WO2015072554A1 - Liquid crystal aligning agent, and liquid crystal display element using same - Google Patents

Liquid crystal aligning agent, and liquid crystal display element using same Download PDF

Info

Publication number
WO2015072554A1
WO2015072554A1 PCT/JP2014/080237 JP2014080237W WO2015072554A1 WO 2015072554 A1 WO2015072554 A1 WO 2015072554A1 JP 2014080237 W JP2014080237 W JP 2014080237W WO 2015072554 A1 WO2015072554 A1 WO 2015072554A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
crystal aligning
added
Prior art date
Application number
PCT/JP2014/080237
Other languages
French (fr)
Japanese (ja)
Inventor
淳彦 萬代
勇歩 野口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020167012561A priority Critical patent/KR102391044B1/en
Priority to JP2015547810A priority patent/JP6520716B2/en
Priority to CN201480062648.XA priority patent/CN105723276B/en
Publication of WO2015072554A1 publication Critical patent/WO2015072554A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal alignment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • a liquid crystal display element is known as a lightweight, thin, and low power consumption display device.
  • high-definition liquid crystal display elements for mobile phones and tablet terminals which have rapidly expanded their market share, have made remarkable developments that require high display quality.
  • a liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the pretilt angle of the liquid crystal can be controlled by the liquid crystal alignment film.
  • a method of increasing the pretilt angle by mainly selecting a polyimide structure (see Patent Document 1) and a method of decreasing the pretilt angle (see Patent Document 2) are known.
  • liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones.
  • a so-called narrow frame is required in which the width of the sealant used for bonding the substrates of the liquid crystal display elements is narrower than in the past.
  • the application position of the sealant used for manufacturing the liquid crystal display element is applied to the position in contact with the end of the liquid crystal alignment film or the upper part of the liquid crystal alignment film.
  • polyimide since polyimide has no or few polar groups, there is a problem that a covalent bond is not formed between the sealing agent and the liquid crystal alignment film surface, resulting in insufficient adhesion between the substrates.
  • the main object of the present invention is to provide a liquid crystal aligning agent that can improve the adhesion between the liquid crystal aligning film and the sealing agent or the substrate without deteriorating the liquid crystal aligning property and electrical characteristics.
  • the liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
  • A) Component At least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor.
  • B) Component A compound having a hydroxyalkylamide group.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a 1 and A 2 are Each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms, and these groups have a substituent. May be good.
  • R 2 and R 3 are Each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and these groups may have a substituent. (At least one of R 2 and R 3 has a hydroxy group as a substituent.)
  • X 1 is at least one structure selected from the group consisting of the following formulas (X-1) to (X-14).
  • R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyl group, or a phenyl group.
  • X 1 is at least one structure selected from the group consisting of the following formulas (X1-1) and (X1-2).
  • Y 1 is at least one structure selected from the group consisting of the following formulas (5) and (6).
  • R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms
  • R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms
  • a is 1 to 4
  • R 14 is a single bond, —O—, —S—, —NR 15 —, An amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms
  • R 15 is a hydrogen atom or a methyl group.
  • the liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, the adhesion between the sealing agent and the liquid crystal aligning film is improved, and the occurrence of display unevenness near the frame of the liquid crystal display element can be suppressed under high temperature and high humidity conditions. Can be obtained.
  • the liquid crystal display element having the liquid crystal alignment film of the present invention can solve the display unevenness in the vicinity of the frame by increasing the adhesiveness between the sealant and the liquid crystal alignment film, and can be a large-screen and high-definition liquid crystal display.
  • the liquid crystal aligning agent of the present invention it is possible to achieve the above-mentioned problems without deteriorating the liquid crystal alignment properties and electrical characteristics.
  • the component (A) contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor.
  • the polymer is at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor. The polymer.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms, and these groups are substituted It may have a group.
  • alkyl group for R 1 examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, and n-pentyl group.
  • Etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Two or more kinds of X 1 may be mixed in the polyimide precursor. Specific examples of X 1 include the structures of the following formulas (X-1) to (X-44).
  • R 8 to R 11 in the formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, or phenyl. It is a group.
  • R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • X 1 is preferably a structure selected from (X-1) to (X-14) from the viewpoint of availability of monomers. Since the reliability of the obtained liquid crystal alignment film can be further improved, the structure of X 1 is a structure consisting only of an aliphatic group such as (X-1) to (X-7) and (X-10). And the structure represented by (X-1) is more preferable. Further, in order to show good liquid crystal alignment, the structure of X 1 is more preferably the following formula (X1-1) or (X1-2). A preferred ratio of the structure selected from the above (X-1) to (X-14) is 20 mol% or more, more preferably 60 mol% or more, further preferably 80 mol% or more of the entire X 1. .
  • a 1 and A 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom having 2 to Or an alkynyl group having 2 to 10 carbon atoms which may have a substituent.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
  • halogen group as a substituent examples include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group as a substituent can have a structure represented by —O—R. R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • organooxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group as a substituent can have a structure represented by —S—R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • alkenyl group as a substituent examples include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • alkynyl group that is a substituent examples include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • the reactivity of the amino group and the liquid crystal orientation may be lowered.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • Y 1 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y 1 include the following (Y-1) to (Y-118).
  • n are each an integer of 1 to 11, and m + n is an integer of 2 to 12.
  • h is an integer of 1 to 3.
  • j is an integer from 0 to 3.
  • the structure of Y 1 is more preferably at least one structure selected from the group consisting of the following formulas (5) and (6) from the viewpoint of liquid crystal alignment properties and pretilt angle of the obtained liquid crystal alignment film.
  • R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms
  • R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • a is an integer of 1 to 4, and when a is 2 or more, (R 12 -R 13 ) may be the same as or different from each other.
  • R 14 in Formula (6) is a single bond, —O—, —S—, —NR 15 —, an amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms, R 15 is a hydrogen atom or a methyl group.
  • Y 1 represented by the formulas (5) and (6)
  • a highly linear structure can enhance the alignment of the liquid crystal when the liquid crystal alignment film is used.
  • the proportion of the above structure that can enhance the liquid crystal orientation is preferably 20 mol% or more of Y 1 as a whole, more preferably 60 mol% or more, and further preferably 80 mol% or more. Usually, it is preferably 90 mol% or less.
  • Y 1 may have a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in the side chain. preferable. Examples of such Y 1 include (Y-76) to (Y-97).
  • the proportion of the above structure for increasing the pretilt angle is preferably 1 to 30 mol%, more preferably 1 to 20 mol% of the entire Y 1 .
  • the polyimide precursor used in the present invention is obtained by a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
  • the component (B) contained in the liquid crystal aligning agent of the present invention is a compound having a hydroxyalkylamide group.
  • the component (B) has a hydroxyalkylamide group, other structures are not particularly limited, but from the viewpoint of availability, a preferred example includes a compound represented by the following formula (2). .
  • X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group. n is an integer of 2 to 6.
  • R 2 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or An alkynyl group having 2 to 4 carbon atoms which may have a substituent. Further, at least one of R 2 and R 3 represents a hydrocarbon group substituted with a hydroxy group.
  • X 2 (2) directly attached to atoms in a carbonyl group, it is preferable from the viewpoint of the liquid crystal orientation is a carbon atom, which do not form an aromatic ring.
  • X 2 in the formula (2) is preferably an aliphatic hydrocarbon group and more preferably 1 to 10 carbon atoms from the viewpoint of liquid crystal alignment and solubility.
  • n is preferably 2 to 4 from the viewpoint of solubility.
  • R 2 and R 3 are preferably a structure represented by the following formula (3) from the viewpoint of reactivity, and a structure represented by the following formula (4) More preferably.
  • R 4 to R 7 are each independently a hydrocarbon group substituted with a hydrogen atom, a hydrocarbon group, or a hydroxy group.
  • component (B) include the following compounds.
  • the content of the component (B) is preferably 0.1 to 20% by mass and more preferably 1 to 10% by mass with respect to the component (A).
  • the polyamic acid which is a polyimide precursor used in the present invention can be produced by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone Can be mentioned.
  • the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the following poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
  • a polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of a solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. can do.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, more preferably 2 to 2.5 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazo Lysinone is mentioned.
  • the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not melt
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine are ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. in the presence of a base and a solvent. It can be produced by reacting at 30 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the amount of the base added is preferably 2 to 4 times mol, preferably 2.5 to 3 times the amount of tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. Mole is more preferred.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • tetracarboxylic acid diester and diamine are 0 to 150 ° C., preferably 0 to 100 ° C. in the presence of a condensing agent, a base, and an organic solvent. In the above, it can be produced by reacting for 30 minutes to 24 hours, preferably 3 to 15 hours.
  • Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding a Lewis acid as an additive.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol, more preferably 0 to 0.5 times mol based on the diamine component.
  • the production method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by being poured into the following poor solvent while being well stirred. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in a solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in the presence of a basic catalyst in a solvent.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
  • the imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, and redissolved with a solvent, and the liquid crystal aligning agent of the present invention. It is preferable that
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid to be imidized in a solvent in the presence of a basic catalyst and an acid anhydride.
  • a solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably 3 to 30 mole times.
  • the imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
  • an imidization accelerator can be used in the imidation reaction of polyamic acid ester or polyamic acid.
  • D in the above formulas (B-1) to (B-17) is each independently a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
  • a plurality of D present in the formulas (B-14) to (B-17) may be the same as or different from each other.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into the following poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention is at least one polymer selected from the group consisting of the polyimide precursor as the component (A) and an imidized polymer of the polyimide precursor (hereinafter referred to as a heavy polymer having a specific structure). And a compound having a hydroxyalkylamide group as the component (B) are in the form of a solution dissolved in a solvent.
  • the molecular weight of the specific structure polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1
  • the content is preferably at least 10% by mass, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. Particularly preferred is 3 to 6.5% by mass.
  • the solvent (also referred to as a good solvent) contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the specific structure polymer is uniformly dissolved.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • a solvent represented by the above formula [D-1] to formula [D-3] it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • a solvent also referred to as a poor solvent
  • it can be used.
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
  • the poor solvent is preferably 1 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass.
  • a polymer other than the polymer described in the present invention the electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film
  • an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as a glass substrate, a silicon nitride substrate, an acrylic substrate, or a polycarbonate substrate can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, preferably 2 to 5 minutes, and then 150 to 300 ° C., preferably Is baked at 200 to 240 ° C. for 5 to 120 minutes, preferably 10 to 30 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the rubbing process can be performed using an existing rubbing apparatus.
  • Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon.
  • As the conditions for rubbing treatment generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and a pushing amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
  • the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from the group consisting of water and organic solvents.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
  • the contact treatment of the film irradiated with polarized radiation and the solution containing the solvent is performed by a method such that the film and the liquid are preferably in sufficient contact with each other, such as immersion treatment or spraying treatment. It is. Among them, a method of immersing in a solution containing a solvent, preferably for 10 seconds to 1 hour, more preferably for 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying is performed, or both. It's okay.
  • the film subjected to the contact treatment with the solution containing the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains.
  • the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, there is a possibility that the effect of molecular chain reorientation may not be obtained. If it is too long, the molecular chain may be decomposed. 1 to 10 minutes is more preferable.
  • the liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
  • a liquid crystal cell is produced by a known method, and a liquid crystal cell is used.
  • This is a display element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the sealing agent for example, a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used. .
  • a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used.
  • a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
  • an inorganic filler may be blended for the purpose of improving adhesiveness and moisture resistance.
  • the inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid. Barium, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, Examples include asbestos.
  • spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, or silicic acid Aluminum is mentioned.
  • Two or more of the above inorganic fillers may be mixed and used.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • IPA 2-propanol
  • NEP N-ethyl-2-pyrrolidone
  • PB propylene glycol monobutyl ether
  • DA-2 represented by the following formula (DA-2)
  • Compound DA-3 Compound DA-4 represented by the following formula (DA-3):
  • DA-5 represented by the following formula (DA-4): p-phenylenediamine DA-6: 3, 5 -Diaminobenzoic acid
  • DA-7 4,4'-diaminodiphenylmethane
  • DA-8 4,4'-diaminodiphenylamine
  • DA-9 1,3-bis (4-aminophenoxy) propane DA-10: 1,5- Bis (4-bis (4-aminophenoxy) propane DA-10: 1,5- Bis (4-bis (4-aminophenoxy) propane DA-10: 1,5- Bis
  • DC-1 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DC-2 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DC-3 3 3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • DC-4 1,2,3,4-butanetetracarboxylic dianhydride
  • DC-5 bicyclo [3.3.0] octane-2, 4,6,8-tetracarboxylic dianhydride
  • DC-6 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride
  • DC-7 pyromellitic anhydride
  • DC-8 Compound represented by the following formula (DC-8)
  • DE-1 Compound additive represented by the following formula (DE-1)
  • A Compound represented by the following formula (Primid XL552 (manufactured by Emschemie) )
  • the measuring method of each characteristic is as follows.
  • [viscosity] The viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.). The temperature was measured at 25 ° C.
  • [Molecular weight] The molecular weights of the polyamic acid ester and the polyamic acid were measured by a GPC (room temperature gel permeation chromatography) device, and converted into a polyethylene glycol (polyethylene oxide) conversion value as a number average molecular weight (hereinafter, also referred to as Mn) and a weight average molecular weight (hereinafter, Mw) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and Polymer Laboratories Polyethylene glycol manufactured (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000) was used. In order to avoid overlapping of peaks, the measurement was performed by mixing four types of 900,000,
  • the imidation ratio of polyimide was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) (0 .53 mL) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 1 In a 20 ml sample tube containing a stir bar, 11.00 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was weighed, 5.00 g of NMP, 4.00 g of BCS, and N as an imidization accelerator. - ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, and the mixture was stirred at room temperature for 3 hours. A1 was obtained. Using this liquid crystal aligning agent A1, a substrate for evaluating adhesion and a liquid crystal cell were prepared in the following procedure.
  • PAA-1 polyamic acid solution obtained in Synthesis Example 1 was weighed, 5.00 g of NMP, 4.00 g of BCS, and N as an imidization accelerator.
  • Liquid crystal aligning agent A1 was apply
  • Two substrates thus obtained were prepared, a 4 ⁇ m bead spacer was applied on the liquid crystal alignment film surface of one substrate, and then a sealing agent (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. .
  • a sealing agent (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was dropped.
  • bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm.
  • the amount of the sealing agent dropped was adjusted so that the diameter of the sealing agent after bonding was 3 mm.
  • the two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to produce a substrate for adhesion evaluation.
  • the substrate is fixed with a desktop precision universal testing machine (Shimadzu Corp., AGS-X 500N), and the edges of the upper and lower substrates are fixed. ) was measured.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the liquid crystal alignment direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed at an angle of + 10 ° in the first region of the pixel, and the electrode of the pixel electrode is formed in the second region of the pixel. The elements are formed at an angle of -10 °. That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent was apply
  • coating After drying for 2 minutes on an 80 degreeC hotplate, it baked for 14 minutes in 230 degreeC hot-air circulation type oven, and formed the coating film with a film thickness of 100 nm.
  • the coated surface was irradiated with 500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • Set the two substrates as a set print the sealant on the substrate, and bond the other substrate so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is cured.
  • An empty cell was produced.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • the alignment state of the liquid crystal cell was observed with a polarizing microscope (Nikon Corporation, ECLIPSE E600WPOL).
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • AC drive image sticking ⁇ was less than 0.1 and good, and more than that.
  • Example 2 In a 20 ml sample tube containing a stir bar, 2.20 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 7.33 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were weighed. 6.47 g of NMP, 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, And 0.06g of additive A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A2. Except for using this liquid crystal aligning agent A2, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 1.
  • Example 3 In a 20 ml sample tube containing a stir bar, 4.58 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 4.58 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 were weighed. 6.83 g of NMP, 4.00 g of BCS, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06g of additive A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A3.
  • Example 1 A liquid crystal aligning agent B1 was obtained in the same manner as in Example 1 except that the additive A was not added. Except for using this liquid crystal aligning agent B1, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 1.
  • Example 3 A liquid crystal aligning agent B3 was obtained in the same manner as in Example 3 except that the additive A was not added. Except for using this liquid crystal aligning agent B3, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 3.
  • Table 2 summarizes the composition of the components contained in the liquid crystal aligning agents obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
  • the (mixing ratio) of the polyimide polymer represents the mixing ratio (% by mass) of each polymer.
  • the (ratio) of the solvent represents the ratio (mass%) of each organic solvent to the whole polymer solution.
  • (Phr) of the additive represents the additive content ratio (% by mass) relative to the solid content of the polymer.
  • the unit of solid content concentration is the mass%.
  • Table 3 summarizes the manufacturing conditions of the FFS drive liquid crystal cells in Examples 1 to 3 and Comparative Examples 1 to 3. In Table 3, “-” represents unprocessed.
  • Table 4 summarizes the evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3.
  • the obtained reaction solution was poured into 6600 mL of methanol while stirring, and the deposited precipitate was collected by filtration. Subsequently, the precipitate was washed 3 times with 6600 mL of methanol and twice with 2000 mL of methanol.
  • the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (2).
  • polyimide resin powder (2) obtained in a 200 mL Erlenmeyer flask containing a stir bar was weighed, 151.71 g of NMP was added, and the mixture was stirred and dissolved at 40 ° C. for 24 hours in a nitrogen atmosphere. A 12 mass% polyimide solution (PI-2) was obtained.
  • polyimide powder (3) was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (3).
  • the imidation ratio of this polyimide was 75%, the number average molecular weight was 16,800, and the weight average molecular weight was 44,300.
  • 0.50 g of polyimide powder (3) was weighed, 11.3 g of NEP was added, and the mixture was stirred and dissolved at 70 ° C. for 24 hours in a nitrogen atmosphere.
  • PB (7.52 g) was added and stirred at 40 ° C. for 4 hours to obtain a polyimide solution (PI-3).
  • polyimide powder (5) was weighed, 18.3 g of NMP was added, and the mixture was stirred and dissolved at 70 ° C. for 24 hours under a nitrogen atmosphere to obtain a polyimide solution (PI-5) having a solid content concentration of 12% by mass.
  • carboxylic dianhydride DC-6 was slowly added in the form of 20.27 g (67.50 mmol) solid, the flask wall was washed with 10.00 g of NMP and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution. It was.
  • the polyamic acid had a number average molecular weight of 10,200 and a weight average molecular weight of 23,600.
  • 40.00 g of the polyamic acid solution obtained above was weighed into a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 74.3 g of NMP was added, and 19.02 g (186.29 mmol) of acetic anhydride was added.
  • 210.0 g of NMP was added to 140.0 g of the polyamic acid solution obtained above and diluted to prepare a polyamic acid solution having a solid concentration of 8.0% by mass, and 21.08 g of acetic anhydride and 8. 99 g was added and reacted at 50 ° C. for 2 hours for chemical imidization.
  • the obtained polyimide solution was cooled to about room temperature and then poured into 1330 g of methanol, and the precipitate was separated by filtration.
  • the polyimide powder (7) After wash
  • the number average molecular weight of this polyimide was 10920, and the weight average molecular weight was 31108. Moreover, the imidation ratio was 85%.
  • 11.0 g of the polyimide powder (7) obtained by the above operation is weighed, 80,7 g of GBL is added, and stirred and dissolved at 50 ° C. for 20 hours in a nitrogen atmosphere. As a result, a polyimide solution (PI-7) having a solid content concentration of 12.0% by mass was obtained.
  • 240.0 g of NMP was added to 160.0 g of the polyamic acid solution obtained above and diluted to obtain a polyamic acid having a solid content concentration of 8.0% by mass.
  • a solution was prepared, 22.26 g of acetic anhydride and 9.49 g of pyridine were added, and the mixture was reacted at 50 ° C. for 2 hours to imidize.
  • the obtained polyimide solution was cooled to about room temperature and then poured into 1511 g of methanol, and the precipitate was separated by filtration. Then, after wash
  • the number average molecular weight of this polyimide was 13306, and the weight average molecular weight was 35615. Further, the imidization ratio was 85%.
  • 11.0 g of the polyimide powder (8) obtained by the above operation is weighed, 80,7 g of GBL is added, and stirred and dissolved at 50 ° C. for 20 hours in a nitrogen atmosphere. As a result, a polyimide solution (PI-8) having a solid concentration of 12.0% by mass was obtained.
  • Example 4 ⁇ Example 4> 4.58 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 4.58 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed, 6.83 g of NMP, and 4 BCS. 0.005 g, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. For 3 hours to obtain a liquid crystal aligning agent A4.
  • Example 5 3.67 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 5.50 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed out, 6.83 g of NMP and 4 BCS. 0.005 g, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. For 3 hours to obtain a liquid crystal aligning agent A5.
  • Example 6 4.59 g of the polyimide solution (PI-2) obtained in Synthesis Example 12 and 4.57 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed out, 6.85 g of NMP, and 4 BCS. 0.005 g, 0.15 g of N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. Was stirred for 3 hours to obtain a liquid crystal aligning agent A6.
  • Example 7 9.17 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 was weighed, 6.83 g of NMP, 4.00 g of BCS, and N- ⁇ - (9-fluorenylmethoxycarbonyl as an imidization accelerator. ) -N- ⁇ -t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, followed by stirring at room temperature for 3 hours to obtain a liquid crystal aligning agent A7.
  • Example 8> 8.85 g of the polyimide solution (PI-1) obtained in Synthesis Example 12 was weighed, 7.15 g of NMP, 4.00 g of BCS, and N- ⁇ - (9-fluorenylmethoxycarbonyl as an imidization accelerator. ) -N- ⁇ -t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, followed by stirring at room temperature for 3 hours to obtain a liquid crystal aligning agent A7.
  • Example 9> A liquid crystal alignment liquid crystal aligning agent A9 was obtained in the same manner as in Example 4 except that the additive B was added instead of the additive A.
  • Example 10> A liquid crystal alignment liquid crystal aligning agent A10 was obtained by the same method as in Example 5 except that the additive B was added instead of the additive A.
  • Example 11 A liquid crystal alignment liquid crystal aligning agent A11 was obtained in the same manner as in Example 6 except that the additive B was added instead of the additive A.
  • Example 12 Liquid crystal aligning liquid crystal aligning agent A12 was obtained by the same method as Example 7 except having added additive B instead of additive A.
  • Example 13 A liquid crystal alignment liquid crystal aligning agent A13 was obtained in the same manner as in Example 8 except that the additive B was added instead of the additive A.
  • Example 14 4.40 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 6 and 5.50 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.52 g of NMP, GBL 5.58 g, 4.01 g BCS, 0.15 g N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A14.
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 6
  • PAA-5 polyamic acid solution obtained in Synthesis Example 11 were weighed, 0.52 g of NMP, GBL 5.58 g, 4.01 g BCS, 0.15 g N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-h
  • Example 15 4.41 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 7 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A15.
  • PAE-2 polyamic acid ester solution obtained in Synthesis Example 7
  • PAA-5 polyamic acid solution obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15
  • Example 16 4.42 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 8 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A16.
  • PAE-3 polyamic acid ester solution obtained in Synthesis Example 8
  • PAA-5 polyamic acid solution obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15
  • Example 17 > 4.42 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 9 and 5.50 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A17.
  • PAE-4 polyamic acid ester solution obtained in Synthesis Example 9
  • PAA-5 polyamic acid solution obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.
  • Example 18 4.42 g of the polyamic acid ester solution (PAE-5) obtained in Synthesis Example 10 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A16.
  • Example 19 11.0 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 6 was weighed, 4.99 g of GBL, 4.02 g of BCS, and N- ⁇ - (9-fluorene as an imidization accelerator. Nylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, and the mixture was stirred at room temperature for 3 hours to obtain liquid crystal aligning agent A19.
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 6
  • ⁇ Comparative example 4> A liquid crystal alignment liquid crystal aligning agent B4 was obtained in the same manner as in Example 4 except that the additive A was not added.
  • ⁇ Comparative Example 5> A liquid crystal alignment liquid crystal aligning agent B5 was obtained in the same manner as in Example 5 except that the additive A was not added.
  • ⁇ Comparative Example 6> A liquid crystal alignment liquid crystal aligning agent B6 was obtained in the same manner as in Example 6 except that the additive A was not added.
  • ⁇ Comparative Example 7> A liquid crystal alignment liquid crystal aligning agent B7 was obtained in the same manner as in Example 7 except that the additive A was not added.
  • ⁇ Comparative Example 8> A liquid crystal alignment liquid crystal aligning agent B8 was obtained in the same manner as in Example 8 except that the additive A was not added.
  • ⁇ Comparative Example 9> A liquid crystal alignment liquid crystal aligning agent B9 was obtained in the same manner as in Example 9 except that the additive A was not added.
  • ⁇ Comparative Example 10> A liquid crystal alignment liquid crystal aligning agent B10 was obtained in the same manner as in Example 10 except that the additive A was not added.
  • ⁇ Comparative Example 11> A liquid crystal alignment liquid crystal aligning agent B11 was obtained in the same manner as in Example 11 except that the additive A was not added.
  • ⁇ Comparative Example 12> A liquid crystal alignment liquid crystal aligning agent B12 was obtained in the same manner as in Example 12 except that the additive A was not added.
  • ⁇ Comparative Example 13> A liquid crystal alignment liquid crystal aligning agent B13 was obtained in the same manner as in Example 13 except that the additive A was not added.
  • a liquid crystal alignment liquid crystal aligning agent B14 was obtained in the same manner as in Example 14 except that the additive A was not added.
  • a liquid crystal alignment liquid crystal aligning agent B15 was obtained in the same manner as in Example 5 except that the additive C was added instead of the additive A.
  • ⁇ Comparative Example 16> A liquid crystal alignment liquid crystal aligning agent B16 was obtained in the same manner as in Example 6 except that the additive C was added instead of the additive A.
  • ⁇ Comparative Example 17> A liquid crystal alignment liquid crystal aligning agent B17 was obtained in the same manner as in Example 5 except that the additive D was added instead of the additive A.
  • ⁇ Comparative Example 18> A liquid crystal alignment liquid crystal aligning agent B18 was obtained in the same manner as in Example 6 except that the additive D was added instead of the additive A.
  • Example 20 8.0 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 21 and 40.0 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 22 were weighed, and 31.7 g of NMP and BCS were measured. 20.0 g and 0.30 g of additive A were added, and the mixture was stirred at 40 ° C. for 4 hours to obtain liquid crystal aligning agent A20.
  • the obtained liquid crystal aligning agent A20 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked at 230 ° C. for 20 minutes. Thus, a polyimide film having a thickness of 100 nm was obtained.
  • a sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
  • Example 2 A substrate similar to that used in Example 1 was prepared, then dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 20 minutes to form a 60 nm-thick coating film on each substrate. A membrane was obtained. The polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 ⁇ m is formed.
  • a liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • Example 21 8.0 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 23 and 40.0 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 24 were weighed, and 31.7 g of NMP and BCS were measured. 20.0 g and 0.30 g of additive A were added, and the mixture was stirred at 40 ° C. for 4 hours to obtain liquid crystal aligning agent A21.
  • ⁇ Comparative Example 19> A liquid crystal alignment liquid crystal aligning agent B19 was obtained in the same manner as in Example 20 except that the additive A was not added.
  • a liquid crystal alignment liquid crystal aligning agent B20 was obtained in the same manner as in Example 21 except that the additive A was not added.
  • a liquid crystal alignment liquid crystal aligning agent B21 was obtained in the same manner as in Example 20 except that the additive C was added instead of the additive A.
  • ⁇ Comparative Example 22> A liquid crystal alignment liquid crystal aligning agent B22 was obtained in the same manner as in Example 21 except that the additive C was added instead of the additive A.
  • ⁇ Comparative Example 23> A liquid crystal alignment liquid crystal aligning agent B23 was obtained in the same manner as in Example 20 except that the additive D was added instead of the additive A.
  • ⁇ Comparative Example 24> A liquid crystal alignment liquid crystal aligning agent B24 was obtained in the same manner as in Example 21 except that the additive D was added instead of the additive A.
  • Example 22 11.8 g of the polyimide solution (PI-3) obtained in Synthesis Example 13 and 8.3 g of the polyimide solution (PI-4) obtained in Synthesis Example 14 were weighed, and 12.5 g of PB and Additive A were added. 0.07g was added and it stirred at 40 degreeC for 4 hours, and obtained liquid crystal aligning agent A22.
  • the obtained liquid crystal aligning agent A22 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and heated at 100 ° C. for 5 minutes on a hot plate and at 230 ° C. in a heat circulation clean oven. Heat treatment was performed for 30 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
  • a sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
  • the obtained liquid crystal aligning agent A22 was filtered through a 1.0 ⁇ m filter, and then a liquid crystal cell was prepared.
  • This solution was spin-coated on the ITO surface of a substrate with 100 ⁇ 100 mm ITO electrodes (length 100 mm ⁇ width 100 mm, thickness 0.7 mm) washed with pure water and IPA, and then on a hot plate at 100 ° C. for 5 minutes. Then, heat treatment was performed at 230 ° C. for 30 minutes in a heat circulation clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
  • Example 23 20.8 g of the polyimide solution (PI-5) obtained in Synthesis Example 15 was weighed, 1.3 g of NMP, 19.6 g of BCS and 0.13 g of additive A were added, and the mixture was stirred at room temperature for 3 hours. A liquid crystal aligning agent A23 was obtained.
  • Example 24 5.0 g of the polyimide solution (PI-6) obtained in Synthesis Example 16 and 20.0 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 25 were weighed, 0.08 g of Additive A was added, It stirred at room temperature for 24 hours and obtained liquid crystal aligning agent A24.
  • the obtained liquid crystal aligning agent A24 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 60 seconds, and then IR (infrared ray at 220 ° C. ) Using an oven, baking was performed in a nitrogen atmosphere for 20 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
  • a sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
  • the obtained liquid crystal aligning agent A24 was filtered through a 1.0 ⁇ m filter, and then a liquid crystal cell was produced.
  • This solution was spin-coated on the ITO surface of a 100 ⁇ 100 mm ITO electrode substrate (length 100 mm ⁇ width 100 mm, thickness 0.7 mm) washed with pure water and IPA, and heated on a hot plate at a temperature of 80 ° C. for 60 seconds. After drying, baking was performed in a nitrogen atmosphere using an IR (infrared) oven at 220 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • IR infrared
  • This coating surface was rubbed with a cotton cloth (YA-25C, manufactured by Yoshikawa) using a rubbing machine with a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.4 mm, and liquid crystal alignment A substrate with a film was obtained.
  • Prepare two ITO substrates with the obtained liquid crystal alignment film combine the two substrates with a 6 ⁇ m spacer so that the liquid crystal alignment film faces each other and the rubbing direction is perpendicular, and bond the periphery with a sealant An empty cell was produced.
  • Example 25 64.2 g of the polyimide solution (PI-7) obtained in Synthesis Example 17 and 27.5 g of the polyimide solution (PI-8) obtained in Synthesis Example 18 were mixed, and further 23.8 g of GBL and NMP41 were added to this solution. 0.8 g, BCS 62.7 g and Additive A 0.66 g were added and stirred at 50 ° C. for 20 hours to obtain Liquid Crystal Alignment Agent A25.
  • Example 26 5.0 g of the polyimide solution (PI-9) obtained in Synthesis Example 19 and 20.0 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 25 were weighed, 0.08 g of Additive A was added, It stirred at room temperature for 24 hours and obtained liquid crystal aligning agent A26.
  • ⁇ Comparative Example 27> A liquid crystal alignment liquid crystal aligning agent B27 was obtained in the same manner as in Example 24 except that the additive A was not added.
  • ⁇ Comparative example 28> A liquid crystal alignment liquid crystal aligning agent B28 was obtained in the same manner as in Example 25 except that the additive A was not added.
  • ⁇ Comparative Example 29> A liquid crystal alignment liquid crystal aligning agent B29 was obtained in the same manner as in Example 26 except that the additive A was not added.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention satisfies the adhesiveness (adhesiveness) with the sealant and the substrate, and also exhibits characteristics that are compatible with liquid crystal alignment and electrical characteristics.
  • an IPS and FFS drive type liquid crystal display device comprising such a liquid crystal alignment film of the present invention, afterimages caused by the generated AC drive and display burn-in due to residual charges accumulated by a DC voltage are suppressed, and High seal adhesion. Therefore, it can be used in a wide range of liquid crystal display elements that require high display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a liquid crystal aligning agent that can increase adhesiveness between a sealing agent and a liquid crystal alignment film, and can suppress display anomalies that may occur under high temperature and high humidity conditions in liquid crystal display elements near the frame. The liquid crystal alignment agent contains a component (A), a component (B), and an organic solvent. Component (A): at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by formula (1), and an imidized polymer of said polyimide precursor. Component (B): a compound having a hydroxyalkylamide group. (X1 independently represents a tetravalent organic group; Y1 represents a divalent organic group; R1 represents a hydrogen atom or a C1-5 alkyl group; and A1 and A2 independently represent a hydrogen atom, a C1-10 alkyl group, a C2-10 alkenyl group, or a C2-10 alkynyl group, and said groups may have a substituent.)

Description

液晶配向剤及びそれを用いた液晶表示素子Liquid crystal aligning agent and liquid crystal display element using the same
 本発明は、液晶表示素子の製造において用いられる液晶配向剤、この液晶配向剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element using the liquid crystal alignment film.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られている。近年では、急速にシェアを拡大してきた携帯電話やタブレット型端末向けの高精細液晶表示素子においても、高い表示品位が求められるほどの目覚ましい発展を遂げている。
 液晶表示素子は、電極を備えた透明な一対の基板により液晶層を挟持して構成される。液晶表示素子では、液晶が基板間で所望の配向状態となるように、有機材料からなる有機膜が液晶配向膜として使用されている。すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。更には、液晶配向膜によって、液晶のプレチルト角を制御することができる。主にポリイミドの構造を選択することでプレチルト角を高くする方法(特許文献1参照)及び低くする方法(特許文献2参照)などが知られている。
A liquid crystal display element is known as a lightweight, thin, and low power consumption display device. In recent years, high-definition liquid crystal display elements for mobile phones and tablet terminals, which have rapidly expanded their market share, have made remarkable developments that require high display quality.
A liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. Furthermore, the pretilt angle of the liquid crystal can be controlled by the liquid crystal alignment film. A method of increasing the pretilt angle by mainly selecting a polyimide structure (see Patent Document 1) and a method of decreasing the pretilt angle (see Patent Document 2) are known.
日本特開平09-278724号公報Japanese Unexamined Patent Publication No. 09-278724 日本特開平10-123532号公報Japanese Unexamined Patent Publication No. 10-123532
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ大きい表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする、所謂狭額縁化が要求されている。かかるパネルの狭額縁化に伴って、液晶表示素子を作製する際に用いるシール剤の塗布位置が、液晶配向膜の端部に接した位置、あるいは液晶配向膜の上部に塗布されるようになるが、ポリイミドには極性基がなく、もしくは少ないため、シール剤と液晶配向膜表面で共有結合が形成されず、基板同士の接着が不十分となる問題点があった。 このような場合、特に高温高湿条件下での使用において、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近に表示ムラが発生してしまうという問題が生じる。従って、ポリイミド系液晶配向膜とシール剤や基板との接着性(密着性)を向上させることが課題となる。上述のごとき液晶配向膜のシール剤や基板との接着性の改善は、液晶配向膜の有する、液晶配向性や電気特性を低下させずに達成されることが必要であり、さらにはこれらの特性を向上させることが要求される。
 本発明の主目的は、液晶配向性や電気特性を低下することなく、液晶配向膜とシール剤や基板との密着性を向上させることができる液晶配向剤を提供することである。
In recent years, liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as large a display surface as possible, a so-called narrow frame is required in which the width of the sealant used for bonding the substrates of the liquid crystal display elements is narrower than in the past. Along with the narrowing of the frame of the panel, the application position of the sealant used for manufacturing the liquid crystal display element is applied to the position in contact with the end of the liquid crystal alignment film or the upper part of the liquid crystal alignment film. However, since polyimide has no or few polar groups, there is a problem that a covalent bond is not formed between the sealing agent and the liquid crystal alignment film surface, resulting in insufficient adhesion between the substrates. In such a case, particularly when used under high-temperature and high-humidity conditions, water tends to be mixed from between the sealant and the liquid crystal alignment film, and display unevenness occurs near the frame of the liquid crystal display element. Arise. Therefore, it becomes a problem to improve the adhesion (adhesiveness) between the polyimide-based liquid crystal alignment film and the sealant or the substrate. Improvements in the adhesive properties of the liquid crystal alignment film as described above and the substrate must be achieved without degrading the liquid crystal alignment properties and electrical properties of the liquid crystal alignment film. It is required to improve.
The main object of the present invention is to provide a liquid crystal aligning agent that can improve the adhesion between the liquid crystal aligning film and the sealing agent or the substrate without deteriorating the liquid crystal aligning property and electrical characteristics.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明の要旨は以下に示す通りである。
1.下記の(A)成分、(B)成分、及び有機溶剤を含有することを特徴とする液晶配向剤。
 (A)成分:下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体。
 (B)成分:ヒドロキシアルキルアミド基を有する化合物。
Figure JPOXMLDOC01-appb-C000009
(Xは、4価の有機基であり、Yは、2価の有機基である。Rは、水素原子、又は炭素数1~5のアルキル基である。A及びAは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基であり、これらの基は置換基を有していてもよい。)
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the gist of the present invention is as follows.
1. The liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
(A) Component: At least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor.
(B) Component: A compound having a hydroxyalkylamide group.
Figure JPOXMLDOC01-appb-C000009
(X 1 is a tetravalent organic group, Y 1 is a divalent organic group. R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 and A 2 are Each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms, and these groups have a substituent. May be good.)
2.(B)成分がヒドロキシアルキルアミド基を2つ以上有する化合物である、上記1に記載の液晶配向剤。
3.(B)成分が(A)成分に対して0.1~20質量%含有される、上記1又は2に記載の液晶配向剤。
4.(B)成分が下記式(2)で表される、上記1~3のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
(Xは、炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2~6の整数である。R及びRは、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基であり、これらの基は置換基を有していてもよい。なお、R及びRのうち少なくとも1つは、置換基としてヒドロキシ基を有する。)
2. (B) The liquid crystal aligning agent of said 1 whose component is a compound which has two or more hydroxyalkylamide groups.
3. 3. The liquid crystal aligning agent according to 1 or 2, wherein the component (B) is contained in an amount of 0.1 to 20% by mass with respect to the component (A).
4). (B) The liquid crystal aligning agent in any one of said 1-3 whose component is represented by following formula (2).
Figure JPOXMLDOC01-appb-C000010
(X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group, and n is an integer of 2 to 6. R 2 and R 3 are Each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and these groups may have a substituent. (At least one of R 2 and R 3 has a hydroxy group as a substituent.)
5.R及びRのうち少なくとも1つが、下記式(3)である、上記1~4のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
(R~Rは、それぞれ独立して、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基である。)
5. 5. The liquid crystal aligning agent according to any one of 1 to 4 above, wherein at least one of R 2 and R 3 is the following formula (3).
Figure JPOXMLDOC01-appb-C000011
(R 4 to R 7 are each independently a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group.)
6.X中の、カルボニル基に直接結合する原子は、芳香環を形成していない炭素原子である、上記1~5のいずれかに記載の液晶配向剤。
7.Xが、脂肪族炭化水素基である、上記1~6のいずれかに記載の液晶配向剤。
8.R及びRが、下記式(4)で表される化合物である、上記1~7のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
6). 6. The liquid crystal aligning agent according to any one of 1 to 5 above, wherein the atom directly bonded to the carbonyl group in X 2 is a carbon atom that does not form an aromatic ring.
7). 7. The liquid crystal aligning agent according to any one of 1 to 6 above, wherein X 2 is an aliphatic hydrocarbon group.
8). 8. The liquid crystal aligning agent according to any one of 1 to 7 above, wherein R 2 and R 3 are compounds represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000012
9.(B)成分が下記のいずれかの化合物である、上記1~8のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
9. 9. The liquid crystal aligning agent according to any one of 1 to 8 above, wherein the component (B) is any one of the following compounds.
Figure JPOXMLDOC01-appb-C000013
10.Xが、下記式(X-1)~(X-14)からなる群から選ばれる少なくとも1種の構造である、上記1~9のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(R~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。)
10. 10. The liquid crystal aligning agent according to any one of 1 to 9 above, wherein X 1 is at least one structure selected from the group consisting of the following formulas (X-1) to (X-14).
Figure JPOXMLDOC01-appb-C000014
(R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyl group, or a phenyl group.)
11.Xが、下記式(X1-1)及び(X1-2)からなる群から選ばれる少なくとも1種の構造である、上記1~10のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000015
11. 11. The liquid crystal aligning agent according to any one of 1 to 10 above, wherein X 1 is at least one structure selected from the group consisting of the following formulas (X1-1) and (X1-2).
Figure JPOXMLDOC01-appb-C000015
12.Yが、下記式(5)及び(6)からなる群から選ばれる少なくとも1種の構造である、上記1~11のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000016
(R12は単結合、又は炭素数1~30の2価の有機基であり、R13は水素原子、ハロゲン原子又は炭素数1~30の1価の有機基であり、aは1~4の整数であり、aが2以上の場合は、(R12-R13)は、互いに同一でも異なっていてもよい。R14は単結合、-O-、-S-、-NR15-、アミド結合、エステル結合、ウレア結合、又は炭素数1~40の2価の有機基であり、R15は、水素原子、又はメチル基である。)
12 12. The liquid crystal aligning agent according to any one of 1 to 11 above, wherein Y 1 is at least one structure selected from the group consisting of the following formulas (5) and (6).
Figure JPOXMLDOC01-appb-C000016
(R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms, R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms, and a is 1 to 4 In the case where a is 2 or more, (R 12 -R 13 ) may be the same as or different from each other, and R 14 is a single bond, —O—, —S—, —NR 15 —, An amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms, and R 15 is a hydrogen atom or a methyl group.)
13.上記1~12のいずれかに記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
14.上記1~12のいずれかに記載の液晶配向剤を塗布し、波長100~400nmの偏光させた放射線を照射して得られる液晶配向膜。
15.焼成後の膜厚が5~300nmである上記13又は14に記載の液晶配向膜。
16.上記13~15のいずれかに記載の液晶配向膜を具備する液晶表示素子。
17.上記13~15のいずれかに記載の液晶配向膜を具備する横電界駆動型液晶表示素子。
13. 13. A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 12 above and baking it.
14 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of the above 1 to 12 and irradiating polarized radiation having a wavelength of 100 to 400 nm.
15. 15. The liquid crystal alignment film as described in 13 or 14 above, wherein the film thickness after firing is from 5 to 300 nm.
16. 16. A liquid crystal display device comprising the liquid crystal alignment film according to any one of 13 to 15 above.
17. 16. A lateral electric field drive type liquid crystal display device comprising the liquid crystal alignment film as described in any one of 13 to 15 above.
 本発明の液晶配向剤を用いることで、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制することができる液晶配向膜を得ることができる。これにより、本発明の液晶配向膜を有する液晶表示素子は、シール剤と液晶配向膜との接着性を高めることで額縁付近の表示ムラが解決でき、大画面で高精細の液晶ディスプレイにできる。
 さらに、本発明の液晶配向剤を用いることで、液晶配向性や電気特性を低下させることなく上述の課題を達成することが可能となる。
By using the liquid crystal aligning agent of the present invention, the adhesion between the sealing agent and the liquid crystal aligning film is improved, and the occurrence of display unevenness near the frame of the liquid crystal display element can be suppressed under high temperature and high humidity conditions. Can be obtained. Thereby, the liquid crystal display element having the liquid crystal alignment film of the present invention can solve the display unevenness in the vicinity of the frame by increasing the adhesiveness between the sealant and the liquid crystal alignment film, and can be a large-screen and high-definition liquid crystal display.
Furthermore, by using the liquid crystal aligning agent of the present invention, it is possible to achieve the above-mentioned problems without deteriorating the liquid crystal alignment properties and electrical characteristics.
<(A)成分>
 本発明の液晶配向剤に含まれる(A)成分は、下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体である。
Figure JPOXMLDOC01-appb-C000017
<(A) component>
The component (A) contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor. The polymer.
Figure JPOXMLDOC01-appb-C000017
 式(1)において、Xは、4価の有機基であり、Yは、2価の有機基である。
 Rは、水素原子、又は炭素数1~5のアルキル基である。
 A~Aは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基であり、これらの基は置換基を有していてもよい。
 Rにおける上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、Rは、水素原子、又はメチル基が好ましい。
In the formula (1), X 1 is a tetravalent organic group, and Y 1 is a divalent organic group.
R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms, and these groups are substituted It may have a group.
Specific examples of the alkyl group for R 1 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, and n-pentyl group. Etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
 式(1)において、Xはテトラカルボン酸誘導体由来の4価の有機基であり、その構造は特に限定されるものではない。ポリイミド前駆体中、Xは2種類以上が混在していてもよい。Xの具体例を示すならば、下記式(X-1)~(X-44)の構造が挙げられる。 In the formula (1), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Two or more kinds of X 1 may be mixed in the polyimide precursor. Specific examples of X 1 include the structures of the following formulas (X-1) to (X-44).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(X-1)におけるR~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、若しくは、フェニル基である。R~R11が嵩高い構造である場合、液晶配向性を低下させる可能性があるため、水素原子、メチル基、又はエチル基がより好ましく、水素原子、又はメチル基が特に好ましい。 R 8 to R 11 in the formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, or phenyl. It is a group. When R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
 式(1)において、Xはモノマーの入手性の観点から、(X-1)~(X-14)から選ばれる構造が好ましい。
 得られる液晶配向膜の信頼性をさらに高めることができることから、Xの構造は、(X-1)~(X-7)及び(X-10)のような、脂肪族基のみからなる構造が好ましく、(X-1)で表される構造がより好ましい。更に、良好な液晶配向性を示すため、Xの構造としては、下記式(X1-1)又は(X1-2)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記(X-1)~(X-14)から選ばれる構造の好ましい割合としては、X全体の20モル%以上であり、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。
In the formula (1), X 1 is preferably a structure selected from (X-1) to (X-14) from the viewpoint of availability of monomers.
Since the reliability of the obtained liquid crystal alignment film can be further improved, the structure of X 1 is a structure consisting only of an aliphatic group such as (X-1) to (X-7) and (X-10). And the structure represented by (X-1) is more preferable. Further, in order to show good liquid crystal alignment, the structure of X 1 is more preferably the following formula (X1-1) or (X1-2).
Figure JPOXMLDOC01-appb-C000022
A preferred ratio of the structure selected from the above (X-1) to (X-14) is 20 mol% or more, more preferably 60 mol% or more, further preferably 80 mol% or more of the entire X 1. .
 式(1)において、A及びAは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、又は置換基を有してもよい炭素数2~10のアルキニル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。
In the formula (1), A 1 and A 2 each independently represent a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted carbon atom having 2 to Or an alkynyl group having 2 to 10 carbon atoms which may have a substituent.
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
Examples of the alkenyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH═CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、アルキニル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、-O-Rで表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
The organooxy group as a substituent can have a structure represented by —O—R. R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
The organothio group as a substituent can have a structure represented by —S—R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には、前述した他の置換基がさらに置換していてもよい。
Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R. The structure represented by can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には、前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
 式(1)において、Yはジアミン由来の2価の有機基であり、その構造は特に限定されない。Yの構造の具体例としては、下記の(Y-1)~(Y-118)が挙げられる。
Figure JPOXMLDOC01-appb-C000023
In Formula (1), Y 1 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y 1 include the following (Y-1) to (Y-118).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(式(Y-109)中、m、及びnは、それぞれ1~11の整数であり、m+nは2~12の整数である。式(Y-114)中、hは1~3の整数であり、式(Y-111)及び(Y-117)中、jは0~3の整数である。)
Figure JPOXMLDOC01-appb-C000038
(In the formula (Y-109), m and n are each an integer of 1 to 11, and m + n is an integer of 2 to 12. In the formula (Y-114), h is an integer of 1 to 3. And in formulas (Y-111) and (Y-117), j is an integer from 0 to 3.)
 Yの構造としては、得られる液晶配向膜の液晶配向性やプレチルト角の観点から、下記式(5)及び(6)からなる群から選ばれる少なくとも1種の構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000039
 式(5)中、R12は単結合、又は炭素数1~30の2価の有機基であり、R13は水素原子、ハロゲン原子又は炭素数1~30の1価の有機基である。
 aは1~4の整数であり、aが2以上の場合は、(R12-R13)は、互いに同一でも異なっていてもよい。
 式(6)中のR14は、単結合、-O-、-S-、-NR15-、アミド結合、エステル結合、ウレア結合、又は炭素数1~40の2価の有機基であり、R15は、水素原子、又はメチル基である。
The structure of Y 1 is more preferably at least one structure selected from the group consisting of the following formulas (5) and (6) from the viewpoint of liquid crystal alignment properties and pretilt angle of the obtained liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000039
In the formula (5), R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms, and R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms.
a is an integer of 1 to 4, and when a is 2 or more, (R 12 -R 13 ) may be the same as or different from each other.
R 14 in Formula (6) is a single bond, —O—, —S—, —NR 15 —, an amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms, R 15 is a hydrogen atom or a methyl group.
 式(5)及び式(6)で表されるY1の具体例としては、直線性の高い構造は、液晶配向膜としたときに液晶の配向性を高めることができるため、(Y-7)、(Y-21)、(Y-22)、(Y-23)、(Y-25)、(Y-43)~(Y-46)、(Y-48)、(Y-63)、(Y-71)~(Y-75)、(Y-98)、(Y-99)、(Y-100)、(Y-118)等が好ましい。
 液晶配向性を高めることができる上記構造の割合としては、Y全体の20モル%以上が好ましく、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。通常、好ましくは90モル%以下である。
As a specific example of Y 1 represented by the formulas (5) and (6), a highly linear structure can enhance the alignment of the liquid crystal when the liquid crystal alignment film is used. ), (Y-21), (Y-22), (Y-23), (Y-25), (Y-43) to (Y-46), (Y-48), (Y-63), (Y-71) to (Y-75), (Y-98), (Y-99), (Y-100), (Y-118) and the like are preferable.
The proportion of the above structure that can enhance the liquid crystal orientation is preferably 20 mol% or more of Y 1 as a whole, more preferably 60 mol% or more, and further preferably 80 mol% or more. Usually, it is preferably 90 mol% or less.
 液晶配向膜としたときの液晶のプレチルト角を高くしたい場合には、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造をY1が有することが好ましい。そのようなY1としては、(Y-76)~(Y-97)が挙げられる。
 プレチルト角を高くしたい場合の上記構造の割合としては、Y全体の1~30モル%が好ましく、1~20モル%がより好ましい。
 本発明に用いるポリイミド前駆体は、ジアミン成分とテトラカルボン酸誘導体との反応により得られるものであり、ポリアミック酸やポリアミック酸エステル等が挙げられる。
When it is desired to increase the pretilt angle of the liquid crystal when the liquid crystal alignment film is used, Y 1 may have a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in the side chain. preferable. Examples of such Y 1 include (Y-76) to (Y-97).
The proportion of the above structure for increasing the pretilt angle is preferably 1 to 30 mol%, more preferably 1 to 20 mol% of the entire Y 1 .
The polyimide precursor used in the present invention is obtained by a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
<(B)成分>
 本発明の液晶配向剤に含有される(B)成分は、ヒドロキシアルキルアミド基を有する化合物である。(B)成分は、ヒドロキシアルキルアミド基を有していれば、その他の構造は特に限定されないが、入手性等の点から、好ましい例として、下記式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 Xは炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基である。nは2~6の整数である。
<(B) component>
The component (B) contained in the liquid crystal aligning agent of the present invention is a compound having a hydroxyalkylamide group. As long as the component (B) has a hydroxyalkylamide group, other structures are not particularly limited, but from the viewpoint of availability, a preferred example includes a compound represented by the following formula (2). .
Figure JPOXMLDOC01-appb-C000040
X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group. n is an integer of 2 to 6.
 R及びRは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~4のアルキル基、置換基を有してもよい炭素数2~4のアルケニル基、又は置換基を有してもよい炭素数2~4のアルキニル基である。また、R及びRのうち少なくとも1つは、ヒドロキシ基で置換された炭化水素基を表す。
 中でも、式(2)のX中の、カルボニル基に直接結合する原子は、芳香環を形成していない炭素原子であることが液晶配向性の観点から好ましい。また、式(2)のXは、液晶配向性及び溶解性の観点から、脂肪族炭化水素基であることが好ましく、炭素数1~10であることがより好ましい。
 式(2)中、nは、溶解性の観点から、2~4が好ましい。
R 2 and R 3 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or An alkynyl group having 2 to 4 carbon atoms which may have a substituent. Further, at least one of R 2 and R 3 represents a hydrocarbon group substituted with a hydroxy group.
Among them, wherein in X 2 (2), directly attached to atoms in a carbonyl group, it is preferable from the viewpoint of the liquid crystal orientation is a carbon atom, which do not form an aromatic ring. X 2 in the formula (2) is preferably an aliphatic hydrocarbon group and more preferably 1 to 10 carbon atoms from the viewpoint of liquid crystal alignment and solubility.
In the formula (2), n is preferably 2 to 4 from the viewpoint of solubility.
 式(2)中、R及びRのうち少なくとも1つは、下記式(3)で表される構造であることが、反応性の観点から好ましく、下記式(4)で表される構造であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(3)中、R~Rは、それぞれ独立して、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基である。
Figure JPOXMLDOC01-appb-C000042
In formula (2), at least one of R 2 and R 3 is preferably a structure represented by the following formula (3) from the viewpoint of reactivity, and a structure represented by the following formula (4) More preferably.
Figure JPOXMLDOC01-appb-C000041
In the formula (3), R 4 to R 7 are each independently a hydrocarbon group substituted with a hydrogen atom, a hydrocarbon group, or a hydroxy group.
Figure JPOXMLDOC01-appb-C000042
 (B)成分の好ましい具体例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
Specific preferred examples of the component (B) include the following compounds.
Figure JPOXMLDOC01-appb-C000043
 (B)成分は、多すぎると液晶配向性やプレチルト角に影響を与え、少なすぎると本発明の効果が得られない。そのため、(B)成分の含有量は、(A)成分に対して、0.1~20質量%が好ましく、1~10質量%がより好ましい。 When the component (B) is too much, the liquid crystal orientation and the pretilt angle are affected, and when it is too little, the effect of the present invention cannot be obtained. Therefore, the content of the component (B) is preferably 0.1 to 20% by mass and more preferably 1 to 10% by mass with respect to the component (A).
<ポリイミド前駆体-ポリアミック酸の製造>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを、溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Polyimide precursor-production of polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be produced by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of a solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、又は1,3-ジメチル-イミダゾリジノンが挙げられる。
 また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
The reaction of the diamine component and the tetracarboxylic acid component is usually performed in a solvent. The solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples. For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone Can be mentioned.
When the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
Figure JPOXMLDOC01-appb-C000044
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000044
In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3] In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms.
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 反応系中におけるポリアミック酸ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら、下記貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyimide precursor, it is preferable to use a dehydrated and dried solvent.
The concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the following poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド前駆体-ポリアミック酸エステルの製造>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
(1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を、溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
<Polyimide precursor-production of polyamic acid ester>
The polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
(1) When manufacturing from polyamic acid A polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of a solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. can do.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~2.5モル当量がより好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, more preferably 2 to 2.5 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 溶媒としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は前記式[D-1]~式[D-3]で示される溶媒を用いることができる。 Examples of the solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazo Lysinone is mentioned. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3] The indicated solvents can be used.
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解しない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyimide precursor, it is preferable to use a dehydrated and dried solvent.
The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンを、塩基と溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
 塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2.5~3倍モルがより好ましい。
(2) Production by reaction of tetracarboxylic acid diester dichloride and diamine Specifically, tetracarboxylic acid diester dichloride and diamine are −20 to 150 ° C., preferably 0 to 50 ° C. in the presence of a base and a solvent. It can be produced by reacting at 30 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The amount of the base added is preferably 2 to 4 times mol, preferably 2.5 to 3 times the amount of tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. Mole is more preferred.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒は、できるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
 具体的には、テトラカルボン酸ジエステルとジアミンを、縮合剤、塩基、及び有機溶剤の存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
 縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましく、2~2.5倍モルがより好ましい。
(3) When producing from tetracarboxylic acid diester and diamine Specifically, tetracarboxylic acid diester and diamine are 0 to 150 ° C., preferably 0 to 100 ° C. in the presence of a condensing agent, a base, and an organic solvent. In the above, it can be produced by reacting for 30 minutes to 24 hours, preferably 3 to 15 hours.
Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used. The addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
 塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、0~0.5倍モルがより好ましい。
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら下記貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
In the above reaction, the reaction proceeds efficiently by adding a Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol, more preferably 0 to 0.5 times mol based on the diamine component.
Among the methods for producing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the production method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by being poured into the following poor solvent while being well stirred. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を溶媒に溶解させて得られるポリアミック酸溶液に、塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、溶媒中において塩基性触媒の存在下で、撹拌することにより行うことができる。溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等が挙げられる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in a solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in the presence of a basic catalyst in a solvent. As a solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間、好ましくは1~5時間で行うことができる。
 塩基性触媒の量は、アミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。
 得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。
 イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
The imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, and redissolved with a solvent, and the liquid crystal aligning agent of the present invention. It is preferable that
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に、触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸を、溶媒中において塩基性触媒と酸無水物の存在下で、攪拌することにより行うことができる。溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間、好ましくは1~5時間で行うことができる。
 塩基性触媒の量は、アミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。
When manufacturing a polyimide from a polyamic acid, the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid to be imidized in a solvent in the presence of a basic catalyst and an acid anhydride. As a solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably 3 to 30 mole times. The imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
 なお、ポリアミック酸エステル又はポリアミック酸のイミド化反応では、イミド化促進剤を使用することができる。以下にイミド化促進剤の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000045
 上記式(B-1)から(B-17)におけるDは、それぞれ独立して、tert-ブトキシカルボニル基又は9-フルオレニルメトキシカルボニル基である。式(B-14)~(B-17)に存在する複数のDは、互いに同一であっても異なってもよい。加熱による脱保護後の塩基性が高くなるほど、ポリアミック酸エステル及びポリアミック酸のイミド化促進効果がさらに高まる。よって、熱イミド化促進効果をより高めるという点から(B-14)~(B-17)が好ましく、中でも(B-17)が特に好ましい。
In the imidation reaction of polyamic acid ester or polyamic acid, an imidization accelerator can be used. Although the specific example of an imidation accelerator is shown below, it is not limited to these.
Figure JPOXMLDOC01-appb-C000045
D in the above formulas (B-1) to (B-17) is each independently a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. A plurality of D present in the formulas (B-14) to (B-17) may be the same as or different from each other. The higher the basicity after deprotection by heating, the higher the effect of promoting imidization of the polyamic acid ester and polyamic acid. Therefore, (B-14) to (B-17) are preferred from the viewpoint of further enhancing the thermal imidization promoting effect, and (B-17) is particularly preferred.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら下記貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。
 貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
In the solution after the imidation reaction of the polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below and redissolved in a solvent. The liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into the following poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、前記した(A)成分であるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体(以下、特定構造の重合体とする)、及び(B)成分であるヒドロキシアルキルアミド基を有する化合物が、溶媒中に溶解された溶液の形態を有する。
 特定構造重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention is at least one polymer selected from the group consisting of the polyimide precursor as the component (A) and an imidized polymer of the polyimide precursor (hereinafter referred to as a heavy polymer having a specific structure). And a compound having a hydroxyalkylamide group as the component (B) are in the form of a solution dissolved in a solvent.
The molecular weight of the specific structure polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明の液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましくは3~6.5質量%である。
 本発明の液晶配向剤に含有される溶媒(良溶媒ともいう)は、特定構造重合体が均一に溶解するものであれば特に限定されない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
The concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 The content is preferably at least 10% by mass, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. Particularly preferred is 3 to 6.5% by mass.
The solvent (also referred to as a good solvent) contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the specific structure polymer is uniformly dissolved.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 さらに、本発明の重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferably used.
Furthermore, when the solubility of the polymer of the present invention in a solvent is high, it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
The good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。
As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. it can. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate Tar, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol Monoethyl ether, milk Methyl, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl acetate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, lactic acid Examples thereof include isoamyl esters and solvents represented by the above formulas [D-1] to [D-3].
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
 貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%であることが好ましく、10~80質量%がさらに好ましく、20~70質量%がより好ましい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
The poor solvent is preferably 1 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass.
In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as dielectric constant and conductivity of the liquid crystal aligning film Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added.
<液晶配向膜>
<液晶配向膜の製造方法>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができる。さらに、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
<Method for producing liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as a glass substrate, a silicon nitride substrate, an acrylic substrate, or a polycarbonate substrate can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplification of the process. In the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃、好ましくは60~100℃で、1~10分間、好ましくは2~5分間乾燥させ、その後、150~300℃、好ましくは200~240℃で、5~120分間、好ましくは10~30分間焼成する。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the contained solvent, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, preferably 2 to 5 minutes, and then 150 to 300 ° C., preferably Is baked at 200 to 240 ° C. for 5 to 120 minutes, preferably 10 to 30 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
 ラビング処理は、既存のラビング装置を利用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄により、ラビングで生じた残渣が除去される。
Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
The rubbing process can be performed using an existing rubbing apparatus. Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon. As the conditions for rubbing treatment, generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and a pushing amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するも紫外線が特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 上記で、偏光された放射線を照射した膜は、次いで、水及び有機溶媒からなる群から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
As a specific example of the photo-alignment treatment method, the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Is mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
A higher extinction ratio of polarized ultraviolet light is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
In the above, the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from the group consisting of water and organic solvents.
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
 汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパンール、又は水と2-プロパノールの混合溶媒が特に好ましい。
The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
In view of versatility and safety, at least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable. Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
 本発明において、偏光された放射線を照射した膜と溶媒を含む溶液の接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが、好ましくは十分に接触するような方法で行なわれる。なかでも、溶媒を含む溶液中に、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は、常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて、超音波などの接触を高める手段を施すことができる。
 接触処理の後に、使用した溶液中の溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
In the present invention, the contact treatment of the film irradiated with polarized radiation and the solution containing the solvent is performed by a method such that the film and the liquid are preferably in sufficient contact with each other, such as immersion treatment or spraying treatment. It is. Among them, a method of immersing in a solution containing a solvent, preferably for 10 seconds to 1 hour, more preferably for 1 to 30 minutes is preferable. The contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C. Moreover, a means for enhancing contact such as ultrasonic waves can be applied as necessary.
After the contact treatment, in order to remove the solvent in the used solution, rinsing (rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying is performed, or both. It's okay.
 さらに、溶媒を含む溶液による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。
 加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると、分子鎖の再配向の効果が得られない可能性があり、長すぎると、分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1~10分がより好ましい。
Furthermore, the film subjected to the contact treatment with the solution containing the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
The heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C.
If the heating time is too short, there is a possibility that the effect of molecular chain reorientation may not be obtained. If it is too long, the molecular chain may be decomposed. 1 to 10 minutes is more preferable.
<液晶表示素子>
 本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備することを特徴とする。
 本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分に、TFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
In the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method for producing a liquid crystal alignment film, a liquid crystal cell is produced by a known method, and a liquid crystal cell is used. This is a display element.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようにパターニング(Patterning)される。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成された、SiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、(メタ)アクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する、紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
Next, a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
In the present invention, as the sealing agent, for example, a resin having a reactive group such as an epoxy group, an acryloyl group, a (meth) acryloyl group, a hydroxyl group, an allyl group, or an acetyl group, which is cured by ultraviolet irradiation or heating is used. . In particular, it is preferable to use a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
 本発明のシール剤には、接着性、耐湿性の向上を目的として、無機充填剤を配合してもよい。使用しうる無機充填剤としては、特に限定されないが、具体的には、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられる。好ましくは、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、又は珪酸アルミニウムが挙げられる。前記の無機充填剤は2種以上を混合して用いてもよい。 In the sealing agent of the present invention, an inorganic filler may be blended for the purpose of improving adhesiveness and moisture resistance. The inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid. Barium, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, Examples include asbestos. Preferably, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, or silicic acid Aluminum is mentioned. Two or more of the above inorganic fillers may be mixed and used.
 以下に実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。以下に、用いた化合物の略号を示す。
NMP:N-メチル-2-ピロリドン  GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ       IPA:2-プロパノール
NEP:N-エチル-2-ピロリドン  PB:プロピレングリコールモノブチルエーテル
DA-2:下記式(DA-2)で表される化合物
DA-3:下記式(DA-3)で表される化合物
DA-4:下記式(DA-4)で表される化合物
DA-5:p-フェニレンジアミン
DA-6:3,5-ジアミノ安息香酸
DA-7:4,4’-ジアミノジフェニルメタン
DA-8:4,4’-ジアミノジフェニルアミン
DA-9:1,3-ビス(4-アミノフェノキシ)プロパン
DA-10:1,5-ビス(4-アミノフェノキシ)ペンタン
DA-11:下記式(DA-11)で表される化合物
DA-12:下記式(DA-12)で表される化合物
DA-13:4,4’-エチレンジアニリン
DA-14:下記式(DA-14)で表される化合物
DA-15:下記式(DA-15)で表される化合物
DA-16:下記式(DA-16)で表される化合物
DA-17:下記式(DA-17)で表される化合物
DA-18:下記式(DA-18)で表される化合物
DA-19:下記式(DA-19)で表される化合物
DA-20:下記式(DA-20)で表される化合物
DA-21:下記式(DA-21)で表される化合物
DA-22:4-アミノベンジルアミン
DA-23:3-アミノベンジルアミン
DA-24:N,N-ジアリル-2,4-ジアミノアニリン
The present invention will be described more specifically with reference to the following examples. However, the present invention is not construed as being limited to these examples. The abbreviations of the compounds used are shown below.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve IPA: 2-propanol NEP: N-ethyl-2-pyrrolidone PB: propylene glycol monobutyl ether DA-2: represented by the following formula (DA-2) Compound DA-3: Compound DA-4 represented by the following formula (DA-3): Compound DA-5 represented by the following formula (DA-4): p-phenylenediamine DA-6: 3, 5 -Diaminobenzoic acid DA-7: 4,4'-diaminodiphenylmethane DA-8: 4,4'-diaminodiphenylamine DA-9: 1,3-bis (4-aminophenoxy) propane DA-10: 1,5- Bis (4-aminophenoxy) pentane DA-11: Compound DA-12 represented by the following formula (DA-11): In the following formula (DA-12) Compound DA-13 represented: 4,4′-ethylenedianiline DA-14: Compound DA-15 represented by the following formula (DA-14): Compound DA- represented by the following formula (DA-15) 16: Compound DA-17 represented by the following formula (DA-16): Compound DA-18 represented by the following formula (DA-17): Compound DA-19 represented by the following formula (DA-18): Compound DA-20 represented by the following formula (DA-19): Compound DA-21 represented by the following formula (DA-20): Compound DA-22: 4- represented by the following formula (DA-21) Aminobenzylamine DA-23: 3-aminobenzylamine DA-24: N, N-diallyl-2,4-diaminoaniline
DC-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-3:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
DC-4:1,2,3,4-ブタンテトラカルボン酸二無水物
DC-5:ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物
DC-6:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
DC-7:ピロメリット酸無水物
DC-8:下記式(DC-8)で表される化合物
DE-1:下記式(DE-1)で表される化合物
添加剤A:下記式で表される化合物(Primid XL552(エムスケミー社製)
添加剤B:下記式で表される化合物(Primid SF4510(エムスケミー社製)
添加剤C:下記式で表されるジペンタエリスリトールヘキサアクリレート(ダイセル・サイテック社製)
添加剤D:下記式で表される2,2'-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン
 なお、以下の化学式において、Meはメチル基、Buはn-ブチル基、Bocはt-ブトキシ基を表す。
DC-1: 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-3: 3 3 ′, 4,4′-biphenyltetracarboxylic dianhydride DC-4: 1,2,3,4-butanetetracarboxylic dianhydride DC-5: bicyclo [3.3.0] octane-2, 4,6,8-tetracarboxylic dianhydride DC-6: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride DC-7: pyromellitic anhydride DC-8: Compound represented by the following formula (DC-8) DE-1: Compound additive represented by the following formula (DE-1) A: Compound represented by the following formula (Primid XL552 (manufactured by Emschemie) )
Additive B: Compound represented by the following formula (Primid SF4510 (manufactured by Ms Chemie)
Additive C: Dipentaerythritol hexaacrylate represented by the following formula (manufactured by Daicel-Cytec)
Additive D: 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane represented by the following formula: In the following chemical formula, Me is a methyl group, Bu is an n-butyl group, Boc Represents a t-butoxy group.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 各特性の測定方法は、以下のとおりである。
[粘度]
 ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 ポリアミック酸エステル及びポリアミック酸の分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール(ポリエチレンオキシド)換算値として、数平均分子量(以下、Mnとも言う)と重量平均分子量(以下、Mwとも言う)を算出した。
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、及びKD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、及び30,000)及びポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)が、約12,000、4,000、及び1,000)を用いた。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプル、並びに150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルを別々に実施した。
The measuring method of each characteristic is as follows.
[viscosity]
The viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.). The temperature was measured at 25 ° C.
[Molecular weight]
The molecular weights of the polyamic acid ester and the polyamic acid were measured by a GPC (room temperature gel permeation chromatography) device, and converted into a polyethylene glycol (polyethylene oxide) conversion value as a number average molecular weight (hereinafter, also referred to as Mn) and a weight average molecular weight (hereinafter, Mw) was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and Polymer Laboratories Polyethylene glycol manufactured (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000) was used. In order to avoid overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and 3 of 150,000, 30,000, and 4,000. Two samples of mixed types were run separately.
[イミド化率の測定]
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。
[Measurement of imidization rate]
The imidation ratio of polyimide was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) (0 .53 mL) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い、以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<合成例1>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-5を2.92g(27.0mmol)及びジアミンDA-2を0.71g(3.0mmol)量り取り、NMPを81.76g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、カルボン酸二無水物DC-1を6.46g(28.8mmol)添加し、更に、固形分濃度が10質量%になるようにNMPを加え、室温で4時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の温度25℃における粘度は230mPa・sであった。また、このポリアミック酸の分子量はMn=11,131、Mw=30,009であった。
<Synthesis Example 1>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.92 g (27.0 mmol) of diamine DA-5 and 0.71 g (3.0 mmol) of diamine DA-2 were weighed, and 81.76 g of NMP was measured. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 6.46 g (28.8 mmol) of carboxylic dianhydride DC-1 was added, NMP was further added so that the solid content concentration was 10% by mass, and the mixture was stirred at room temperature for 4 hours. As a result, a polyamic acid solution (PAA-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 230 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11,131 and Mw = 30,009.
<合成例2>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-5を2.27g(21.0mmol)及びジアミンDA-4を2.69g(9.0mmol)量り取り、NMPを61.87g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、カルボン酸二無水物DC-2を5.59g(28.5mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、室温で4時間撹拌して、ポリアミック酸溶液(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は410mPa・sであった。また、このポリアミック酸の分子量はMn=9,042、Mw=19,958であった。
<Synthesis Example 2>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.27 g (21.0 mmol) of diamine DA-5 and 2.69 g (9.0 mmol) of diamine DA-4 were weighed, and 61.87 g of NMP. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.59 g (28.5 mmol) of carboxylic dianhydride DC-2 was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at room temperature for 4 hours. Thus, a solution of polyamic acid solution (PAA-2) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 410 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 9,042 and Mw = 19,958.
<合成例3>
 撹拌装置及び窒素導入管付きの2000mL四つ口フラスコに、ジアミンDA-3を110.47g(452mmol)、DA-2を18.94g(79.5mmol)量り取り、NMPを1587g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、カルボン酸二無水物DC-1を111.18g(496mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は183mPa・sであった。また、このポリアミック酸の分子量はMn=12356、Mw=25544であった。
<Synthesis Example 3>
In a 2000 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 110.47 g (452 mmol) of diamine DA-3 and 18.94 g (79.5 mmol) of DA-2 were weighed, 1587 g of NMP was added, and nitrogen was added. The mixture was stirred and dissolved while feeding. While stirring this diamine solution, 111.18 g (496 mmol) of carboxylic dianhydride DC-1 was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at 40 ° C. for 20 hours. A solution of polyamic acid (PAA-3) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 183 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 1356 and Mw = 25544.
<合成例4>
 撹拌装置及び窒素導入管付きの3000mL四つ口フラスコに、得られたポリアミック酸溶液(PAA-3)を950g量り取り、NMPを678g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を77.11g、ピリジンを19.92g加えて、60℃で3時間加熱し、化学イミド化を行った。得られた反応液を、6600mLのメタノールに撹拌しながら投入し、析出した沈殿物をろ取した。続いて、沈殿物を6600mLのメタノールで3回洗浄し、2000mLのメタノールで2回洗浄した。次いで、得られた樹脂粉末を、60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。
 このポリイミド樹脂粉末のイミド化率は75%であり、分子量はMn=8156、Mw=17408であった。
 撹拌子を入れた200mL三角フラスコに、得られたポリイミド樹脂粉末20.69gを量り取り、NMPを151.71g加え、40℃で24時間撹拌して溶解させ、固形分濃度が12質量%のポリイミド溶液(PI-1)を得た。
<Synthesis Example 4>
In a 3000 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 950 g of the obtained polyamic acid solution (PAA-3) was weighed, 678 g of NMP was added, and the mixture was stirred for 30 minutes. 77.11 g of acetic anhydride and 19.92 g of pyridine were added to the obtained polyamic acid solution, and heated at 60 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was poured into 6600 mL of methanol while stirring, and the deposited precipitate was collected by filtration. Subsequently, the precipitate was washed 3 times with 6600 mL of methanol and twice with 2000 mL of methanol. Subsequently, the obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder.
The imidation ratio of this polyimide resin powder was 75%, and the molecular weight was Mn = 8156 and Mw = 17408.
In a 200 mL Erlenmeyer flask containing a stir bar, 20.69 g of the obtained polyimide resin powder was weighed, 151.71 g of NMP was added, and the mixture was stirred and dissolved at 40 ° C. for 24 hours. A solution (PI-1) was obtained.
<合成例5>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-3を4.20g(17.19mmol)、及びジアミンDA-4を7.70g(25.81mmol)量り取り、NMPを158g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、カルボン酸二無水物DC-3を12.02g(40.85mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、室温で24時間撹拌して、ポリアミック酸(PAA-4)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は390mPa・sであった。
 合成例で用いた各成分の使用量、及び得られたポリイミド系重合体を、表1にまとめて示す。
<Synthesis Example 5>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, weigh 4.20 g (17.19 mmol) of diamine DA-3 and 7.70 g (25.81 mmol) of diamine DA-4, and add 158 g of NMP. The mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 12.02 g (40.85 mmol) of carboxylic dianhydride DC-3 was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at room temperature for 24 hours. Thus, a solution of polyamic acid (PAA-4) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 390 mPa · s.
The amount of each component used in the synthesis examples and the obtained polyimide polymer are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
[液晶配向剤の調製]
(実施例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を11.00g量り取り、NMPを5.00g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A1を得た。
 この液晶配向剤A1を用いて、下記に示すような手順で密着性の評価用基板及び液晶セルの作製を行った。
[Preparation of liquid crystal aligning agent]
Example 1
In a 20 ml sample tube containing a stir bar, 11.00 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was weighed, 5.00 g of NMP, 4.00 g of BCS, and N as an imidization accelerator. -Α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, and the mixture was stirred at room temperature for 3 hours. A1 was obtained.
Using this liquid crystal aligning agent A1, a substrate for evaluating adhesion and a liquid crystal cell were prepared in the following procedure.
[密着性の評価用基板の作製、及び評価]
<基板の作製>
 30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤A1を塗布した。その後、80℃のホットプレート上で2分間乾燥させ、次いで、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して、254nmの紫外線を500mJ/cm照射し、次いで、230℃の熱風循環式オーブンで14分間焼成を行い、液晶配向膜付き基板を得た。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に、4μmビーズスペーサーを塗布した後、シール剤(協立化学社製、XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が、3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃で1時間熱硬化させて、密着性評価用の基板を作製した。
<密着性の評価>
 基板を卓上形精密万能試験機(島津製作所社製、AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。
[Production and evaluation of adhesion evaluation substrate]
<Production of substrate>
Liquid crystal aligning agent A1 was apply | coated by spin coat application | coating to the 30 mm x 40 mm ITO board | substrate. Then, it was dried on an 80 ° C. hot plate for 2 minutes, and then baked in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 254 nm ultraviolet rays through a polarizing plate at 500 mJ / cm 2 and then baked in a hot air circulation oven at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film.
Two substrates thus obtained were prepared, a 4 μm bead spacer was applied on the liquid crystal alignment film surface of one substrate, and then a sealing agent (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. . Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealing agent dropped was adjusted so that the diameter of the sealing agent after bonding was 3 mm. The two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to produce a substrate for adhesion evaluation.
<Evaluation of adhesion>
The substrate is fixed with a desktop precision universal testing machine (Shimadzu Corp., AGS-X 500N), and the edges of the upper and lower substrates are fixed. ) Was measured.
[FFS駆動液晶セルの作製、及び液晶配向性の評価]
 始めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of FFS Drive Liquid Crystal Cell and Evaluation of Liquid Crystal Orientation]
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の液晶配向方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the liquid crystal alignment direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed at an angle of + 10 ° in the first region of the pixel, and the electrode of the pixel electrode is formed in the second region of the pixel. The elements are formed at an angle of -10 °. That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて液晶配向剤を塗布した。次いで、80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を500mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 液晶セルの配向状態を偏光顕微鏡(ニコン社製、ECLIPSE E600WPOL)にて観察し、配向欠陥がないものを「良好」、配向欠陥があるものは「不良」とした。
Next, after filtering a liquid crystal aligning agent with a 1.0 micrometer filter, the liquid crystal aligning agent was apply | coated to the prepared said board | substrate with an electrode by spin coat application | coating. Subsequently, after drying for 2 minutes on an 80 degreeC hotplate, it baked for 14 minutes in 230 degreeC hot-air circulation type oven, and formed the coating film with a film thickness of 100 nm. The coated surface was irradiated with 500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film. In addition, a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
Set the two substrates as a set, print the sealant on the substrate, and bond the other substrate so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is cured. An empty cell was produced. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
The alignment state of the liquid crystal cell was observed with a polarizing microscope (Nikon Corporation, ECLIPSE E600WPOL).
[液晶セルの交流駆動焼付き評価]
 上記で作製した液晶セルを用い、60℃の恒温環境下、周波数30Hzで±10Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を、液晶セルの角度Δとして算出した。交流駆動焼き付きΔが0.1未満を良好とし、それ以上を不良とした。
[AC drive seizure evaluation of liquid crystal cells]
Using the liquid crystal cell produced above, an AC voltage of ± 10 V was applied for 120 hours at a frequency of 30 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. AC drive image sticking Δ was less than 0.1 and good, and more than that.
<実施例2>
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を2.20g、合成例2で得られたポリアミック酸溶液(PAA-2)を7.33g量り取り、NMPを6.47g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A2を得た。
 この液晶配向剤A2を用いた以外は、実施例1と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
<Example 2>
In a 20 ml sample tube containing a stir bar, 2.20 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 7.33 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were weighed. 6.47 g of NMP, 4.00 g of BCS, 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, And 0.06g of additive A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A2.
Except for using this liquid crystal aligning agent A2, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 1.
<実施例3>
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリイミド溶液(PI-1)を4.58g、合成例5で得られたポリアミック酸溶液(PAA-4)を4.58g量り取り、NMPを6.83g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A3を得た。
 この液晶配向剤A3を用い、254nmの紫外線を200mJ/cm照射し、エチルラクテートに3分間浸漬させ、次いで、純水に1分間浸漬させた。その後、230℃の熱風循環式オーブンで14分間焼成を行い、液晶配向膜付き基板を得た以外は、実施例1と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
<Example 3>
In a 20 ml sample tube containing a stir bar, 4.58 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 4.58 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 were weighed. 6.83 g of NMP, 4.00 g of BCS, 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06g of additive A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A3.
Using this liquid crystal aligning agent A3, ultraviolet rays of 254 nm were irradiated at 200 mJ / cm 2 , soaked in ethyl lactate for 3 minutes, and then soaked in pure water for 1 minute. Thereafter, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 1 except that baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film.
<比較例1>
 添加剤Aを添加していないこと以外は、実施例1と同様な方法により液晶配向剤B1を得た。この液晶配向剤B1を用いた以外は、実施例1と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
<比較例2>
 添加剤Aを添加していないこと以外は、実施例2と同様な方法により液晶配向剤B2を得た。この液晶配向剤B2を用いた以外は、実施例2と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
<Comparative Example 1>
A liquid crystal aligning agent B1 was obtained in the same manner as in Example 1 except that the additive A was not added. Except for using this liquid crystal aligning agent B1, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 1.
<Comparative example 2>
A liquid crystal aligning agent B2 was obtained in the same manner as in Example 2 except that the additive A was not added. Adhesion evaluation and AC drive image sticking evaluation were performed by the same method as in Example 2 except that this liquid crystal aligning agent B2 was used.
<比較例3>
 添加剤Aを添加していないこと以外は、実施例3と同様な方法により液晶配向剤B3を得た。この液晶配向剤B3を用いた以外は、実施例3と同様な方法により密着性評価及び交流駆動焼き付き評価を行った。
<Comparative Example 3>
A liquid crystal aligning agent B3 was obtained in the same manner as in Example 3 except that the additive A was not added. Except for using this liquid crystal aligning agent B3, adhesion evaluation and AC drive image sticking evaluation were performed in the same manner as in Example 3.
 表2には、実施例1~3、及び比較例1~3で得られた液晶配向剤中に含まれる成分の組成などをまとめて示した。表2中、ポリイミド系重合体の(混合比率)は、各重合体の混合比率(質量%)を表す。溶媒の(比率)は、各有機溶媒のポリマー溶液全体に対する比率(質量%)を表す。添加剤の(phr)は、重合体固形分に対する添加剤含有比率(質量%)を表す。また、固形分濃度の単位は、質量%である。
 表3には、実施例1~3、及び比較例1~3におけるFFS駆動液晶セルの作製条件を、まとめて示した。表3中、「-」は、未処理を表す。
 表4には、実施例1~3、及び比較例1~3における各評価結果等をまとめて示した。
Table 2 summarizes the composition of the components contained in the liquid crystal aligning agents obtained in Examples 1 to 3 and Comparative Examples 1 to 3. In Table 2, the (mixing ratio) of the polyimide polymer represents the mixing ratio (% by mass) of each polymer. The (ratio) of the solvent represents the ratio (mass%) of each organic solvent to the whole polymer solution. (Phr) of the additive represents the additive content ratio (% by mass) relative to the solid content of the polymer. Moreover, the unit of solid content concentration is the mass%.
Table 3 summarizes the manufacturing conditions of the FFS drive liquid crystal cells in Examples 1 to 3 and Comparative Examples 1 to 3. In Table 3, “-” represents unprocessed.
Table 4 summarizes the evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
<合成例6>
 撹拌装置及び窒素導入管付きの500mL四つ口フラスコに、ジアミンDA-5を4.58g(42.4mmol)およびジアミンDA-12を1.79g(4.71mmol)量り取り、NMPを84.7g、GBLを254g、及び塩基としてピリジン8.40g(106mmol) を加え、窒素を送りながら撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を14.4g(44.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを1.23g(13.6mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1477gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、沈殿物を738gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末17.3gを得た。収率は、96.9%であった。また、このポリアミック酸エステルの分子量はMn=14,288、Mw=29,956であった。
 得られたポリアミック酸エステル樹脂粉末3.69gを100mL三角フラスコにとりGBLを33.2g加え、窒素雰囲気下室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(PAE-1)を得た。
<Synthesis Example 6>
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 4.58 g (42.4 mmol) of diamine DA-5 and 1.79 g (4.71 mmol) of diamine DA-12 were weighed, and 84.7 g of NMP was measured. , 254 g of GBL and 8.40 g (106 mmol) of pyridine as a base were added and dissolved by stirring while feeding nitrogen. Next, 14.1 g (44.2 mmol) of DE-1 was added while stirring the diamine solution, and the mixture was reacted at 15 ° C. overnight. After stirring overnight, 1.23 g (13.6 mmol) of acryloyl chloride was added and reacted at 15 ° C. for 4 hours. The obtained polyamic acid ester solution was added to 1477 g of IPA with stirring, and the precipitated white precipitate was collected by filtration. Subsequently, the precipitate was washed 5 times with 738 g of IPA and dried to obtain a white precipitate. 17.3 g of polyamic acid ester resin powder was obtained. The yield was 96.9%. Moreover, the molecular weight of this polyamic acid ester was Mn = 14,288 and Mw = 29,956.
3.69 g of the obtained polyamic acid ester resin powder was placed in a 100 mL Erlenmeyer flask, 33.2 g of GBL was added, and the mixture was stirred and dissolved at room temperature for 24 hours under a nitrogen atmosphere to obtain a polyamic acid ester solution (PAE-1).
<合成例7>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-5を2.50g(23.1mmol)、ジアミンDA-14を0.59g(1.22mmol)量り取り、NMPを42.8g、GBLを129g、及び塩基としてピリジン4.34g(54.9mmol)を加え、窒素を送りながら撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を7.44g(22.9mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.63g(7.01mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、574gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、沈殿物を382gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末8.82gを得た。収率は、97.8%であった。また、このポリアミック酸エステルの分子量はMn=16,617、Mw=37,387であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを20mL三角フラスコにとりGBLを7.20g加え、窒素雰囲気下室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(PAE-2)を得た。
<Synthesis Example 7>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.50 g (23.1 mmol) of diamine DA-5 and 0.59 g (1.22 mmol) of diamine DA-14 were weighed, and 42.8 g of NMP was measured. 129 g of GBL and 4.34 g (54.9 mmol) of pyridine as a base were added and dissolved by stirring while feeding nitrogen. Next, while stirring the diamine solution, 7.44 g (22.9 mmol) of DE-1 was added and reacted at 15 ° C. overnight. After stirring overnight, 0.63 g (7.01 mmol) of acryloyl chloride was added and reacted at 15 ° C. for 4 hours. The obtained polyamic acid ester solution was added to 574 g of IPA with stirring, and the precipitated white precipitate was collected by filtration. Subsequently, the precipitate was washed 5 times with 382 g of IPA and dried to obtain a white precipitate. Thus, 8.82 g of polyamic acid ester resin powder was obtained. The yield was 97.8%. Moreover, the molecular weight of this polyamic acid ester was Mn = 16,617 and Mw = 37,387.
0.80 g of the obtained polyamic acid ester resin powder was placed in a 20 mL Erlenmeyer flask, 7.20 g of GBL was added, and the mixture was stirred and dissolved at room temperature in a nitrogen atmosphere for 24 hours to obtain a polyamic acid ester solution (PAE-2).
<合成例8>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-5を1.23g(11.3mmol)、ジアミンDA-13を0.80g(3.77mmol)量り取り、NMPを27.0g、GBLを91.2g、及び塩基としてピリジン2.69g(34.0mmol)を加え、窒素を送りながら撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を4.61g(14.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.39g(4.34mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、384gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、沈殿物を256gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末5.11gを得た。収率は、89.6%であった。また、このポリアミック酸エステルの分子量はMn=14,806、Mw=32,719であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを20mL三角フラスコにとりGBLを7.20g加え、窒素雰囲気下室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(PAE-3)を得た。
<Synthesis Example 8>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.23 g (11.3 mmol) of diamine DA-5 and 0.80 g (3.77 mmol) of diamine DA-13 are weighed, and 27.0 g of NMP is measured. , 91.2 g of GBL and 2.69 g (34.0 mmol) of pyridine as a base were added and dissolved by stirring while feeding nitrogen. Next, while stirring this diamine solution, 4.61 g (14.2 mmol) of DE-1 was added and reacted at 15 ° C. overnight. After stirring overnight, 0.39 g (4.34 mmol) of acryloyl chloride was added and reacted at 15 ° C. for 4 hours. The obtained polyamic acid ester solution was added to 384 g of IPA with stirring, and the precipitated white precipitate was collected by filtration. Subsequently, the precipitate was washed 5 times with 256 g of IPA and dried to obtain a white precipitate. 5.11 g of polyamic acid ester resin powder was obtained. The yield was 89.6%. Moreover, the molecular weight of this polyamic acid ester was Mn = 14,806 and Mw = 32,719.
0.80 g of the obtained polyamic acid ester resin powder was placed in a 20 mL Erlenmeyer flask, 7.20 g of GBL was added, and the mixture was stirred and dissolved at room temperature under a nitrogen atmosphere for 24 hours to obtain a polyamic acid ester solution (PAE-3).
<合成例9>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-5を2.80g(25.9mmol)、ジアミンDA-2を1.45g(6.47mmol)量り取り、NMPを111g、及び塩基としてピリジン6.18g(78.1mmol)を加え、窒素を送りながら撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を9.89g(30.4mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを0.38g(4.21mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1230gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、沈殿物を1230gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末10.2gを得た。収率は、83.0%であった。また、このポリアミック酸エステルの分子量はMn=20,786、Mw=40,973であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを20mL三角フラスコにとりGBLを7.19g加え、窒素雰囲気下室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(PAE-4)を得た。
<Synthesis Example 9>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.80 g (25.9 mmol) of diamine DA-5, 1.45 g (6.47 mmol) of diamine DA-2, 111 g of NMP, and 6.18 g (78.1 mmol) of pyridine was added as a base, and dissolved by stirring while feeding nitrogen. Next, 9.89 g (30.4 mmol) of DE-1 was added while stirring the diamine solution, and the mixture was reacted at 15 ° C. overnight. After stirring overnight, 0.38 g (4.21 mmol) of acryloyl chloride was added and reacted at 15 ° C. for 4 hours. The obtained polyamic acid ester solution was poured into 1230 g of water while stirring, and the precipitated white precipitate was collected by filtration. Subsequently, the precipitate was washed 5 times with 1230 g of IPA and dried to obtain a white precipitate. 10.2 g of polyamic acid ester resin powder was obtained. The yield was 83.0%. Moreover, the molecular weight of this polyamic acid ester was Mn = 20,786 and Mw = 40,973.
0.80 g of the obtained polyamic acid ester resin powder was placed in a 20 mL Erlenmeyer flask, 7.19 g of GBL was added, and the mixture was stirred and dissolved at room temperature in a nitrogen atmosphere for 24 hours to obtain a polyamic acid ester solution (PAE-4).
<合成例10>
 撹拌装置及び窒素導入管付きの1000mL四つ口フラスコに、ジアミンDA-3を14.4g(58.8mmol)、ジアミンDA-12を2.48g(6.53mmol)量り取り、NMPを622g、及び塩基としてピリジン11.6g(147mmol)を加え、窒素を送りながら撹拌して溶解させた。次にこのジアミン溶液を撹拌しながらDE-1を20.0g(61.4mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロリドを1.70g(18.8mmol)加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、2691gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、沈殿物を1345gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末31.4gを得た。収率は、95.9%であった。また、このポリアミック酸エステルの分子量はMn=13,012、Mw=25,594であった。
 得られたポリアミック酸エステル樹脂粉末3.70gを100mL三角フラスコにとりNMPを33.3g加え、窒素雰囲気下室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液(PAE-5)を得た。
<Synthesis Example 10>
In a 1000 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 14.4 g (58.8 mmol) of diamine DA-3, 2.48 g (6.53 mmol) of diamine DA-12, 622 g of NMP, and 11.6 g (147 mmol) of pyridine was added as a base, and dissolved by stirring while feeding nitrogen. Next, 20.0 g (61.4 mmol) of DE-1 was added while stirring the diamine solution, and the mixture was reacted at 15 ° C. overnight. After stirring overnight, 1.70 g (18.8 mmol) of acryloyl chloride was added and reacted at 15 ° C. for 4 hours. The obtained polyamic acid ester solution was poured into 2691 g of IPA with stirring, and the precipitated white precipitate was collected by filtration. Subsequently, the precipitate was washed with 1345 g of IPA five times and dried to obtain a white precipitate. 31.4 g of polyamic acid ester resin powder was obtained. The yield was 95.9%. Moreover, the molecular weight of this polyamic acid ester was Mn = 13,012, Mw = 25,594.
3.70 g of the resulting polyamic acid ester resin powder was placed in a 100 mL Erlenmeyer flask, 33.3 g of NMP was added, and the mixture was stirred and dissolved at room temperature in a nitrogen atmosphere for 24 hours to obtain a polyamic acid ester solution (PAE-5).
<合成例11>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-6を0.91g(5.98mmol)、ジアミンDA-8を4.78g(23.9mmol)量り取り、NMPを13.3g、及びGBLを6.66g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらカルボン酸二無水物DC-4を4.76g(24.0mmol)添加し、GBLを9.99g加えて、室温で2時間攪拌した。次に、GBLを20.0g加えて攪拌した後、カルボン酸二無水物DC-7を1.31g(6.00mmol)添加し、GBLを4.80g加えて、室温で24時間攪拌し、ポリアミック酸溶液(PAA-5)を得た。得られたポリアミック酸溶液の25℃における粘度は4,147mPa・sであった。また、ポリアミック酸の分子量はMn=24,333、Mw=60,010であった。
<Synthesis Example 11>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 0.91 g (5.98 mmol) of diamine DA-6 and 4.78 g (23.9 mmol) of diamine DA-8 were weighed and 13.3 g of NMP was measured. And 6.66 g of GBL were added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 4.76 g (24.0 mmol) of carboxylic dianhydride DC-4 was added, 9.99 g of GBL was added, and the mixture was stirred at room temperature for 2 hours. Next, after 20.0 g of GBL was added and stirred, 1.31 g (6.00 mmol) of carboxylic dianhydride DC-7 was added, 4.80 g of GBL was added, and the mixture was stirred at room temperature for 24 hours. An acid solution (PAA-5) was obtained. The viscosity of the obtained polyamic acid solution at 25 ° C. was 4,147 mPa · s. The molecular weight of the polyamic acid was Mn = 24,333 and Mw = 60,010.
<合成例12>
 撹拌装置及び窒素導入管付きの1000mL四つ口フラスコに、ジアミンDA-3を48.86g(200mmol)、ジアミンDA-11を18.47g(50.0mmol)量り取り、NMPを770g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらカルボン酸二無水物DC-1を51.11g(228mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は193mPa・sであった。また、このポリアミック酸の分子量はMn=9890、Mw=22458であった。
 撹拌装置及び窒素導入管付きの3000mL四つ口フラスコに得られたポリアミック酸溶液を1200g量り取り、NMPを400g加え、窒素を流しながら30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を93.10g、ピリジンを24.05g加えて、55℃で2時間半加熱し、化学イミド化を行った。得られた反応液を6600mLのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、沈殿物を6600mLのメタノールで3回洗浄し、2000mLのメタノールで2回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(2)を得た。
 このポリイミド樹脂粉末のイミド化率は、70%、分子量はMn=6737、Mw=14181であった。
 撹拌子を入れた200mL三角フラスコに得られたポリイミド樹脂粉末(2)を20.69g秤量し、NMPを151.71g加え、窒素雰囲気下40℃で24時間撹拌し溶解させて、固形分濃度が12質量%のポリイミド溶液(PI-2)を得た。
<Synthesis Example 12>
In a 1000 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 48.86 g (200 mmol) of diamine DA-3 and 18.47 g (50.0 mmol) of diamine DA-11 were weighed, 770 g of NMP was added, and nitrogen was added. The solution was stirred and dissolved while feeding. While stirring this diamine solution, 51.11 g (228 mmol) of carboxylic dianhydride DC-1 was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at 40 ° C. for 20 hours to be polyamic. An acid solution was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 193 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 9890 and Mw = 22458.
1200 g of the polyamic acid solution obtained in a 3000 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube was weighed, 400 g of NMP was added, and the mixture was stirred for 30 minutes while flowing nitrogen. To the obtained polyamic acid solution, 93.10 g of acetic anhydride and 24.05 g of pyridine were added and heated at 55 ° C. for 2 and a half hours to perform chemical imidization. The obtained reaction solution was poured into 6600 mL of methanol while stirring, and the deposited precipitate was collected by filtration. Subsequently, the precipitate was washed 3 times with 6600 mL of methanol and twice with 2000 mL of methanol. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (2).
The imidation ratio of this polyimide resin powder was 70%, and the molecular weights were Mn = 6737 and Mw = 14181.
206.9 g of polyimide resin powder (2) obtained in a 200 mL Erlenmeyer flask containing a stir bar was weighed, 151.71 g of NMP was added, and the mixture was stirred and dissolved at 40 ° C. for 24 hours in a nitrogen atmosphere. A 12 mass% polyimide solution (PI-2) was obtained.
<合成例13>
 撹拌装置及び窒素導入管付きの50mL四つ口フラスコに、カルボン酸二無水物DC-5を0.89g(3.56mmol)、ジアミンDA-16を(2.50g,6.33mmol)、ジアミンDA-15を1.53g(6.32mmol)及びジアミンDA-5を0.59g(5.46mmol)量り取り、16.6gのNEP中で混合し、窒素を流しながら80℃で5時間反応させた。その後、カルボン酸二無水物DC-2を2.80g(14.3mmol)とNEPを8.31g加え、40℃で6時間反応させ、固形分濃度が25質量%のポリアミック酸を得た。
 得られたポリアミック酸溶液30.0gにNMPを加え、固形分濃度が6質量%となるように希釈した後、イミド化触媒として無水酢酸を4.40gおよびピリジンを3.30g加え、80℃で3時間反応させた。この反応溶液を460mlのメタノール中に投入し、得られた沈殿物を濾別した。続いて、沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は75%であり、数平均分子量は16,800、重量平均分子量は44,300であった。
 次いで、ポリイミド粉末(3)を0.50g秤量し、NEPを11.3g加え、窒素雰囲気下70℃で24時間攪拌して溶解させた。この溶液に、PB(7.52g)を加え、40℃で4時間攪拌して、ポリイミド溶液(PI-3)を得た。
<Synthesis Example 13>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.89 g (3.56 mmol) of carboxylic dianhydride DC-5, (2.50 g, 6.33 mmol) of diamine DA-16, diamine DA 1.53 g (6.32 mmol) of -15 and 0.59 g (5.46 mmol) of diamine DA-5 were weighed out, mixed in 16.6 g of NEP, and reacted at 80 ° C. for 5 hours while flowing nitrogen. . Thereafter, 2.80 g (14.3 mmol) of carboxylic acid dianhydride DC-2 and 8.31 g of NEP were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid having a solid content concentration of 25 mass%.
After adding NMP to 30.0 g of the obtained polyamic acid solution and diluting so that the solid content concentration becomes 6% by mass, 4.40 g of acetic anhydride and 3.30 g of pyridine are added as an imidization catalyst, and 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into 460 ml of methanol, and the resulting precipitate was separated by filtration. Subsequently, the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (3). The imidation ratio of this polyimide was 75%, the number average molecular weight was 16,800, and the weight average molecular weight was 44,300.
Next, 0.50 g of polyimide powder (3) was weighed, 11.3 g of NEP was added, and the mixture was stirred and dissolved at 70 ° C. for 24 hours in a nitrogen atmosphere. To this solution, PB (7.52 g) was added and stirred at 40 ° C. for 4 hours to obtain a polyimide solution (PI-3).
<合成例14>
 撹拌装置及び窒素導入管付きの50mL四つ口フラスコに、カルボン酸二無水物DC-5を2.55g(10.2mmol)、ジアミンDA-17を1.27g(3.09mmol)及びジアミンDA-6を2.67g(17.5mmol)量り取り、17.0gのNEP中で混合し、窒素を流しながら80℃で5時間反応させた。その後、カルボン酸二無水物DC-2を2.00g(10.2mmol)とNEPを8.50g加え、40℃で6時間反応させ、固形分濃度が25質量%のポリアミック酸を得た。
 得られたポリアミック酸溶液30.0gにNMPを加え、固形分濃度が6質量%となるように希釈した後、イミド化触媒として無水酢酸を4.40gおよびピリジンを3.30g加え、80℃で3時間反応させた。この反応溶液を460mlのメタノール中に投入し、得られた沈殿物を濾別した。続いて、沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は76%であり、数平均分子量は18,500、重量平均分子量は46,500であった。
 次いで、ポリイミド粉末(4)を0.80g秤量し、NEPを7.52gを加え、窒素雰囲気下70℃で24時間攪拌して、ポリイミド溶液(PI-4)を得た。
<Synthesis Example 14>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 2.55 g (10.2 mmol) of carboxylic dianhydride DC-5, 1.27 g (3.09 mmol) of diamine DA-17 and diamine DA- 2.67 g (17.5 mmol) was weighed out, mixed in 17.0 g NEP, and reacted at 80 ° C. for 5 hours while flowing nitrogen. Thereafter, 2.00 g (10.2 mmol) of carboxylic acid dianhydride DC-2 and 8.50 g of NEP were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid having a solid content concentration of 25 mass%.
After adding NMP to 30.0 g of the obtained polyamic acid solution and diluting so that the solid content concentration becomes 6% by mass, 4.40 g of acetic anhydride and 3.30 g of pyridine are added as an imidization catalyst, and 80 ° C. The reaction was performed for 3 hours. This reaction solution was put into 460 ml of methanol, and the resulting precipitate was separated by filtration. Subsequently, the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (4). The imidation ratio of this polyimide was 76%, the number average molecular weight was 18,500, and the weight average molecular weight was 46,500.
Next, 0.80 g of polyimide powder (4) was weighed, 7.52 g of NEP was added, and the mixture was stirred at 70 ° C. for 24 hours under a nitrogen atmosphere to obtain a polyimide solution (PI-4).
<合成例15>
 撹拌装置及び窒素導入管付きの50mL四つ口フラスコに、カルボン酸二無水物DC-5を4.21g(16.8mmol)、ジアミンDA-18を2.95g(6.82mmol)及びジアミンDA-6を2.42g(15.9mmol)量り取り、21.4gのNMP中で混合し、窒素を流しながら80℃で5時間反応させた後、カルボン酸二無水物DC-2を1.10g(5.61mmol)とNMPを10.7g加え、40℃で6時間反応させ、固形分濃度が25質量%のポリアミック酸を得た。
 得られたポリアミック酸溶液30.0gにNMPを加え、固形分濃度が6質量%となるように希釈した後、イミド化触媒として無水酢酸を4.40gおよびピリジンを3.30g加え、80℃で3.5時間反応させた。この反応溶液を460mlのメタノール中に投入し、得られた沈殿物を濾別した。続いて、沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は17,600、重量平均分子量は43,500であった。
 次いで、ポリイミド粉末(5)を2.50g秤量し、NMPを18.3g加え、窒素雰囲気下70℃で24時間攪拌して溶解させ、固形分濃度が12質量%のポリイミド溶液(PI-5)を得た。
<Synthesis Example 15>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 4.21 g (16.8 mmol) of carboxylic dianhydride DC-5, 2.95 g (6.82 mmol) of diamine DA-18, and diamine DA- 6 was weighed out, mixed in 21.4 g of NMP, reacted at 80 ° C. with flowing nitrogen for 5 hours, and then 1.10 g of carboxylic dianhydride DC-2 ( (5.61 mmol) and 10.7 g of NMP were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid having a solid content concentration of 25 mass%.
After adding NMP to 30.0 g of the obtained polyamic acid solution and diluting so that the solid content concentration becomes 6% by mass, 4.40 g of acetic anhydride and 3.30 g of pyridine are added as an imidization catalyst, and 80 ° C. The reaction was performed for 3.5 hours. This reaction solution was put into 460 ml of methanol, and the resulting precipitate was separated by filtration. Subsequently, the precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (5). The imidation ratio of this polyimide was 80%, the number average molecular weight was 17,600, and the weight average molecular weight was 43,500.
Next, 2.50 g of polyimide powder (5) was weighed, 18.3 g of NMP was added, and the mixture was stirred and dissolved at 70 ° C. for 24 hours under a nitrogen atmosphere to obtain a polyimide solution (PI-5) having a solid content concentration of 12% by mass. Got.
<合成例16>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-21を3.77g(10.00mmol)量り取り、NMPを50.0g加え、すべて溶解したのを確認した後、カルボン酸二無水物DC-6を9.01g(30.00mmol)固体のままゆっくり加え、窒素を流しながら40℃で3時間反応させた。
 一方でメカニカルスターラーを備え付けた300mL四つ口フラスコに、ジアミンDA-5を9.73g(90.00mmol)量り取り、NMPを111.1gと先に調整した反応溶液を加え、すべて溶解したのを確認した後、カルボン酸二無水物DC-6を20.27g(67.50mmol)固体のままゆっくり加え、NMP10.00gでフラスコ壁を洗浄し、40℃で6時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸の分子量は数平均分子量は10,200、重量平均分子量は23,600であった。
 次いで、撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、上記で得られたポリアミック酸溶液を40.00g量り取り、NMPを74.3g加え、無水酢酸を19.02g(186.29mmol)、ピリジンを8.84g(111.71mmol)を加え、室温で30分攪拌した後、40℃で2.5時間反応させた。反応終了後、反応溶液を室温に戻し、約10℃に冷やしたメタノール500mlにゆっくり注ぎ固体を析出させ、沈殿物を濾別した。続いて、沈殿物を200mlのメタノールで2回リパルプ洗浄を行い、100℃で真空乾燥させポリイミド粉末(6)を得た。
 攪拌子を備えた100ml枝付ナスフラスコに、上記の操作で得られたポリイミド粉末(6)を4.0g測り取り、GBLを62.67g加え、窒素雰囲気下50℃で攪拌し溶解させることにより、固形分濃度が6.0質量%のポリイミド溶液(PI-6)を得た。
<Synthesis Example 16>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 3.77 g (10.00 mmol) of diamine DA-21 was weighed and 50.0 g of NMP was added. Anhydrous DC-6 was slowly added as a solid in 9.01 g (30.00 mmol), and reacted at 40 ° C. for 3 hours while flowing nitrogen.
On the other hand, to a 300 mL four-necked flask equipped with a mechanical stirrer, 9.73 g (90.00 mmol) of diamine DA-5 was weighed, and 111.1 g of NMP was added to the previously prepared reaction solution. After confirmation, carboxylic dianhydride DC-6 was slowly added in the form of 20.27 g (67.50 mmol) solid, the flask wall was washed with 10.00 g of NMP and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution. It was. The polyamic acid had a number average molecular weight of 10,200 and a weight average molecular weight of 23,600.
Next, 40.00 g of the polyamic acid solution obtained above was weighed into a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 74.3 g of NMP was added, and 19.02 g (186.29 mmol) of acetic anhydride was added. Then, 8.84 g (111.71 mmol) of pyridine was added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 40 ° C. for 2.5 hours. After completion of the reaction, the reaction solution was returned to room temperature, slowly poured into 500 ml of methanol cooled to about 10 ° C. to precipitate a solid, and the precipitate was separated by filtration. Subsequently, the precipitate was repulped with 200 ml of methanol twice and vacuum dried at 100 ° C. to obtain a polyimide powder (6).
By weighing 4.0 g of the polyimide powder (6) obtained by the above operation into a 100 ml branch eggplant flask equipped with a stir bar, adding 62.67 g of GBL, and stirring and dissolving at 50 ° C. in a nitrogen atmosphere. A polyimide solution (PI-6) having a solid content concentration of 6.0% by mass was obtained.
<合成例17>
 撹拌装置及び窒素導入管付きの500mL四つ口フラスコに、カルボン酸二無水物DC-2を19.86g(0.101mol)、カルボン酸二無水物DC-7を9.81g(0.045mol)、ジアミンDA-22を5.50g(0.045mol)、ジアミンDA-24を12.20g(0.060mol)、及びジアミンDA-19を13.16g(0.045mol)量り取り、NMP242.1g中、室温で窒素を流しながら18時間反応させ、固形分濃度20質量%のポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は597mPa・sであった。またこのポリアミック酸の分子量は、Mn=14224、Mw=36140であった。
 次いで、上記で得られたポリアミック酸溶液140.0gに、NMPを210.0g加えて希釈し、固形分濃度8.0質量%のポリアミック酸溶液を調製し、無水酢酸21.08gとピリジン8.99gを加え、50℃で2時間反応させて化学イミド化した。得られたポリイミド溶液を室温程度まで冷却後、メタノール1330g中に投入し、沈殿物を濾別した。続いて、沈殿物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド粉末(7)を得た。このポリイミドの数平均分子量は10920、重量平均分子量は31108であった。また、イミド化率は85%であった。
 攪拌子を備えた100ml枝付ナスフラスコに、上記の操作で得られたポリイミド粉末(7)を11.0g測り取り、GBLを80,7g加え、窒素雰囲気下50℃で20時間攪拌し溶解させることにより、固形分濃度が12.0質量%のポリイミド溶液(PI-7)を得た。
<Synthesis Example 17>
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 19.86 g (0.101 mol) of carboxylic dianhydride DC-2 and 9.81 g (0.045 mol) of carboxylic dianhydride DC-7 Diamine DA-22, 5.50 g (0.045 mol), diamine DA-24, 12.20 g (0.060 mol), and diamine DA-19, 13.16 g (0.045 mol), were weighed in 242.1 g of NMP. The mixture was reacted for 18 hours while flowing nitrogen at room temperature to obtain a polyamic acid solution having a solid concentration of 20% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 597 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14224 and Mw = 36140.
Next, 210.0 g of NMP was added to 140.0 g of the polyamic acid solution obtained above and diluted to prepare a polyamic acid solution having a solid concentration of 8.0% by mass, and 21.08 g of acetic anhydride and 8. 99 g was added and reacted at 50 ° C. for 2 hours for chemical imidization. The obtained polyimide solution was cooled to about room temperature and then poured into 1330 g of methanol, and the precipitate was separated by filtration. Then, after wash | cleaning a deposit twice with methanol, it dried under reduced pressure at 100 degreeC and obtained the polyimide powder (7). The number average molecular weight of this polyimide was 10920, and the weight average molecular weight was 31108. Moreover, the imidation ratio was 85%.
In a 100 ml branched eggplant flask equipped with a stir bar, 11.0 g of the polyimide powder (7) obtained by the above operation is weighed, 80,7 g of GBL is added, and stirred and dissolved at 50 ° C. for 20 hours in a nitrogen atmosphere. As a result, a polyimide solution (PI-7) having a solid content concentration of 12.0% by mass was obtained.
<合成例18>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、カルボン酸二無水物DC-2を18.53g(0.095mol),カルボン酸二無水物DC-7を8.83g(0.041mol)、ジアミンDA-23を6.60g(0.054mol)、ジアミンDA-24を8.23g(0.041mol)、ジアミンDA-20を12.98g(0.041mol)量り取り、NMP239.1g中、室温で窒素を流しながら22時間反応させポリアミック酸(PAA-2)の濃度20wt%の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は693mPa・sであった。またこのポリアミック酸の分子量は、Mn=20366、Mw=54052であった。
 次いで、撹拌装置及び窒素導入管付きの500mL四つ口フラスコに、上記で得られたポリアミック酸溶液160.0gにNMPを240.0g加えて希釈し、固形分濃度8.0質量%のポリアミック酸溶液を調製し、無水酢酸22.26gとピリジン9.49gを加え、50℃で2時間反応させてイミド化した。得られたポリイミド溶液を室温程度まで冷却後、メタノール1511g中に投入し、沈殿物を濾別した。続いて、沈殿物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド粉末(8)を得た。このポリイミドの数平均分子量は13306、重量平均分子量は35615であった。また、イミド化率は85%であった。
 攪拌子を備えた100ml枝付ナスフラスコに、上記の操作で得られたポリイミド粉末(8)を11.0g測り取り、GBLを80,7g加え、窒素雰囲気下50℃で20時間攪拌し溶解させることにより、固形分濃度が12.0質量%のポリイミド溶液(PI-8)を得た。
<Synthesis Example 18>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 18.53 g (0.095 mol) of carboxylic dianhydride DC-2 and 8.83 g (0.041 mol) of carboxylic dianhydride DC-7 Diamine DA-23, 6.60 g (0.054 mol), diamine DA-24, 8.23 g (0.041 mol), and diamine DA-20, 12.98 g (0.041 mol), were weighed out in 239.1 g of NMP. The mixture was reacted for 22 hours while flowing nitrogen at room temperature to obtain a solution of polyamic acid (PAA-2) having a concentration of 20 wt%. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 693 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 20366 and Mw = 54052.
Next, in a 500 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 240.0 g of NMP was added to 160.0 g of the polyamic acid solution obtained above and diluted to obtain a polyamic acid having a solid content concentration of 8.0% by mass. A solution was prepared, 22.26 g of acetic anhydride and 9.49 g of pyridine were added, and the mixture was reacted at 50 ° C. for 2 hours to imidize. The obtained polyimide solution was cooled to about room temperature and then poured into 1511 g of methanol, and the precipitate was separated by filtration. Then, after wash | cleaning a deposit twice with methanol, it dried under reduced pressure at 100 degreeC and obtained the polyimide powder (8). The number average molecular weight of this polyimide was 13306, and the weight average molecular weight was 35615. Further, the imidization ratio was 85%.
In a 100 ml branched eggplant flask equipped with a stir bar, 11.0 g of the polyimide powder (8) obtained by the above operation is weighed, 80,7 g of GBL is added, and stirred and dissolved at 50 ° C. for 20 hours in a nitrogen atmosphere. As a result, a polyimide solution (PI-8) having a solid concentration of 12.0% by mass was obtained.
<合成例19>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-21を3.77g(10.00mmol)量り取り、NMPを50.0g加え、すべて溶解したのを確認した後、カルボン酸二無水物DC-8を6.73g(30.00mmol)固体のままゆっくり加え、窒素雰囲気下40℃で3時間反応させた。
 一方でメカニカルスターラーを備え付けた300mL四つ口フラスコに、ジアミンDA-5を9.73g(90.00mmol)量り取り、NMPを111.1gと先に調整した反応溶液を加え、すべて溶解したのを確認した後、カルボン酸二無水物DC-8を15.13g(67.50mmol)固体のままゆっくり加え、NMP10.00gでフラスコ壁を洗浄し、窒素雰囲気下40℃で6時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸の分子量は数平均分子量は9,000、重量平均分子量は21,600であった。
 次いで、撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、上記で得られたポリアミック酸溶液を38.00g量り取り、NMPを70.3g加え、無水酢酸を19.02g(186.29mmol)、ピリジンを8.84g(111.71mmol)を加え、室温で30分攪拌した後、40℃で2.5時間反応させた。反応終了後、反応溶液を室温に戻し、約10℃に冷やしたメタノール500mlにゆっくり注ぎ固体を析出させ、沈殿物を濾別した。続いて、沈殿物を200mlのメタノールで2回リパルプ洗浄を行い、100℃で真空乾燥させポリイミド粉末(9)を得た。
 攪拌子を備えた100ml枝付ナスフラスコに、上記の操作で得られたポリイミド粉末(9)を4.0g測り取り、GBLを62.67g加え、窒素雰囲気下50℃で攪拌し溶解させることにより、固形分濃度が6.0質量%のポリイミド溶液(PI-9)を得た。
<Synthesis Example 19>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 3.77 g (10.00 mmol) of diamine DA-21 was weighed and 50.0 g of NMP was added. Anhydrous DC-8 was slowly added in the form of 6.73 g (30.00 mmol) of solid and reacted at 40 ° C. for 3 hours under a nitrogen atmosphere.
On the other hand, to a 300 mL four-necked flask equipped with a mechanical stirrer, 9.73 g (90.00 mmol) of diamine DA-5 was weighed, and 111.1 g of NMP was added to the previously prepared reaction solution. After confirmation, 15.13 g (67.50 mmol) of carboxylic acid dianhydride DC-8 was slowly added as a solid, the flask wall was washed with 10.00 g of NMP, reacted at 40 ° C. for 6 hours in a nitrogen atmosphere, and polyamic acid. A solution was obtained. The polyamic acid had a number average molecular weight of 9,000 and a weight average molecular weight of 21,600.
Next, 38.00 g of the polyamic acid solution obtained above was weighed into a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 70.3 g of NMP was added, and 19.02 g (186.29 mmol) of acetic anhydride was added. Then, 8.84 g (111.71 mmol) of pyridine was added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 40 ° C. for 2.5 hours. After completion of the reaction, the reaction solution was returned to room temperature, slowly poured into 500 ml of methanol cooled to about 10 ° C. to precipitate a solid, and the precipitate was separated by filtration. Subsequently, the precipitate was repulped with 200 ml of methanol twice and vacuum dried at 100 ° C. to obtain a polyimide powder (9).
By weighing 4.0 g of the polyimide powder (9) obtained by the above operation into a 100 ml branch eggplant flask equipped with a stir bar, adding 62.67 g of GBL, and stirring and dissolving at 50 ° C. in a nitrogen atmosphere. A polyimide solution (PI-9) having a solid content concentration of 6.0% by mass was obtained.
<合成例20>
 撹拌装置及び窒素導入管付きの2000mL四つ口フラスコに、DA-8を63.76g(320mmol)、DA-6を12.17g(79.99mmol)取り、NMPを1094g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、DC-3を112.59g(383mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加えて、室温で24時間撹拌し、ポリアミック酸(PAA-6)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は384mPa・sであった。
<Synthesis Example 20>
In a 2000 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 63.76 g (320 mmol) of DA-8 and 12.17 g (79.99 mmol) of DA-6 were added, 1094 g of NMP was added, and nitrogen was fed. Stir to dissolve. While stirring the diamine solution, 112.59 g (383 mmol) of DC-3 was added, NMP was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at room temperature for 24 hours, and polyamic acid (PAA- A solution of 6) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 384 mPa · s.
<合成例21>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-10を5.00g(17.46mmol)量り取り、NMPを48.17g加え溶解させ、氷浴下10℃以下に冷却し、カルボン酸二無水物DC-7を3.50g(16.06mmol)少しずつ加え、室温に戻し粘度が安定するまで反応させ、固形分濃度15質量%のポリアミック酸溶液(PAA-7)を得た。このポリアミック酸溶液の温度25℃における粘度は420mPa・sであり、数平均分子量12,500、重量平均分子量は33800であった。
<Synthesis Example 21>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 5.00 g (17.46 mmol) of diamine DA-10 is weighed, 48.17 g of NMP is added and dissolved, cooled to 10 ° C. or lower in an ice bath, 3.50 g (16.06 mmol) of carboxylic dianhydride DC-7 was added little by little, and the mixture was returned to room temperature and allowed to react until the viscosity was stabilized to obtain a polyamic acid solution (PAA-7) having a solid concentration of 15% by mass. . The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 420 mPa · s, the number average molecular weight was 12,500, and the weight average molecular weight was 33800.
<合成例22>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-7を1.98g(10.00mmol)、ジアミンDA-8を8.40g(40.00mmol)量り取り、NMPを152.10g加え溶解させ、約10℃に冷却し、カルボン酸二無水物DC-2を7.35g(38.00mmol)を少しずつ加え、続いてカルボン酸二無水物DC-6を3.00g(10.00mmol)少しずつ加え、室温に戻し粘度が安定するまで反応させ、固形分濃度が12質量%のポリアミック酸溶液(PAA-8)を得た。このポリアミック酸溶液の温度25℃における粘度は180mPa・sであった。
<Synthesis Example 22>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 1.98 g (10.00 mmol) of diamine DA-7 and 8.40 g (40.00 mmol) of diamine DA-8 were weighed, and 152.10 g of NMP. Add and dissolve, cool to about 10 ° C., add 7.35 g (38.00 mmol) of carboxylic dianhydride DC-2 little by little, followed by 3.00 g (10. 00 mmol) was added little by little, and the reaction was allowed to return to room temperature until the viscosity was stabilized, thereby obtaining a polyamic acid solution (PAA-8) having a solid concentration of 12% by mass. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 180 mPa · s.
<合成例23>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-9を4.51g(17.46mmol)測り取り、NMPを45.39g加え溶解させ、氷浴下10℃以下に冷却し、カルボン酸二無水物DC-7を3.50g(16.06mmol)少しずつ加え、室温に戻し粘度が安定するまで反応させ、固形分濃度が15質量%のポリアミック酸溶液(PAA-9)を得た。このポリアミック酸溶液の温度25℃における粘度は390mPa・sであり、数平均分子量11,200、重量平均分子量は31800であった。
<Synthesis Example 23>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.51 g (17.46 mmol) of diamine DA-9 is measured, 45.39 g of NMP is added and dissolved, and cooled to 10 ° C. or lower in an ice bath. 3.50 g (16.06 mmol) of carboxylic acid dianhydride DC-7 was added little by little, and the reaction was allowed to return to room temperature until the viscosity was stabilized to obtain a polyamic acid solution (PAA-9) having a solid content concentration of 15% by mass. It was. This polyamic acid solution had a viscosity of 390 mPa · s at a temperature of 25 ° C., a number average molecular weight of 11,200 and a weight average molecular weight of 31,800.
<合成例24>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、ジアミンDA-7を1.98g(10.00mmol)、ジアミンDA-8を8.40g(40.00mmol)量り取り、NMPを144.25g加え溶解させ、約10℃に冷却し、カルボン酸二無水物DC-2を9.29g(47.50mmol)個体のまま少しずつ加え、室温に戻してから粘度が安定するまで反応させ、固形分濃度が12質量%のポリアミック酸溶液(PAA-10)を得た。このポリアミック酸溶液の温度25℃における粘度は250mPa・sであった。
<Synthesis Example 24>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 1.98 g (10.00 mmol) of diamine DA-7 and 8.40 g (40.00 mmol) of diamine DA-8 are weighed, and 144.25 g of NMP is obtained. Add and dissolve, cool to about 10 ° C., add 9.29 g (47.50 mmol) of carboxylic acid dianhydride DC-2 little by little, return to room temperature, and react until the viscosity stabilizes. A polyamic acid solution (PAA-10) having a concentration of 12% by mass was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 250 mPa · s.
<合成例25>
 撹拌装置及び窒素導入管付きの500mL四つ口フラスコに、ジアミンDA-7を29.73g(150.00mmol)量り取り、NMPを169.8g、GBLを169.8g加え、すべて溶解したのを確認した後、窒素雰囲気下約10℃にてカルボン酸二無水物DC-2を13.83g(70.50mmol)固体のままゆっくり加え、30分攪拌し、その後、カルボン酸二無水物DC-7を16.36g(50.00mmol)固体のまま加え、室温に戻し6時間反応させ、固形分濃度が15質量%のポリアミック酸溶液を得た。数平均分子量は9,400、重量平均分子量は11,500であった。
 攪拌子を備えた1Lの三角フラスコに、上記の操作で得られたポリアミック酸溶液を350g測り取り、GBLを393.75g、BCSを131.25g加え、3時間攪拌し、固形分濃度が6.0質量%のポリアミック酸溶液(PAA-11)を得た。
<Synthesis Example 25>
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 29.73 g (150.00 mmol) of diamine DA-7 was weighed, 169.8 g of NMP and 169.8 g of GBL were added, and all were dissolved. Thereafter, 13.83 g (70.50 mmol) of carboxylic acid dianhydride DC-2 was slowly added as a solid at about 10 ° C. under a nitrogen atmosphere and stirred for 30 minutes, and then carboxylic acid dianhydride DC-7 was added. 16.36 g (50.00 mmol) of solid was added as it was, returned to room temperature and reacted for 6 hours to obtain a polyamic acid solution with a solid content concentration of 15 mass%. The number average molecular weight was 9,400, and the weight average molecular weight was 11,500.
To a 1 L Erlenmeyer flask equipped with a stirrer, 350 g of the polyamic acid solution obtained by the above operation was weighed, 393.75 g of GBL and 131.25 g of BCS were added, and the mixture was stirred for 3 hours. A 0% by mass polyamic acid solution (PAA-11) was obtained.
<実施例4>
 合成例4で得られたポリイミド溶液(PI-1)を4.58g、合成例20で得られたポリアミック酸溶液(PAA-6)を4.58g量り取り、NMPを6.83g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A4を得た。
<Example 4>
4.58 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 4.58 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed, 6.83 g of NMP, and 4 BCS. 0.005 g, 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. For 3 hours to obtain a liquid crystal aligning agent A4.
<実施例5>
 合成例4で得られたポリイミド溶液(PI-1)を3.67g、合成例20で得られたポリアミック酸溶液(PAA-6)を5.50g量り取り、NMPを6.83g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A5を得た。
<Example 5>
3.67 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 and 5.50 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed out, 6.83 g of NMP and 4 BCS. 0.005 g, 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. For 3 hours to obtain a liquid crystal aligning agent A5.
<実施例6>
 合成例12で得られたポリイミド溶液(PI-2)を4.59g、合成例20で得られたポリアミック酸溶液(PAA-6)を4.57g量り取り、NMPを6.85g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A6を得た。
<Example 6>
4.59 g of the polyimide solution (PI-2) obtained in Synthesis Example 12 and 4.57 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 20 were weighed out, 6.85 g of NMP, and 4 BCS. 0.005 g, 0.15 g of N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, and 0.06 g of additive A were added at room temperature. Was stirred for 3 hours to obtain a liquid crystal aligning agent A6.
<実施例7>
 合成例4で得られたポリイミド溶液(PI-1)を9.17g量り取り、NMPを6.83g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A7を得た。
<Example 7>
9.17 g of the polyimide solution (PI-1) obtained in Synthesis Example 4 was weighed, 6.83 g of NMP, 4.00 g of BCS, and N-α- (9-fluorenylmethoxycarbonyl as an imidization accelerator. ) -N-τ-t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, followed by stirring at room temperature for 3 hours to obtain a liquid crystal aligning agent A7.
<実施例8>
 合成例12で得られたポリイミド溶液(PI-1)を8.85g量り取り、NMPを7.15g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A7を得た。
<実施例9>
 添加剤Aの代わりに添加剤Bを添加したこと以外は、実施例4と同様な方法により液晶配向液晶配向剤A9を得た。
<実施例10>
 添加剤Aの代わりに添加剤Bを添加したこと以外は、実施例5と同様な方法により液晶配向液晶配向剤A10を得た。
<Example 8>
8.85 g of the polyimide solution (PI-1) obtained in Synthesis Example 12 was weighed, 7.15 g of NMP, 4.00 g of BCS, and N-α- (9-fluorenylmethoxycarbonyl as an imidization accelerator. ) -N-τ-t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, followed by stirring at room temperature for 3 hours to obtain a liquid crystal aligning agent A7.
<Example 9>
A liquid crystal alignment liquid crystal aligning agent A9 was obtained in the same manner as in Example 4 except that the additive B was added instead of the additive A.
<Example 10>
A liquid crystal alignment liquid crystal aligning agent A10 was obtained by the same method as in Example 5 except that the additive B was added instead of the additive A.
<実施例11>
 添加剤Aの代わりに添加剤Bを添加したこと以外は、実施例6と同様な方法により液晶配向液晶配向剤A11を得た。
<実施例12>
 添加剤Aの代わりに添加剤Bを添加したこと以外は、実施例7と同様な方法により液晶配向液晶配向剤A12を得た。
<実施例13>
 添加剤Aの代わりに添加剤Bを添加したこと以外は、実施例8と同様な方法により液晶配向液晶配向剤A13を得た。
<Example 11>
A liquid crystal alignment liquid crystal aligning agent A11 was obtained in the same manner as in Example 6 except that the additive B was added instead of the additive A.
<Example 12>
Liquid crystal aligning liquid crystal aligning agent A12 was obtained by the same method as Example 7 except having added additive B instead of additive A.
<Example 13>
A liquid crystal alignment liquid crystal aligning agent A13 was obtained in the same manner as in Example 8 except that the additive B was added instead of the additive A.
<実施例14>
 合成例6で得られたポリアミック酸エステル溶液(PAE-1)を4.40g、合成例11で得られたポリアミック酸溶液(PAA-5)を5.50g量り取り、NMPを0.52g、GBLを5.58g、BCSを4.01g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A14を得た。
<Example 14>
4.40 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 6 and 5.50 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.52 g of NMP, GBL 5.58 g, 4.01 g BCS, 0.15 g N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A14.
<実施例15>
 合成例7で得られたポリアミック酸エステル溶液(PAE-2)を4.41g、合成例11で得られたポリアミック酸溶液(PAA-5)を5.49g量り取り、NMPを0.50g、GBLを5.60g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A15を得た。
<Example 15>
4.41 g of the polyamic acid ester solution (PAE-2) obtained in Synthesis Example 7 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A15.
<実施例16>
 合成例8で得られたポリアミック酸エステル溶液(PAE-3)を4.42g、合成例11で得られたポリアミック酸溶液(PAA-5)を5.49g量り取り、NMPを0.50g、GBLを5.60g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A16を得た。
<Example 16>
4.42 g of the polyamic acid ester solution (PAE-3) obtained in Synthesis Example 8 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A16.
<実施例17>
 合成例9で得られたポリアミック酸エステル溶液(PAE-4)を4.42g、合成例11で得られたポリアミック酸溶液(PAA-5)を5.50g量り取り、NMPを0.50g、GBLを5.60g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A17を得た。
<Example 17>
4.42 g of the polyamic acid ester solution (PAE-4) obtained in Synthesis Example 9 and 5.50 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A17.
<実施例18>
 合成例10で得られたポリアミック酸エステル溶液(PAE-5)を4.42g、合成例11で得られたポリアミック酸溶液(PAA-5)を5.49g量り取り、NMPを0.50g、GBLを5.60g、BCSを4.00g、イミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、及び添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A16を得た。
<Example 18>
4.42 g of the polyamic acid ester solution (PAE-5) obtained in Synthesis Example 10 and 5.49 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 11 were weighed, 0.50 g of NMP, GBL 5.60 g, BCS 4.00 g, N-α- (9-fluorenylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine 0.15 g as an imidization accelerator, and additives 0.06g of A was added, and it stirred at room temperature for 3 hours, and obtained liquid crystal aligning agent A16.
<実施例19>
 合成例6で得られたポリアミック酸エステル溶液(PAE-1)を11.0g量り取り、GBLを4.99g、BCSを4.02g、及びイミド化促進剤としてN-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジンを0.15g、添加剤Aを0.06g加え、室温で3時間攪拌し、液晶配向剤A19を得た。
<Example 19>
11.0 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 6 was weighed, 4.99 g of GBL, 4.02 g of BCS, and N-α- (9-fluorene as an imidization accelerator. Nylmethoxycarbonyl) -N-τ-t-butoxycarbonyl-L-histidine (0.15 g) and additive A (0.06 g) were added, and the mixture was stirred at room temperature for 3 hours to obtain liquid crystal aligning agent A19.
<比較例4>
 添加剤Aを添加していないこと以外は、実施例4と同様な方法により液晶配向液晶配向剤B4を得た。
<比較例5>
 添加剤Aを添加していないこと以外は、実施例5と同様な方法により液晶配向液晶配向剤B5を得た。
<比較例6>
 添加剤Aを添加していないこと以外は、実施例6と同様な方法により液晶配向液晶配向剤B6を得た。
<Comparative example 4>
A liquid crystal alignment liquid crystal aligning agent B4 was obtained in the same manner as in Example 4 except that the additive A was not added.
<Comparative Example 5>
A liquid crystal alignment liquid crystal aligning agent B5 was obtained in the same manner as in Example 5 except that the additive A was not added.
<Comparative Example 6>
A liquid crystal alignment liquid crystal aligning agent B6 was obtained in the same manner as in Example 6 except that the additive A was not added.
<比較例7>
 添加剤Aを添加していないこと以外は、実施例7と同様な方法により液晶配向液晶配向剤B7を得た。
<比較例8>
 添加剤Aを添加していないこと以外は、実施例8と同様な方法により液晶配向液晶配向剤B8を得た。
<比較例9>
 添加剤Aを添加していないこと以外は、実施例9と同様な方法により液晶配向液晶配向剤B9を得た。
<Comparative Example 7>
A liquid crystal alignment liquid crystal aligning agent B7 was obtained in the same manner as in Example 7 except that the additive A was not added.
<Comparative Example 8>
A liquid crystal alignment liquid crystal aligning agent B8 was obtained in the same manner as in Example 8 except that the additive A was not added.
<Comparative Example 9>
A liquid crystal alignment liquid crystal aligning agent B9 was obtained in the same manner as in Example 9 except that the additive A was not added.
<比較例10>
 添加剤Aを添加していないこと以外は、実施例10と同様な方法により液晶配向液晶配向剤B10を得た。
<比較例11>
 添加剤Aを添加していないこと以外は、実施例11と同様な方法により液晶配向液晶配向剤B11を得た。
<比較例12>
 添加剤Aを添加していないこと以外は、実施例12と同様な方法により液晶配向液晶配向剤B12を得た。
<Comparative Example 10>
A liquid crystal alignment liquid crystal aligning agent B10 was obtained in the same manner as in Example 10 except that the additive A was not added.
<Comparative Example 11>
A liquid crystal alignment liquid crystal aligning agent B11 was obtained in the same manner as in Example 11 except that the additive A was not added.
<Comparative Example 12>
A liquid crystal alignment liquid crystal aligning agent B12 was obtained in the same manner as in Example 12 except that the additive A was not added.
<比較例13>
 添加剤Aを添加していないこと以外は、実施例13と同様な方法により液晶配向液晶配向剤B13を得た。
<比較例14>
 添加剤Aを添加していないこと以外は、実施例14と同様な方法により液晶配向液晶配向剤B14を得た。
<比較例15>
 添加剤Aの代わりに添加剤Cを添加したこと以外は、実施例5と同様な方法により液晶配向液晶配向剤B15を得た。
<Comparative Example 13>
A liquid crystal alignment liquid crystal aligning agent B13 was obtained in the same manner as in Example 13 except that the additive A was not added.
<Comparative example 14>
A liquid crystal alignment liquid crystal aligning agent B14 was obtained in the same manner as in Example 14 except that the additive A was not added.
<Comparative Example 15>
A liquid crystal alignment liquid crystal aligning agent B15 was obtained in the same manner as in Example 5 except that the additive C was added instead of the additive A.
<比較例16>
 添加剤Aの代わりに添加剤Cを添加したこと以外は、実施例6と同様な方法により液晶配向液晶配向剤B16を得た。
<比較例17>
 添加剤Aの代わりに添加剤Dを添加したこと以外は、実施例5と同様な方法により液晶配向液晶配向剤B17を得た。
<比較例18>
 添加剤Aの代わりに添加剤Dを添加したこと以外は、実施例6と同様な方法により液晶配向液晶配向剤B18を得た。
<Comparative Example 16>
A liquid crystal alignment liquid crystal aligning agent B16 was obtained in the same manner as in Example 6 except that the additive C was added instead of the additive A.
<Comparative Example 17>
A liquid crystal alignment liquid crystal aligning agent B17 was obtained in the same manner as in Example 5 except that the additive D was added instead of the additive A.
<Comparative Example 18>
A liquid crystal alignment liquid crystal aligning agent B18 was obtained in the same manner as in Example 6 except that the additive D was added instead of the additive A.
 上記実施例4~13、及び比較例4~8、15~18でそれぞれ得られた液晶配向剤を用いて、実施例3と同様な方法により得られた密着性評価の結果、及び液晶セルの液晶配向性の評価、交流駆動焼き付き評価を行った結果を、表5-1及び表5-2にまとめて示す。
 同様に、上記実施例14~19、及び比較例9~14でそれぞれ得られた液晶配向剤を用いて、実施例1と同様な方法により得られた液晶セルについての密着性評価及び交流駆動焼き付き評価を行った結果を、表5-1及び表5-2にまとめて示す。
Using the liquid crystal aligning agents obtained in Examples 4 to 13 and Comparative Examples 4 to 8 and 15 to 18 respectively, the results of the adhesion evaluation obtained by the same method as in Example 3, and the liquid crystal cell The results of the evaluation of liquid crystal alignment and the AC drive burn-in evaluation are summarized in Tables 5-1 and 5-2.
Similarly, using the liquid crystal aligning agents obtained in Examples 14 to 19 and Comparative Examples 9 to 14, respectively, the adhesion evaluation and AC drive image sticking of the liquid crystal cell obtained by the same method as in Example 1 The results of the evaluation are summarized in Table 5-1 and Table 5-2.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
<実施例20>
 合成例21で得られたポリアミック酸溶液(PAA-7)を8.0g、合成例22で得られたポリアミック酸溶液(PAA-8)を40.0g量り取り、NMPを31.7gとBCSを20.0g及び添加剤Aを0.30g加え、40℃で4時間攪拌し、液晶配向剤A20を得た。
<Example 20>
8.0 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 21 and 40.0 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 22 were weighed, and 31.7 g of NMP and BCS were measured. 20.0 g and 0.30 g of additive A were added, and the mixture was stirred at 40 ° C. for 4 hours to obtain liquid crystal aligning agent A20.
<密着性の測定>
 得られた液晶配向剤A20を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、230℃で20分間焼成して、膜厚100nmのポリイミド膜を得た。実施例1と同様の手順で密着性評価用のサンプル基板を作製し、卓上形精密万能試験機(島津製作所製、AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。
<Measurement of adhesion>
The obtained liquid crystal aligning agent A20 was filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked at 230 ° C. for 20 minutes. Thus, a polyimide film having a thickness of 100 nm was obtained. A sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
<液晶表示素子の作製>
 実施例1で用いたものと同様の基板を用意し、次いで、50℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。
<Production of liquid crystal display element>
A substrate similar to that used in Example 1 was prepared, then dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 20 minutes to form a 60 nm-thick coating film on each substrate. A membrane was obtained. The polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
Then, using the two types of substrates with the liquid crystal alignment film, the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 μm is formed. Produced. A liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell. The obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
<液晶配向性の評価>
 液晶セルの配向状態の評価を上記した実施例1と同様の方法により行った。
<液晶セルの交流駆動焼付き>
 実施例1と同様の方法で第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。交流駆動焼き付きΔが0.2未満を良好とし、それ以上を不良とした。
<Evaluation of liquid crystal alignment>
The alignment state of the liquid crystal cell was evaluated by the same method as in Example 1 described above.
<Liquid crystal cell AC drive burn>
The average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell in the same manner as in Example 1. AC drive image sticking Δ was less than 0.2 and good, and more than that.
<実施例21>
 合成例23で得られたポリアミック酸溶液(PAA-9)を8.0g、合成例24で得られたポリアミック酸溶液(PAA-9)を40.0g秤量し、NMPを31.7gとBCSを20.0g及び添加剤Aを0.30g加え、40℃で4時間攪拌し、液晶配向剤A21を得た。
<Example 21>
8.0 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 23 and 40.0 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 24 were weighed, and 31.7 g of NMP and BCS were measured. 20.0 g and 0.30 g of additive A were added, and the mixture was stirred at 40 ° C. for 4 hours to obtain liquid crystal aligning agent A21.
<比較例19>
 添加剤Aを添加していないこと以外は、実施例20と同様な方法により液晶配向液晶配向剤B19を得た。
<比較例20>
 添加剤Aを添加していないこと以外は、実施例21と同様な方法により液晶配向液晶配向剤B20を得た。
<比較例21>
 添加剤Aの代わりに添加剤Cを添加したこと以外は、実施例20と同様な方法により液晶配向液晶配向剤B21を得た。
<Comparative Example 19>
A liquid crystal alignment liquid crystal aligning agent B19 was obtained in the same manner as in Example 20 except that the additive A was not added.
<Comparative Example 20>
A liquid crystal alignment liquid crystal aligning agent B20 was obtained in the same manner as in Example 21 except that the additive A was not added.
<Comparative Example 21>
A liquid crystal alignment liquid crystal aligning agent B21 was obtained in the same manner as in Example 20 except that the additive C was added instead of the additive A.
<比較例22>
 添加剤Aの代わりに添加剤Cを添加したこと以外は、実施例21と同様な方法により液晶配向液晶配向剤B22を得た。
<比較例23>
 添加剤Aの代わりに添加剤Dを添加したこと以外は、実施例20と同様な方法により液晶配向液晶配向剤B23を得た。
<比較例24>
 添加剤Aの代わりに添加剤Dを添加したこと以外は、実施例21と同様な方法により液晶配向液晶配向剤B24を得た。
<Comparative Example 22>
A liquid crystal alignment liquid crystal aligning agent B22 was obtained in the same manner as in Example 21 except that the additive C was added instead of the additive A.
<Comparative Example 23>
A liquid crystal alignment liquid crystal aligning agent B23 was obtained in the same manner as in Example 20 except that the additive D was added instead of the additive A.
<Comparative Example 24>
A liquid crystal alignment liquid crystal aligning agent B24 was obtained in the same manner as in Example 21 except that the additive D was added instead of the additive A.
 上記実施例20、21、及び比較例20~24でそれぞれ得られた液晶配向剤を用いて、実施例20と同様な方法により得られた密着性評価の結果、及び液晶セルの液晶配向性の評価、交流駆動焼き付き評価を行った結果を行った結果を、表6にまとめて示す。 Using the liquid crystal aligning agents obtained in Examples 20 and 21 and Comparative Examples 20 to 24, respectively, the results of the adhesion evaluation obtained by the same method as in Example 20 and the liquid crystal orientation of the liquid crystal cell Table 6 summarizes the results of the evaluation and the results of the AC drive burn-in evaluation.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
<実施例22>
 合成例13で得られたポリイミド溶液(PI-3)を11.8g、合成例14で得られたポリイミド溶液(PI-4)を8.3g秤量し、PBを12.5g及び添加剤Aを0.07g加え、40℃で4時間攪拌し、液晶配向剤A22を得た。
<Example 22>
11.8 g of the polyimide solution (PI-3) obtained in Synthesis Example 13 and 8.3 g of the polyimide solution (PI-4) obtained in Synthesis Example 14 were weighed, and 12.5 g of PB and Additive A were added. 0.07g was added and it stirred at 40 degreeC for 4 hours, and obtained liquid crystal aligning agent A22.
<密着性の測定>
 得られた液晶配向剤A22を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。実施例1と同様の手順で密着性評価用のサンプル基板を作製し、卓上形精密万能試験機(島津製作所製、AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。
<Measurement of adhesion>
The obtained liquid crystal aligning agent A22 was filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, and heated at 100 ° C. for 5 minutes on a hot plate and at 230 ° C. in a heat circulation clean oven. Heat treatment was performed for 30 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm. A sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
<液晶配向性の評価>
 得られた液晶配向剤A22を1.0μmのフィルターで濾過した後、液晶セルの作製を行った。この溶液を純水及びIPAにて洗浄を行った100×100mmITO電極付き基板(縦100mm×横100mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン製)を注入し、注入口を封止して液晶セル(垂直配向セル)を得た。得られた液晶セルを120℃で1時間加熱し、該液晶セルの配向状態の評価を上記した実施例1と同様の方法により行った。
<Evaluation of liquid crystal alignment>
The obtained liquid crystal aligning agent A22 was filtered through a 1.0 μm filter, and then a liquid crystal cell was prepared. This solution was spin-coated on the ITO surface of a substrate with 100 × 100 mm ITO electrodes (length 100 mm × width 100 mm, thickness 0.7 mm) washed with pure water and IPA, and then on a hot plate at 100 ° C. for 5 minutes. Then, heat treatment was performed at 230 ° C. for 30 minutes in a heat circulation clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface on the inside, and the periphery was adhered with a sealant to prepare an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell (vertical alignment cell). The obtained liquid crystal cell was heated at 120 ° C. for 1 hour, and the alignment state of the liquid crystal cell was evaluated by the same method as in Example 1 described above.
<実施例23>
 合成例15で得られたポリイミド溶液(PI-5)を20.8gを秤量し、NMPを1.3g、BCSを19.6g及び添加剤Aを0.13g加え、室温で3時間攪拌し、液晶配向剤A23を得た。
<Example 23>
20.8 g of the polyimide solution (PI-5) obtained in Synthesis Example 15 was weighed, 1.3 g of NMP, 19.6 g of BCS and 0.13 g of additive A were added, and the mixture was stirred at room temperature for 3 hours. A liquid crystal aligning agent A23 was obtained.
<比較例25>
 添加剤Aを添加していないこと以外は、実施例22と同様な方法により液晶配向液晶配向剤B25を得た。
<比較例26>
 添加剤Aを添加していないこと以外は、実施例23と同様な方法により液晶配向液晶配向剤B26を得た。
<Comparative Example 25>
A liquid crystal alignment liquid crystal aligning agent B25 was obtained in the same manner as in Example 22 except that the additive A was not added.
<Comparative Example 26>
A liquid crystal alignment liquid crystal aligning agent B26 was obtained in the same manner as in Example 23 except that the additive A was not added.
 上記実施例22、23、及び比較例25、26でそれぞれ得られた液晶配向剤を用いて、実施例22と同様な方法により得られた試験基板についての密着性の評価の結果、及び液晶セルについての液晶配向性の評価を行った結果を、表7にまとめて示す。 Using the liquid crystal aligning agents obtained in Examples 22 and 23 and Comparative Examples 25 and 26, respectively, the results of evaluation of adhesion of the test substrate obtained by the same method as in Example 22, and the liquid crystal cell Table 7 summarizes the results of the evaluation of the liquid crystal orientation of the film.
<実施例24>
 合成例16で得られたポリイミド溶液(PI-6)を5.0g、合成例25で得られたポリアミック酸溶液(PAA-11)を20.0g秤量し、添加剤Aを0.08g加え、室温で24時間攪拌し、液晶配向剤A24を得た。
<Example 24>
5.0 g of the polyimide solution (PI-6) obtained in Synthesis Example 16 and 20.0 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 25 were weighed, 0.08 g of Additive A was added, It stirred at room temperature for 24 hours and obtained liquid crystal aligning agent A24.
<密着性の測定>
 得られた液晶配向剤A24を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で60秒乾燥させた後、220℃のIR(赤外線)オーブンを用いて窒素雰囲気下で20分間焼成を行い、膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。実施例1と同様の手順で密着性評価用のサンプル基板を作製し、卓上形精密万能試験機(島津製作所製、AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。
<Measurement of adhesion>
The obtained liquid crystal aligning agent A24 was filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 80 ° C. for 60 seconds, and then IR (infrared ray at 220 ° C. ) Using an oven, baking was performed in a nitrogen atmosphere for 20 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm. A sample substrate for adhesion evaluation was prepared in the same procedure as in Example 1, and the edge portions of the upper and lower substrates were fixed with a tabletop precision universal testing machine (manufactured by Shimadzu Corp., AGS-X 500N). The pressure (N) at the time of peeling was measured by pushing from the upper part of the central part.
<液晶配向性の評価>
 得られた液晶配向剤A24を1.0μmのフィルターで濾過した後、液晶セルの作製を行った。この溶液を純水及びIPAにて洗浄を行った100×100mmITO電極付き基板(縦100mm×横100mm、厚さ0.7mm)のITO面にスピンコートし、温度80℃のホットプレート上で60秒乾燥させた後、220℃のIR(赤外線)オーブンを用いて窒素雰囲気下で20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置でコットン布(吉川製YA-25C)を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.4mmの条件でラビングし、液晶配向膜付き基板を得た。
 得られた液晶配向膜付きのITO基板を2枚用意し、2枚の基板を液晶配向膜面が向き合いラビング方向が直行するようにして6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して液晶セル(TN配向セル)を得た。得られた液晶セルを120℃で1時間加熱し、該液晶セルの配向状態の評価を上記した実施例1と同様の方法により行った。
<Evaluation of liquid crystal alignment>
The obtained liquid crystal aligning agent A24 was filtered through a 1.0 μm filter, and then a liquid crystal cell was produced. This solution was spin-coated on the ITO surface of a 100 × 100 mm ITO electrode substrate (length 100 mm × width 100 mm, thickness 0.7 mm) washed with pure water and IPA, and heated on a hot plate at a temperature of 80 ° C. for 60 seconds. After drying, baking was performed in a nitrogen atmosphere using an IR (infrared) oven at 220 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating surface was rubbed with a cotton cloth (YA-25C, manufactured by Yoshikawa) using a rubbing machine with a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.4 mm, and liquid crystal alignment A substrate with a film was obtained.
Prepare two ITO substrates with the obtained liquid crystal alignment film, combine the two substrates with a 6 μm spacer so that the liquid crystal alignment film faces each other and the rubbing direction is perpendicular, and bond the periphery with a sealant An empty cell was produced. MLC-2003 (Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell (TN-oriented cell). The obtained liquid crystal cell was heated at 120 ° C. for 1 hour, and the alignment state of the liquid crystal cell was evaluated by the same method as in Example 1 described above.
<実施例25>
 合成例17で得られたポリイミド溶液(PI-7)を64.2gと、合成例18で得られたポリイミド溶液(PI-8)を27.5g混合し、さらにこの溶液にGBL23.8g、NMP41.8g、BCS62.7gおよび添加剤Aを0.66g加え、50℃で20時間攪拌し、液晶配向剤A25を得た。
<実施例26>
 合成例19で得られたポリイミド溶液(PI-9)を5.0g、合成例25で得られたポリアミック酸溶液(PAA-11)を20.0g秤量し、添加剤Aを0.08g加え、室温で24時間攪拌し、液晶配向剤A26を得た。
<Example 25>
64.2 g of the polyimide solution (PI-7) obtained in Synthesis Example 17 and 27.5 g of the polyimide solution (PI-8) obtained in Synthesis Example 18 were mixed, and further 23.8 g of GBL and NMP41 were added to this solution. 0.8 g, BCS 62.7 g and Additive A 0.66 g were added and stirred at 50 ° C. for 20 hours to obtain Liquid Crystal Alignment Agent A25.
<Example 26>
5.0 g of the polyimide solution (PI-9) obtained in Synthesis Example 19 and 20.0 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 25 were weighed, 0.08 g of Additive A was added, It stirred at room temperature for 24 hours and obtained liquid crystal aligning agent A26.
<比較例27>
 添加剤Aを添加していないこと以外は、実施例24と同様な方法により液晶配向液晶配向剤B27を得た。
<比較例28>
 添加剤Aを添加していないこと以外は、実施例25と同様な方法により液晶配向液晶配向剤B28を得た。
<比較例29>
 添加剤Aを添加していないこと以外は、実施例26と同様な方法により液晶配向液晶配向剤B29を得た。
<Comparative Example 27>
A liquid crystal alignment liquid crystal aligning agent B27 was obtained in the same manner as in Example 24 except that the additive A was not added.
<Comparative example 28>
A liquid crystal alignment liquid crystal aligning agent B28 was obtained in the same manner as in Example 25 except that the additive A was not added.
<Comparative Example 29>
A liquid crystal alignment liquid crystal aligning agent B29 was obtained in the same manner as in Example 26 except that the additive A was not added.
 上記実施例24~26、及び比較例27~29でそれぞれ得られた液晶配向剤を用いて、実施例24と同様な方法により得られた密着性評価の結果、及び液晶セルの液晶配向性の評価を行った結果を表7にまとめて示す。 Using the liquid crystal aligning agents obtained in Examples 24 to 26 and Comparative Examples 27 to 29, respectively, the results of the adhesion evaluation obtained by the same method as in Example 24, and the liquid crystal orientation of the liquid crystal cell Table 7 summarizes the results of the evaluation.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 本発明の液晶配向剤から得られる液晶配向膜は、シール剤や基板との接着性(密着性)を満足し、なおかつ、液晶配向性や電気特性を両立した特性が発現する。このような本発明の液晶配向膜を備える、IPS、及びFFS駆動方式の液晶表示素子では、発生する交流駆動により生じる残像や、直流電圧により蓄積した残留電荷による表示焼きつきが抑制され、かつ、高いシール密着性を有する。そのため、高い表示品位が求められる広範な液晶表示素子における利用が可能である。 The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention satisfies the adhesiveness (adhesiveness) with the sealant and the substrate, and also exhibits characteristics that are compatible with liquid crystal alignment and electrical characteristics. In an IPS and FFS drive type liquid crystal display device comprising such a liquid crystal alignment film of the present invention, afterimages caused by the generated AC drive and display burn-in due to residual charges accumulated by a DC voltage are suppressed, and High seal adhesion. Therefore, it can be used in a wide range of liquid crystal display elements that require high display quality.
 なお、2013年11月15日に出願された日本特許出願2013-237319号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-237319 filed on November 15, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (17)

  1.  下記の(A)成分、(B)成分、及び有機溶剤を含有することを特徴とする液晶配向剤。
     (A)成分:下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体。
     (B)成分:ヒドロキシアルキルアミド基を有する化合物。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、4価の有機基であり、Yは、2価の有機基である。Rは、水素原子、又は炭素数1~5のアルキル基である。A及びAは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基であり、これらの基は置換基を有していてもよい。)
    The liquid crystal aligning agent characterized by containing the following (A) component, (B) component, and an organic solvent.
    (A) Component: At least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor.
    (B) Component: A compound having a hydroxyalkylamide group.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 is a tetravalent organic group, Y 1 is a divalent organic group. R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 1 and A 2 are Each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms, and these groups have a substituent. May be good.)
  2.  (B)成分が、ヒドロキシアルキルアミド基を2つ以上有する化合物である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent of Claim 1 whose (B) component is a compound which has two or more hydroxyalkylamide groups.
  3.  (B)成分が、(A)成分に対して0.1~20質量%含有される、請求項1又は2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the component (B) is contained in an amount of 0.1 to 20% by mass relative to the component (A).
  4.  (B)成分が、下記式(2)で表される請求項1~3のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2~6の整数である。R及びRは、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基であり、これらの基は置換基を有していてもよい。なお、R及びRのうち少なくとも1つは、置換基としてヒドロキシ基を有する。)
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the component (B) is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (X 2 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group, and n is an integer of 2 to 6. R 2 and R 3 are Each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and these groups may have a substituent. (At least one of R 2 and R 3 has a hydroxy group as a substituent.)
  5.  R及びRのうち少なくとも1つが、下記式(3)である、請求項1~4のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (R~Rは、それぞれ独立して、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein at least one of R 2 and R 3 is represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (R 4 to R 7 are each independently a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group.)
  6.  X中の、カルボニル基に直接結合する原子は、芳香環を形成していない炭素原子である、請求項1~5のいずれかに記載の液晶配向剤。 6. The liquid crystal aligning agent according to claim 1, wherein the atom directly bonded to the carbonyl group in X 2 is a carbon atom that does not form an aromatic ring.
  7.  Xが、脂肪族炭化水素基である、請求項1~6のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein X 2 is an aliphatic hydrocarbon group.
  8.  R及びRが、下記式(4)で表される化合物である、請求項1~7のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal aligning agent according to any one of claims 1 to 7, wherein R 2 and R 3 are compounds represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
  9.  (B)成分が下記のいずれかの化合物である、請求項1~8のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    The liquid crystal aligning agent according to any one of claims 1 to 8, wherein the component (B) is any one of the following compounds.
    Figure JPOXMLDOC01-appb-C000005
  10.  Xが、下記式(X-1)~(X-14)からなる群から選ばれる少なくとも1種の構造である、請求項1~9のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (R~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。)
    X 1 is at least one structure selected from the group consisting of the following formulas (X-1) ~ (X -14), the liquid crystal alignment agent according to any one of claims 1-9.
    Figure JPOXMLDOC01-appb-C000006
    (R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyl group, or a phenyl group.)
  11.  Xが、下記式(X1-1)及び(X1-2)からなる群から選ばれる少なくとも1種の構造である、請求項1~10のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    X 1 is at least one structure selected from the group consisting of the following formulas (X1-1) and (Xl-2), the liquid crystal alignment agent according to any one of claims 1 to 10.
    Figure JPOXMLDOC01-appb-C000007
  12.  Yが、下記式(5)及び(6)からなる群から選ばれる少なくとも1種の構造である請求項1~11のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (R12は単結合、又は炭素数1~30の2価の有機基であり、R13は水素原子、ハロゲン原子又は炭素数1~30の1価の有機基であり、aは1~4の整数であり、aが2以上の場合は、(R12-R13)は、互いに同一でも異なっていてもよい。R14は単結合、-O-、-S-、-NR15-、アミド結合、エステル結合、ウレア結合、又は炭素数1~40の2価の有機基であり、R15は、水素原子、又はメチル基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 11, wherein Y 1 has at least one structure selected from the group consisting of the following formulas (5) and (6).
    Figure JPOXMLDOC01-appb-C000008
    (R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms, R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms, and a is 1 to 4 In the case where a is 2 or more, (R 12 -R 13 ) may be the same as or different from each other, and R 14 is a single bond, —O—, —S—, —NR 15 —, An amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms, and R 15 is a hydrogen atom or a methyl group.)
  13.  請求項1~12のいずれかに記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 12.
  14.  請求項1~12のいずれかに記載の液晶配向剤を塗布し、波長100~400nmの偏光させた放射線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of claims 1 to 12 and irradiating polarized radiation having a wavelength of 100 to 400 nm.
  15.  焼成後の膜厚が5~300nmである請求項13又は14に記載の液晶配向膜。 The liquid crystal alignment film according to claim 13 or 14, wherein the film thickness after firing is 5 to 300 nm.
  16.  請求項13~15のいずれかに記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to any one of claims 13 to 15.
  17.  請求項13~15のいずれかに記載の液晶配向膜を具備する横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display element comprising the liquid crystal alignment film according to any one of claims 13 to 15.
PCT/JP2014/080237 2013-11-15 2014-11-14 Liquid crystal aligning agent, and liquid crystal display element using same WO2015072554A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012561A KR102391044B1 (en) 2013-11-15 2014-11-14 Liquid crystal aligning agent, and liquid crystal display element using same
JP2015547810A JP6520716B2 (en) 2013-11-15 2014-11-14 Liquid crystal aligning agent and liquid crystal display device using the same
CN201480062648.XA CN105723276B (en) 2013-11-15 2014-11-14 Aligning agent for liquid crystal and the liquid crystal expression element for having used it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013237319 2013-11-15
JP2013-237319 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072554A1 true WO2015072554A1 (en) 2015-05-21

Family

ID=53057488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080237 WO2015072554A1 (en) 2013-11-15 2014-11-14 Liquid crystal aligning agent, and liquid crystal display element using same

Country Status (5)

Country Link
JP (1) JP6520716B2 (en)
KR (1) KR102391044B1 (en)
CN (1) CN105723276B (en)
TW (1) TWI637029B (en)
WO (1) WO2015072554A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160070142A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same
US20160109759A1 (en) * 2014-10-21 2016-04-21 Samsung Display Co., Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method of manufacturing the same
WO2016063834A1 (en) * 2014-10-20 2016-04-28 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
JP2016118753A (en) * 2014-12-22 2016-06-30 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2017022636A1 (en) * 2015-07-31 2017-02-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018047872A1 (en) * 2016-09-07 2018-03-15 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018230617A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film
CN109196411A (en) * 2016-03-31 2019-01-11 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2019139028A1 (en) * 2018-01-10 2019-07-18 日産化学株式会社 Resin composition for insulating film
WO2019142927A1 (en) * 2018-01-19 2019-07-25 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2018092811A1 (en) * 2016-11-18 2019-10-17 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN110651221A (en) * 2017-05-22 2020-01-03 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20200037216A (en) 2017-07-28 2020-04-08 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
WO2020105934A1 (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, liquid crystal alignment film using same, and liquid crystal display device
WO2020105933A1 (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal alignment agent composition, method for preparing liquid crystal alignment film by using same, and liquid crystal alignment film and liquid crystal display device which use same
WO2020116459A1 (en) * 2018-12-04 2020-06-11 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20200088846A (en) 2017-11-30 2020-07-23 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
WO2020171128A1 (en) * 2019-02-21 2020-08-27 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element using same
WO2020184628A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
EP3750973A4 (en) * 2019-01-21 2020-12-23 Lg Chem, Ltd. Liquid crystal alignment composition, and liquid crystal alignment film and liquid crystal display using same
WO2021246431A1 (en) * 2020-06-05 2021-12-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11592713B2 (en) * 2018-01-10 2023-02-28 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film and liquid crystal display device using same
KR102666618B1 (en) 2017-06-08 2024-05-16 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211361B2 (en) * 2017-06-08 2023-01-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7093059B2 (en) * 2017-07-14 2022-06-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
KR20200135980A (en) * 2018-03-28 2020-12-04 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
TW202146524A (en) * 2020-06-10 2021-12-16 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278724A (en) 1996-02-15 1997-10-28 Nissan Chem Ind Ltd Diaminobenzene derivative and polyimide using the same, and oriented liquid crystal film
JPH10123532A (en) 1996-07-11 1998-05-15 Nissan Chem Ind Ltd Orientation treating agent for liquid crystal cell
JP2012042694A (en) * 2010-08-19 2012-03-01 Jnc Corp Diamine, liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
US20120172542A1 (en) * 2011-01-04 2012-07-05 Chi Mei Corporation Liquid Crystal (LC) Alignment Agent, LC Alignment Film And LC Display Device Having Thereof
JP2013010889A (en) * 2011-06-30 2013-01-17 Jnc Corp Polyamic acid, and liquid crystal orientating agent, liquid crystal oriented film, and liquid crystal display element using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731229B2 (en) * 1995-10-20 2006-01-05 チッソ株式会社 Polyamide acid, polyimide film, liquid crystal alignment film using the same, and liquid crystal display element
TWI283783B (en) * 1999-12-09 2007-07-11 Jsr Corp Liquid crystal alignment film and liquid crystal display device
CA2480800C (en) * 2002-04-08 2008-09-23 Mark T. Bilodeau Inhibitors of akt activity
JP2012197268A (en) * 2011-03-04 2012-10-18 Toyo Ink Sc Holdings Co Ltd β-HYDROXYALKYLAMIDE AND CROSSLINKABLE COMPOSITION
CN103402975B (en) * 2011-03-04 2016-08-17 东洋油墨Sc控股株式会社 Beta-hydroxyalkylamides and resin combination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278724A (en) 1996-02-15 1997-10-28 Nissan Chem Ind Ltd Diaminobenzene derivative and polyimide using the same, and oriented liquid crystal film
JPH10123532A (en) 1996-07-11 1998-05-15 Nissan Chem Ind Ltd Orientation treating agent for liquid crystal cell
JP2012042694A (en) * 2010-08-19 2012-03-01 Jnc Corp Diamine, liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
US20120172542A1 (en) * 2011-01-04 2012-07-05 Chi Mei Corporation Liquid Crystal (LC) Alignment Agent, LC Alignment Film And LC Display Device Having Thereof
JP2013010889A (en) * 2011-06-30 2013-01-17 Jnc Corp Polyamic acid, and liquid crystal orientating agent, liquid crystal oriented film, and liquid crystal display element using the same

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057620A (en) * 2014-09-04 2016-04-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method for manufacturing the same
US20160070142A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same
US10061160B2 (en) * 2014-09-04 2018-08-28 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same
WO2016063834A1 (en) * 2014-10-20 2016-04-28 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
US10054820B2 (en) * 2014-10-21 2018-08-21 Samsung Display Co., Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method of manufacturing the same
US20160109759A1 (en) * 2014-10-21 2016-04-21 Samsung Display Co., Ltd. Photoalignment agent, photoalignment film, liquid crystal display device, and method of manufacturing the same
JP2016081057A (en) * 2014-10-21 2016-05-16 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Liquid crystal display device
JP2016118753A (en) * 2014-12-22 2016-06-30 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JPWO2017022636A1 (en) * 2015-07-31 2018-05-24 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017022636A1 (en) * 2015-07-31 2017-02-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102672865B1 (en) 2015-07-31 2024-06-05 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN109196411A (en) * 2016-03-31 2019-01-11 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
JPWO2018047872A1 (en) * 2016-09-07 2019-06-24 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
KR20190050811A (en) 2016-09-07 2019-05-13 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018047872A1 (en) * 2016-09-07 2018-03-15 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7299556B2 (en) 2016-09-07 2023-06-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102554992B1 (en) * 2016-09-07 2023-07-12 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP7259328B2 (en) 2016-11-18 2023-04-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018092811A1 (en) * 2016-11-18 2019-10-17 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN110651221A (en) * 2017-05-22 2020-01-03 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN110651221B (en) * 2017-05-22 2021-10-22 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102666618B1 (en) 2017-06-08 2024-05-16 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
KR102623136B1 (en) * 2017-06-14 2024-01-09 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element using the same, and manufacturing method of the liquid crystal aligning film
JPWO2018230617A1 (en) * 2017-06-14 2020-04-16 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display device using the same, and method for producing the liquid crystal aligning film
KR20200018441A (en) * 2017-06-14 2020-02-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element using the same, and manufacturing method of the liquid crystal aligning film
JP7161147B2 (en) 2017-06-14 2022-10-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and method for producing the liquid crystal alignment film
WO2018230617A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film
KR20200037216A (en) 2017-07-28 2020-04-08 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
KR20200088846A (en) 2017-11-30 2020-07-23 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
WO2019139028A1 (en) * 2018-01-10 2019-07-18 日産化学株式会社 Resin composition for insulating film
US11592713B2 (en) * 2018-01-10 2023-02-28 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film and liquid crystal display device using same
WO2019142927A1 (en) * 2018-01-19 2019-07-25 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2019142927A1 (en) * 2018-01-19 2021-01-14 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using it
JP7193783B2 (en) 2018-01-19 2022-12-21 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7102536B2 (en) 2018-11-20 2022-07-19 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
WO2020105934A1 (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, liquid crystal alignment film using same, and liquid crystal display device
WO2020105933A1 (en) * 2018-11-20 2020-05-28 주식회사 엘지화학 Liquid crystal alignment agent composition, method for preparing liquid crystal alignment film by using same, and liquid crystal alignment film and liquid crystal display device which use same
JP7102541B2 (en) 2018-11-20 2022-07-19 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using it, liquid crystal alignment film and liquid crystal display element using it.
JP2021517272A (en) * 2018-11-20 2021-07-15 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using it, liquid crystal alignment film and liquid crystal display element using it.
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
US11512255B2 (en) 2018-11-20 2022-11-29 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
JP2021515909A (en) * 2018-11-20 2021-06-24 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, manufacturing method of liquid crystal alignment film using this, liquid crystal alignment film and liquid crystal display element using this
JPWO2020116459A1 (en) * 2018-12-04 2021-10-21 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7428138B2 (en) 2018-12-04 2024-02-06 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2020116459A1 (en) * 2018-12-04 2020-06-11 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11561438B2 (en) 2019-01-21 2023-01-24 Lg Chem, Ltd. Liquid crystal alignment agent composition, and liquid crystal alignment film, and liquid crystal display using the same
EP3750973A4 (en) * 2019-01-21 2020-12-23 Lg Chem, Ltd. Liquid crystal alignment composition, and liquid crystal alignment film and liquid crystal display using same
JP2021516368A (en) * 2019-01-21 2021-07-01 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, liquid crystal alignment film and liquid crystal display element using the same.
JP6992242B2 (en) 2019-01-21 2022-01-13 エルジー・ケム・リミテッド Liquid crystal alignment agent composition, liquid crystal alignment film and liquid crystal display element using the same.
WO2020171128A1 (en) * 2019-02-21 2020-08-27 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element using same
JPWO2020171128A1 (en) * 2019-02-21 2021-12-16 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element using it
JP7428978B2 (en) 2019-02-21 2024-02-07 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element using the same
JPWO2020184628A1 (en) * 2019-03-12 2020-09-17
WO2020184628A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JP7417205B2 (en) 2019-03-12 2024-01-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
CN113557471A (en) * 2019-03-12 2021-10-26 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
WO2021246431A1 (en) * 2020-06-05 2021-12-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
CN105723276B (en) 2019-04-09
TW201531527A (en) 2015-08-16
KR102391044B1 (en) 2022-04-26
JPWO2015072554A1 (en) 2017-03-16
JP6520716B2 (en) 2019-05-29
KR20160081922A (en) 2016-07-08
CN105723276A (en) 2016-06-29
TWI637029B (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP6520716B2 (en) Liquid crystal aligning agent and liquid crystal display device using the same
JP6669161B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2019194720A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal alignment element
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
TWI658064B (en) Liquid crystal alignment agent containing polyfluorene imide precursor having thermal release group and / or polyfluorene
JP6919574B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2015152174A1 (en) Liquid crystal aligning agent containing polyamic acid ester-polyamic acid copolymer, and liquid crystal alignment film using the same
WO2013157586A1 (en) Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7131384B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
WO2015080186A1 (en) Liquid crystal aligning agent, and liquid crystal display element using same
WO2018062437A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018062439A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014148440A1 (en) Liquid crystal aligning agent for in-plane switching
JP7193782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2016010084A1 (en) Liquid crystal aligning agent for optical alignment, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547810

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012561

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862988

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14862988

Country of ref document: EP

Kind code of ref document: A1