WO2018092811A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2018092811A1
WO2018092811A1 PCT/JP2017/041123 JP2017041123W WO2018092811A1 WO 2018092811 A1 WO2018092811 A1 WO 2018092811A1 JP 2017041123 W JP2017041123 W JP 2017041123W WO 2018092811 A1 WO2018092811 A1 WO 2018092811A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
component
crystal aligning
Prior art date
Application number
PCT/JP2017/041123
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 国見
崇明 杉山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780070436.XA priority Critical patent/CN109952531B/en
Priority to KR1020197016904A priority patent/KR102483499B1/en
Priority to JP2018551666A priority patent/JP7259328B2/en
Publication of WO2018092811A1 publication Critical patent/WO2018092811A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • the liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a phase difference plate using a liquid crystal display element or a polymerizable liquid crystal.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates. Then, the liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to the electrode provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image using the orientation change due to the response of the liquid crystal molecules.
  • the liquid crystal alignment film is a main constituent member together with liquid crystal molecules and the like in the liquid crystal display element.
  • the rubbing process is known as a method of forming a liquid crystal alignment film from a polymer film formed on a substrate in the manufacturing process of a liquid crystal display element, and is still widely used industrially today.
  • an alignment process is performed by rubbing the surface of the polymer film formed on the substrate with a cloth.
  • the liquid crystal alignment film is required to have a resistance to rubbing (rubbing resistance) that the film hardness is high.
  • liquid crystal display elements have been rapidly reduced in weight and thickness for mobile applications such as smartphones and mobile phones.
  • a so-called “sliming process” is often performed in which the glass substrate of the liquid crystal panel after manufacture is polished.
  • this step there are a chemical method using hydrofluoric acid and a physical polishing method using an abrasive.
  • the produced liquid crystal panel may be bent depending on the apparatus used for polishing, and as a result, stress is applied to the liquid crystal alignment film from all directions. Therefore, when the mechanical strength of the liquid crystal alignment film is weak, the film breaks particularly around the column spacer, which may cause a defect.
  • the main object of the present invention is not only the rubbing process but also the slimming process, and has a large film hardness that can suppress film scraping and breakage, and has a high yield in liquid crystal panel manufacturing, and an IPS driving method.
  • Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film having excellent electrical characteristics capable of reducing an afterimage caused by alternating current drive generated in a liquid crystal display element of an FFS driving system.
  • the gist of the present invention is to provide a liquid crystal aligning agent characterized by containing the following component (A), component (B) and an organic solvent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and the liquid crystal aligning film. It is in the liquid crystal display element used.
  • component an imidized product of a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having the structure of the following formula (1), and an imidization rate of 20% to Polyimide that is 80%.
  • * represents a bond with another atom or group.
  • Component A compound having two or more crosslinkable functional groups.
  • the liquid crystal aligning agent of the present invention With the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high film hardness and good afterimage characteristics can be obtained. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive method and FFS drive method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained.
  • the component (A) contained in the liquid crystal aligning agent of the present invention is an imidized product of a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having the structure of the above formula (1). And a polyimide having an imidization ratio of 20% to 80%.
  • Examples of the diamine having the structure of the formula (1) include a structure in which amino groups are bonded to both ends of the benzene ring in the formula (1).
  • the amino group bonded to both ends of the benzene ring is independently bonded to the ortho, meta, or para position with respect to —O—CH 2 —O—.
  • all of the amino groups are preferably bonded to the para position with respect to —O—CH 2 —O—.
  • the ratio of the diamine having the structure of the formula (1) in the total diamine component to be reacted with the tetracarboxylic acid derivative component is preferably 10 to 80 mol% in order to better achieve the object of the present invention. More preferably, it is 20 to 60% by mole, and particularly preferably 20 to 50%.
  • the diamine component for obtaining a polyimide precursor can contain 1 type, or 2 or more types of other diamine other than the diamine which has a structure of Formula (1).
  • Such other diamines can be represented by the following formula (6).
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. is there. From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • Examples of Y 1 in formula (6) include the following (Y-1) to (Y-168).
  • Y 1 in the above formula (6) is preferably a highly linear structure from the viewpoint of liquid crystal alignment, and examples thereof include a structure represented by the following formula (8) or the following formula (9).
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 1 to 20 carbon atoms.
  • a 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms.
  • a is an integer of 1 to 4. When a is 2 or more, the structure of A 2 may be the same or different.
  • b and c are each independently an integer of 1 to 2.
  • the diamine component for obtaining the polyimide precursor is eliminated by heat and generates an amino group, preferably a secondary amino group, represented by the following formula (7).
  • the diamine has a thermally leaving group.
  • D is a thermally detachable group that is preferably eliminated at 150 to 230 ° C., more preferably at 180 to 230 ° C.
  • D is particularly preferably a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group from the viewpoint of elimination temperature.
  • Y 1 having a thermally leaving group represented by the above formula (7) examples include Y-158, Y-159, Y-160, Y-161, Y-162, or Y-163. It is done.
  • the ratio of the diamine having the structure of the above formula (7) in the total diamine component to be reacted with the tetracarboxylic acid derivative component is preferably 10 to 70 mol%, more preferably 20 to 50 mol%. .
  • the tetracarboxylic acid derivative component for producing the component (A) contained in the liquid crystal aligning agent of the present invention by reacting with a diamine component containing a diamine having the structure of the above formula (1) is a tetracarboxylic acid diester.
  • tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid dialkyl ester dihalide can be used.
  • tetracarboxylic acid derivative tetracarboxylic dianhydride is preferable.
  • the tetracarboxylic acid derivative preferably has an alicyclic structure, and specific examples of the alicyclic structure include the following formulas (X1-1) to (X1-10).
  • R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon These are an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group. Specific examples of the structure of formula (X1-1) include the following.
  • the proportion of the tetracarboxylic acid derivative having an alicyclic structure in the total tetracarboxylic acid derivative component to be reacted with the diamine component is preferably 60 to 100 mol%, more preferably 70 to 100 mol%. Particularly preferred is 80 to 100%.
  • tetracarboxylic acid derivative used in the present invention those having a structure other than those having the alicyclic structure can be used. Specific examples include those having the structures of the following formulas (X-9) to (X-42).
  • the polyamic acid and polyamic acid ester which are the precursors of the polyimide contained in the liquid crystal aligning agent of the present invention, are produced as follows by the (polycondensation) reaction of the tetracarboxylic acid derivative component and the diamine component described above. .
  • ⁇ Method for producing polyamic acid> Specifically, the polyamic acid is obtained by combining tetracarboxylic dianhydride and diamine in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 It can be produced by reacting for ⁇ 12 hours.
  • the organic solvent used for said reaction will not be specifically limited if the produced
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone Can be mentioned.
  • the solubility of the polyamic acid is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]
  • a solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents 1 to 3 carbon atoms
  • 4 represents an alkyl group.
  • These solvents may be used alone or in combination.
  • the solvent may be used by mixing with the solvent as long as the produced polyamic acid does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried solvent.
  • the concentration of the polyamic acid is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polyamic acid by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid ester can be produced by the following method (1), (2) or (3).
  • Polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. it can.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the amount of the base used is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can manufacture by making it react for time.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the amount of the condensing agent used is preferably 2 to 3 moles relative to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding a Lewis acid.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the production method of (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide which is said (A) component can be manufactured by imidating the said polyamic acid or polyamic acid ester.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidization can be performed by stirring the polyamic acid or polyamic acid ester to be imidized in the presence of a basic catalyst in an organic solvent.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the polyamic acid or amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, it is preferable to recover the obtained imidized polymer and redissolve it with an organic solvent to obtain a liquid crystal aligning agent.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the polyimide which is the component (A) contained in the liquid crystal aligning agent of the present invention is obtained by imidizing the polyimide precursor as described above, and the imidization ratio at that time is 20 to 80%. is required.
  • the imidization rate is excessively large, the coating property is remarkably deteriorated.
  • the imidation ratio is more preferably 50 to 70%.
  • the molecular weight of the polyimide is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. .
  • the number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
  • the component (B) contained in the liquid crystal aligning agent of the present invention is a compound having two or more crosslinkable functional groups.
  • the crosslinkable functional group is preferably at least one selected from the group consisting of a hydroxyl group, a (meth) acrylate group, a blocked isocyanate group, an oxetane group, and an epoxy group from the viewpoint of availability and effects. Of these, a hydroxyl group is preferred.
  • the compound as the component (B) may have two or more of the same crosslinkable functional groups, or may have two or more different types of crosslinkable functional groups. Although there is no upper limit to the number of crosslinkable functional groups, it is usually 8 or less, preferably 6 or less.
  • a preferable compound having two or more hydroxyl groups includes a compound represented by the following formula (2).
  • X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group.
  • n is an integer of 2 to 6. Any carbon in the aliphatic hydrocarbon group or aromatic hydrocarbon group may be substituted with nitrogen or oxygen.
  • R 2 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or An alkynyl group having 2 to 4 carbon atoms which may have a substituent. Further, at least one of R 2 and R 3 represents a hydrocarbon group substituted with a hydroxy group. Among them, atoms directly attached to the carbonyl group of X 2 in the formula (2) is preferable from the viewpoint of the liquid crystal orientation is a carbon atom, which do not form an aromatic ring. X 2 in the formula (2) is preferably an aliphatic hydrocarbon group and more preferably 1 to 10 carbon atoms from the viewpoint of liquid crystal alignment and solubility. In the formula (2), n is preferably 2 to 4 from the viewpoint of solubility.
  • R 2 and R 3 are preferably a structure represented by the following formula (3) from the viewpoint of reactivity, and a structure represented by the following formula (4) More preferably.
  • R 4 to R 7 are each independently a hydrocarbon group substituted with a hydrogen atom, a hydrocarbon group, or a hydroxy group.
  • Preferable examples of the compound having two or more hydroxyl-containing groups include the following.
  • the content of the component (B) is preferably 0.1 to 20% by mass and more preferably 1 to 10% by mass with respect to the component (A).
  • the liquid crystal aligning agent of this invention can contain the polyimide precursor which is a reaction material of a tetracarboxylic-acid derivative component and a diamine component further as (C) component.
  • the polyimide precursor of the component (C) the tetracarboxylic acid derivatives and diamines described as the raw material of the polyimide precursor that is the polyimide precursor of the component (A) can be used, but in the same liquid crystal aligning agent The same polyimide precursor as the polyimide precursor of the component (A) contained is excluded.
  • polyimide precursor polyamic acid is preferable.
  • the liquid crystal aligning agent of this invention can further raise the film
  • the component (C) in the liquid crystal aligning agent is preferably 20 to 80 mol%, more preferably 40 to 70 mol%, relative to the component (A).
  • the liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned (A) component and (B) component and also (C) component as needed were melt
  • the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, it is 1% by mass. From the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. Particularly preferred is 3 to 6.5% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as it uniformly dissolves the contained polymer.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone.
  • organic solvents contained in the liquid crystal aligning agent of the present invention N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-pentyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, A first consisting of at least one selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropionamide, and 3-butoxy-N, N-dimethylpropionamide Solvent (I), Butyl cellosolve, butyl cellosolve acetate, 1-butoxy-2-propanol, 2-butoxy-1-propanol, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, diacetone alcohol, diiso
  • the solubility of the polymer of the present invention in a solvent is high, it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
  • the organic solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether are preferable.
  • the poor solvent is preferably 1 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass.
  • the liquid crystal aligning agent of the present invention includes a polymer other than the polymer described in the present invention, a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, and liquid crystal Silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and a polyimide precursor when the coating film is baked
  • An imidization accelerator for the purpose of efficiently proceeding imidization by heating the body may be added.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as a glass substrate, a silicon nitride substrate, an acrylic substrate, or a polycarbonate substrate can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, preferably 2 to 5 minutes, and then 150 to 300 ° C., preferably Is baked at 200 to 240 ° C. for 5 to 120 minutes, preferably 10 to 30 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the rubbing process can be performed using an existing rubbing apparatus.
  • Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon.
  • As the conditions for rubbing treatment generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and a pushing amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
  • the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from the group consisting of water and organic solvents.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
  • the contact treatment of the film irradiated with polarized radiation and the solution containing the solvent is performed by a method such that the film and the liquid are preferably in sufficient contact with each other, such as immersion treatment or spraying treatment. It is. Among them, a method of immersing in a solution containing a solvent, preferably for 10 seconds to 1 hour, more preferably for 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying is performed, or both. It's okay.
  • the film subjected to the contact treatment with the solution containing the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains.
  • the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, there is a possibility that the effect of molecular chain reorientation may not be obtained. If it is too long, the molecular chain may be decomposed, so 10 seconds to 30 minutes is preferable. 1 to 10 minutes is more preferable.
  • the liquid crystal display element of the present invention comprises the liquid crystal alignment film of the present invention.
  • a liquid crystal cell is produced by a known method, and a liquid crystal cell is used.
  • This is a display element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the sealing agent for example, a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used. .
  • a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used.
  • a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
  • an inorganic filler may be blended for the purpose of improving adhesiveness and moisture resistance.
  • the inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid. Barium, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, Examples include asbestos.
  • spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, or silicic acid Aluminum is mentioned.
  • Two or more of the above inorganic fillers may be mixed and used.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS Butyl cellosolve
  • DA-1 bis (4-aminophenoxy) methane
  • DA-2 1,2-bis (4-aminophenoxy) ethane
  • DA-3 N-tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine
  • DA-4 See formula (DA-4) below
  • DA-5 2-tert-butoxycarbonylaminomethyl-p-phenylenediamine (where Boc represents a tert-butoxycarbonyl group)
  • DA-6 See formula (DA-6) below
  • CA-1 See the following formula (CA-1)
  • CA-2 See the following formula (CA-1)
  • CA-2 See the following formula (CA-1)
  • CA-2 See the following formula (CA-1)
  • CA-2 See the following formula (CA-1)
  • CA-2 See
  • the viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C.
  • the molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC apparatus manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min.
  • Standard samples for use TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top molecular weight (Mp) manufactured by Polymer Laboratories) ) About 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight
  • the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
  • JNW-ECA500 an NMR measuring instrument
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of “bow” -shaped electrode elements having a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrode forming each pixel is formed by arranging a plurality of bent “bow” -shaped electrode elements at the center, so the shape of each pixel is not rectangular but is the same as that of the electrode element. It has a shape that resembles a bold “Kugi” that bends in part.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotational operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode is in the substrate plane. It is comprised so that it may become a mutually reverse direction.
  • the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface are spin-coated. It apply
  • baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 to 300 ° C. for 5 minutes to provide a substrate with a liquid crystal alignment film Got.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second region and the first region were compared to calculate a similar angle ⁇ .
  • a sample for pencil hardness evaluation was prepared as follows.
  • a liquid crystal aligning agent was applied to a 30 mm ⁇ 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm.
  • This coating surface was subjected to alignment treatment such as rubbing and polarized ultraviolet irradiation to obtain a substrate with a liquid crystal alignment film.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film A substrate was obtained.
  • the liquid crystal alignment film surface of this substrate was measured by a pencil hardness test method (JIS K5400).
  • An acid solution (C) (viscosity: 790 mPa ⁇ s) was obtained.
  • 50 g of the polyamic acid solution obtained in a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was taken, 62.5 g of NMP was added, and the mixture was stirred for 30 minutes.
  • To the obtained polyamic acid solution 5.39 g of acetic anhydride and 1.39 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization.
  • the obtained reaction liquid was poured into 525 ml of methanol while stirring, and the deposited precipitate was collected by filtration and subsequently washed with 525 ml of methanol three times.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (C).
  • Example 1 Take 1.80 g of the polyimide resin powder (A) obtained in Synthesis Example 1 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (K) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (1). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 2 Take 1.80 g of the polyimide resin powder (B) obtained in Synthesis Example 2 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (L) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 3 Take 1.80 g of the polyimide resin powder (C) obtained in Synthesis Example 2 in a 100 ml Erlenmeyer flask, add 22.11 g of NMP so that the solid concentration is 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (M) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 4 7.80 g of 18% by weight polyamic acid (D) and 5.20 g of 15% by weight polyimide solution (K) are placed in a 100 mL Erlenmeyer flask, 0.98 g of AD-1, 4.34 g of NMP, and 5.37 g of GBL. 68 g and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (4).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 5 7.80 g of 18% by weight polyamic acid (D) and 5.20 g of 15% by weight polyimide solution (L) are placed in a 100 mL Erlenmeyer flask, 0.98 g of AD-1, 4.36 g of NMP, and 5.37 g of GBL. 66 g and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (5).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • ⁇ Comparative example 2> Take 1.80 g of the polyimide resin powder (H) obtained in Synthesis Example 6 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (O) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 6> After filtering the liquid crystal aligning agent (1) with a filter having a pore diameter of 1.0 ⁇ m, the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface, It applied by spin coat application. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • the substrate was then immersed for 14 minutes on a 230 ° C. hot plate immersed in pure water for 1 minute to obtain a substrate with a liquid crystal alignment film. It was 3H as a result of measuring the liquid crystal aligning film surface of this board
  • Example 12 After filtering the liquid crystal aligning agent (1) obtained in Example 1 with a filter having a pore size of 1.0 ⁇ m, a columnar spacer having a height of 4 ⁇ m in which an ITO film is formed on the back surface of the prepared substrate with electrodes is provided. It apply
  • the surface of the coating film was irradiated with 0.25 J / cm 2 of linearly polarized ultraviolet light having a extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate.
  • This substrate was immersed in pure water for 3 minutes and dried on a hot plate at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film.
  • the above-mentioned two substrates obtained as a set were printed with a sealant on the substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °, The agent was cured to produce an empty cell.
  • Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.10 degrees.
  • Examples 12 to 15, Comparative Examples 7 to 9> instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 2 was used, respectively, and the irradiation amount of ultraviolet rays was changed to that shown in Table 2 in the same manner as in Example 11.
  • An FFS drive liquid crystal cell was fabricated and afterimage evaluation was performed by long-term alternating current drive.
  • Table 2 shows the value of the angle ⁇ of the liquid crystal cell after long-term AC driving in each case, including the results of Example 11.
  • the liquid crystal aligning agent of the present invention With the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high film hardness and good afterimage characteristics can be obtained. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive method and FFS drive method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality. It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-225395 filed on November 18, 2016 are cited herein as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a liquid crystal aligning agent which enables the achievement of a liquid crystal alignment film that has high film hardness, good afterimage characteristics and the like. A liquid crystal aligning agent which contains the component (A) and the component (B) described below, and an organic solvent. Component (A): A polyimide which is an imidized product of a polyimide precursor that is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having a structure of formula (1), and which has an imidization rate of from 20% to 80%. (In the formula, * represents a bond with another atom or group.) Component (B): A compound which has two or more crosslinkable functional groups.

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
 本発明は、液晶配向剤、この液晶配向剤から得られる液晶配向膜、及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板において、液晶分子の配向を一定方向に制御するための膜である。例えば、液晶表示素子では、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そして、液晶分子が液晶配向膜によってプレチルト角を伴って一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答する。その結果、液晶表示素子は、液晶分子の応答による配向変化を使用して所望とする画像の表示を行う。液晶配向膜は、液晶表示素子において、液晶分子などとともに主要な構成部材となる。 The liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a phase difference plate using a liquid crystal display element or a polymerizable liquid crystal. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates. Then, the liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to the electrode provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image using the orientation change due to the response of the liquid crystal molecules. The liquid crystal alignment film is a main constituent member together with liquid crystal molecules and the like in the liquid crystal display element.
 液晶配向膜に求められる特性は、種々存在する。ラビング処理に対する高い耐性はそのうちの重要な特性の一つである。ラビング処理は、液晶表示素子の製造過程において、基板上に形成された高分子膜から液晶配向膜を形成する方法として知られ、現在も工業的に広く用いられている。ラビング処理では、基板上に形成されたポリイミドなどの高分子膜に対し、その表面を布で擦る配向処理が行われる。
 このラビング処理では、液晶配向膜が削れることで発生する粉塵や液晶配向膜についた傷が表示素子の表示品位を低下させる問題が知られている。そのため、液晶配向膜には、膜硬度が大きいという、ラビング処理に対する耐性(ラビング耐性)が求められている。
There are various properties required for the liquid crystal alignment film. High resistance to rubbing is one of the important characteristics. The rubbing process is known as a method of forming a liquid crystal alignment film from a polymer film formed on a substrate in the manufacturing process of a liquid crystal display element, and is still widely used industrially today. In the rubbing process, an alignment process is performed by rubbing the surface of the polymer film formed on the substrate with a cloth.
In this rubbing treatment, there is a known problem that dust generated by scraping the liquid crystal alignment film or scratches on the liquid crystal alignment film deteriorates the display quality of the display element. Therefore, the liquid crystal alignment film is required to have a resistance to rubbing (rubbing resistance) that the film hardness is high.
 高いラビング耐性を有する液晶配向膜を形成するための方法としては、テトラカルボン酸ニ無水物とアミン化合物とを反応させて得られる重合体及び/又はそのイミド化重合体と、分子内に2個以上のエポキシ基を有する化合物を含有する液晶配向剤を用いることで、ラビング条件に依らず一定のプレチルト角を示す液晶配向膜が得られることが知られている(特許文献1、2参照) As a method for forming a liquid crystal alignment film having high rubbing resistance, a polymer obtained by reacting tetracarboxylic dianhydride and an amine compound and / or an imidized polymer thereof, and two in a molecule It is known that a liquid crystal alignment film having a constant pretilt angle can be obtained regardless of rubbing conditions by using a liquid crystal aligning agent containing a compound having the above epoxy group (see Patent Documents 1 and 2).
日本特開平07-234410号公報Japanese Unexamined Patent Publication No. 07-234410 日本特開平10-338880号公報Japanese Unexamined Patent Publication No. 10-338880
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子における軽量化、薄型化が急速に進んでいる。それに伴って、液晶パネルの製造において、作製後の液晶パネルのガラス基板を研磨する、いわゆる「スリミング工程」が行われることが多い。この工程では、フッ酸などを用いた化学的な方法と、研磨剤を用い物理的に研磨する方法がある。
 物理的に研磨する場合、研磨に用いる装置によっては、作製した液晶パネルが曲げられることもあり、その結果、液晶配向膜に対してあらゆる方向から応力がかかる。そのため、液晶配向膜の機械的強度が弱い場合、特にカラムスペーサーの周りで膜の破断が起こり、不良の原因になることがある。ラビング処理に対して十分な耐性を有するこれまでの液晶配向膜も、このスリミング工程に対する耐性が不十分であることが多い。
 本発明の主目的は、ラビング工程はもちろんのこと、スリミング工程においても、膜の削づれや、破断などを抑制しえる大きい膜硬度を有するとともに、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができる電気特性に優れた液晶配向膜を得ることができる液晶配向剤を提供することである。
In recent years, liquid crystal display elements have been rapidly reduced in weight and thickness for mobile applications such as smartphones and mobile phones. Along with this, in the manufacture of a liquid crystal panel, a so-called “sliming process” is often performed in which the glass substrate of the liquid crystal panel after manufacture is polished. In this step, there are a chemical method using hydrofluoric acid and a physical polishing method using an abrasive.
When physically polishing, the produced liquid crystal panel may be bent depending on the apparatus used for polishing, and as a result, stress is applied to the liquid crystal alignment film from all directions. Therefore, when the mechanical strength of the liquid crystal alignment film is weak, the film breaks particularly around the column spacer, which may cause a defect. Conventional liquid crystal alignment films having sufficient resistance to the rubbing treatment often have insufficient resistance to the slimming process.
The main object of the present invention is not only the rubbing process but also the slimming process, and has a large film hardness that can suppress film scraping and breakage, and has a high yield in liquid crystal panel manufacturing, and an IPS driving method. Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film having excellent electrical characteristics capable of reducing an afterimage caused by alternating current drive generated in a liquid crystal display element of an FFS driving system.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。
 すなわち、本発明の要旨は、下記(A)成分、(B)成分及び有機溶剤を含有することを特徴とする液晶配向剤、この液晶配向剤から得られる液晶配向膜、及びこの液晶配向膜を使用した液晶表示素子にある。
(A)成分:テトラカルボン酸誘導体成分と、下記式(1)の構造を有するジアミンを含有するジアミン成分との反応物であるポリイミド前駆体のイミド化物であり、かつイミド化率が20%~80%であるポリイミド。
Figure JPOXMLDOC01-appb-C000006
(式中、*は、他の原子又は基との結合を表す。)
(B)成分:架橋性官能基を2つ以上有する化合物。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the gist of the present invention is to provide a liquid crystal aligning agent characterized by containing the following component (A), component (B) and an organic solvent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and the liquid crystal aligning film. It is in the liquid crystal display element used.
(A) component: an imidized product of a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having the structure of the following formula (1), and an imidization rate of 20% to Polyimide that is 80%.
Figure JPOXMLDOC01-appb-C000006
(In the formula, * represents a bond with another atom or group.)
(B) Component: A compound having two or more crosslinkable functional groups.
 本発明の液晶配向剤により、高い膜硬度と良好な残像特性を有する液晶配向膜を得ることが出来る。よって、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。 With the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high film hardness and good afterimage characteristics can be obtained. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive method and FFS drive method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained.
<(A)成分>
 本発明の液晶配向剤に含まれる(A)成分は、テトラカルボン酸誘導体成分と、上記式(1)の構造を有するジアミンを含有するジアミン成分との反応物であるポリイミド前駆体のイミド化物であり、かつイミド化率が20%~80%であるポリイミドである。
<(A) component>
The component (A) contained in the liquid crystal aligning agent of the present invention is an imidized product of a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having the structure of the above formula (1). And a polyimide having an imidization ratio of 20% to 80%.
 式(1)の構造を有するジアミンとしては、例えば、式(1)におけるベンゼン環の両端部にそれぞれ、アミノ基が結合している構造が挙げられる。その場合、ベンゼン環の両端部に結合するアミノ基は、-O-CH-O-対して、それぞれ独立に、オルト位、メタ位、又はパラ位に結合される。なかでも、アミノ基は、いずれも、-O-CH-O-対して、パラ位に結合されるのが好ましい。
 テトラカルボン酸誘導体成分と反応させる全ジアミン成分中における、式(1)の構造を有するジアミンを含有する割合は、本発明の目的をより良く達成するために、好ましくは10~80モル%であり、より好ましくは20~60モル%であり、特に好ましくは20~50%である。
Examples of the diamine having the structure of the formula (1) include a structure in which amino groups are bonded to both ends of the benzene ring in the formula (1). In that case, the amino group bonded to both ends of the benzene ring is independently bonded to the ortho, meta, or para position with respect to —O—CH 2 —O—. Of these, all of the amino groups are preferably bonded to the para position with respect to —O—CH 2 —O—.
The ratio of the diamine having the structure of the formula (1) in the total diamine component to be reacted with the tetracarboxylic acid derivative component is preferably 10 to 80 mol% in order to better achieve the object of the present invention. More preferably, it is 20 to 60% by mole, and particularly preferably 20 to 50%.
 ポリイミド前駆体を得るためのジアミン成分は、式(1)の構造を有するジアミンのほかに、1種又は2種以上の他のジアミンを含有することができる。かかる他のジアミンは、下記式(6)で表すことができる。
Figure JPOXMLDOC01-appb-C000007
 上記式(6)中、A及びAは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向性の観点から、A及びAは水素原子、又はメチル基が好ましい。
 また、式(6)におけるYを例示すると、以下の(Y-1)~(Y-168)が挙げられる。
The diamine component for obtaining a polyimide precursor can contain 1 type, or 2 or more types of other diamine other than the diamine which has a structure of Formula (1). Such other diamines can be represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000007
In the above formula (6), A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. is there. From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
Examples of Y 1 in formula (6) include the following (Y-1) to (Y-168).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(6)におけるYは、液晶配向性の観点から、直線性の高い構造が好ましく、下記式(8)、又は下記式(9)で表される構造が例示される。
Figure JPOXMLDOC01-appb-C000027
Y 1 in the above formula (6) is preferably a highly linear structure from the viewpoint of liquid crystal alignment, and examples thereof include a structure represented by the following formula (8) or the following formula (9).
Figure JPOXMLDOC01-appb-C000027
 上記式(8)、(9)中、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数1~20の2価の有機基である。Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基である。aは1~4の整数である。aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcは、それぞれ独立して1~2の整数である。 In the above formulas (8) and (9), A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 1 to 20 carbon atoms. A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms. a is an integer of 1 to 4. When a is 2 or more, the structure of A 2 may be the same or different. b and c are each independently an integer of 1 to 2.
 上記式(8)及び上記式(9)の具体例としては、Y-7、Y-25,Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-71、Y-72、Y-73、Y-74,Y-75,Y-76、Y-82、Y-87、Y-88、Y-89、Y-90、Y-92、Y-93、Y-94、Y-95、Y-96、Y-100、Y-101、Y-102,Y-103、Y-104,Y-105、Y-106、Y-110、Y-111、Y-112、Y-113、Y-115、Y-116、Y-121、Y-122、Y-126、Y-127、Y-128、Y-129、Y-132、Y-134、Y-153、Y-156、Y-157、Y-158、Y-159、Y-160、Y-161、Y-162、Y-163、Y-164、Y-165、Y-166、Y-167、及びY-168が挙げられる。 Specific examples of the above formula (8) and the above formula (9) include Y-7, Y-25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y -48, Y-71, Y-72, Y-73, Y-74, Y-75, Y-76, Y-82, Y-87, Y-88, Y-89, Y-90, Y-92 Y-93, Y-94, Y-95, Y-96, Y-100, Y-101, Y-102, Y-103, Y-104, Y-105, Y-106, Y-110, Y -111, Y-112, Y-113, Y-115, Y-116, Y-121, Y-122, Y-126, Y-127, Y-128, Y-129, Y-132, Y-134 Y-153, Y-156, Y-157, Y-158, Y-159, Y-160, Y-161, Y-162, Y-163, Y-164 Y-165, Y-166, Y-167, and Y-168 and the like.
 ポリイミド前駆体を得るためのジアミン成分中に含有される上記の他のジアミンとしては、なかでも、熱によって脱離し、アミノ基、好ましくは2級アミノ基を発生させる、下記式(7)で表される熱脱離性基を有するジアミンであるのが好ましい。
Figure JPOXMLDOC01-appb-C000028
 上記式(7)において、Dは、好ましくは150~230℃、より好ましくは180~230℃で脱離する熱脱離性基である。Dは、脱離する温度の点から、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基が特に好ましい。
 上記式(7)で表される熱脱離性基を有するYの具体例としては、Y-158、Y-159、Y-160、Y-161、Y-162、又はY-163が挙げられる。
 テトラカルボン酸誘導体成分と反応させる全ジアミン成分中における、上記式(7)の構造を有するジアミンを含有する割合は、好ましくは10~70モル%であり、より好ましくは20~50モル%である。
Among the other diamines contained in the diamine component for obtaining the polyimide precursor, among others, it is eliminated by heat and generates an amino group, preferably a secondary amino group, represented by the following formula (7). It is preferable that the diamine has a thermally leaving group.
Figure JPOXMLDOC01-appb-C000028
In the above formula (7), D is a thermally detachable group that is preferably eliminated at 150 to 230 ° C., more preferably at 180 to 230 ° C. D is particularly preferably a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group from the viewpoint of elimination temperature.
Specific examples of Y 1 having a thermally leaving group represented by the above formula (7) include Y-158, Y-159, Y-160, Y-161, Y-162, or Y-163. It is done.
The ratio of the diamine having the structure of the above formula (7) in the total diamine component to be reacted with the tetracarboxylic acid derivative component is preferably 10 to 70 mol%, more preferably 20 to 50 mol%. .
<テトラカルボン酸誘導体>
 上記式(1)の構造を有するジアミンを含有するジアミン成分と反応させて、本発明の液晶配向剤に含まれる(A)成分を製造するためのテトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド用いることができる。なかでも、テトラカルボン酸誘導体としては、テトラカルボン酸二無水物が好ましい。
<Tetracarboxylic acid derivative>
The tetracarboxylic acid derivative component for producing the component (A) contained in the liquid crystal aligning agent of the present invention by reacting with a diamine component containing a diamine having the structure of the above formula (1) is a tetracarboxylic acid diester. In addition to anhydrides, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid dialkyl ester dihalide can be used. Among these, as the tetracarboxylic acid derivative, tetracarboxylic dianhydride is preferable.
 テトラカルボン酸誘導体は、脂環式構造を有するものが好ましく、脂環式構造の具体例としては、下記式(X1-1)~(X1-10)が挙げられる。
Figure JPOXMLDOC01-appb-C000029
The tetracarboxylic acid derivative preferably has an alicyclic structure, and specific examples of the alicyclic structure include the following formulas (X1-1) to (X1-10).
Figure JPOXMLDOC01-appb-C000029
 式(X1-1)~(X1-4)中、R~R23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の観点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 式(X1-1)の具体的な構造としては、下記のものが挙げられる。
In formulas (X1-1) to (X1-4), R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon These are an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
Specific examples of the structure of formula (X1-1) include the following.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本発明において、ジアミン成分と反応させる全テトラカルボン酸誘導体成分中、脂環式構造を有する上記テトラカルボン酸誘導体を含有する割合は、好ましくは60~100モル%、より好ましくは70~100モル%、特に好ましくは80~100%である。 In the present invention, the proportion of the tetracarboxylic acid derivative having an alicyclic structure in the total tetracarboxylic acid derivative component to be reacted with the diamine component is preferably 60 to 100 mol%, more preferably 70 to 100 mol%. Particularly preferred is 80 to 100%.
 本発明に用いられるテトラカルボン酸誘導体は、上記の脂環式構造を有するもの以外の構造を有するものが使用できる。具体的例を挙げるならば、下記記式(X-9)~(X-42)の構造を有するものが挙げられる。 As the tetracarboxylic acid derivative used in the present invention, those having a structure other than those having the alicyclic structure can be used. Specific examples include those having the structures of the following formulas (X-9) to (X-42).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<ポリイミド前駆体>
 本発明の液晶配向剤に含有されるポリイミドの前駆体である、ポリアミック酸及びポリアミック酸エステルは、上記したテトラカルボン酸誘導体成分とジアミン成分との(重縮合)反応により下記のように製造される。
<ポリアミック酸の製造方法>
 ポリアミック酸は、具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって製造できる。
 上記の反応に用いる有機溶媒は、生成したポリイミド前駆体が溶解するものであれば特に限定されない。例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、又は1,3-ジメチル-イミダゾリジノンが挙げられる。
<Polyimide precursor>
The polyamic acid and polyamic acid ester, which are the precursors of the polyimide contained in the liquid crystal aligning agent of the present invention, are produced as follows by the (polycondensation) reaction of the tetracarboxylic acid derivative component and the diamine component described above. .
<Method for producing polyamic acid>
Specifically, the polyamic acid is obtained by combining tetracarboxylic dianhydride and diamine in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 It can be produced by reacting for ˜12 hours.
The organic solvent used for said reaction will not be specifically limited if the produced | generated polyimide precursor melt | dissolves. For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone Can be mentioned.
 また、ポリアミック酸の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000036
 式[D-1]~式[D-3]中、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
When the solubility of the polyamic acid is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] A solvent can be used.
Figure JPOXMLDOC01-appb-C000036
In formulas [D-1] to [D-3], D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents 1 to 3 carbon atoms. 4 represents an alkyl group.
These solvents may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the solvent as long as the produced polyamic acid does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried solvent.
 ポリアミック酸の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリアミック酸を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
The concentration of the polyamic acid is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polyamic acid by pouring it into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸エステルの製造方法>
 ポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で製造することができる。
(1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造できる。
<Method for producing polyamic acid ester>
The polyamic acid ester can be produced by the following method (1), (2) or (3).
(1) When manufacturing from polyamic acid Polyamic acid ester can be manufactured by esterifying the polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. it can.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の使用量は、繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the repeating unit.
The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の使用量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
(2) When manufactured by reaction of tetracarboxylic acid diester dichloride and diamine The polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The amount of the base used is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
(3) When manufacturing from tetracarboxylic-acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can manufacture by making it react for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の使用量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The amount of the condensing agent used is preferably 2 to 3 moles relative to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
In the above reaction, the reaction proceeds efficiently by adding a Lewis acid. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製造法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the methods for producing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the production method of (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 上記(A)成分であるポリイミドは、前記ポリアミック酸又はポリアミック酸エステルをイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide which is said (A) component can be manufactured by imidating the said polyamic acid or polyamic acid ester. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化するポリアミック酸又はポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等が挙げられる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。 Chemical imidization can be performed by stirring the polyamic acid or polyamic acid ester to be imidized in the presence of a basic catalyst in an organic solvent. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行う温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸又はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、得られたイミド化重合体を回収し有機溶媒で再溶解して液晶配向剤とすることが好ましい。 The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the polyamic acid or amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, it is preferable to recover the obtained imidized polymer and redissolve it with an organic solvent to obtain a liquid crystal aligning agent.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
 本発明の液晶配向剤に含有される(A)成分であるポリイミドは、上記のようにしてポリイミド前駆体をイミド化して得られるが、その際のイミド化率は、20~80%であるのが必要である。イミド化率が過度に大きい場合には、塗膜性が著しく低下し、一方、過度に小さい場合には、得られた液晶配向膜の硬度が十分に得られない懸念がある。なかでも、イミド化率は、50~70%がより好ましい。
 また、ポリイミドの分子量は、重量平均分子量(Mw)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量(Mn)は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
The polyimide which is the component (A) contained in the liquid crystal aligning agent of the present invention is obtained by imidizing the polyimide precursor as described above, and the imidization ratio at that time is 20 to 80%. is required. When the imidization rate is excessively large, the coating property is remarkably deteriorated. On the other hand, when it is excessively small, there is a concern that the hardness of the obtained liquid crystal alignment film cannot be sufficiently obtained. In particular, the imidation ratio is more preferably 50 to 70%.
The molecular weight of the polyimide is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. . The number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
<(B)成分>
 本発明の液晶配向剤に含有される(B)成分は、架橋性官能基を2つ以上有する化合物である。かかる、架橋性官能基としては、入手性及び効果の点から、ヒドロキシル基、 (メタ)アクリレート基、ブロックイソシアネート基、オキセタン基、及びエポキシ基からなる群から選ばれる少なくとも1種が好ましい。なかでも、ヒドロキシル基が好ましい。(B)成分である化合物は、同じ架橋性官能基を2つ以上有していてもよいし、異なる2種以上の架橋性官能基を2つ以上有していてもよい。架橋性官能基の数に上限はないが、通常は8つ以下であり、好ましくは6つ以下である。
<(B) component>
The component (B) contained in the liquid crystal aligning agent of the present invention is a compound having two or more crosslinkable functional groups. The crosslinkable functional group is preferably at least one selected from the group consisting of a hydroxyl group, a (meth) acrylate group, a blocked isocyanate group, an oxetane group, and an epoxy group from the viewpoint of availability and effects. Of these, a hydroxyl group is preferred. The compound as the component (B) may have two or more of the same crosslinkable functional groups, or may have two or more different types of crosslinkable functional groups. Although there is no upper limit to the number of crosslinkable functional groups, it is usually 8 or less, preferably 6 or less.
 特に、ヒドロキシル基を2つ以上有する好ましい化合物としては、下記式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 上記式(2)中、Xは炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基である。nは2~6の整数である。上記脂肪族炭化水素基又は芳香族炭化水素基における任意の炭素は、窒素又は酸素で置換されていてもよい。
In particular, a preferable compound having two or more hydroxyl groups includes a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000037
In the above formula (2), X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group. n is an integer of 2 to 6. Any carbon in the aliphatic hydrocarbon group or aromatic hydrocarbon group may be substituted with nitrogen or oxygen.
 R及びRは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~4のアルキル基、置換基を有してもよい炭素数2~4のアルケニル基、又は置換基を有してもよい炭素数2~4のアルキニル基である。また、R及びRのうち少なくとも1つは、ヒドロキシ基で置換された炭化水素基を表す。
 なかでも、式(2)中のXのカルボニル基に直接結合する原子は、芳香環を形成していない炭素原子であることが液晶配向性の観点から好ましい。また、式(2)のXは、液晶配向性及び溶解性の観点から、脂肪族炭化水素基であることが好ましく、炭素数1~10であることがより好ましい。式(2)中、nは溶解性の点から、2~4が好ましい。
R 2 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or An alkynyl group having 2 to 4 carbon atoms which may have a substituent. Further, at least one of R 2 and R 3 represents a hydrocarbon group substituted with a hydroxy group.
Among them, atoms directly attached to the carbonyl group of X 2 in the formula (2) is preferable from the viewpoint of the liquid crystal orientation is a carbon atom, which do not form an aromatic ring. X 2 in the formula (2) is preferably an aliphatic hydrocarbon group and more preferably 1 to 10 carbon atoms from the viewpoint of liquid crystal alignment and solubility. In the formula (2), n is preferably 2 to 4 from the viewpoint of solubility.
 式(2)中、R及びRのうち少なくとも1つは、下記式(3)で表される構造であることが、反応性の観点から好ましく、下記式(4)で表される構造であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000038
 式(3)中、R~Rは、それぞれ独立して、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基である。
In formula (2), at least one of R 2 and R 3 is preferably a structure represented by the following formula (3) from the viewpoint of reactivity, and a structure represented by the following formula (4) More preferably.
Figure JPOXMLDOC01-appb-C000038
In the formula (3), R 4 to R 7 are each independently a hydrocarbon group substituted with a hydrogen atom, a hydrocarbon group, or a hydroxy group.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 ヒドロキシル含有基を2つ以上有する化合物の好ましい例として以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
Preferable examples of the compound having two or more hydroxyl-containing groups include the following.
Figure JPOXMLDOC01-appb-C000040
 (B)成分は、多すぎると液晶配向性やプレチルト角に影響を与え、少なすぎると本発明の効果が得られない。そのため、(B)成分の含有量は、(A)成分に対して、0.1~20質量%が好ましく、1~10質量%がより好ましい。 When the component (B) is too much, the liquid crystal orientation and the pretilt angle are affected. Therefore, the content of the component (B) is preferably 0.1 to 20% by mass and more preferably 1 to 10% by mass with respect to the component (A).
<(C)成分>
 本発明の液晶配向剤は、更に、テトラカルボン酸誘導体成分と、ジアミン成分との反応物であるポリイミド前駆体を(C)成分として含有することができる。
 かかる(C)成分のポリイミド前駆体としては、前記(A)成分のポリイミドの前駆体であるポリイミド前駆体の原料として記載したテトラカルボン酸誘導体、及びジアミンが使用できるが、同じ液晶配向剤中に含有される(A)成分のポリイミドの前駆体と同じポリイミド前駆体は除かれる。ポリイミド前駆体としては、ポリアミック酸が好ましい。
 本発明の液晶配向剤は、かかる(C)成分を含有することにより、得られる液晶配向膜の膜強度を一層高めることができる。液晶配向剤中における(C)成分は、(A)成分に対して20~80モル%が好ましく、40~70モル%がより好ましい。
<(C) component>
The liquid crystal aligning agent of this invention can contain the polyimide precursor which is a reaction material of a tetracarboxylic-acid derivative component and a diamine component further as (C) component.
As the polyimide precursor of the component (C), the tetracarboxylic acid derivatives and diamines described as the raw material of the polyimide precursor that is the polyimide precursor of the component (A) can be used, but in the same liquid crystal aligning agent The same polyimide precursor as the polyimide precursor of the component (A) contained is excluded. As the polyimide precursor, polyamic acid is preferable.
The liquid crystal aligning agent of this invention can further raise the film | membrane intensity | strength of the liquid crystal aligning film obtained by containing this (C) component. The component (C) in the liquid crystal aligning agent is preferably 20 to 80 mol%, more preferably 40 to 70 mol%, relative to the component (A).
<液晶配向剤>
 本発明の液晶配向剤は、前記した(A)成分、及び(B)成分、更に、必要に応じて(C)成分が、有機溶媒中に溶解された溶液の形態を有する。
 本発明の液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みによって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましくは3~6.5質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned (A) component and (B) component and also (C) component as needed were melt | dissolved in the organic solvent.
The concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, it is 1% by mass. From the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. Particularly preferred is 3 to 6.5% by mass.
 本発明の液晶配向剤に含有される有機溶媒は、含有される重合体を均一に溶解するものであれば特に限定されない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げられる。特に、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 本発明の液晶配向剤に含有される有機溶媒は、なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ペンチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロピオンアミド、及び3-ブトキシ-N,N-ジメチルプロピオンアミドからなる群から選ばれる少なくとも1種からなる第一の溶剤(I)と、
 ブチルセロソルブ、ブチルセロソルブアセテート、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ダイアセトンアルコール、ジイソブチルカルビノール、ジイソブチルケトン、プロピレンカーボネート、プロピレングリコールジアセテート、及びソペンチルエーテルからなる群から選ばれる少なくとも1種からなる第二の溶剤(II)と、を含有するものであるのが好ましい。
The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as it uniformly dissolves the contained polymer.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like. In particular, it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone.
Among the organic solvents contained in the liquid crystal aligning agent of the present invention, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-pentyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, A first consisting of at least one selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropionamide, and 3-butoxy-N, N-dimethylpropionamide Solvent (I),
Butyl cellosolve, butyl cellosolve acetate, 1-butoxy-2-propanol, 2-butoxy-1-propanol, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, diacetone alcohol, diisobutyl carbinol, diisobutyl ketone, propylene carbonate, propylene glycol diacetate And at least one second solvent (II) selected from the group consisting of sopentyl ether.
 さらに、本発明の重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 本発明の液晶配向剤における有機溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
Furthermore, when the solubility of the polymer of the present invention in a solvent is high, it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
The organic solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。
The liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate Tar, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol Monoethyl ether, milk Methyl, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl acetate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, lactic acid Examples thereof include isoamyl esters and solvents represented by the above formulas [D-1] to [D-3].
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether are preferable.
 貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%であることが好ましく、10~80質量%がさらに好ましく、20~70質量%がより好ましい。
 本発明の液晶配向剤には、上記の他、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
The poor solvent is preferably 1 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass.
In addition to the above, the liquid crystal aligning agent of the present invention includes a polymer other than the polymer described in the present invention, a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, and liquid crystal Silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and a polyimide precursor when the coating film is baked An imidization accelerator for the purpose of efficiently proceeding imidization by heating the body may be added.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができる。さらに、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as a glass substrate, a silicon nitride substrate, an acrylic substrate, or a polycarbonate substrate can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplification of the process. In the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃、好ましくは60~100℃で、1~10分間、好ましくは2~5分間乾燥させ、その後、150~300℃、好ましくは200~240℃で、5~120分間、好ましくは10~30分間焼成する。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the contained solvent, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, preferably 2 to 5 minutes, and then 150 to 300 ° C., preferably Is baked at 200 to 240 ° C. for 5 to 120 minutes, preferably 10 to 30 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
 ラビング処理は、既存のラビング装置を使用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄により、ラビングで生じた残渣が除去される。
Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
The rubbing process can be performed using an existing rubbing apparatus. Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon. As the conditions for rubbing treatment, generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and a pushing amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するも紫外線が特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 上記で、偏光された放射線を照射した膜は、次いで、水及び有機溶媒からなる群から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
As a specific example of the photo-alignment treatment method, the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Is mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
A higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
In the above, the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from the group consisting of water and organic solvents.
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
 汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパンール、又は水と2-プロパノールの混合溶媒が特に好ましい。
The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
In view of versatility and safety, at least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable. Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
 本発明において、偏光された放射線を照射した膜と溶媒を含む溶液の接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが、好ましくは十分に接触するような方法で行なわれる。なかでも、溶媒を含む溶液中に、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は、常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて、超音波などの接触を高める手段を施すことができる。
 接触処理の後に、使用した溶液中の溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
In the present invention, the contact treatment of the film irradiated with polarized radiation and the solution containing the solvent is performed by a method such that the film and the liquid are preferably in sufficient contact with each other, such as immersion treatment or spraying treatment. It is. Among them, a method of immersing in a solution containing a solvent, preferably for 10 seconds to 1 hour, more preferably for 1 to 30 minutes is preferable. The contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C. Moreover, a means for enhancing contact such as ultrasonic waves can be applied as necessary.
After the contact treatment, in order to remove the solvent in the used solution, rinsing (rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying is performed, or both. It's okay.
 さらに、溶媒を含む溶液による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。
 加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると、分子鎖の再配向の効果が得られない可能性があり、長すぎると、分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1~10分がより好ましい。
Furthermore, the film subjected to the contact treatment with the solution containing the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
The heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C.
If the heating time is too short, there is a possibility that the effect of molecular chain reorientation may not be obtained. If it is too long, the molecular chain may be decomposed, so 10 seconds to 30 minutes is preferable. 1 to 10 minutes is more preferable.
<液晶表示素子>
 本発明の液晶表示素子は、本発明の液晶配向膜を具備することを特徴とする。本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分に、TFT(Thin Film Transistor)などのスイッチング素子を設けたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display element of the present invention comprises the liquid crystal alignment film of the present invention. In the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method for producing a liquid crystal alignment film, a liquid crystal cell is produced by a known method, and a liquid crystal cell is used. This is a display element.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようにパターニング(Patterning)される。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成された、SiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、(メタ)アクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する、紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
Next, a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
In the present invention, as the sealing agent, for example, a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used. . In particular, it is preferable to use a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
 本発明のシール剤には、接着性、耐湿性の向上を目的として、無機充填剤を配合してもよい。使用しうる無機充填剤としては、特に限定されないが、具体的には、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられる。好ましくは、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、又は珪酸アルミニウムが挙げられる。前記の無機充填剤は2種以上を混合して用いてもよい。 In the sealing agent of the present invention, an inorganic filler may be blended for the purpose of improving adhesiveness and moisture resistance. The inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid. Barium, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, Examples include asbestos. Preferably, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, or silicic acid Aluminum is mentioned. Two or more of the above inorganic fillers may be mixed and used.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
NMP:N-メチル-2-ピロリドン、GBL:γ―ブチロラクトン、
BCS:ブチルセロソルブ、
DA-1:ビス(4-アミノフェノキシ)メタン、
DA-2:1,2-ビス(4-アミノフェノキシ)エタン、
DA-3:N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン、
DA-4:下記式(DA-4)参照、
DA-5:2-tert-ブトキシカルボニルアミノメチル-p-フェニレンジアミン(式中、Bocは、tert-ブトキシカルボニル基を表す)、
DA-6:下記式(DA-6)参照、
CA-1:下記式(CA-1)参照、CA-2:下記式(CA-2)参照、
CA-3:下記式(CA-3)参照、AD-1:下記式(AD-1)参照
Examples Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The following are the abbreviations of the compounds and the measurement methods of the respective properties.
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: Butyl cellosolve,
DA-1: bis (4-aminophenoxy) methane,
DA-2: 1,2-bis (4-aminophenoxy) ethane,
DA-3: N-tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine,
DA-4: See formula (DA-4) below,
DA-5: 2-tert-butoxycarbonylaminomethyl-p-phenylenediamine (where Boc represents a tert-butoxycarbonyl group),
DA-6: See formula (DA-6) below,
CA-1: See the following formula (CA-1), CA-2: See the following formula (CA-2),
CA-3: See formula (CA-3) below, AD-1: See formula (AD-1) below
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[粘度]
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[viscosity]
The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C.
[Molecular weight]
The molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
GPC apparatus: manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min. Standard samples for use: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top molecular weight (Mp) manufactured by Polymer Laboratories) ) About 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)を0.53ml添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) was added to the solution. 53 ml was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
 始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of “bow” -shaped electrode elements having a bent central portion. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. The pixel electrode forming each pixel is formed by arranging a plurality of bent “bow” -shaped electrode elements at the center, so the shape of each pixel is not rectangular but is the same as that of the electrode element. It has a shape that resembles a bold “Kugi” that bends in part. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。その結果、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). As a result, in the first region and the second region of each pixel, the direction of the rotational operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode is in the substrate plane. It is comprised so that it may become a mutually reverse direction.
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150~300℃のホットプレート上で5分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after the liquid crystal aligning agent is filtered through a filter having a pore diameter of 1.0 μm, the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface are spin-coated. It apply | coated by application | coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 to 300 ° C. for 5 minutes to provide a substrate with a liquid crystal alignment film Got. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
[長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared.
Using this liquid crystal cell, an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, in the second pixel, the second region and the first region were compared to calculate a similar angle Δ.
[鉛筆硬度の評価]
 鉛筆硬度評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射などの配向処理を施し、液晶配向膜付き基板を得た。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150℃~300℃のホットプレート上で14分間加熱し、液晶配向膜付き基板を得た。この基板の液晶配向膜面を鉛筆硬度試験法(JIS K5400)で測定した。
[Evaluation of pencil hardness]
A sample for pencil hardness evaluation was prepared as follows. A liquid crystal aligning agent was applied to a 30 mm × 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. This coating surface was subjected to alignment treatment such as rubbing and polarized ultraviolet irradiation to obtain a substrate with a liquid crystal alignment film. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film A substrate was obtained. The liquid crystal alignment film surface of this substrate was measured by a pencil hardness test method (JIS K5400).
<合成例1>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を1.75g(7.60mmol)、DA-2を4.64g(19.0mmol)、DA-3を3.89g(11.4mmol)を測り取り、NMPを46.9g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を7.93g(35.3mmol)添加し、更に固形分濃度が18質量%になるようにNMPを36.1g加え、40℃で24時間撹拌してポリアミック酸溶液(A)(粘度:800mPa・s)を得た。ポリアミック酸のMn=10800、Mw=23600であった。
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液を30g取り、NMPを37.5g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を3.39g、ピリジンを0.88g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を270mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、270mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(A)を得た。
 このポリイミド樹脂粉末のイミド化率は67%であり、Mn=7500、Mw=1100であった。
<Synthesis Example 1>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.75 g (7.60 mmol) DA-1, 4.64 g (19.0 mmol) DA-2, 3.89 g DA-3 ( 11.4 mmol) was measured, 46.9 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 7.93 g (35.3 mmol) of CA-1 was added, and 36.1 g of NMP was further added so that the solid content concentration was 18% by mass. An acid solution (A) (viscosity: 800 mPa · s) was obtained. It was Mn = 10800 of polyamic acid, and Mw = 23600.
30 g of the polyamic acid solution obtained in a 100 ml four-necked flask with a stirrer and a nitrogen inlet tube was taken, 37.5 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 3.39 g of acetic anhydride and 0.88 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was added to 270 ml of methanol with stirring, and the deposited precipitate was collected by filtration and subsequently washed with 270 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (A).
The imidation ratio of this polyimide resin powder was 67%, and Mn = 7500 and Mw = 1100.
<合成例2>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を3.50g(15.2mmol)、DA-2を2.78g(11.4mmol)、DA-3を3.89g(11.4mmol)を測り取り、NMPを46.36g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を7.92g(35.3mmol)添加し、更に固形分濃度が18質量%になるようにNMPを36.1g加え、40℃で24時間撹拌してポリアミック酸溶液(C)(粘度:820mPa・s)を得た。ポリアミック酸のMn=11000、Mw=25200であった。
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液を30g取り、NMPを37.5g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を3.40g、ピリジンを0.88g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を270mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、270mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(B)を得た。
 このポリイミド樹脂粉末のイミド化率は67%であり、Mn=8000、Mw=12500であった。
<Synthesis Example 2>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, DA-1 was 3.50 g (15.2 mmol), DA-2 was 2.78 g (11.4 mmol), and DA-3 was 3.89 g ( 11.4 mmol) was measured, 46.36 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 7.92 g (35.3 mmol) of CA-1 was added, and 36.1 g of NMP was further added so that the solid content concentration was 18% by mass. An acid solution (C) (viscosity: 820 mPa · s) was obtained. It was Mn = 11000 and Mw = 25200 of the polyamic acid.
30 g of the polyamic acid solution obtained in a 100 ml four-necked flask with a stirrer and a nitrogen inlet tube was taken, 37.5 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 3.40 g of acetic anhydride and 0.88 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was added to 270 ml of methanol with stirring, and the deposited precipitate was collected by filtration and subsequently washed with 270 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (B).
The imidation ratio of this polyimide resin powder was 67%, and Mn = 8000 and Mw = 12,500.
<合成例3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.69g(3.00mmol)、DA-4を1.60g(5.00mmol)、DA-3を0.68g(2.00mmol)を測り取り、NMPを32.3g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を2.17g(9.70mmol)添加し、更に固形分濃度が18質量%になるようにNMPを5.00g加え、40℃で24時間撹拌してポリアミック酸溶液(C)(粘度:790mPa・s)を得た。ポリアミック酸のMn=15500、Mw=40600であった。
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液を50g取り、NMPを62.5g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を5.39g、ピリジンを1.39g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を525mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、525mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(C)を得た。
 このポリイミド樹脂粉末のイミド化率は63%であり、Mn=6000、Mw=9600であった。
<Synthesis Example 3>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, DA-1 was 0.69 g (3.00 mmol), DA-4 was 1.60 g (5.00 mmol), and DA-3 was 0.68 g ( 2.00 mmol) was measured, 32.3 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.17 g (9.70 mmol) of CA-1 was added, 5.00 g of NMP was further added so that the solid content concentration was 18% by mass, and the mixture was stirred at 40 ° C. for 24 hours. An acid solution (C) (viscosity: 790 mPa · s) was obtained. The polyamic acid had Mn = 15500 and Mw = 40600.
50 g of the polyamic acid solution obtained in a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was taken, 62.5 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 5.39 g of acetic anhydride and 1.39 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization. The obtained reaction liquid was poured into 525 ml of methanol while stirring, and the deposited precipitate was collected by filtration and subsequently washed with 525 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (C).
The imidation ratio of this polyimide resin powder was 63%, and Mn = 6000 and Mw = 9600.
<合成例4>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を6.91g(30.0mmol)を測り取り、NMPを59.1g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-3を1.50g(6.00mmol)添加し、室温で3時間撹拌した後、CA-2を6.62g(22.5mmol)を添加し、固形分濃度が15質量%になるようにNMPを12.8gg加え、室温で24時間撹拌してポリアミック酸溶液(D)(粘度:870mPa・s)を得た。ポリアミック酸のMn=13200、Mw=35700であった。
<Synthesis Example 4>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 6.91 g (30.0 mmol) of DA-1 was measured, 59.1 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 1.50 g (6.00 mmol) of CA-3 was added and stirred at room temperature for 3 hours, and then 6.62 g (22.5 mmol) of CA-2 was added. 12.8 mg of NMP was added so that it might become 15 mass%, and it stirred at room temperature for 24 hours, and obtained the polyamic acid solution (D) (viscosity: 870 mPa * s). The polyamic acid had Mn = 13200 and Mw = 35700.
<合成例5>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-2を6.33g(25.9mmol)、DA-3を3.79g(11.1mmol)を測り取り、NMPを73.1g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を7.73g(34.4mmol)添加し、更に固形分濃度が18質量%になるようにNMPを8.12g加え、40℃で24時間撹拌してポリアミック酸溶液(E)(粘度:800mPa・s)を得た。ポリアミック酸のMn=13500、Mw=23600であった。
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液を30g取り、NMPを15.0g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を3.37g、ピリジンを0.44g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を212mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、212mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(F)を得た。ポリイミド樹脂のイミド化率は68%であり、Mn=9400、Mw=23000であった。
<Synthesis Example 5>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, weighed 6.33 g (25.9 mmol) of DA-2, 3.79 g (11.1 mmol) of DA-3, and 73.1 g of NMP. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 7.73 g (34.4 mmol) of CA-1 was added, and 8.12 g of NMP was further added so that the solid content concentration was 18% by mass. An acid solution (E) (viscosity: 800 mPa · s) was obtained. It was Mn = 13500 of polyamic acid, and Mw = 23600.
30 g of the polyamic acid solution obtained in a 100 ml four-necked flask with a stirrer and a nitrogen inlet tube was taken, 15.0 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 3.37 g of acetic anhydride and 0.44 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was poured into 212 ml of methanol while stirring, and the deposited precipitate was collected by filtration and subsequently washed with 212 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (F). The imidation ratio of the polyimide resin was 68%, and Mn = 9400 and Mw = 23000.
<合成例6>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-2を4.40g(18.0mmol)、DA-3を6.15g(18.0mmol)を測り取り、NMPを74.0g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を7.50g(33.4mmol)添加し、更に固形分濃度が18質量%になるようにNMPを8.22g加え、40℃で24時間撹拌してポリアミック酸溶液(G)(粘度:820mPa・s)を得た。ポリアミック酸のMn=11000、Mw=30700であった。
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液(A)を20g測り取り、NMPを14.29g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を1.48g、ピリジンを0.38g加えて、60℃で3時間加熱し、化学イミド化を行った。得られた反応液を150mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、150mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(H)を得た。このポリイミド樹脂粉末のイミド化率は70%であり、Mn=9050、Mw=16600であった。
<Synthesis Example 6>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.40 g (18.0 mmol) of DA-2 and 6.15 g (18.0 mmol) of DA-3 were measured, and 74.0 g of NMP was measured. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 7.50 g (33.4 mmol) of CA-1 was added, and 8.22 g of NMP was further added so that the solid content concentration was 18% by mass. An acid solution (G) (viscosity: 820 mPa · s) was obtained. It was Mn = 11000 and Mw = 30700 of the polyamic acid.
20 g of the polyamic acid solution (A) obtained in a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was weighed, 14.29 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 1.48 g of acetic anhydride and 0.38 g of pyridine were added and heated at 60 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was poured into 150 ml of methanol while stirring, and the deposited precipitate was collected by filtration, and subsequently washed with 150 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (H). The imidation ratio of this polyimide resin powder was 70%, and Mn = 9050 and Mw = 16600.
<実施例1>
 合成例1で得られたポリイミド樹脂粉末(A)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(K)を得た。このポリイミド溶液にAD-1を0.09g、NMPを11.9g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
Take 1.80 g of the polyimide resin powder (A) obtained in Synthesis Example 1 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (K) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (1). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例2>
 合成例2で得られたポリイミド樹脂粉末(B)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(L)を得た。このポリイミド溶液にAD-1を0.09g、NMPを11.9g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2>
Take 1.80 g of the polyimide resin powder (B) obtained in Synthesis Example 2 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (L) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例3>
 合成例2で得られたポリイミド樹脂粉末(C)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを22.11g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(M)を得た。このポリイミド溶液にAD-1を0.09g、NMPを11.9g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(3)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 3>
Take 1.80 g of the polyimide resin powder (C) obtained in Synthesis Example 2 in a 100 ml Erlenmeyer flask, add 22.11 g of NMP so that the solid concentration is 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (M) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例4>
 18質量%のポリアミック酸(D)7.80gと15質量%のポリイミド溶液(K)5.20gを100mL三角フラスコに取り、AD-1を0.98g、NMPを4.34g、GBLを5.68g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(4)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 4>
7.80 g of 18% by weight polyamic acid (D) and 5.20 g of 15% by weight polyimide solution (K) are placed in a 100 mL Erlenmeyer flask, 0.98 g of AD-1, 4.34 g of NMP, and 5.37 g of GBL. 68 g and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例5>
 18質量%のポリアミック酸(D)7.80gと15質量%のポリイミド溶液(L)5.20gを100mL三角フラスコに取り、AD-1を0.98g、NMPを4.36g、GBLを5.66g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(5)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 5>
7.80 g of 18% by weight polyamic acid (D) and 5.20 g of 15% by weight polyimide solution (L) are placed in a 100 mL Erlenmeyer flask, 0.98 g of AD-1, 4.36 g of NMP, and 5.37 g of GBL. 66 g and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<比較例1>
 合成例5で得られたポリイミド樹脂粉末(F)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(N)を得た。このポリイミド溶液にAD-1を0.09g、NMPを11.9g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(6)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
Take 1.80 g of the polyimide resin powder (F) obtained in Synthesis Example 5 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP to a solid content concentration of 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (N) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<比較例2>
 合成例6で得られたポリイミド樹脂粉末(H)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(O)を得た。このポリイミド溶液にAD-1を0.09g、NMPを11.9g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(7)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 2>
Take 1.80 g of the polyimide resin powder (H) obtained in Synthesis Example 6 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (O) was obtained. To this polyimide solution, 0.09 g of AD-1, 11.9 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<比較例3>
 実施例1で得られたポリイミド溶液(K)12gに、NMPを12.0g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(8)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 3>
To 12 g of the polyimide solution (K) obtained in Example 1, 12.0 g of NMP and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例6>
 上記の液晶配向剤(1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した後、純水:2-プロパノール=1/1の混合溶液に5分間浸漬させ、次いで純水に1分間浸漬させた230℃のホットプレート上で14分間加熱して、液晶配向膜付き基板を得た。この基板の液晶配向膜面を鉛筆硬度試験法(JIS K5400)で測定した結果、3Hであった。
<Example 6>
After filtering the liquid crystal aligning agent (1) with a filter having a pore diameter of 1.0 μm, the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface, It applied by spin coat application. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.25 J / cm 2 of linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate, and then mixed with a pure water: 2-propanol = 1/1 mixed solution for 5 minutes. The substrate was then immersed for 14 minutes on a 230 ° C. hot plate immersed in pure water for 1 minute to obtain a substrate with a liquid crystal alignment film. It was 3H as a result of measuring the liquid crystal aligning film surface of this board | substrate by the pencil hardness test method (JIS K5400).
<実施例7~10、比較例4~6>
 液晶配向剤(1)の代わりに、それぞれ、表1に示した液晶配向剤を用いた以外は、実施例6と全く同様にして鉛筆硬度試験用のサンプルをそれぞれ作製した。それぞれの鉛筆硬度試験の評価を行った結果を、実施例6の結果を含めて表1に示す。表1中、「H&#60;」は、鉛筆硬度が1よりも小さいこと表す。
<Examples 7 to 10, Comparative Examples 4 to 6>
Samples for a pencil hardness test were prepared in exactly the same manner as in Example 6 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent (1). The results of the evaluation of each pencil hardness test are shown in Table 1 including the results of Example 6. In Table 1, “H &#60;” represents that the pencil hardness is less than 1.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
<実施例12>
 実施例1で得られた液晶配向剤(1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した。この基板を、純水に3分間浸漬させ、230℃のホットプレート上で14分間乾燥させて、液晶配向膜付き基板を得た。
 得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.10度であった。
<Example 12>
After filtering the liquid crystal aligning agent (1) obtained in Example 1 with a filter having a pore size of 1.0 μm, a columnar spacer having a height of 4 μm in which an ITO film is formed on the back surface of the prepared substrate with electrodes is provided. It apply | coated to the glass substrate which has by spin coat application | coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.25 J / cm 2 of linearly polarized ultraviolet light having a extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. This substrate was immersed in pure water for 3 minutes and dried on a hot plate at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film.
The above-mentioned two substrates obtained as a set were printed with a sealant on the substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °, The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.10 degrees.
<実施例12~15、比較例7~9>
 液晶配向剤(1)の代わりに、それぞれ、表2に示した液晶配向剤を用い、また、紫外線の照射量を表2に示したものにした以外は、実施例11と全く同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を、実施例11の結果を含めて表2に示す。
<Examples 12 to 15, Comparative Examples 7 to 9>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 2 was used, respectively, and the irradiation amount of ultraviolet rays was changed to that shown in Table 2 in the same manner as in Example 11. An FFS drive liquid crystal cell was fabricated and afterimage evaluation was performed by long-term alternating current drive. Table 2 shows the value of the angle Δ of the liquid crystal cell after long-term AC driving in each case, including the results of Example 11.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 本発明の液晶配向剤により、高い膜硬度と良好な残像特性を有する液晶配向膜を得ることが出来る。よって、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。そのため、高い表示品位が求められる液晶表示素子における使利用が可能である。
 なお、2016年11月18日に出願された日本特許出願2016-225395号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
With the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high film hardness and good afterimage characteristics can be obtained. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current drive generated in liquid crystal display elements of IPS drive method and FFS drive method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality.
It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-225395 filed on November 18, 2016 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (15)

  1.  下記(A)成分、(B)成分、及び有機溶剤を含有することを特徴とする液晶配向剤。
    (A)成分:テトラカルボン酸誘導体成分と、下記式(1)の構造を有するジアミンを含有するジアミン成分との反応物であるポリイミド前駆体のイミド化物であり、かつイミド化率が20%~80%であるポリイミド。
    Figure JPOXMLDOC01-appb-C000001
    (式中、*は、他の原子又は基との結合を表す。)
    (B)成分:架橋性官能基を2つ以上有する化合物。
    The liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
    (A) component: an imidized product of a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component containing a diamine having the structure of the following formula (1), and an imidization rate of 20% to Polyimide that is 80%.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, * represents a bond with another atom or group.)
    (B) Component: A compound having two or more crosslinkable functional groups.
  2.  前記ジアミン成分が、式(1)の構造を有するジアミンを20~50モル%含有する、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the diamine component contains 20 to 50 mol% of a diamine having the structure of the formula (1).
  3.  前記ジアミン成分が、更に、熱によって脱離してアミノ基を生じる構造を有するジアミンを含有する、請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein the diamine component further contains a diamine having a structure in which an amino group is eliminated by heat.
  4.  前記テトラカルボン酸誘導体成分が、下記からなる群から選ばれる少なくとも1種の構造を有する、請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the tetracarboxylic acid derivative component has at least one structure selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000002
  5.  前記架橋性官能基が、ヒドロキシル含有基、 (メタ)アクリレート含有基、ブロックイソシアネート含有基、オキセタン含有基、及びエポキシ含有基からなる群から選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載の液晶配向剤。 The crosslinkable functional group is at least one selected from the group consisting of a hydroxyl-containing group, a (meth) acrylate-containing group, a blocked isocyanate-containing group, an oxetane-containing group, and an epoxy-containing group. 2. A liquid crystal aligning agent according to item 1.
  6.  前記架橋性官能基が、ヒドロキシル含有基である、請求項1~4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the crosslinkable functional group is a hydroxyl-containing group.
  7.  前記架橋性官能基を2つ以上含有する化合物が、式(2)で表される、請求項1~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (Xは炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2~6の整数である。上記脂肪族炭化水素基又は芳香族炭化水素基における任意の炭素は、窒素又は酸素で置換されていてもよい。R及びRは、それぞれ独立に、水素原子、置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基であり、R及びRの少なくとも1方はヒドロキシ基で置換された炭化水素基を表す。)
    The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the compound containing two or more crosslinkable functional groups is represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (X 2 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an n-valent organic group containing an aromatic hydrocarbon group, and n is an integer of 2 to 6. The above aliphatic hydrocarbon group or aromatic group Any carbon in the group hydrocarbon group may be substituted with nitrogen or oxygen, and R 2 and R 3 each independently represents a hydrogen atom or an optionally substituted alkyl having 1 to 4 carbon atoms. A alkenyl group having 2 to 4 carbon atoms or an alkynyl group having 2 to 4 carbon atoms, and at least one of R 2 and R 3 represents a hydrocarbon group substituted with a hydroxy group.)
  8.  前記式(2)におけるR及びRの少なくとも1つが、式(3)で表される、請求項7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (R~Rは、それぞれ独立に、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基のいずれかを表す。)
    Formula (2) in at least one of R 2 and R 3, represented by the formula (3), the liquid crystal aligning agent of claim 7.
    Figure JPOXMLDOC01-appb-C000004
    (R 4 to R 7 each independently represents a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group.)
  9.  前記架橋性官能基を2つ以上含有する化合物が、式(5)で表される化合物である、請求項1~8のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    The liquid crystal aligning agent according to any one of claims 1 to 8, wherein the compound containing two or more crosslinkable functional groups is a compound represented by the formula (5).
    Figure JPOXMLDOC01-appb-C000005
  10.  前記(B)成分が、前記(A)成分に対して0.1~20質量%含有される、請求項1~9のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 9, wherein the component (B) is contained in an amount of 0.1 to 20% by mass with respect to the component (A).
  11.  更に、下記の(C)成分を含有する、請求項1~10のいずれかに記載の液晶配向剤。
    (C)成分:テトラカルボン酸誘導体成分と、ジアミン成分との反応物であるポリイミド前駆体(但し、前記(A)成分のポリイミドの前駆体と同じポリイミド前駆体を除く。)
    The liquid crystal aligning agent according to any one of claims 1 to 10, further comprising the following component (C):
    Component (C): A polyimide precursor which is a reaction product of a tetracarboxylic acid derivative component and a diamine component (however, the same polyimide precursor as the polyimide precursor of the component (A) is excluded).
  12.  前記有機溶剤が、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ペンチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロピオンアミド、及び3-ブトキシ-N,N-ジメチルプロピオンアミドからなる群から選ばれる少なくとも1種からなる第一の溶剤(I)と、ブチルセロソルブ、ブチルセロソルブアセテート、1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ダイアセトンアルコール、ジイソブチルカルビノール、ジイソブチルケトン、プロピレンカーボネート、プロピレングリコールジアセテート、ジイソペンチルエーテルからなる群から選ばれる少なくとも1種からなる第二の溶剤(II)と、を含有する、請求項1~11のいずれか1項に記載の液晶配向剤。 The organic solvent is N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-pentyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, A first solvent (I) comprising at least one selected from the group consisting of 3-methoxy-N, N-dimethylpropionamide and 3-butoxy-N, N-dimethylpropionamide, butyl cellosolve, butyl cellosolve acetate, -Butoxy-2-propanol, 2-butoxy-1-propanol, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, diacetone alcohol, diisobutyl carbinol, diisobutyl ketone, propylene carbonate, propylene glycol diacetate, di The liquid crystal aligning agent according to any one of claims 1 to 11, comprising at least one second solvent (II) selected from the group consisting of isopentyl ethers.
  13.  請求項1~12のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載の液晶配向剤を塗布、焼成し、さらに偏光された紫外線を照射する液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, wherein the liquid crystal aligning agent according to any one of claims 1 to 12 is applied, baked, and further irradiated with polarized ultraviolet rays.
  15.  請求項13に記載の液晶配向膜を有する、液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 13.
PCT/JP2017/041123 2016-11-18 2017-11-15 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2018092811A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780070436.XA CN109952531B (en) 2016-11-18 2017-11-15 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020197016904A KR102483499B1 (en) 2016-11-18 2017-11-15 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP2018551666A JP7259328B2 (en) 2016-11-18 2017-11-15 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-225395 2016-11-18
JP2016225395 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018092811A1 true WO2018092811A1 (en) 2018-05-24

Family

ID=62145133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041123 WO2018092811A1 (en) 2016-11-18 2017-11-15 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7259328B2 (en)
KR (1) KR102483499B1 (en)
CN (1) CN109952531B (en)
TW (1) TWI745488B (en)
WO (1) WO2018092811A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200059036A (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
CN111263761A (en) * 2017-08-23 2020-06-09 日产化学株式会社 Novel polymer and diamine compound
WO2021006182A1 (en) * 2019-07-08 2021-01-14 日産化学株式会社 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2020045549A1 (en) * 2018-08-30 2021-08-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same
KR20230021645A (en) 2020-06-05 2023-02-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11754921B2 (en) 2018-12-21 2023-09-12 Lg Chem, Ltd. Crosslinking agent compound, photosensitive composition comprising the same, and photosensitive material using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080186A1 (en) * 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same
WO2016063834A1 (en) * 2014-10-20 2016-04-28 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049699B2 (en) 1994-02-24 2000-06-05 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3968823B2 (en) 1997-06-09 2007-08-29 Jsr株式会社 Liquid crystal alignment agent
WO2015060366A1 (en) 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015060357A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN105723276B (en) * 2013-11-15 2019-04-09 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080186A1 (en) * 2013-11-28 2015-06-04 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same
WO2016063834A1 (en) * 2014-10-20 2016-04-28 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263761A (en) * 2017-08-23 2020-06-09 日产化学株式会社 Novel polymer and diamine compound
CN111263761B (en) * 2017-08-23 2022-11-04 日产化学株式会社 Novel polymer and diamine compound
JPWO2020045549A1 (en) * 2018-08-30 2021-08-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7371634B2 (en) 2018-08-30 2023-10-31 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
KR102258619B1 (en) * 2018-11-20 2021-05-28 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
KR20200059036A (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11754921B2 (en) 2018-12-21 2023-09-12 Lg Chem, Ltd. Crosslinking agent compound, photosensitive composition comprising the same, and photosensitive material using the same
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same
WO2021006182A1 (en) * 2019-07-08 2021-01-14 日産化学株式会社 Liquid crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7494852B2 (en) 2019-07-08 2024-06-04 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
KR20230021645A (en) 2020-06-05 2023-02-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Also Published As

Publication number Publication date
JP7259328B2 (en) 2023-04-18
CN109952531B (en) 2022-12-27
JPWO2018092811A1 (en) 2019-10-17
TWI745488B (en) 2021-11-11
CN109952531A (en) 2019-06-28
TW201831658A (en) 2018-09-01
KR20190082293A (en) 2019-07-09
KR102483499B1 (en) 2022-12-30

Similar Documents

Publication Publication Date Title
JP6711443B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
JP6852771B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6578948B2 (en) Liquid crystal aligning agent containing polyimide precursor and / or polyimide having thermally detachable group
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
WO2015072554A1 (en) Liquid crystal aligning agent, and liquid crystal display element using same
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7008946B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2024037908A (en) Compound
WO2019065646A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2018062437A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7193783B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7392655B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2019181878A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016904

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17871679

Country of ref document: EP

Kind code of ref document: A1