JP7193783B2 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Download PDF

Info

Publication number
JP7193783B2
JP7193783B2 JP2019566535A JP2019566535A JP7193783B2 JP 7193783 B2 JP7193783 B2 JP 7193783B2 JP 2019566535 A JP2019566535 A JP 2019566535A JP 2019566535 A JP2019566535 A JP 2019566535A JP 7193783 B2 JP7193783 B2 JP 7193783B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
carbon atoms
aligning agent
crystal aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566535A
Other languages
Japanese (ja)
Other versions
JPWO2019142927A1 (en
Inventor
崇明 杉山
佳和 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019142927A1 publication Critical patent/JPWO2019142927A1/en
Application granted granted Critical
Publication of JP7193783B2 publication Critical patent/JP7193783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、液晶配向剤、液晶配向剤から得られる液晶配向膜、及び液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.

液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。 Liquid crystal display elements used in liquid crystal televisions, liquid crystal displays, etc. are usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals.

現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。 Currently, the liquid crystal alignment film that is most widely used industrially is a film made of polyamic acid and/or polyimide imidized thereof formed on an electrode substrate. It is produced by performing a so-called rubbing process, which is rubbing in a direction.

ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性などの種々の問題がある。 The rubbing treatment is a simple, highly productive and industrially useful method. However, along with the high performance, high definition, and large size of liquid crystal display elements, scratches on the surface of the alignment film caused by rubbing, dust generation, mechanical force and static electricity, and furthermore, the alignment processing surface There are various problems such as the non-uniformity of the

ラビング処理に代わる方法としては、偏光された放射線の照射により、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。 As an alternative to the rubbing treatment, there is known a photo-alignment method in which polarized radiation is applied to impart liquid crystal alignment ability. As the liquid crystal alignment treatment by the photo-alignment method, a method using a photo-isomerization reaction, a method using a photo-crosslinking reaction, a method using a photo-decomposition reaction, etc. have been proposed (see Non-Patent Document 1).

特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
上記のような光配向法は、ラビングレス配向処理方法として、工業的にも簡便な製造プロセスで生産できるだけでなく、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子においては、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるため、有望な液晶配向処理方法として注目されている。
Patent Document 1 proposes the use of a polyimide film having an alicyclic structure such as a cyclobutane ring in its main chain for the photo-alignment method.
The photo-alignment method as described above can be produced by an industrially simple manufacturing process as a rubbing-less alignment treatment method. Compared with the liquid crystal alignment film obtained by the rubbing treatment method, the contrast and viewing angle characteristics of the liquid crystal display device can be expected to be improved.

特開平9-297313号公報JP-A-9-297313

「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号 Vol.17、 No.11 13~22ページ"Liquid Crystal Photo-Alignment Film" Kidowaki, Ichimura, Functional Materials, November 1997, Vol. 17, No. 11 Pages 13-22

スマートフォンや携帯電話などのモバイル用途及び車載用ディスプレイ用途の液晶表示素子の信頼性試験として、パネルの振動試験を実施することがある。この振動試験では、輝点などの不良が発生しないことが求められる。振動試験後に不良が発生しない液晶表示素子を得るためには、液晶配向膜の機械強度を高める必要がある。液晶配向膜の機械強度、特に、硬度を改善する方法として、液晶配向剤に架橋剤を添加する方法が挙げられる。しかしながら、本発明者らの検討において、架橋剤を添加した場合、得られる液晶配向膜の膜硬度は改善するものの、液晶表示素子の黒輝度悪化に由来するコントラストの悪化や長期交流駆動による残像が悪化することがわかった。
従って、本発明は、膜硬度が高く、IPS駆動方式やFFS駆動方式の液晶表示素子で発生する長期交流駆動による残像が抑制出来、且つ、液晶表示素子のコントラストが良好な液晶表示素子を得るための液晶配向剤、該液晶配向剤から得られる液晶配向膜、該液晶配向膜を有する液晶表示素子を提供することを目的とする。
A panel vibration test is sometimes performed as a reliability test of liquid crystal display elements for mobile applications such as smartphones and mobile phones, and for vehicle-mounted displays. In this vibration test, it is required that defects such as bright spots do not occur. In order to obtain a liquid crystal display element free from defects after the vibration test, it is necessary to increase the mechanical strength of the liquid crystal alignment film. As a method for improving the mechanical strength, particularly hardness, of the liquid crystal alignment film, there is a method of adding a cross-linking agent to the liquid crystal alignment agent. However, in the study of the present inventors, when a cross-linking agent is added, although the film hardness of the obtained liquid crystal alignment film is improved, the deterioration of the contrast due to the deterioration of the black luminance of the liquid crystal display element and the afterimage due to long-term AC driving are caused. Turned out to be worse.
Therefore, the present invention provides a liquid crystal display element having high film hardness, capable of suppressing afterimages caused by long-term AC driving that occurs in liquid crystal display elements of the IPS drive system or the FFS drive system, and having good contrast of the liquid crystal display element. A liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明の要旨は以下に示す通りである。
1.下記(A)成分、(B)成分、および有機溶剤を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)の構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体
(B)成分:下記式(2)の構造を2つ以上有する化合物
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the gist of the present invention is as follows.
1. A liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
Component (A): At least one polymer selected from the group consisting of a polyimide precursor having a structural unit of the following formula (1) and an imidized polymer of the polyimide precursor (B) Component: Formula (2) below A compound having two or more structures of

Figure 0007193783000001
Figure 0007193783000001

は4価の有機基であり、Yは2価の有機基である。Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。X 1 is a tetravalent organic group and Y 1 is a divalent organic group. R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A 1 to A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or alkenyl having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.

Figure 0007193783000002
Figure 0007193783000002

は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は、炭素数2~6のアルキニル基である。Zは、水素原子、又は、炭素数1~4のアルキル基、炭素数2~6のアルケニル基、又は、炭素数2~6のアルキニル基である。「*」は結合手を示す。Z 1 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. Z 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. "*" indicates a bond.

本発明の液晶配向剤を用いることで、膜硬度が高い液晶配向膜を得ることができる。また、本発明の液晶配向膜を用いることで、架橋剤を導入しているにも関わらず、コントラストが良好な液晶表示素子が得られる。さらに本発明の液晶配向剤を用いることで、液晶配向性や電気特性を低下させることなく上述する課題を達成することが可能となる。 By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film having high film hardness can be obtained. In addition, by using the liquid crystal alignment film of the present invention, a liquid crystal display device with good contrast can be obtained in spite of introducing a cross-linking agent. Furthermore, by using the liquid crystal aligning agent of this invention, it becomes possible to achieve the above-mentioned subject, without deteriorating a liquid crystal aligning property or an electrical property.

本発明の液晶配向剤は、下記(A)成分、(B)成分、および有機溶剤を含有することを特徴とする。
(A)成分:下記式(1)の構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体
(B)成分:下記式(2)の構造を2個以上有する化合物
以下、それぞれの成分について詳述する。
The liquid crystal aligning agent of the present invention is characterized by containing the following components (A), (B) and an organic solvent.
Component (A): At least one polymer selected from the group consisting of a polyimide precursor having a structural unit of the following formula (1) and an imidized polymer of the polyimide precursor (B) Component: Formula (2) below A compound having two or more structures of: Each component will be described in detail below.

<(A)成分>
本発明の液晶配向剤に含まれる(A)成分は、下記式(1)の構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体である。ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステルなどの加熱又は触媒による化学イミド化によって、イミド環を形成するポリイミド前駆体であれば、特に限定されない。加熱、又は化学イミド化が進行しやすいという観点から、ポリイミド前駆体としては、ポリアミック酸、またはポリアミック酸エステルがより好ましい。
<(A) Component>
Component (A) contained in the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a structural unit of the following formula (1) and an imidized polymer of the polyimide precursor. is. The polyimide precursor is not particularly limited as long as it is a polyimide precursor that forms an imide ring by chemical imidization with heating or a catalyst such as polyamic acid or polyamic acid ester. Polyamic acid or polyamic acid ester is more preferable as the polyimide precursor from the viewpoint of facilitating heating or chemical imidization.

Figure 0007193783000003
Figure 0007193783000003

は4価の有機基であり、Yは2価の有機基である。Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。
における上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、Rは、水素原子、又はメチル基が好ましい。
及びAはそれぞれ独立して水素原子、又は炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基である。
上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
以下、重合体をなす原料となる各成分について詳述する。
X 1 is a tetravalent organic group and Y 1 is a divalent organic group. R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and A 1 to A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. , or an alkynyl group having 2 to 10 carbon atoms.
Specific examples of the alkyl group for R 1 include methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl and n-pentyl groups. etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
A 1 and A 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms which may have a substituent, or a number of carbon atoms which may have a substituent. 2 to 10 alkynyl groups.
Specific examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group and bicyclohexyl group. Examples of the alkenyl group include those in which one or more CH—CH structures present in the above alkyl groups are replaced with a C=C structure, and more specifically, a vinyl group, an allyl group, and a 1-propenyl group. , isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Examples of the alkynyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a C≡C structure. -propynyl group and the like.
In general, introduction of a bulky structure may reduce the reactivity of the amino group and the liquid crystal orientation, so A 1 and A 2 are more preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. , a hydrogen atom, a methyl group or an ethyl group are particularly preferred.
Hereinafter, each component that becomes a raw material for forming a polymer will be described in detail.

<ジアミン>
本発明の液晶配向剤に用いられるジアミン成分は、特にその構造は限定されない。
上記式(1)の構造を持つ重合体の重合に用いられるジアミンは以下の式(3)で一般式化出来る。Yの構造を例示すると、以下の(Y-1)~(Y-184)の通りである。
<Diamine>
The structure of the diamine component used in the liquid crystal aligning agent of the present invention is not particularly limited.
The diamine used for polymerizing the polymer having the structure of formula (1) can be generalized by the following formula (3). Examples of the structure of Y 1 are as follows (Y-1) to (Y-184).

Figure 0007193783000004
Figure 0007193783000004

上記式(3)のA及びAは好ましい例も含めて、上記式(1)のA及びAと同様の定義である。A 1 and A 2 in the above formula (3) have the same definitions as A 1 and A 2 in the above formula (1), including preferred examples.

Figure 0007193783000005
Figure 0007193783000005

Figure 0007193783000006
Figure 0007193783000006

Figure 0007193783000007
Figure 0007193783000007

Figure 0007193783000008
Figure 0007193783000008

Figure 0007193783000009
Figure 0007193783000009

Figure 0007193783000010
Figure 0007193783000010

Figure 0007193783000011
Figure 0007193783000011

Figure 0007193783000012
Figure 0007193783000012

Figure 0007193783000013
Figure 0007193783000013

Figure 0007193783000014
Figure 0007193783000014

Figure 0007193783000015
Figure 0007193783000015

Figure 0007193783000016
Figure 0007193783000016

Figure 0007193783000017
Figure 0007193783000017

Figure 0007193783000018
Figure 0007193783000018

Figure 0007193783000019
Figure 0007193783000019

Figure 0007193783000020
Figure 0007193783000020

Figure 0007193783000021
Figure 0007193783000021

Figure 0007193783000022
Figure 0007193783000022

Figure 0007193783000023
Figure 0007193783000023

Figure 0007193783000024
Figure 0007193783000024

また、液晶配向性の観点から、Yの構造としては直線性の高い構造が好ましく、下記式(4)及び下記式(5)で表される構造が挙げられる。From the viewpoint of liquid crystal orientation, the structure of Y 1 is preferably a highly linear structure, and examples thereof include structures represented by the following formulas (4) and (5).

Figure 0007193783000025
Figure 0007193783000025

式(4)及び(5)において、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~20の2価の有機基であり、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、 の構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。 In formulas (4) and (5), A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms, A 3 is a hydrogen atom, a halogen atom, hydroxyl group, amino group, thiol group, nitro group, phosphate group, or monovalent organic group having 1 to 20 carbon atoms, a is an integer of 1 to 4, and when a is 2 or more, A 3 structure may be the same or different. b and c are each independently an integer of 1 to 2;

上記式(4)及び上記式(5)で表される構造の具体例としては、Y-7、Y-25,Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-71、Y-72、Y-73、Y-74,Y-75,Y-76、Y-82、Y-87、Y-88、Y-89、Y-90、Y-92、Y-93、Y-94、Y-95、Y-96、Y-100、Y-101、Y-102,Y-103、Y-104,Y-105、Y-106、Y-110、Y-111、Y-112、Y-113、Y-115、Y-116、Y-121、Y-122、Y-126、Y-127、Y-128、Y-129、Y-132、Y-134、Y-153、Y-156、Y-157、Y-158、Y-159、Y-160、Y-161、Y-162、Y-163、Y-164、Y-165、Y-166、Y-167、Y-168、Y-169、及びY-170が挙げられる。 Specific examples of the structures represented by the formulas (4) and (5) include Y-7, Y-25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-71, Y-72, Y-73, Y-74, Y-75, Y-76, Y-82, Y-87, Y-88, Y-89, Y- 90, Y-92, Y-93, Y-94, Y-95, Y-96, Y-100, Y-101, Y-102, Y-103, Y-104, Y-105, Y-106, Y-110, Y-111, Y-112, Y-113, Y-115, Y-116, Y-121, Y-122, Y-126, Y-127, Y-128, Y-129, Y- 132, Y-134, Y-153, Y-156, Y-157, Y-158, Y-159, Y-160, Y-161, Y-162, Y-163, Y-164, Y-165, Y-166, Y-167, Y-168, Y-169, and Y-170.

上記式(4)及び上記式(5)で表されるジアミンの含有量は、全ジアミン成分1モルに対して、50%以上が好ましく、70モル%以上であることがより好ましい。
ポリマーの溶解性が向上するという観点で、Yの構造中に、下記式(6)で表される構造を含むことが好ましい。
The content of the diamines represented by the above formulas (4) and (5) is preferably 50% or more, more preferably 70% by mole or more, relative to 1 mol of the total diamine component.
From the viewpoint of improving the solubility of the polymer, the structure of Y1 preferably includes a structure represented by the following formula (6).

Figure 0007193783000026
Figure 0007193783000026

上記式(6)において、Dは、加熱により水素原子に置き換わる置換基であり、公知の構造であれば、その構造が限定されない。熱脱離性の観点から、t-ブトキシカルボニル基が好ましい。上記式(6)で表される構造を含むYの具体例としては、Y-158、Y-159、Y-160、Y-161、Y-162、Y-163が挙げられる。
上記式(6)の構造を含むジアミンの含有量は、全ジアミン成分1モルに対して、0~50モル%が好ましく、5~30モル%がより好ましい。
In the above formula (6), D is a substituent that replaces a hydrogen atom by heating, and its structure is not limited as long as it has a known structure. A t-butoxycarbonyl group is preferred from the viewpoint of thermal elimination. Specific examples of Y 1 containing the structure represented by formula (6) include Y-158, Y-159, Y-160, Y-161, Y-162 and Y-163.
The content of the diamine containing the structure of formula (6) is preferably 0 to 50 mol %, more preferably 5 to 30 mol %, relative to 1 mol of the total diamine component.

また、Yの構造として、(Y-1)~(Y-184)の中で特に好ましいのは以下の通りである。Among (Y-1) to (Y-184), particularly preferred structures of Y 1 are as follows.

Figure 0007193783000027
Figure 0007193783000027

<テトラカルボン酸誘導体>
本発明の液晶配向剤に含有される、上記式(1)の構造単位を有する重合体を作製するためのテトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる。
<Tetracarboxylic acid derivative>
As the tetracarboxylic acid derivative component for producing the polymer having the structural unit of formula (1), which is contained in the liquid crystal aligning agent of the present invention, not only tetracarboxylic dianhydride but also the tetracarboxylic acid Derivatives such as tetracarboxylic acids, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, or tetracarboxylic acid dialkyl ester dihalide compounds can also be used.

テトラカルボン酸二無水物又はその誘導体としては、光反応性を有するテトラカルボン酸二無水物又はその誘導体が好ましく、その中でも、下記式(7)で示されるテトラカルボン酸二無水物から選ばれる少なくとも1つを用いることがより好ましい。 The tetracarboxylic dianhydride or derivative thereof is preferably a photoreactive tetracarboxylic dianhydride or a derivative thereof, and among them, at least selected from tetracarboxylic dianhydrides represented by the following formula (7) It is more preferable to use one.

Figure 0007193783000028
Figure 0007193783000028

は、脂環式構造を有する4価の有機基であり、具体例としては、下記式(X1-1)~(X1-10)が挙げられる。X 1 is a tetravalent organic group having an alicyclic structure, and specific examples include the following formulas (X1-1) to (X1-10).

Figure 0007193783000029
Figure 0007193783000029

からR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、RからR23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。式(X1-1)の具体的な構造としては、下記式(X1-11)~(X1-16)で表される構造が挙げられる。液晶配向性及び光反応の感度の観点から、(X1-12)が特に好ましい。R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon atom containing a fluorine atom. It is a monovalent organic group of numbers 1 to 6 or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group. Specific structures of the formula (X1-1) include structures represented by the following formulas (X1-11) to (X1-16). (X1-12) is particularly preferred from the viewpoint of liquid crystal orientation and photoreaction sensitivity.

Figure 0007193783000030
Figure 0007193783000030

本発明に用いられるテトラカルボン酸二無水物は、上記式(7)以外に、下記式(8)で表されるテトラカルボン酸二無水物及びその誘導体を用いてもよい。 As the tetracarboxylic dianhydride used in the present invention, a tetracarboxylic dianhydride represented by the following formula (8) and a derivative thereof may be used in addition to the above formula (7).

Figure 0007193783000031
Figure 0007193783000031

は4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式(X-9)~(X-42)の構造が挙げられる。化合物の入手性の観点から、Xの構造は、X-17、X-25、X-26、X-27、X-28、X-32、X-35、X-37及びX-39が挙げられる。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26、X-27、X-28、X-32、X-35、及びX-37がより好ましい。X2 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures represented by the following formulas (X-9) to (X-42). From the viewpoint of compound availability, the structures of X include X-17, X-25, X-26, X-27, X-28, X-32, X-35, X-37 and X-39. be done. In addition, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure from the viewpoint of obtaining a liquid crystal alignment film in which the residual charge accumulated by a DC voltage is quickly relaxed. More preferred are X-27, X-28, X-32, X-35, and X-37.

Figure 0007193783000032
Figure 0007193783000032

Figure 0007193783000033
Figure 0007193783000033

Figure 0007193783000034
Figure 0007193783000034

Figure 0007193783000035
Figure 0007193783000035

Figure 0007193783000036
Figure 0007193783000036

本発明に記載のポリイミド前駆体及びポリイミドの原料であるテトラカルボン酸二無水物及びその誘導体としては、全テトラカルボン酸二無水物及びその誘導体1モルに対して、上記式(3)で表されるテトラカルボン酸二無水物及びその誘導体を60~100モル%含むことが好ましい。良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
<(B)成分>
本発明の液晶配向剤に含有される(B)成分は、下記式(2)の構造を2つ以上有する化合物である。
(B)成分は、下記式(2)で表される構造を2つ以上含めば、その構造は、特に、限定されない。分子量が高すぎると、液晶配向性の影響を与えるため、分子量2,000以下が好ましく、1,000以下がより好ましい。
The tetracarboxylic dianhydride and its derivative, which are raw materials for the polyimide precursor and polyimide according to the present invention, are represented by the above formula (3) with respect to 1 mol of the total tetracarboxylic dianhydride and its derivative. It preferably contains 60 to 100 mol% of tetracarboxylic dianhydride and its derivatives. It is more preferably 80 mol % to 100 mol %, even more preferably 90 mol % to 100 mol %, since a liquid crystal alignment film having good liquid crystal alignment properties can be obtained.
<(B) Component>
The (B) component contained in the liquid crystal aligning agent of the present invention is a compound having two or more structures of the following formula (2).
The structure of component (B) is not particularly limited as long as it contains two or more structures represented by the following formula (2). If the molecular weight is too high, the liquid crystal orientation is affected, so the molecular weight is preferably 2,000 or less, more preferably 1,000 or less.

Figure 0007193783000037
Figure 0007193783000037

は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は、炭素数2~6のアルキニル基である。液晶配向性の観点から、Zは、メチル基、エチル基が好ましく、より好ましくは、メチル基である。
は、水素原子、又は、炭素数1~4のアルキル基、炭素数2~6のアルケニル基、又は、炭素数2~6のアルキニル基である。架橋反応性の観点から、水素原子がより好ましい。「*」は結合手を示す。
(B)成分としては、上記式(2)で表される構造を2つ以上有する化合物が好ましく、3つ以上有する化合物がより好ましい。
また、(B)成分としては、下記式(B1-1)で表される構造を2つ以上有する化合物であることが好ましい。
Z 1 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. From the viewpoint of liquid crystal orientation, Z1 is preferably a methyl group or an ethyl group, more preferably a methyl group.
Z 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. A hydrogen atom is more preferable from the viewpoint of cross-linking reactivity. "*" indicates a bond.
As the component (B), a compound having two or more structures represented by the above formula (2) is preferable, and a compound having three or more structures is more preferable.
Further, the component (B) is preferably a compound having two or more structures represented by the following formula (B1-1).

Figure 0007193783000038
Figure 0007193783000038

は好ましい例も含めて、式(2)と同様の定義である。(B)成分の具体的な例としては、下記式(B-1)~(B-18)の化合物が挙げられる。Z 1 has the same definition as in formula (2), including preferred examples. Specific examples of component (B) include compounds represented by the following formulas (B-1) to (B-18).

Figure 0007193783000039
Figure 0007193783000039

Figure 0007193783000040
Figure 0007193783000040

上記(B)成分は、多すぎると液晶配向性やプレチルト角に影響を与え、少なすぎると本発明の効果が得られない。そのため、(B)成分の添加量は、(A)成分の重合体に対して、0.1~30質量%が好ましく、0.1~20質量%、さらに1~15質量%がより好ましい。
<ポリアミック酸エステル、ポリアミック酸及びポリイミドの製造方法>
本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸及びポリイミドは、例えば、国際公開公報WO2013/157586に記載されるような公知の方法で合成出来る。
If the component (B) is too large, it will affect the liquid crystal orientation and pretilt angle, and if it is too small, the effect of the present invention cannot be obtained. Therefore, the amount of component (B) added is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, relative to the polymer of component (A).
<Method for producing polyamic acid ester, polyamic acid and polyimide>
Polyamic acid ester, polyamic acid and polyimide, which are polyimide precursors used in the present invention, can be synthesized by known methods such as those described in International Publication WO2013/157586, for example.

<液晶配向剤>
本発明に用いられる液晶配向剤は、前記した(A)成分であるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体(以下、特定構造の重合体とする)及び(B)成分の化合物が有機溶媒中に溶解された溶液の形態を有する。特定構造重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention is at least one type of polymer selected from the group consisting of the polyimide precursor which is the component (A) and the imidized polymer of the polyimide precursor (hereinafter referred to as a polymer having a specific structure). and (B) are dissolved in an organic solvent. The weight average molecular weight of the specific structure polymer is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. Also, the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, still more preferably 5,000 to 50,000.

本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。 The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed. % or more, and preferably 10% by weight or less from the viewpoint of storage stability of the solution.

本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as it uniformly dissolves the polymer component. Specific examples include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethylsulfoxide, dimethylsulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N,N-dimethylpropanamide and the like. These may be used singly or in combination of two or more. Moreover, even a solvent that cannot uniformly dissolve the polymer component by itself may be mixed with the above organic solvent as long as the polymer is not precipitated.

本発明に用いられる液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種以上を併用してもよい。 The liquid crystal aligning agent used in the present invention may contain, in addition to the organic solvent for dissolving the polymer component, a solvent for improving coating uniformity when the liquid crystal aligning agent is applied to the substrate. . Such a solvent generally has a lower surface tension than the above organic solvent. Specific examples include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol. , 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2-(2-ethoxypropoxy)propanol, lactic acid methyl ester, lactic acid ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester and the like. Two or more of these solvents may be used in combination.

本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、特定重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜>
<液晶配向膜の製造方法>
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the specific polymer, electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film are changed. Dielectric or conductive material for the purpose, silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, cross-linking compound for the purpose of increasing the hardness and density of the film when the liquid crystal alignment film is formed, and An imidization accelerator or the like may be added for the purpose of efficiently advancing the imidization of the polyamic acid when baking the coating film.
<Liquid crystal alignment film>
<Method for producing liquid crystal alignment film>
The liquid crystal aligning film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying, and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of process simplification, it is preferable to use a substrate on which an ITO electrode or the like for is formed. In the case of a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side.

本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分間乾燥させ、その後150℃~300℃で5分~120分間焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, an inkjet method, and the like. Any temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. In general, it is dried at 50° C. to 120° C. for 1 minute to 10 minutes in order to sufficiently remove the contained organic solvent, and then calcined at 150° C. to 300° C. for 5 minutes to 120 minutes. The thickness of the coating film after baking is not particularly limited.

得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
ラビング処理は既存のラビング装置を利用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2,000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄によりラビングにより生じた残渣が除去される。
A rubbing method, an optical alignment treatment method, etc. are mentioned as a method of aligning the obtained liquid crystal aligning film.
The rubbing process can be performed using an existing rubbing apparatus. The material of the rubbing cloth in this case includes cotton, nylon, rayon, and the like. As the conditions for the rubbing treatment, a rotation speed of 300 to 2,000 rpm, a feed rate of 5 to 100 mm/s, and a pressing amount of 0.1 to 1.0 mm are generally used. After that, the residue generated by the rubbing is removed by ultrasonic cleaning using pure water, alcohol, or the like.

光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線および可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。As a specific example of the photo-alignment treatment method, the coating film surface is irradiated with radiation polarized in a certain direction, and in some cases, further heat-treated at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. mentioned. As radiation, ultraviolet rays and visible rays having wavelengths of 100 nm to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable. In order to improve liquid crystal orientation, radiation may be applied while heating the coated film substrate at 50 to 250°C. The radiation dose is preferably 1 to 10,000 mJ/cm 2 , particularly preferably 100 to 5,000 mJ/cm 2 . The liquid crystal alignment film produced as described above can stably orient liquid crystal molecules in a certain direction.

偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。 A higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10:1 or more, more preferably 20:1 or more.

上記で、偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。 The film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and organic solvents.

接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解できれば、特に限定されない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパノール、及び水と2-プロパノールの混合溶媒が特に好ましい。
The solvent used for the contact treatment is not particularly limited as long as it can dissolve the decomposition products produced by light irradiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate; Two or more of these solvents may be used in combination.
At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable from the viewpoint of versatility and safety. Particularly preferred are water, 2-propanol, and mixed solvents of water and 2-propanol.

本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。 In the present invention, the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is a treatment such as immersion treatment or spray treatment, which preferably allows sufficient contact between the film and the liquid. done. Among them, a method of immersing the film in a solution containing an organic solvent for preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes, is preferred. The contact treatment may be carried out at room temperature or with heating, preferably at 10 to 80°C, more preferably at 20 to 50°C. In addition, means for enhancing contact, such as ultrasonic waves, can be applied as necessary.

上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。
加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
After the above contact treatment, either or both rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone, or drying for the purpose of removing the organic solvent in the solution used. may be performed.
Furthermore, the film that has been subjected to contact treatment with a solvent as described above may be heated at 150° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
The heating temperature is preferably 150 to 300°C. A higher temperature promotes the reorientation of the molecular chains, but if the temperature is too high, the molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250°C, particularly preferably 200 to 230°C.
If the heating time is too short, the effect of reorientation of the molecular chains may not be obtained, and if it is too long, the molecular chains may be decomposed, so 10 seconds to 30 minutes is preferable, and 1 minute. ~10 minutes is more preferred.

<液晶表示素子>
本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備することを特徴とする。
本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
<Liquid crystal display element>
A liquid crystal display element of the present invention is characterized by comprising a liquid crystal alignment film obtained by the method for producing a liquid crystal alignment film.
In the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal aligning film from the liquid crystal aligning agent of the present invention by the method for producing a liquid crystal aligning film, a liquid crystal cell is produced by a known method, and the liquid crystal is used. It is used as a display element.

液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。 As an example of the method of manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described. A liquid crystal display element having an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion forming an image display may be used.

まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。First, transparent glass substrates are prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.

次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。 Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, one substrate is overlaid on the other substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. A spacer is usually mixed in the sealing agent in order to control the gap between the substrates. Moreover, it is preferable to spread spacers for controlling the gap between the substrates even in the in-plane portions where the sealant is not provided. A part of the sealant is provided with an opening through which liquid crystal can be filled from the outside.

次に、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。 Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealant through an opening provided in the sealant. This opening is then sealed with an adhesive. For injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer. The liquid crystal display device of the present invention is obtained through the above steps.

本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。 In the present invention, as the sealing agent, for example, a resin that has a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, and an acetyl group and is cured by ultraviolet irradiation or heating is used. In particular, it is preferred to use a curable resin system having both epoxy and (meth)acryloyl reactive groups.

本発明のシール剤には接着性、耐湿性の向上を目的として無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。 The sealant of the present invention may contain an inorganic filler for the purpose of improving adhesion and moisture resistance. The inorganic filler that can be used is not particularly limited, but specific examples include spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc. preferably spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate , aluminum silicate. Two or more kinds of the above inorganic fillers may be mixed and used.

以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ―ブチロラクトン
BCS:ブチルセロソルブ
DA-1:1,2-ビス(4-アミノフェノキシ)エタン
DA-2:N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン
DA-3:p-フェニレンジアミン
DA-4:下記式(DA-4)参照
DA-5:4,4’ジアミノジフェニルアミン
DA-6:4,4’ジアミノジフェニルメタン
CA-1:下記式(CA-1)参照
CA-2:下記式(CA-2)参照
CA-3:下記式(CA-3)参照
AD-1:下記式(AD-1)参照
AD-2:下記式(AD-2)参照
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these. The abbreviations of the compounds and the methods for measuring each property are as follows.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve DA-1: 1,2-bis(4-aminophenoxy)ethane DA-2: N-tert-butoxycarbonyl-N-(2-( 4-aminophenyl)ethyl)-N-(4-aminobenzyl)amine DA-3: p-phenylenediamine DA-4: see formula (DA-4) below DA-5: 4,4'diaminodiphenylamine DA-6 : 4,4' diaminodiphenylmethane CA-1: see formula (CA-1) below CA-2: see formula (CA-2) below CA-3: see formula (CA-3) below AD-1: see formula (CA-3) below AD-1) See AD-2: See formula (AD-2) below

Figure 0007193783000041
Figure 0007193783000041

Figure 0007193783000042
Figure 0007193783000042

Figure 0007193783000043
Figure 0007193783000043

[粘度]
溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL, a cone rotor TE-1 (1°34', R24), and a temperature of 25°C.

[分子量]
分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mnと重量平均分子量(Mw)を算出した。
[Molecular weight]
The molecular weight was measured with a GPC (normal temperature gel permeation chromatography) device, and the number average molecular weight (Mn and weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide conversion values.

GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分。GPC apparatus: manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, KD805 in series), column temperature: 50 ° C., eluent: N,N-dimethylformamide (as an additive, lithium bromide-water hydrate (LiBr.H 2 O) 30 mmol/L, phosphoric acid/anhydride crystals (o-phosphoric acid) 30 mmol/L, tetrahydrofuran (THF) 10 mL/L), flow rate: 1.0 mL/min.

検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。 Standard samples for creating a calibration curve: TSK standard polyethylene oxide manufactured by Tosoh Corporation (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000), and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight (Mp) about 12,000, 4,000, 1,000). In order to avoid overlapping of peaks, the measurement was performed by mixing four types of samples of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.

<イミド化率の測定>
ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
<Measurement of imidization rate>
20 mg of polyimide powder was placed in an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) (0. 53 mL) was added and dissolved completely by ultrasonication. This solution was subjected to proton NMR at 500 MHz using an NMR spectrometer (JNW-ECA500) (manufactured by JEOL Datum Co., Ltd.). For the imidization rate, a proton derived from a structure that does not change before and after imidization is determined as a reference proton. It was obtained by the following formula using the integrated value.

イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
Imidation rate (%) = (1-α x/y) x 100
In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). is the number ratio of reference protons to

[液晶セルの作製]
フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is produced.

始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦約10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。 First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm×50 mm and a thickness of 0.7 mm. An ITO electrode having a solid pattern is formed as a first layer on the substrate to form a counter electrode. A SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer. The SiN film of the second layer has a film thickness of 500 nm and functions as an interlayer insulating film. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is about 10 mm long and about 5 mm wide. At this time, the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.

第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode on the third layer has a comb-like shape formed by arranging a plurality of dogleg-shaped electrode elements with a bent central portion. The width of each electrode element in the lateral direction is 3 μm, and the interval between electrode elements is 6 μm. Since the pixel electrode that forms each pixel is configured by arranging a plurality of bent dogleg-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a curved shape resembling a bold character. Each pixel is vertically divided by the curved portion in the center, and has a first region above the curved portion and a second region below the curved portion.

各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 Comparing the first region and the second region of each pixel, the formation direction of the electrode elements of the pixel electrodes constituting them is different. That is, when the rubbing direction of the liquid crystal alignment film, which will be described later, is used as a reference, the electrode element of the pixel electrode is formed to form an angle of +10° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed at an angle of -10° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It is configured to be in the opposite direction.

次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから評価に使用した。 Next, after filtering the liquid crystal aligning agent with a 1.0 μm filter, spin coating was performed on the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm and an ITO film formed on the back surface. applied according to the method. Dry on a hot plate at 80°C for 2 minutes, irradiate the coating film surface with linearly polarized ultraviolet light with a wavelength of 254 nm and an extinction ratio of 10:1 or more through a polarizing plate, and then place it in a hot air circulating oven at 230°C for 20 minutes. Baking was performed to form a coating film having a thickness of 100 nm. The above two substrates are set as a set, a sealant is printed on the substrate, and another substrate is laminated so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0°, and then the sealant is cured. to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 110° C. for 1 hour and allowed to stand overnight before being used for evaluation.

[黒輝度評価]
上記した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。その後、電圧無印加の状態での透過光の輝度(黒輝度)を輝度計(TOPCON製SR-UL2)を用いて測定した。
[Black Luminance Evaluation]
The above-mentioned liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied. Adjusted the placement angle of After that, the luminance of transmitted light (black luminance) was measured with a luminance meter (SR-UL2 manufactured by TOPCON) with no voltage applied.

[鉛筆硬度の評価]
鉛筆硬度評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート法により液晶配向剤を塗布した。80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで20分間焼成を行い、液晶配向膜付き基板を得た。この基板を鉛筆硬度試験法(JIS K5400)で測定した。
[Evaluation of pencil hardness]
A sample for pencil hardness evaluation was prepared as follows. A liquid crystal aligning agent was applied to an ITO substrate of 30 mm×40 mm by spin coating. Dry on a hot plate at 80°C for 2 minutes, irradiate the coating film surface with linearly polarized ultraviolet light with a wavelength of 254 nm and an extinction ratio of 10:1 or more through a polarizing plate, and then place it in a hot air circulating oven at 230°C for 20 minutes. Firing was performed to obtain a substrate with a liquid crystal alignment film. This substrate was measured by a pencil hardness test method (JIS K5400).

<合成例1>
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を3.91g(16.0mmol)、DA-2を2.19g(6.41mmol)、DA-3を0.519g(4.80mmol)、DA-4を1.54g(4.81mmol)を取り、NMPを46.2g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を5.70g(25.4mmol)、CA-2を1.20g(4.80mmol)添加し、更に固形分濃度が15質量%になるようにNMPを39.1g加え、40℃で24時間撹拌してポリアミック酸溶液(A)(粘度:450mPa・s)を得た。ポリアミック酸の分子量は、Mn=11200、Mw=26900であった。
<Synthesis Example 1>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.91 g (16.0 mmol) of DA-1, 2.19 g (6.41 mmol) of DA-2, and 0.519 g of DA-3 ( 4.80 mmol), 1.54 g (4.81 mmol) of DA-4, and 46.2 g of NMP were added and dissolved by stirring while sending nitrogen. While stirring this diamine solution, 5.70 g (25.4 mmol) of CA-1 and 1.20 g (4.80 mmol) of CA-2 were added, and 39% of NMP was added so that the solid content concentration was 15% by mass. 1 g was added and stirred at 40° C. for 24 hours to obtain a polyamic acid solution (A) (viscosity: 450 mPa·s). The molecular weight of polyamic acid was Mn=11200 and Mw=26900.

<合成例2>
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-5を5.10g(25.6mmol)、DA-6を1.27g(6.41mmol)を取り、NMPを36.1g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を4.00g(16.0mmol)、CA-3を4.42g(15.0mmol)添加し、更に固形分濃度が15質量%になるようにNMPを47.7g加え、50℃で24時間撹拌してポリアミック酸溶液(B)(粘度:904mPa・s)を得た。ポリアミック酸の分子量は、Mn=14600、Mw=37500であった。
<Synthesis Example 2>
Take 5.10 g (25.6 mmol) of DA-5 and 1.27 g (6.41 mmol) of DA-6 in a 100 mL four-necked flask equipped with a stirring device and a nitrogen inlet tube, and add 36.1 g of NMP. The solution was dissolved by stirring while blowing nitrogen. While stirring this diamine solution, 4.00 g (16.0 mmol) of CA-2 and 4.42 g (15.0 mmol) of CA-3 were added, and 47% of NMP was added so that the solid content concentration was 15% by mass. 7 g was added and stirred at 50° C. for 24 hours to obtain a polyamic acid solution (B) (viscosity: 904 mPa·s). The molecular weight of the polyamic acid was Mn=14600 and Mw=37500.

<合成例3>
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られたポリアミック酸溶液(A)を30g取り、NMPを15.0g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を4.89g、ピリジンを1.51g加えて、50℃で2時間30分加熱し、化学イミド化を行った。得られた反応液を154mLのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、154mLのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(A)を得た。このポリイミド樹脂粉末のイミド化率は64%であり、Mn=9900、Mw=20000であった。
<Synthesis Example 3>
30 g of the obtained polyamic acid solution (A) was placed in a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 15.0 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 4.89 g of acetic anhydride and 1.51 g of pyridine were added and heated at 50° C. for 2 hours and 30 minutes for chemical imidization. The resulting reaction solution was poured into 154 mL of methanol with stirring, and the deposited precipitate was collected by filtration and washed three times with 154 mL of methanol. Polyimide resin powder (A) was obtained by drying the obtained resin powder at 60° C. for 12 hours. The imidization rate of this polyimide resin powder was 64%, Mn=9900, and Mw=20000.

<合成例4>
合成例3で得られたポリイミド樹脂粉末(A)3.00gを100mL三角フラスコに取り、固形分濃度が12%になるようにNMPを22.0g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(A)を得た。
<Synthesis Example 4>
Take 3.00 g of the polyimide resin powder (A) obtained in Synthesis Example 3 in a 100 mL Erlenmeyer flask, add 22.0 g of NMP so that the solid content concentration is 12%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (A) was obtained.

<実施例1>
合成例4で得られたポリイミド溶液(A)3.80gと合成例2で得られたポリアミック酸溶液(B)4.56gを100mL三角フラスコに取り、AD-1を0.114g、NMPを1.64g、GBLを6.00g、BCSを4.00g添加して室温で3時間撹拌し、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
3.80 g of the polyimide solution (A) obtained in Synthesis Example 4 and 4.56 g of the polyamic acid solution (B) obtained in Synthesis Example 2 were placed in a 100 mL Erlenmeyer flask, and 0.114 g of AD-1 and 1 of NMP were added. .64 g, 6.00 g of GBL, and 4.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (1). Abnormality, such as turbidity and precipitation, was not seen by this liquid crystal aligning agent, and it was confirmed that it is a uniform solution.

<比較例1>
合成例4で得られたポリイミド溶液(A)3.80gと合成例2で得られたポリアミック酸溶液(B)4.56gを100mL三角フラスコに取り、NMPを1.64g、GBLを6.00g、BCSを4.00g添加して室温で3時間撹拌し、液晶配向剤(2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
3.80 g of the polyimide solution (A) obtained in Synthesis Example 4 and 4.56 g of the polyamic acid solution (B) obtained in Synthesis Example 2 were placed in a 100 mL Erlenmeyer flask, and 1.64 g of NMP and 6.00 g of GBL were added. , and 4.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (2). Abnormality, such as turbidity and precipitation, was not seen by this liquid crystal aligning agent, and it was confirmed that it is a uniform solution.

<比較例2>
合成例4で得られたポリイミド溶液(A)3.80gと合成例2で得られたポリアミック酸溶液(B)4.56gを100mL三角フラスコに取り、AD-2を0.114g、NMPを1.64g、GBLを6.00g、BCSを4.00g添加して室温で3時間撹拌し、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<実施例2>
実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから黒輝度の評価を実施した。この液晶セルの電圧無印加状態での透過光の輝度は27cd/mであった。
<Comparative Example 2>
3.80 g of the polyimide solution (A) obtained in Synthesis Example 4 and 4.56 g of the polyamic acid solution (B) obtained in Synthesis Example 2 were placed in a 100 mL Erlenmeyer flask, and 0.114 g of AD-2 and 1 of NMP were added. .64 g, 6.00 g of GBL, and 4.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (1). Abnormality, such as turbidity and precipitation, was not seen by this liquid crystal aligning agent, and it was confirmed that it is a uniform solution.
<Example 2>
After filtering the liquid crystal aligning agent (1) obtained in Example 1 with a 1.0 μm filter, it has a columnar spacer with a height of 4 μm and an ITO film formed on the back surface of the prepared substrate with electrodes. It was applied to a glass substrate by a spin coating method. After drying on a hot plate at 80°C for 2 minutes, the coating film surface was irradiated with 0.25 J/cm 2 of linearly polarized ultraviolet light with a wavelength of 254 nm and an extinction ratio of 26:1 through a polarizing plate, followed by hot air circulation at 230°C. Baking was performed in an oven for 20 minutes to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm.
The obtained two substrates are set as a set, a sealing agent is printed on the substrate, and another substrate is laminated so that the liquid crystal alignment film surfaces face each other and the alignment direction is 0°, and then sealed. An empty cell was produced by curing the agent. Liquid crystal MLC-3019 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 110° C. for 1 hour, left overnight, and then evaluated for black luminance. The luminance of transmitted light of this liquid crystal cell was 27 cd/m 2 with no voltage applied.

<比較例3~4>
液晶配向剤(1)の代わりに、それぞれ、表1に示した液晶配向剤を用いた以外は、実施例2と同様の方法で液晶セルを作製し、黒輝度の評価を実施した。それぞれ得られた液晶セルの電圧無印加状態での透過光の輝度を、表1に示す。
<Comparative Examples 3-4>
A liquid crystal cell was produced in the same manner as in Example 2, except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent (1), and black luminance was evaluated. Table 1 shows the brightness of the transmitted light of each obtained liquid crystal cell with no voltage applied.

Figure 0007193783000044
Figure 0007193783000044

<実施例3>
実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で2分間乾燥させ、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。この基板を鉛筆硬度試験法(JIS K5400)で測定した結果、3Hであった。
<Example 3>
After filtering the liquid crystal aligning agent (1) obtained in Example 1 with a 1.0 μm filter, it has a columnar spacer with a height of 4 μm and an ITO film formed on the back surface of the prepared substrate with electrodes. It was applied to a glass substrate by a spin coating method. After drying on a hot plate at 80°C for 2 minutes, the coating film surface was irradiated with 0.25 J/cm 2 of linearly polarized ultraviolet light with a wavelength of 254 nm and an extinction ratio of 26:1 through a polarizing plate, followed by hot air circulation at 230°C. Baking was performed in an oven for 20 minutes to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm. As a result of measuring the hardness of this substrate by a pencil hardness test method (JIS K5400), it was 3H.

<比較例5~6>
液晶配向剤(1)の代わりに、それぞれ、表2に示した液晶配向剤を用いた以外は、実施例3と同様にして鉛筆硬度試験用のサンプルをそれぞれ作製した。それぞれの鉛筆硬度試験の評価を行った結果を、表2に示す。
<Comparative Examples 5-6>
A sample for a pencil hardness test was prepared in the same manner as in Example 3, except that the liquid crystal aligning agent shown in Table 2 was used instead of the liquid crystal aligning agent (1). Table 2 shows the evaluation results of each pencil hardness test.

Figure 0007193783000045
Figure 0007193783000045

Claims (10)

下記(A)成分、(B)成分、および有機溶剤を含有する液晶配向剤。
(A)成分:下記式(1)の構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体
(B)成分:下記式(B1-1)で表される構造を2つ以上有する化合物である
Figure 0007193783000046
脂環式構造を有する4価の有機基であり、Y下記式(4)又は(5)で表される構造から選ばれる少なくとも1種である2価の有機基である。Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。
Figure 0007193783000047

は、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、又は、炭素数2~6のアルキニル基である。「*」は結合手を示す。
Figure 0007193783000048

は単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~20の2価の有機基であり、A 3 は、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、A の構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。
A liquid crystal aligning agent containing the following (A) component, (B) component, and an organic solvent.
Component (A): at least one polymer selected from the group consisting of a polyimide precursor having a structural unit of the following formula (1) and an imidized polymer of the polyimide precursor (B) Component: the following formula (B1- 1) is a compound having two or more structures represented by
Figure 0007193783000046
X 1 is a tetravalent organic group having an alicyclic structure , and Y 1 is at least one divalent organic group selected from structures represented by the following formulas (4) and (5) . R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, A 1 to A 2 are each independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, It is an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
Figure 0007193783000047

Z 1 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. "*" indicates a bond.
Figure 0007193783000048

A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms, and A 3 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms, a is an integer of 1 to 4, and when a is 2 or more, the structure of A 3 may be the same or different. b and c are each independently an integer of 1 to 2;
(B)成分が、前記重合体に対して0.1~20質量%含有される請求項1に記載の液晶配向剤。 2. The liquid crystal aligning agent according to claim 1, wherein the component (B) is contained in an amount of 0.1 to 20% by mass based on the polymer. (B)成分が下記式(B-1)又は(B-2)から選ばれる少なくとも1種である請求項1又は請求項2記載の液晶配向剤。
Figure 0007193783000049
3. The liquid crystal aligning agent according to claim 1, wherein component (B) is at least one selected from the following formulas (B-1) and (B-2).
Figure 0007193783000049
式(1)のXが下記式(X-1)~(X-10)の構造から選ばれる少なくとも1種である請求項1から請求項のいずれか1項に記載の液晶配向剤。
Figure 0007193783000050
からR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。
4. The liquid crystal aligning agent according to any one of claims 1 to 3 , wherein X 1 in formula (1) is at least one selected from the structures of formulas (X-1) to (X-10) below.
Figure 0007193783000050
R 3 to R 23 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon atom containing a fluorine atom. It is a monovalent organic group of numbers 1 to 6 or a phenyl group, which may be the same or different.
が、下記式(X1-11)から(X1-16)の構造から選ばれる少なくとも1種である請求項1から請求項のいずれか1項に記載の液晶配向剤。
Figure 0007193783000051
5. The liquid crystal aligning agent according to any one of claims 1 to 4 , wherein X1 is at least one structure selected from the structures represented by the following formulas (X1-11) to (X1-16).
Figure 0007193783000051
が、下記式(X1-11)又は(X1-12)から選ばれる少なくとも1種である請求項1~のいずれか1項に記載の液晶配向剤。
Figure 0007193783000052
6. The liquid crystal aligning agent according to any one of claims 1 to 5 , wherein X1 is at least one selected from the following formulas (X1-11) and (X1-12).
Figure 0007193783000052
が、下記式(Y1-1)~(Y1-23)から選ばれる少なくとも1種である請求項1から請求項のいずれか1項に記載の液晶配向剤。
Figure 0007193783000053
Figure 0007193783000054
Figure 0007193783000055
7. The liquid crystal aligning agent according to any one of claims 1 to 6 , wherein Y 1 is at least one selected from the following formulas (Y1-1) to (Y1-23).
Figure 0007193783000053
Figure 0007193783000054
Figure 0007193783000055
請求項1から請求項のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to claim 1 . 請求項に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 8 . 請求項載の液晶配向膜を具備する横電界駆動型液晶表示素子。 A lateral electric field driven liquid crystal display device comprising the liquid crystal alignment film according to claim 8 .
JP2019566535A 2018-01-19 2019-01-18 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Active JP7193783B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018007030 2018-01-19
JP2018007030 2018-01-19
PCT/JP2019/001553 WO2019142927A1 (en) 2018-01-19 2019-01-18 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Publications (2)

Publication Number Publication Date
JPWO2019142927A1 JPWO2019142927A1 (en) 2021-01-14
JP7193783B2 true JP7193783B2 (en) 2022-12-21

Family

ID=67302288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566535A Active JP7193783B2 (en) 2018-01-19 2019-01-18 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Country Status (5)

Country Link
JP (1) JP7193783B2 (en)
KR (1) KR20200110350A (en)
CN (1) CN111602088B (en)
TW (1) TWI798337B (en)
WO (1) WO2019142927A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525724A (en) 1998-12-24 2003-09-02 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Multilayer system having at least one layer based on mesophase polyelectrolyte composites, process for its preparation and its use
WO2015072554A1 (en) 2013-11-15 2015-05-21 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP6202006B2 (en) * 2012-11-30 2017-09-27 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6669161B2 (en) * 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
US10761375B2 (en) * 2015-09-16 2020-09-01 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN108604027A (en) * 2015-11-25 2018-09-28 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
TWI751995B (en) * 2015-12-03 2022-01-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
CN109073935B (en) * 2016-01-07 2021-06-25 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525724A (en) 1998-12-24 2003-09-02 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Multilayer system having at least one layer based on mesophase polyelectrolyte composites, process for its preparation and its use
WO2015072554A1 (en) 2013-11-15 2015-05-21 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same

Also Published As

Publication number Publication date
TW201940676A (en) 2019-10-16
KR20200110350A (en) 2020-09-23
CN111602088B (en) 2023-06-30
JPWO2019142927A1 (en) 2021-01-14
TWI798337B (en) 2023-04-11
CN111602088A (en) 2020-08-28
WO2019142927A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102241784B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
TWI820187B (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7239872B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JPWO2019044795A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI826504B (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film and liquid crystal display element
JP7193783B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP2019101196A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2019101195A (en) Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JPWO2016010084A1 (en) Liquid crystal aligning agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R151 Written notification of patent or utility model registration

Ref document number: 7193783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151