型液晶表示装置において、
前記スイッチング素子は画素電極が接続され、前記画素電極とこれに対向した共通電極により、液晶に印加する電界の方向を基板界面にほぼ平行な方向とするよう構成され、
前記画素には、信号電極、画素電極、および、信号電極と画素電極間との間にシールド電極を有し、
前記シールド電極は第2の基板上に形成され
前記画素の信号電極と画素電極の間の光透過部、信号電極と共通電極の間の光透過部、スイッチング素子の半導体層上および走査電極からの電気力線が通過する光透過部に、顔料または染料を含む黒色または低光透過率の遮光膜が形成されていることを特徴とするアクティブマトリクス型液晶表示装
置。
A liquid crystal composition is held between the first and second substrates, and a plurality of pixels are configured on the first substrate by a plurality of scanning electrodes and signal electrodes arranged in a matrix. In an active matrix liquid crystal display device provided with a switching element,
The switching device is connected pixel electrodes, by the pixel electrode and the common electrode facing thereto, the direction of the electric field applied to the liquid crystal is to so that configuration and a direction substantially parallel to the substrate surface,
The pixel has a signal electrode, a pixel electrode, and a shield electrode between the signal electrode and the pixel electrode,
The shield electrode is formed on the second substrate,
Pigment in the light transmission part between the signal electrode of the pixel and the pixel electrode, the light transmission part between the signal electrode and the common electrode, the light transmission part on the semiconductor layer of the switching element and the lines of electric force from the scanning electrode Alternatively, an active matrix liquid crystal display device comprising a black or low light transmittance light-shielding film containing a dye.
前記シールド電極が、信号電極と画素電極の間の光透過部、信号電極と共通電極の間の光透過部およびスイッチング素子の半導体層上に形成されている請求項1に記載のアクティブマトリクス型液晶表示装置。2. The active matrix liquid crystal according to claim 1, wherein the shield electrode is formed on a light transmission portion between the signal electrode and the pixel electrode, a light transmission portion between the signal electrode and the common electrode, and a semiconductor layer of the switching element. Display device. 前記シールド電極の一部が信号電極と重なるように形成されている請求項1又は2に記載のアクティブマトリクス型液晶表示装置。The active matrix type liquid crystal display device according to claim 1, wherein a part of the shield electrode overlaps with the signal electrode. 前記シールド電極は、前記信号電極と前記画素電極の少なくとも1つの部分の間で発生する寄生容量を、前記電極を配置しない場合と比較して低減する請求項1〜4のいずれかに記載のアクティブマトリクス型液晶表示装置。5. The active device according to claim 1, wherein the shield electrode reduces a parasitic capacitance generated between at least one portion of the signal electrode and the pixel electrode as compared with a case where the electrode is not disposed. Matrix type liquid crystal display device.
JP2002009901A 2002-01-18 2002-01-18 Active matrix liquid crystal display device Expired - Lifetime JP3625283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009901A JP3625283B2 (en) 2002-01-18 2002-01-18 Active matrix liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009901A JP3625283B2 (en) 2002-01-18 2002-01-18 Active matrix liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6046916A Division JPH10325961A (en) 1994-03-17 1994-03-17 Active matrix type liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2002318389A JP2002318389A (en) 2002-10-31
JP3625283B2 true JP3625283B2 (en) 2005-03-02

Family

ID=19191550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009901A Expired - Lifetime JP3625283B2 (en) 2002-01-18 2002-01-18 Active matrix liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3625283B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451784C (en) 2004-01-29 2009-01-14 夏普株式会社 Display device
JP2005215341A (en) * 2004-01-29 2005-08-11 Sharp Corp Display device
JP4170235B2 (en) * 2004-01-29 2008-10-22 シャープ株式会社 Display device
JP4276965B2 (en) 2004-02-04 2009-06-10 シャープ株式会社 Display device
KR20060015201A (en) * 2004-08-13 2006-02-16 삼성전자주식회사 Array substrate and mother board and liquid crystal display having the same
JP4668256B2 (en) * 2007-12-12 2011-04-13 シャープ株式会社 Display device
CN114594634A (en) * 2022-03-28 2022-06-07 北京京东方显示技术有限公司 Display substrate and display panel

Also Published As

Publication number Publication date
JP2002318389A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP3143925B2 (en) Active matrix type liquid crystal display
US5781261A (en) Active matrix type LCD having light shield layers and counter electrodes made of the same material
KR100356604B1 (en) LCD Display
US6762815B2 (en) In-plane switching LCD with a redundancy structure for an opened common electrode and a high storage capacitance
KR100396823B1 (en) Active matrix liquid crystal display device
KR100820624B1 (en) Pixel structure and liquid crystal display panel
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
KR20000048876A (en) Display screen with active matrix
JP3819561B2 (en) Liquid crystal display
JP3625283B2 (en) Active matrix liquid crystal display device
US6958743B2 (en) Array substrate for liquid crystal display device having redundancy line and fabricating method thereof
US7233376B2 (en) Transflective LCD with reflective electrode offset from transmissile electrode
JP2002214613A (en) Liquid crystal display
KR100469341B1 (en) In-plane switching mode liquid crystal display device and method for manufacturing the same
JP3804910B2 (en) Liquid crystal display
KR20010098656A (en) Liquid crystal device, projection type display apparatus, and electronic apparatus
JPH07333634A (en) Liquid crystal display panel
JPH0980473A (en) Liquid crystal display element
KR20070073171A (en) Display substrate and liquid crystal display panel having the same
JP4121357B2 (en) Liquid crystal display
KR20040027216A (en) A OCB mode liquid crystal display and a driving method of the same
JPH07230074A (en) Liquid crystal display device
JP3811695B2 (en) Liquid crystal display
KR101027866B1 (en) Liquid Crystal Display Device
KR100864924B1 (en) Liquid crystal display device and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term