WO2014148440A1 - Liquid crystal aligning agent for in-plane switching - Google Patents

Liquid crystal aligning agent for in-plane switching Download PDF

Info

Publication number
WO2014148440A1
WO2014148440A1 PCT/JP2014/057179 JP2014057179W WO2014148440A1 WO 2014148440 A1 WO2014148440 A1 WO 2014148440A1 JP 2014057179 W JP2014057179 W JP 2014057179W WO 2014148440 A1 WO2014148440 A1 WO 2014148440A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
formula
electric field
Prior art date
Application number
PCT/JP2014/057179
Other languages
French (fr)
Japanese (ja)
Inventor
新平 新津
真文 高橋
大 望月
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157029949A priority Critical patent/KR102206414B1/en
Priority to JP2015506773A priority patent/JP6508040B2/en
Priority to CN201480016940.8A priority patent/CN105051594B/en
Publication of WO2014148440A1 publication Critical patent/WO2014148440A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for a horizontal electric field drive type liquid crystal element, a liquid crystal alignment film using the same, and a horizontal electric field drive type liquid crystal element.
  • Liquid crystal display elements are display elements that utilize electro-optical changes in liquid crystals, and their characteristics such as small size and light weight and low power consumption have attracted attention. In recent years, they have made remarkable progress as display devices for various displays. ing.
  • As a liquid crystal display device there are a type of display in which liquid crystal molecules aligned in parallel with a pair of opposed transparent substrates are driven by applying an electric field in a direction perpendicular to the substrate, and a type parallel to the substrate. There is a type that performs display by applying an electric field in the direction.
  • the former is called a TN mode liquid crystal display device, and the latter is called a transverse electric field drive (IPS) liquid crystal display device.
  • IPS transverse electric field drive
  • liquid crystal display device of the horizontal electric field driving method basically sees only the minor axis direction of the liquid crystal molecules even if the viewpoint is moved, there is no dependency on the viewing angle of the “standing” of the liquid crystal molecules, A wider viewing angle than a TN mode liquid crystal display device can be achieved (see Patent Document 1). Therefore, in recent years, IPS mode liquid crystal display devices tend to be used more frequently than TN mode liquid crystal display devices.
  • a polyimide-based liquid crystal alignment film is most commonly used in terms of chemical stability, thermal stability, and the like.
  • the polyimide-based liquid crystal alignment film is obtained by applying a polyamic acid (also referred to as polyamic acid) solution, which is a polyimide precursor, onto a substrate, baking it at a temperature of 150 ° C. or higher, imidizing it, and then performing a rubbing treatment. In general, a liquid crystal alignment film is obtained.
  • the rubbing treatment is a liquid crystal alignment treatment method adopted industrially, but the liquid crystal alignment film peels off from the substrate due to friction during rubbing, or the liquid crystal alignment film is scratched, resulting in display characteristics. There was a problem affecting it.
  • the liquid crystal alignment film obtained from the conventional polyimide-based liquid crystal alignment treatment agent has the advantages and disadvantages that both the solvent-soluble polyimide and polyamic acid contained in the liquid crystal alignment treatment agent are opposite to each other as the liquid crystal alignment film, It is not always easy to satisfy all the characteristics required for a liquid crystal alignment film. For this reason, there has been a strong demand for a liquid crystal alignment treatment agent that is particularly excellent in printability, adhesion, and rubbing resistance to a substrate and has high reliability.
  • the liquid crystal alignment film is formed from a polyimide-based liquid crystal alignment treatment agent in the above-described lateral electric field drive type liquid crystal display element
  • -It was found that there was a problem with the black level in the display, which caused a sense of discomfort in the color of the screen.
  • the orientation of the director in which the liquid crystal molecules are arranged is determined by performing a rubbing process on the liquid crystal alignment film in the liquid crystal display element of the horizontal electric field drive system. For this reason, the initial alignment may vary through the rubbing process.
  • the deterioration of the black level is considered to be a phenomenon caused by the disturbance of the initial orientation and is a problem to be solved.
  • solvent-soluble polyimides generally have poor solubility compared to polyimide precursors, and diamines that can be used are limited.
  • the solubility tends to deteriorate, and there is a problem that the amount of introduction is limited when such a diamine is used.
  • the object of the present invention does not have the problem that the screen color tone based on the black element is uncomfortable, and in addition, it has excellent printability and adhesion to the substrate, and does not peel off from the substrate during rubbing.
  • a polyimide-based liquid crystal alignment treatment agent for a liquid crystal display element of a lateral electric field drive method, a liquid crystal alignment film using the liquid crystal alignment film, and a liquid crystal of a horizontal electric field drive method which can obtain a liquid crystal alignment film that is hardly damaged by rubbing. It is to provide an element.
  • the present inventor has conducted earnest research to achieve the above object, and as a polyimide-based liquid crystal alignment treatment agent, a solvent-soluble polyimide is used, and one of the raw materials of the solvent-soluble polyimide is a tetracarboxylic dianhydride component.
  • the idea was to use bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride as And, by using a liquid crystal alignment treatment agent containing such solvent-soluble polyimide, in particular, the problem that the screen color tone based on the black element causes a sense of incongruity in the lateral electric field drive type liquid crystal display element affects other characteristics. It was found that it can be solved without any problems.
  • Liquid crystal alignment for transverse electric field characterized by containing polyimide obtained by dehydrating and ring-closing a polyimide precursor having a structural unit represented by the following formula (1) as a structural unit derived from tetracarboxylic dianhydride Processing agent.
  • X 1 is a tetravalent organic group represented by the following formula (X 1 ), and R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. 2.
  • n 1 to 12.
  • a liquid crystal alignment film for driving a horizontal electric field obtained by applying the liquid crystal alignment treatment agent according to any one of 1 to 6 above to a substrate and baking it. 8).
  • a liquid crystal display element for driving a horizontal electric field comprising the liquid crystal alignment film according to 7 above.
  • liquid crystal alignment treatment agent of the present invention in the lateral electric field drive type liquid crystal display element, it is possible to solve the problem of an uncomfortable feeling in the color tone of the screen based on the black element, and it is excellent in printability and adhesion to the substrate, In addition, a liquid crystal alignment film that does not peel off from the substrate during rubbing and is difficult to damage the alignment film due to rubbing can be obtained.
  • liquid crystal alignment treatment agent of the present invention can solve the problem that the screen tone based on the black element in the horizontal electric field drive type liquid crystal display element can cause a sense of incongruity is not necessarily clear, It is estimated as follows. A circuit having severe unevenness is formed on the actual substrate in the liquid crystal display element, and therefore, it is necessary to uniformly align the liquid crystal even in the flat portion and the step portion. While strong liquid crystal alignment is required at the flat part, the stretchability of the polymer chain is important at the step part. Since portions having different rubbing conditions are generated due to the influence of the step, it is effective to improve the stretching characteristics by imparting flexibility to the film to the step portion.
  • the liquid-crystal aligning agent of this invention contains the polyimide obtained by ring-closing the polyimide precursor which has a structural unit represented by following formula (1) as a structural unit derived from tetracarboxylic dianhydride.
  • X 1 is a tetravalent organic group represented by the following formula (X 1 ), and R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the structure represented by the formula (X 1 ) is derived from bicyclo [3.3.0] -octane-2,4,6,8-tetracarboxylic acid.
  • (X 1 ) has structural isomers of the following formulas [IV], [V], and [VI].
  • a polyimide precursor may be produced using one of the isomers, or a polyimide precursor may be produced using a mixture of isomers.
  • the content of isomer [IV] is preferably 90% or more, and more preferably 95% or more.
  • the structural unit of the formula (1) is preferably 30 to 100 mol%, more preferably 50 to 80 mol based on 1 mol of all structural units derived from the tetracarboxylic acid derivative. %.
  • the polyimide precursor used in the present invention may contain a structural unit represented by the following formula (3) as a structural unit derived from a tetracarboxylic acid derivative.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • X is a tetravalent organic group.
  • X is X 1 in the above formula (1) is excluded.
  • Specific examples of X include the following (X-1) to (X-42).
  • R 3 to R 6 each independently represents a hydrogen atom, a methyl group or a phenyl group.
  • the structure of X has the formula (X-1) (wherein R 3 to R 6 are all hydrogen atoms, or R 3 and R 5 are methyl groups, and R 4 and R 6 are hydrogen atoms) In the case of atoms), (X-2), (X-5), (X-6), (X-7), (X-17), (X-25), (X-26), (X- 27), (X-28), (X-32), and (X-39).
  • tetracarboxylic dianhydride having an aromatic ring structure. 26), (X-27), (X-28), (X-32), (X-35), and (X-37) are more preferable.
  • alkyl group in R 2 examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl.
  • the proportion of the structural unit represented by the formula (3) in the polyimide precursor used in the present invention is preferably 0 to 70 mol%, more preferably 20 to 50 mol, relative to 1 mol of the structural unit of the polyimide precursor. Mol%.
  • polyimide precursor used for this invention may contain the structural unit represented by following formula (4) as a structural unit derived from diamine.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms which may have a substituent, or an alkyl group having 1 to 15 carbon atoms which may have a substituent. Or an alkynyl group having 1 to 15 carbon atoms which may have a substituent.
  • these groups include not only chain-like groups but also those having a ring structure.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group which is a substituent can have a structure represented by OR.
  • the organothio group as a substituent can have a structure represented by —S—R.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • These Rs may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • organooxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • Y is a divalent organic group, and its structure is not particularly limited, and two or more kinds may be mixed. For example, the following Y-1 to Y-118 are given as specific examples.
  • Y is Y-7, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y- More preferred are diamines of 75, Y-98, Y-99, and Y-100.
  • a diamine having a long chain alkyl group, aromatic ring, aliphatic ring, steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester.
  • -76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, Y-87, Y-88 , Y-89, Y-90, Y-91, Y-92, Y-93, Y-9), Y-95, Y-96, Y-97 are more preferred.
  • any pretilt angle can be expressed.
  • Y-118 diamine is preferred for improving rubbing resistance.
  • n are each an integer from 1 to 11
  • m + n is an integer from 2 to 12
  • h is an integer from 1 to 3
  • j is an integer of 0 to 3.
  • the polyimide precursor used in the present invention includes a structural unit represented by the following formula (2) as a structural unit represented by the above formula (4) as a structural unit derived from diamine. From the point of view, it is preferable.
  • N in the formula (2) is 1 to 12, preferably 1 to 5.
  • the content of the structural unit represented by the formula (2) with respect to 1 mol of the structural unit represented by the formula (4) is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, Particularly preferred is 40 to 100 mol%.
  • the polyamic acid ester can be synthesized by the following methods (1) to (3).
  • (1) When synthesizing from polyamic acid
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These are used alone or in combination. May be.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used for this invention can be manufactured by imidating the said polyamic acid ester or polyamic acid which is a polyimide precursor.
  • a polyimide is produced from a polyamic acid ester
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. A treating agent is preferred.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • an organic solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a soluble polyimide having a specific structure is dissolved in an organic solvent.
  • the molecular weight of the polyimide having a specific structure is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 from the viewpoint of forming a uniform and defect-free coating film.
  • the content is preferably not less than wt%, and is preferably not more than 10 wt% from the viewpoint of storage stability of the solution.
  • a solvent in which a polymer having a specific structure is uniformly dissolved is used.
  • Preferred examples are N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone and ⁇ -butyrolactone are preferred, and N-methyl-2-pyrrolidone is particularly preferred.
  • the above organic solvents may be used alone or in combination. Moreover, even if it is a solvent which cannot melt
  • the liquid-crystal aligning agent used for this invention contains the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • liquid crystal aligning agent of the present invention may be added to the liquid crystal aligning agent of the present invention as long as the effects of the present invention are not impaired.
  • Other materials include (A) a polymer other than the polymer described in the present invention, (B) a dielectric or conductive material for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, (C ) A silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, (D) a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and (E) coating Examples include an imidization accelerator for the purpose of efficiently progressing imidization by heating the polyimide precursor when the film is baked.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal alignment treatment agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal alignment treatment agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include spin coating, printing, and inkjet. Arbitrary temperature and time can be selected for the drying and baking process after apply
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the photo-alignment treatment method there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • the liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, performing alignment treatment by rubbing treatment, etc. This is a display element.
  • a method for manufacturing a liquid crystal cell of a liquid crystal display element of a lateral electric field drive type is not particularly limited.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably 1 with the liquid crystal alignment film surface inside.
  • a method is generally used in which a spacer having a spacer of ⁇ 30 ⁇ m, more preferably 2 to 10 ⁇ m is placed and then the periphery is fixed with a sealant, and liquid crystal is injected to seal.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • CA-1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • CA-2 bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (isomer) [IV] content is 97%)
  • CA-3 pyromellitic dianhydride
  • CA-4 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride
  • DA-1 1,5-bis (4-aminophenoxy) pentane
  • DA-2 3,5-diaminobenzoic acid
  • DA-3 N- (3-pyridylmethyl) -3,5-diaminobenzoic acid amide
  • DA- 4 3-aminobenzylamine
  • DA-5 p-phenylenediamine
  • DA-6 1,3-diamino-4-n-dodecyloxybenzene
  • DA-7 4,4'-diaminodiphenylmethane
  • DA-8 4,4 '-Diaminodiphenylamine ⁇ solvent>
  • BCS Butyl cellosolve
  • NMP N-methyl-2-pyrrolidone
  • the molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • NMP (106.67 g) is added to each of the polyimide powders (1) to (6) (10.0 g each) obtained by the synthesis methods of Synthesis Examples 1 to 6, and stirred at 80 ° C. for 24 hours to dissolve. It was. To this solution, BCS (50.0 g) was added and stirred at 23 ° C. for 2 hours to obtain liquid crystal aligning agents (1) to (6). None of the liquid crystal aligning agents (1) to (6) was found to be a uniform solution with no abnormality such as turbidity or generation of precipitates.
  • Comparative Example 1 With reference to Japanese Patent Application Laid-Open No. 8-220541, solvent-soluble polyimides of CA-4 (100) / DA-5 (90) and DA-6 (10) and CA-1 (100) / DA-7 ( 100) polyamic acid was mixed at a ratio of 95: 5 to obtain a comparative liquid crystal aligning agent (A).
  • This comparative liquid crystal aligning agent (A) was confirmed to be a uniform solution with no abnormalities such as turbidity and generation of precipitates.
  • the obtained liquid crystal alignment treatment agent is filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 70 ° C. for 2 minutes, and then baked at 230 ° C. for 15 minutes.
  • a coating film having a thickness of 100 nm was obtained.
  • ultrasonic irradiation was performed in pure water for 1 minute, and 80 ° C. for 10 minutes. Dried.
  • liquid crystal injection port is formed using a sealant mixed with 5% by weight of a 4 ⁇ m spacer.
  • the periphery was sealed and the empty cell having a cell gap of 4 ⁇ m was produced.
  • Liquid crystal (“MLC-2041”, manufactured by Merck & Co., Inc.) was vacuum injected into this cell at room temperature, and the injection port was sealed to obtain an anti-parallel liquid crystal cell.
  • the liquid crystal aligning agent of the present invention is industrially useful because it can solve the problem that the color tone of the screen based on the black element in the horizontal electric field drive type liquid crystal display element is uncomfortable.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-57263 filed on March 19, 2013 are incorporated herein as the disclosure of the specification of the present invention. It is.

Abstract

Provided are: a liquid crystal aligning agent which is capable of eliminating a feeling of strangeness about the color of a display screen in an in-plane switching liquid crystal display element, said feeling of strangeness being based on a black component; a liquid crystal alignment film; and a liquid crystal display element. A liquid crystal aligning agent for in-plane switching, which is characterized by containing a polyimide that is obtained by ring-closing a polyimide precursor that has a structural unit represented by formula (1) as a structural unit that is derived from a tetracarboxylic acid dianhydride. In formula (1), X1 represents a tetravalent organic group represented by formula (X1); and R1 represents a hydrogen atom or an alkyl group having 1-10 carbon atoms.

Description

横電界駆動用の液晶配向処理剤Liquid crystal alignment treatment agent for lateral electric field drive
 本発明は、横電界駆動方式の液晶素子に用いられる液晶配向処理剤、それを用いた液晶配向膜、及び横電界駆動方式液晶素子に関する The present invention relates to a liquid crystal alignment treatment agent used for a horizontal electric field drive type liquid crystal element, a liquid crystal alignment film using the same, and a horizontal electric field drive type liquid crystal element.
 液晶表示素子は、液晶の電気光学的変化を利用した表示素子であり、装置的に小型軽量で、消費電力が小さい等の特性が注目され、近年、各種ディスプレイ用の表示装置として目覚ましい発展を遂げている。
 液晶表示装置としては、対向する一対の透明基材に平行に配向した液晶分子を基板に対して垂直な方向に電界をかけて駆動して表示を行う形式のものと、基板に対して平行な方向に電界をかけて駆動して表示を行う形式のものがある。前者はTNモードの液晶表示装置と呼ばれ、後者は横電界駆動方式(IPS)の液晶表示装置と呼ばれる。
Liquid crystal display elements are display elements that utilize electro-optical changes in liquid crystals, and their characteristics such as small size and light weight and low power consumption have attracted attention. In recent years, they have made remarkable progress as display devices for various displays. ing.
As a liquid crystal display device, there are a type of display in which liquid crystal molecules aligned in parallel with a pair of opposed transparent substrates are driven by applying an electric field in a direction perpendicular to the substrate, and a type parallel to the substrate. There is a type that performs display by applying an electric field in the direction. The former is called a TN mode liquid crystal display device, and the latter is called a transverse electric field drive (IPS) liquid crystal display device.
 横電界駆動方式の液晶表示装置は、基本的には、視点を動かしても液晶分子の短軸方向のみを見ることになるため、液晶分子の「立ち方」の視野角に対する依存性がなく、TNモードの液晶表示装置よりも広い視野角を達成することができる(特許文献1参照)。このため、近年では、TNモードの液晶表示装置よりもIPSモードの液晶表示装置の方が多用される傾向にある。 Since the liquid crystal display device of the horizontal electric field driving method basically sees only the minor axis direction of the liquid crystal molecules even if the viewpoint is moved, there is no dependency on the viewing angle of the “standing” of the liquid crystal molecules, A wider viewing angle than a TN mode liquid crystal display device can be achieved (see Patent Document 1). Therefore, in recent years, IPS mode liquid crystal display devices tend to be used more frequently than TN mode liquid crystal display devices.
 このような横電界駆動方式の液晶表示装置における液晶配向膜としても、化学的安定性、熱的安定性等の点からポリイミド系液晶配向膜が最も一般的に使用されている。
 ポリイミド系液晶配向膜は、ポリイミド前駆体であるポリアミック酸(ポリアミド酸ともいう。)溶液を基板上に塗布し、これを、150℃以上の温度で焼成し、イミド化させた後、ラビング処理を行うことで液晶配向膜とするのが一般的である。
As the liquid crystal alignment film in such a horizontal electric field drive type liquid crystal display device, a polyimide-based liquid crystal alignment film is most commonly used in terms of chemical stability, thermal stability, and the like.
The polyimide-based liquid crystal alignment film is obtained by applying a polyamic acid (also referred to as polyamic acid) solution, which is a polyimide precursor, onto a substrate, baking it at a temperature of 150 ° C. or higher, imidizing it, and then performing a rubbing treatment. In general, a liquid crystal alignment film is obtained.
日本特開平2-37324号公報Japanese Unexamined Patent Publication No. 2-37324
 液晶表示素子を生産する観点からは、配向膜の基板への密着性、印刷性、耐ラビング性などの特性が重要である。特にラビング処理は、工業的に採用されている液晶配向処理方法ではあるが、ラビング時の摩擦によって液晶配向膜が基板から剥離したり、或いは液晶配向膜に傷がついたりして、表示特性に影響を与える問題点があった。 From the viewpoint of producing liquid crystal display elements, properties such as adhesion of the alignment film to the substrate, printability, and rubbing resistance are important. In particular, the rubbing treatment is a liquid crystal alignment treatment method adopted industrially, but the liquid crystal alignment film peels off from the substrate due to friction during rubbing, or the liquid crystal alignment film is scratched, resulting in display characteristics. There was a problem affecting it.
 従来のポリイミド系の液晶配向処理剤から得られる液晶配向膜は、液晶配向処理剤に含有される溶剤可溶性ポリイミド、ポリアミック酸の両者ともに液晶配向膜としては互いに反する長所、短所を有しており、液晶配向膜として必要なすべての特性を満たすことは必ずしも容易ではない。このため、特に基板への印刷性、密着性、耐ラビング性に優れ、かつ信頼性の高い液晶配向処理剤が切望されていた。 The liquid crystal alignment film obtained from the conventional polyimide-based liquid crystal alignment treatment agent has the advantages and disadvantages that both the solvent-soluble polyimide and polyamic acid contained in the liquid crystal alignment treatment agent are opposite to each other as the liquid crystal alignment film, It is not always easy to satisfy all the characteristics required for a liquid crystal alignment film. For this reason, there has been a strong demand for a liquid crystal alignment treatment agent that is particularly excellent in printability, adhesion, and rubbing resistance to a substrate and has high reliability.
 加えて、本発明者の知見によると、上記のような横電界駆動方式の液晶表示素子において、ポリイミド系の液晶配向処理剤から液晶配向膜を形成する場合、得られた液晶表示素子では、カラ―表示における黒色レベルに問題を有し、これにより画面の色調に違和感が生じることが見出された。これは、横電界駆動方式の液晶表示素子では液晶配向膜に対してラビング処理を施すことで、液晶分子が並ぶダイレクターの向きを決定している。そのため、ラビング工程を経ることで、初期配向のバラツキが生じることがある。黒色レベルの悪化は、初期配向の乱れに基因する現象と思われ、解消すべき問題である。 In addition, according to the knowledge of the present inventor, when the liquid crystal alignment film is formed from a polyimide-based liquid crystal alignment treatment agent in the above-described lateral electric field drive type liquid crystal display element, -It was found that there was a problem with the black level in the display, which caused a sense of discomfort in the color of the screen. This is because the orientation of the director in which the liquid crystal molecules are arranged is determined by performing a rubbing process on the liquid crystal alignment film in the liquid crystal display element of the horizontal electric field drive system. For this reason, the initial alignment may vary through the rubbing process. The deterioration of the black level is considered to be a phenomenon caused by the disturbance of the initial orientation and is a problem to be solved.
 ここで、初期配向の乱れを解消する手段の1つとして、溶剤可溶性ポリイミドを含む溶液を基板に塗布し、焼成することで、液晶配向膜を形成するというものがある。しかし、溶剤可溶性ポリイミドは、ポリイミド前駆体に比較して、一般に溶解性が悪く、使用できるジアミンも限られているのが現状である。特に、結晶性が高いジアミンを用いた場合は、溶解性が悪化する傾向にあり、そのようなジアミンを用いる際に、導入量が制限されるといった問題があった。 Here, as one of the means for eliminating the disturbance of the initial alignment, there is a method of forming a liquid crystal alignment film by applying a solution containing a solvent-soluble polyimide to a substrate and baking it. However, solvent-soluble polyimides generally have poor solubility compared to polyimide precursors, and diamines that can be used are limited. In particular, when a diamine having high crystallinity is used, the solubility tends to deteriorate, and there is a problem that the amount of introduction is limited when such a diamine is used.
 かくして、本発明の目的は、黒色の要素に基づく画面の色調に違和感が生じる問題を有しなく、加えて、基板への印刷性、密着性に優れ、かつラビング時に基板からの剥離がなく、またラビングによる配向膜への傷がつきにくい液晶配向膜が得られる、横電界駆動方式の液晶表示素子用のポリイミド系液晶配向処理剤、それを用いた液晶配向膜、及び横電界駆動方式の液晶素子を提供することにある。 Thus, the object of the present invention does not have the problem that the screen color tone based on the black element is uncomfortable, and in addition, it has excellent printability and adhesion to the substrate, and does not peel off from the substrate during rubbing. Also, a polyimide-based liquid crystal alignment treatment agent for a liquid crystal display element of a lateral electric field drive method, a liquid crystal alignment film using the liquid crystal alignment film, and a liquid crystal of a horizontal electric field drive method, which can obtain a liquid crystal alignment film that is hardly damaged by rubbing. It is to provide an element.
 本発明者は、上記目的を達成すべく鋭意研究をおこなったところ、ポリイミド系液晶配向処理剤として、溶剤可溶性ポリイミドを使用し、かつ溶剤可溶性ポリイミドの一方の原料であるテトラカルボン酸二無水物成分として、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物を使用することを着想した。そして、かかる溶剤可溶性ポリイミドを含む液晶配向処理剤を用いることにより、横電界駆動方式の液晶表示素子における、特に、黒色の要素に基づく画面の色調に違和感が生じる問題は、他の特性を影響することなく解消しうることを見出した。 The present inventor has conducted earnest research to achieve the above object, and as a polyimide-based liquid crystal alignment treatment agent, a solvent-soluble polyimide is used, and one of the raw materials of the solvent-soluble polyimide is a tetracarboxylic dianhydride component. The idea was to use bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride as And, by using a liquid crystal alignment treatment agent containing such solvent-soluble polyimide, in particular, the problem that the screen color tone based on the black element causes a sense of incongruity in the lateral electric field drive type liquid crystal display element affects other characteristics. It was found that it can be solved without any problems.
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
1.テトラカルボン酸二無水物由来の構造単位として、下記式(1)で表される構造単位を有するポリイミド前駆体を脱水閉環して得られるポリイミドを含有することを特徴とする横電界用の液晶配向処理剤。
The present invention is based on this finding and has the following gist.
1. Liquid crystal alignment for transverse electric field characterized by containing polyimide obtained by dehydrating and ring-closing a polyimide precursor having a structural unit represented by the following formula (1) as a structural unit derived from tetracarboxylic dianhydride Processing agent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)において、Xは下記式(X)で表される4価の有機基であり、Rは水素原子または炭素数1~10のアルキル基である。
Figure JPOXMLDOC01-appb-C000006
2.前記ポリイミド前駆体が、ジアミン由来の構造単位として下記式(2)で表される構造単位を有することを特徴とする、上記1に記載の横電界用の液晶配向処理剤。
In the formula (1), X 1 is a tetravalent organic group represented by the following formula (X 1 ), and R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
2. 2. The liquid crystal alignment treatment agent for lateral electric field according to 1 above, wherein the polyimide precursor has a structural unit represented by the following formula (2) as a structural unit derived from diamine.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(2)において、nは1~12である。 In the formula (2), n is 1 to 12.
3.上記式(X)で表される4価の有機基が式[IV]~[VI]の異性体から選ばれる単一成分、もしくはそれらの混合物である上記1又は2に記載の横電界駆動用の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000008
3. 3. The lateral electric field driving according to 1 or 2 above, wherein the tetravalent organic group represented by the formula (X 1 ) is a single component selected from isomers of the formulas [IV] to [VI], or a mixture thereof. Liquid crystal alignment treatment agent.
Figure JPOXMLDOC01-appb-C000008
4.異性体[IV]の含有率が90%以上である上記3に記載の横電界駆動用の液晶配向処理剤。
5.上記式(1)で表される構造単位の含有量が、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%である上記1~4のいずれかに記載の横電界用液晶配向処理剤。
6.上記式(2)で表される構造単位の含有量が、ジアミン由来の全構造単位1モルに対して、20~100モル%である上記1~5のいずれかに記載の横電界用液晶配向処理剤。
7.上記1~6のいずれかに記載の液晶配向処理剤を基板に塗布、焼成して得られる横電界駆動用の液晶配向膜。
8.上記7に記載の液晶配向膜を有する横電界駆動用の液晶表示素子。
4). 4. The liquid crystal alignment treatment agent for driving a horizontal electric field according to 3 above, wherein the content of isomer [IV] is 90% or more.
5. 5. The transverse electric field according to any one of 1 to 4 above, wherein the content of the structural unit represented by the formula (1) is 30 to 100 mol% with respect to 1 mol of all the structural units derived from the tetracarboxylic acid derivative. Liquid crystal alignment treatment agent.
6). 6. The horizontal electric field liquid crystal alignment according to any one of 1 to 5 above, wherein the content of the structural unit represented by the formula (2) is 20 to 100 mol% with respect to 1 mol of all structural units derived from diamine. Processing agent.
7). A liquid crystal alignment film for driving a horizontal electric field obtained by applying the liquid crystal alignment treatment agent according to any one of 1 to 6 above to a substrate and baking it.
8). 8. A liquid crystal display element for driving a horizontal electric field, comprising the liquid crystal alignment film according to 7 above.
 本発明の液晶配向処理剤によれば、横電界駆動方式の液晶表示素子における、黒色の要素に基づく画面の色調に違和感が生じる問題が解決できるとともに、基板への印刷性、密着性に優れ、かつラビング時に基板からの剥離がなく、またラビングによる配向膜への傷がつきにくい液晶配向膜が得られる。 According to the liquid crystal alignment treatment agent of the present invention, in the lateral electric field drive type liquid crystal display element, it is possible to solve the problem of an uncomfortable feeling in the color tone of the screen based on the black element, and it is excellent in printability and adhesion to the substrate, In addition, a liquid crystal alignment film that does not peel off from the substrate during rubbing and is difficult to damage the alignment film due to rubbing can be obtained.
 本発明の液晶配向処理剤により、何故に、横電界駆動方式の液晶表示素子における、黒色の要素に基づく画面の色調に違和感が生じる問題が解決できるかについてのメカニズムについては必ずしも明らかではないが、ほぼ次のように推定される。
 液晶表示素子における実基板上には激しい凹凸の存在する回路が形成されており、そのために平坦部および段差部においても液晶を均一に配向させる必要がある。平坦部では強い液晶配向性が求められる一方で、段差部ではポリマー鎖の延伸性が重要となる。段差の影響を受けることでラビング条件が異なる箇所が発生するため、膜に柔軟性を持たせることによる延伸特性の改善が段差部に対して効果的である。本発明では、良好な配向性を有する特定のジアミン化合物と柔軟性を有する特定のテトラカルボン酸二無水物を用いることで、平坦部および段差部における配向秩序を改善できた結果であると考えられる。
The reason why the liquid crystal alignment treatment agent of the present invention can solve the problem that the screen tone based on the black element in the horizontal electric field drive type liquid crystal display element can cause a sense of incongruity is not necessarily clear, It is estimated as follows.
A circuit having severe unevenness is formed on the actual substrate in the liquid crystal display element, and therefore, it is necessary to uniformly align the liquid crystal even in the flat portion and the step portion. While strong liquid crystal alignment is required at the flat part, the stretchability of the polymer chain is important at the step part. Since portions having different rubbing conditions are generated due to the influence of the step, it is effective to improve the stretching characteristics by imparting flexibility to the film to the step portion. In this invention, it is thought that it is the result of having improved the alignment order in a flat part and a level | step difference part by using the specific tetracarboxylic dianhydride which has the specific diamine compound which has favorable orientation, and a softness | flexibility. .
<液晶配向処理剤>
 本発明の液晶配向処理剤は、テトラカルボン酸二無水物由来の構造単位として、下記式(1)で表される構造単位を有するポリイミド前駆体を閉環して得られるポリイミドを含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000009
<Liquid crystal alignment agent>
The liquid-crystal aligning agent of this invention contains the polyimide obtained by ring-closing the polyimide precursor which has a structural unit represented by following formula (1) as a structural unit derived from tetracarboxylic dianhydride. And
Figure JPOXMLDOC01-appb-C000009
 式(1)において、Xは下記式(X)で表される4価の有機基であり、Rは水素原子または炭素数1~10のアルキル基である。
Figure JPOXMLDOC01-appb-C000010
In the formula (1), X 1 is a tetravalent organic group represented by the following formula (X 1 ), and R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000010
 式(X)で表される構造は、ビシクロ[3.3.0]-オクタン-2,4,6,8-テトラカルボン酸に由来する。ビシクロ[3.3.0]-オクタン-2,4,6,8-テトラカルボン酸は、(X)が下記の式[IV]、[V]、及び[VI]の構造異性体を有しているが、本発明では、その異性体の1種類を用いてポリイミド前駆体を製造してもよく、また異性体の混合物を用いてポリイミド前駆体を製造してもよい。ポリイミド前駆体の製造における重合反応性の観点からは、異性体[IV]の含有率が90%以上であるのが好ましく、より好ましくは95%以上である。 The structure represented by the formula (X 1 ) is derived from bicyclo [3.3.0] -octane-2,4,6,8-tetracarboxylic acid. In bicyclo [3.3.0] -octane-2,4,6,8-tetracarboxylic acid, (X 1 ) has structural isomers of the following formulas [IV], [V], and [VI]. However, in the present invention, a polyimide precursor may be produced using one of the isomers, or a polyimide precursor may be produced using a mixture of isomers. From the viewpoint of polymerization reactivity in the production of the polyimide precursor, the content of isomer [IV] is preferably 90% or more, and more preferably 95% or more.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明のポリイミド前駆体において、式(1)の構造単位は、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%であることが好ましく、より好ましくは50~80モル%である。 In the polyimide precursor of the present invention, the structural unit of the formula (1) is preferably 30 to 100 mol%, more preferably 50 to 80 mol based on 1 mol of all structural units derived from the tetracarboxylic acid derivative. %.
 本発明に用いられるポリイミド前駆体は、テトラカルボン酸誘導体由来の構造単位として、下記式(3)で表される構造単位を含んでもよい。 The polyimide precursor used in the present invention may contain a structural unit represented by the following formula (3) as a structural unit derived from a tetracarboxylic acid derivative.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(3)において、Rは水素原子又は炭素数1~10のアルキル基であり、Xは、4価の有機基である。但し、Xは、上記式(1)におけるXである場合を除く。
 Xの具体例を示すならば、以下に示す(X-1)~(X-42)挙げられる。
Figure JPOXMLDOC01-appb-C000013
In the formula (3), R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and X is a tetravalent organic group. However, the case where X is X 1 in the above formula (1) is excluded.
Specific examples of X include the following (X-1) to (X-42).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(X-1)において、R~Rはそれぞれ独立に水素原子、メチル基またはフェニル基をあらわす。中でも、化合物の入手性の観点から、Xの構造は、式(X-1)(R~Rがすべて水素原子、またはRとRがメチル基で、RとRが水素原子の場合)、(X-2)、(X-5)、(X-6)、(X-7)、(X-17)、(X-25)、(X-26),(X-27)、(X-28)、(X-32)、及び(X-39)が挙げられる。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、式(X-26),(X-27)、(X-28)、(X-32)、(X-35)、及び(X-37)がより好ましい。 In the above formula (X-1), R 3 to R 6 each independently represents a hydrogen atom, a methyl group or a phenyl group. Among these, from the viewpoint of availability of the compound, the structure of X has the formula (X-1) (wherein R 3 to R 6 are all hydrogen atoms, or R 3 and R 5 are methyl groups, and R 4 and R 6 are hydrogen atoms) In the case of atoms), (X-2), (X-5), (X-6), (X-7), (X-17), (X-25), (X-26), (X- 27), (X-28), (X-32), and (X-39). Further, from the viewpoint of obtaining a liquid crystal alignment film in which the residual charge accumulated by direct current voltage can be quickly relaxed, it is preferable to use tetracarboxylic dianhydride having an aromatic ring structure. 26), (X-27), (X-28), (X-32), (X-35), and (X-37) are more preferable.
 式(3)において、Rおける上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。 In the formula (3), specific examples of the alkyl group in R 2 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl. Group, n-pentyl group and the like.
 本発明に用いられるポリイミド前駆体中の式(3)で表される構造単位の割合は、ポリイミド前駆体の構造単位1モルに対して、0~70モル%が好ましく、より好ましくは20~50モル%である。 The proportion of the structural unit represented by the formula (3) in the polyimide precursor used in the present invention is preferably 0 to 70 mol%, more preferably 20 to 50 mol, relative to 1 mol of the structural unit of the polyimide precursor. Mol%.
 また、本発明に用いられるポリイミド前駆体は、ジアミン由来の構造単位として、下記式(4)で表される構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000018
Moreover, the polyimide precursor used for this invention may contain the structural unit represented by following formula (4) as a structural unit derived from diamine.
Figure JPOXMLDOC01-appb-C000018
 式(4)において、A、Aはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~15のアルキル基、置換基を有してもよい炭素数1~15のアルケニル基、置換基を有してもよい炭素数1~15のアルキニル基である。なお、式(4)においては、これらの基は鎖状のもののみでなく、環構造を有するものを含む。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
In the formula (4), A 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms which may have a substituent, or an alkyl group having 1 to 15 carbon atoms which may have a substituent. Or an alkynyl group having 1 to 15 carbon atoms which may have a substituent. In the formula (4), these groups include not only chain-like groups but also those having a ring structure.
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、アルキニル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of this substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. A group, an alkenyl group and an alkynyl group.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。 The organooxy group which is a substituent can have a structure represented by OR. The organothio group as a substituent can have a structure represented by —S—R. The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The acyl group as a substituent can have a structure represented by —C (O) —R. As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. The thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R. The structure represented by can be shown.
 これらのRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。 These Rs may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
 オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 Yは、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。あえて、その具体例を示すならば、下記のY-1~Y-118が挙げられる。
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
Y is a divalent organic group, and its structure is not particularly limited, and two or more kinds may be mixed. For example, the following Y-1 to Y-118 are given as specific examples.
 なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンをポリアミック酸エステルに導入することが好ましく、Yとしては、Y-7、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-73、Y-74、Y-75、Y-98、Y-99、Y-100のジアミンがより好ましい。また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミンをポリアミック酸エステルに導入することが好ましく、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-9)、Y-95、Y-96、Y-97のジアミンがより好ましい。これらジアミンを全ジアミンの1~50モル%添加することにより、任意のプレチルト角を発現させることができる。また、ラビング耐性を向上させる場合は、Y-118のジアミンが好ましい。 Among them, in order to obtain good liquid crystal alignment, it is preferable to introduce a highly linear diamine into the polyamic acid ester. Y is Y-7, Y-21, Y-22, Y-23, Y-25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y- More preferred are diamines of 75, Y-98, Y-99, and Y-100. In order to increase the pretilt angle, it is preferable to introduce a diamine having a long chain alkyl group, aromatic ring, aliphatic ring, steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester. -76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, Y-87, Y-88 , Y-89, Y-90, Y-91, Y-92, Y-93, Y-9), Y-95, Y-96, Y-97 are more preferred. By adding 1 to 50 mol% of these diamines, any pretilt angle can be expressed. Also, Y-118 diamine is preferred for improving rubbing resistance.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(Y-109)中、m、nはそれぞれ1から11の整数であり、m+nは2から12の整数であり、式(Y-114)中、hは1~3の整数であり、式(Y-111)及び(Y-117)中、jは0から3の整数である。 In formula (Y-109), m and n are each an integer from 1 to 11, m + n is an integer from 2 to 12, and in formula (Y-114), h is an integer from 1 to 3, In (Y-111) and (Y-117), j is an integer of 0 to 3.
 また、本発明に用いられるポリイミド前駆体は、ジアミン由来の構造単位として、上記式(4)で表される構造単位として、下記式(2)で表される構造単位を含むことが液晶配向性の点からして好ましい。
Figure JPOXMLDOC01-appb-C000035

 式(2)中のnは、1~12であり、好ましくは1~5である。
In addition, the polyimide precursor used in the present invention includes a structural unit represented by the following formula (2) as a structural unit represented by the above formula (4) as a structural unit derived from diamine. From the point of view, it is preferable.
Figure JPOXMLDOC01-appb-C000035

N in the formula (2) is 1 to 12, preferably 1 to 5.
 式(4)で表される構造単位の1モルに対する式(2)で表される構造単位の含有量は、好ましくは10~100モル%であり、より好ましくは20~100モル%であり、特に好ましくは40~100モル%である。 The content of the structural unit represented by the formula (2) with respect to 1 mol of the structural unit represented by the formula (4) is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, Particularly preferred is 40 to 100 mol%.
<ポリアミック酸エステル>
 本発明に用いられるポリイミド前駆体がポリアミック酸エステルである場合、該ポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
<Polyamic acid ester>
When the polyimide precursor used in the present invention is a polyamic acid ester, the polyamic acid ester can be synthesized by the following methods (1) to (3).
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When a polyamic acid is synthesized from a tetracarboxylic acid diester and a diamine The polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
<Polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. These are used alone or in combination. May be. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、ポリイミド前駆体である、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Polyimide>
The polyimide used for this invention can be manufactured by imidating the said polyamic acid ester or polyamic acid which is a polyimide precursor. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。 Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向処理剤とすることが好ましい。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. A treating agent is preferred.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向処理剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向処理剤>
 本発明に用いられる液晶配向処理剤は、特定構造の可溶性ポリイミドが有機溶媒中に溶解された溶液の形態を有する。特定構造のポリイミドの分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明に用いられる液晶配向処理剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。
<Liquid crystal alignment agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a soluble polyimide having a specific structure is dissolved in an organic solvent. The molecular weight of the polyimide having a specific structure is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 from the viewpoint of forming a uniform and defect-free coating film. The content is preferably not less than wt%, and is preferably not more than 10 wt% from the viewpoint of storage stability of the solution.
 本発明に用いられる液晶配向処理剤に含有される有機溶媒は、特定構造の重合体が均一に溶解するものが使用される。好ましい具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。
 なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、特に、N-メチル-2-ピロリドンが好ましい。
 上記の有機溶媒は、その1種又は2種以上を混合して用いてもよい。また、単独では重合体を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒が混合して使用される。
As the organic solvent contained in the liquid crystal aligning agent used in the present invention, a solvent in which a polymer having a specific structure is uniformly dissolved is used. Preferred examples are N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone and γ-butyrolactone are preferred, and N-methyl-2-pyrrolidone is particularly preferred.
The above organic solvents may be used alone or in combination. Moreover, even if it is a solvent which cannot melt | dissolve a polymer uniformly independently, if it is a range in which a polymer does not precipitate, said organic solvent will be mixed and used.
 本発明に用いられる液晶配向処理剤は、特定構造の重合体を溶解させるための有機溶媒の他に、液晶配向処理剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。 The liquid-crystal aligning agent used for this invention contains the solvent for improving the coating-film uniformity at the time of apply | coating a liquid-crystal aligning agent to a board | substrate other than the organic solvent for dissolving the polymer of a specific structure. May be. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these solvents may be used in combination.
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、他の材料を添加してもよい。他の材料としては、(A)本発明に記載の重合体以外の重合体、(B)液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、(C)液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、(D)液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには(E)塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等が挙げられる。 In addition to the above, other materials may be added to the liquid crystal aligning agent of the present invention as long as the effects of the present invention are not impaired. Other materials include (A) a polymer other than the polymer described in the present invention, (B) a dielectric or conductive material for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, (C ) A silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, (D) a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and (E) coating Examples include an imidization accelerator for the purpose of efficiently progressing imidization by heating the polyimide precursor when the film is baked.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向処理剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向処理剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal alignment treatment agent to a substrate, drying and baking. The substrate to which the liquid crystal alignment treatment agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
 本発明の液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向処理剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
Examples of the method for applying the liquid crystal aligning agent of the present invention include spin coating, printing, and inkjet. Arbitrary temperature and time can be selected for the drying and baking process after apply | coating the liquid-crystal aligning agent of this invention. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。 As a specific example of the photo-alignment treatment method, there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases. Can be mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
[液晶表示素子]
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得、ラビング処理などにより配向処理を行った後、既知の方法により、横電界駆動方式の液晶表示素子としたものである。
[Liquid crystal display element]
The liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, performing alignment treatment by rubbing treatment, etc. This is a display element.
 横電界駆動方式の液晶表示素の液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。 A method for manufacturing a liquid crystal cell of a liquid crystal display element of a lateral electric field drive type is not particularly limited. For example, a pair of substrates on which a liquid crystal alignment film is formed is preferably 1 with the liquid crystal alignment film surface inside. A method is generally used in which a spacer having a spacer of ˜30 μm, more preferably 2 to 10 μm is placed and then the periphery is fixed with a sealant, and liquid crystal is injected to seal. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定して解釈されるものではない。下記実施例および比較例で用いる略語は、以下のとおりである。
<テトラカルボン酸成分>
CA-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
CA-2:ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物(異性体[IV]の含有率が97%)
CA-3:ピロメリット酸二無水物
CA-4:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto. Abbreviations used in the following examples and comparative examples are as follows.
<Tetracarboxylic acid component>
CA-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride CA-2: bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (isomer) [IV] content is 97%)
CA-3: pyromellitic dianhydride CA-4: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride
<ジアミン成分>
DA-1:1,5-ビス(4-アミノフェノキシ)ペンタン
DA-2:3,5-ジアミノ安息香酸
DA-3:N-(3-ピリジルメチル)-3,5-ジアミノ安息香酸アミド
DA-4:3-アミノベンジルアミン
DA-5:p-フェニレンジアミン
DA-6:1,3-ジアミノ-4-n-ドデシルオキシベンゼン
DA-7:4,4‘-ジアミノジフェニルメタン
DA-8:4,4‘-ジアミノジフェニルアミン
<溶媒>
BCS:ブチルセロソルブ
NMP:N-メチル-2-ピロリドン
<Diamine component>
DA-1: 1,5-bis (4-aminophenoxy) pentane DA-2: 3,5-diaminobenzoic acid DA-3: N- (3-pyridylmethyl) -3,5-diaminobenzoic acid amide DA- 4: 3-aminobenzylamine DA-5: p-phenylenediamine DA-6: 1,3-diamino-4-n-dodecyloxybenzene DA-7: 4,4'-diaminodiphenylmethane DA-8: 4,4 '-Diaminodiphenylamine <solvent>
BCS: Butyl cellosolve NMP: N-methyl-2-pyrrolidone
<ポリイミド前駆体およびポリイミドの分子量測定>
 合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803、KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000、および1,000)(ポリマーラボラトリー社製)。
<Measurement of molecular weight of polyimide precursor and polyimide>
The molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory).
(ポリイミドのイミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization ratio of polyimide)
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
[合成例1]
 DA-1(14.32g,50.0mmol)、DA-2(4.56g,30.0mmol)、DA-3(4.85g,20.0mmol)およびCA-2(12.51g,50.0mmol)をNMP(207.4g)中で混合し、50℃で6時間反応させた。その後、CA-1(9.51g,48.5mmol)とNMP(51.9g)を加えて40℃で一晩反応させ、樹脂固形分濃度15質量%のポリアミック酸溶液(1)を得た。
 得られたポリアミック酸溶液(1)(100.0g)に、NMPを加え5質量%に希釈した後、イミド化触媒として無水酢酸(22.41g)およびピリジン(8.69g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は24,800、重量平均分子量は88,000であった。
[Synthesis Example 1]
DA-1 (14.32 g, 50.0 mmol), DA-2 (4.56 g, 30.0 mmol), DA-3 (4.85 g, 20.0 mmol) and CA-2 (12.51 g, 50.0 mmol) ) In NMP (207.4 g) and reacted at 50 ° C. for 6 hours. Thereafter, CA-1 (9.51 g, 48.5 mmol) and NMP (51.9 g) were added and reacted at 40 ° C. overnight to obtain a polyamic acid solution (1) having a resin solid content concentration of 15 mass%.
After adding NMP to the obtained polyamic acid solution (1) (100.0 g) and diluting to 5% by mass, acetic anhydride (22.41 g) and pyridine (8.69 g) were added as imidization catalysts, For 2 hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (1). The imidation ratio of this polyimide was 50%, the number average molecular weight was 24,800, and the weight average molecular weight was 88,000.
[合成例2]
 DA-1(18.61g,65.0mmol)、DA-2(5.93g,39.0mmol)、DA-3(6.30g,26.0mmol)およびCA-2(24.40g,97.5mmol)をNMP(195.3g)中で混合し、50℃で6時間反応させた。その後、CA-1(5.79g,29.5mmol)とNMP(48.8g)を加えて40℃で一晩反応させ、樹脂固形分濃度20質量%のポリアミック酸溶液(2)を得た。
 得られたポリアミック酸溶液(2)(100.0g)に、NMPを加え5質量%に希釈した後、イミド化触媒として無水酢酸(10.87g)およびピリジン(8.43g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は24,800、重量平均分子量は76,230であった。
[Synthesis Example 2]
DA-1 (18.61 g, 65.0 mmol), DA-2 (5.93 g, 39.0 mmol), DA-3 (6.30 g, 26.0 mmol) and CA-2 (24.40 g, 97.5 mmol) ) In NMP (195.3 g) and reacted at 50 ° C. for 6 hours. Thereafter, CA-1 (5.79 g, 29.5 mmol) and NMP (48.8 g) were added and reacted at 40 ° C. overnight to obtain a polyamic acid solution (2) having a resin solid content concentration of 20 mass%.
After adding NMP to the obtained polyamic acid solution (2) (100.0 g) and diluting to 5% by mass, acetic anhydride (10.87 g) and pyridine (8.43 g) were added as an imidization catalyst, and 90 ° C. For 2.5 hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (2). The imidation ratio of this polyimide was 50%, the number average molecular weight was 24,800, and the weight average molecular weight was 76,230.
[合成例3]
 合成例2で得られたポリアミック酸溶液(2)(60g)に、NMPを加え5質量%に希釈した後、イミド化触媒として無水酢酸(13.05g)およびピリジン(4.05g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(900ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は22,100、重量平均分子量は70,000であった。
[Synthesis Example 3]
After adding NMP to the polyamic acid solution (2) (60 g) obtained in Synthesis Example 2 and diluting to 5% by mass, acetic anhydride (13.05 g) and pyridine (4.05 g) were added as imidization catalysts, The reaction was carried out at 100 ° C. for 3 hours. This reaction solution was poured into methanol (900 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 70%, the number average molecular weight was 22,100, and the weight average molecular weight was 70,000.
[合成例4]
 DA-1(30.78g,107mmol)、DA-2(13.08g,86.0mmol)、DA-3(5.21g,21.5mmol)およびCA-2(40.35g,161mmol)をNMP(278.4g)中で混合し、50℃で6時間反応させた。その後、CA-1(9.99g,50.9mmol)とNMP(119.3g)を加えて40℃で一晩反応させ、樹脂固形分濃度20質量%のポリアミック酸溶液(3)を得た。
 得られたポリアミック酸溶液(3)(50.0g)に、NMPを加え3.5質量%に希釈した後、イミド化触媒として無水酢酸(11.04g)およびピリジン(3.42g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(750ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は67%であり、数平均分子量は28,500、重量平均分子量は99,600であった。
[Synthesis Example 4]
DA-1 (30.78 g, 107 mmol), DA-2 (13.08 g, 86.0 mmol), DA-3 (5.21 g, 21.5 mmol) and CA-2 (40.35 g, 161 mmol) were mixed with NMP ( 278.4 g) and reacted at 50 ° C. for 6 hours. Thereafter, CA-1 (9.99 g, 50.9 mmol) and NMP (119.3 g) were added and reacted at 40 ° C. overnight to obtain a polyamic acid solution (3) having a resin solid content concentration of 20 mass%.
After adding NMP to the obtained polyamic acid solution (3) (50.0 g) and diluting to 3.5% by mass, acetic anhydride (11.04 g) and pyridine (3.42 g) were added as imidization catalysts, The reaction was carried out at 100 ° C. for 3 hours. This reaction solution was put into methanol (750 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 67%, the number average molecular weight was 28,500, and the weight average molecular weight was 99,600.
[合成例5]
 DA-1(36.94g,129mmol)、DA-2(13.08g,86.0mmol)およびCA-2(40.35g,167mmol)をNMP(280.2g)中で混合し、50℃で6時間反応させた。その後、CA-1(9.70g,49.5mmol)とNMP(120.1g)を加えて40℃で一晩反応させ、樹脂固形分濃度20質量%のポリアミック酸溶液(4)を得た。
 得られたポリアミック酸溶液(4)(50.0g)に、NMPを加え4質量%に希釈した後、イミド化触媒として無水酢酸(10.96g)およびピリジン(3.40g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(750ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は69%であり、数平均分子量は36,700、重量平均分子量は134,800であった。
[Synthesis Example 5]
DA-1 (36.94 g, 129 mmol), DA-2 (13.08 g, 86.0 mmol) and CA-2 (40.35 g, 167 mmol) were mixed in NMP (280.2 g) and mixed at 50 ° C. for 6 Reacted for hours. Thereafter, CA-1 (9.70 g, 49.5 mmol) and NMP (120.1 g) were added and reacted at 40 ° C. overnight to obtain a polyamic acid solution (4) having a resin solid content concentration of 20 mass%.
After adding NMP to the obtained polyamic acid solution (4) (50.0 g) and diluting to 4% by mass, acetic anhydride (10.96 g) and pyridine (3.40 g) were added as an imidization catalyst, and 100 ° C. For 3 hours. This reaction solution was put into methanol (750 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 69%, the number average molecular weight was 36,700, and the weight average molecular weight was 134,800.
[合成例6]
 DA-1(16.04g,55.9mmol)、DA-2(6.39g,42.0mmol)、DA-4(5.13g,42.0mmol)およびCA-3(7.02g,32.2mmol)をNMP(194.7g)中で混合し、23℃で1時間反応させた。その後、CA-2(26.27g,105mmol)とNMP(48.68g)を加えて40℃で一晩反応させ、樹脂固形分濃度20質量%のポリアミック酸溶液(5)を得た。
 得られたポリアミック酸溶液(5)(40.0g)に、NMPを加え5質量%に希釈した後、イミド化触媒として無水酢酸(4.66g)およびピリジン(3.61g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(600ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は69%であり、数平均分子量は13,900、重量平均分子量は40,600であった。
[Synthesis Example 6]
DA-1 (16.04 g, 55.9 mmol), DA-2 (6.39 g, 42.0 mmol), DA-4 (5.13 g, 42.0 mmol) and CA-3 (7.02 g, 32.2 mmol) ) In NMP (194.7 g) and reacted at 23 ° C. for 1 hour. Thereafter, CA-2 (26.27 g, 105 mmol) and NMP (48.68 g) were added and reacted at 40 ° C. overnight to obtain a polyamic acid solution (5) having a resin solid content concentration of 20 mass%.
After adding NMP to the obtained polyamic acid solution (5) (40.0 g) and diluting to 5% by mass, acetic anhydride (4.66 g) and pyridine (3.61 g) were added as an imidization catalyst, and 90 ° C. For 2.5 hours. This reaction solution was poured into methanol (600 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 69%, the number average molecular weight was 13,900, and the weight average molecular weight was 40,600.
[実施例1~6]
 合成例1~6の合成手法で得られたポリイミド粉末(1)~(6)(各10.0g)に、夫々NMP(106.67g)を加え、80℃にて24時間攪拌して溶解させた。この溶液に、BCS(50.0g)を加え、23℃にて2時間攪拌して液晶配向処理剤(1)~(6)を得た。この液晶配向処理剤(1)~(6)には、いずれも濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。
[Examples 1 to 6]
NMP (106.67 g) is added to each of the polyimide powders (1) to (6) (10.0 g each) obtained by the synthesis methods of Synthesis Examples 1 to 6, and stirred at 80 ° C. for 24 hours to dissolve. It was. To this solution, BCS (50.0 g) was added and stirred at 23 ° C. for 2 hours to obtain liquid crystal aligning agents (1) to (6). None of the liquid crystal aligning agents (1) to (6) was found to be a uniform solution with no abnormality such as turbidity or generation of precipitates.
[比較例1]
 日本特開平8-220541号公報を参考にして、CA-4(100)/DA-5(90)、DA-6(10)の溶剤可溶性ポリイミドと、CA-1(100)/DA-7(100)のポリアミック酸を95:5の比率で混ぜ合わせて、比較液晶配向処理剤(A)を得た。この比較液晶配向処理剤(A)に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。
[Comparative Example 1]
With reference to Japanese Patent Application Laid-Open No. 8-220541, solvent-soluble polyimides of CA-4 (100) / DA-5 (90) and DA-6 (10) and CA-1 (100) / DA-7 ( 100) polyamic acid was mixed at a ratio of 95: 5 to obtain a comparative liquid crystal aligning agent (A). This comparative liquid crystal aligning agent (A) was confirmed to be a uniform solution with no abnormalities such as turbidity and generation of precipitates.
[比較例2]
 WO2004/053583号パンフレットを参考にして、CA-1(80)、CA-4(20)/DA-8(80)、DA-7(20)のポリアミック酸と、CA-3(100)/DA-1(100)のポリアミック酸を80:20の比率で混ぜ合わせて、比較液晶配向処理剤(B)を得た。この比較液晶配向処理剤(B)に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。
[Comparative Example 2]
With reference to the pamphlet of WO 2004/053583, the polyamic acid of CA-1 (80), CA-4 (20) / DA-8 (80), DA-7 (20), and CA-3 (100) / DA -1 (100) polyamic acid was mixed at a ratio of 80:20 to obtain a comparative liquid crystal aligning agent (B). This comparative liquid crystal aligning agent (B) was confirmed to be a uniform solution with no abnormalities such as turbidity and generation of precipitates.
<液晶セルの作製>
 得られた液晶配向処理剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で2分間乾燥後、230℃で15分間焼成して膜厚100nmの塗膜を得た。このポリイミド膜をレーヨン布でラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 このような液晶配向膜付き基板を2枚用意した後、2枚の基板のラビング方向が逆平行になるように組み合わせ、4μmのスペーサーを5重量%混入させたシール剤を用いて液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。このセルに液晶(「MLC-2041」、メルク社製)を常温で真空注入し、注入口を封止してアンチパラレル液晶セルとした。
<Production of liquid crystal cell>
The obtained liquid crystal alignment treatment agent is filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 70 ° C. for 2 minutes, and then baked at 230 ° C. for 15 minutes. A coating film having a thickness of 100 nm was obtained. After rubbing this polyimide film with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm), ultrasonic irradiation was performed in pure water for 1 minute, and 80 ° C. for 10 minutes. Dried.
After preparing two substrates with such a liquid crystal alignment film, the two substrates are combined so that the rubbing directions are antiparallel, and a liquid crystal injection port is formed using a sealant mixed with 5% by weight of a 4 μm spacer. The periphery was sealed and the empty cell having a cell gap of 4 μm was produced. Liquid crystal (“MLC-2041”, manufactured by Merck & Co., Inc.) was vacuum injected into this cell at room temperature, and the injection port was sealed to obtain an anti-parallel liquid crystal cell.
<黒レベル評価>
 上記(液晶セルの作製)と同様にして作製した液晶セル(実施例1~6、比較例1、2)を偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。それらの液晶セルを浜松ホトニクス社製のデジタルCCDカメラ「C8800-21C」を用いて観察を行い、撮り込んだ画像を同社の解析ソフト「ExDcam Image capture Software」を用いて輝度の数値化を行った。
 これらの液晶セルの輝度値が500~550であれば「◎」、550~600であれば「○」、それ以上は「×」とした。
<Black level evaluation>
A liquid crystal cell (Examples 1 to 6, Comparative Examples 1 and 2) prepared in the same manner as described above (preparation of a liquid crystal cell) was placed between two polarizing plates arranged so that the polarization axes were orthogonal to each other, and no voltage was applied. In this state, the backlight was turned on, and the arrangement angle of the liquid crystal cell was adjusted so that the luminance of transmitted light was minimized. The liquid crystal cells were observed using a digital CCD camera “C8800-21C” manufactured by Hamamatsu Photonics, and the captured images were digitized using the analysis software “ExDcam Image capture Software”. .
When the luminance value of these liquid crystal cells is 500 to 550, “◎” is indicated, and when the luminance value is 550 to 600, “◯” is indicated.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 本発明の液晶配向処理剤は、横電界駆動方式の液晶表示素子における、黒色の要素に基づく画面の色調に違和感が生じる問題が解決でき、産業上有用である。
 なお、2013年3月19日に出願された日本特許出願2013-57263号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of the present invention is industrially useful because it can solve the problem that the color tone of the screen based on the black element in the horizontal electric field drive type liquid crystal display element is uncomfortable.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-57263 filed on March 19, 2013 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (8)

  1.  テトラカルボン酸二無水物由来の構造単位として、下記式(1)で表される構造単位を有するポリイミド前駆体を閉環して得られるポリイミドを含有することを特徴とする横電界用の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)において、Xは下記式(X)で表される4価の有機基であり、Rは水素原子または炭素数1~10のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    A liquid crystal alignment treatment for a transverse electric field comprising a polyimide obtained by ring-closing a polyimide precursor having a structural unit represented by the following formula (1) as a structural unit derived from tetracarboxylic dianhydride Agent.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), X 1 is a tetravalent organic group represented by the following Formula (X 1 ), and R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
  2.  前記ポリイミド前駆体が、ジアミン由来の構造単位として下記式(2)で表される構造単位を有する請求項1に記載の横電界用の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)において、nは1~12である。)
    The liquid crystal aligning agent for horizontal electric fields of Claim 1 in which the said polyimide precursor has a structural unit represented by following formula (2) as a structural unit derived from diamine.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (2), n is 1 to 12.)
  3.  上記式(X)で表される4価の有機基が式[IV]~[VI]の異性体から選ばれる単一成分、もしくはそれらの混合物である請求項1又は2に記載の横電界駆動用の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    The transverse electric field according to claim 1 or 2, wherein the tetravalent organic group represented by the formula (X 1 ) is a single component selected from isomers of the formulas [IV] to [VI], or a mixture thereof. Liquid crystal aligning agent for driving.
    Figure JPOXMLDOC01-appb-C000004
  4.  異性体[IV]の含有率が90%以上である請求項3に記載の横電界駆動用の液晶配向処理剤。 The liquid crystal aligning agent for driving a transverse electric field according to claim 3, wherein the content of isomer [IV] is 90% or more.
  5.  上記式(1)で表される構造単位の含有量が、テトラカルボン酸誘導体由来の全構造単位1モルに対して、30~100モル%である請求項1~4のいずれか一項に記載の横電界用の液晶配向処理剤。 The content of the structural unit represented by the formula (1) is 30 to 100 mol% with respect to 1 mol of all structural units derived from the tetracarboxylic acid derivative. Liquid crystal alignment agent for horizontal electric field.
  6.  上記式(2)で表される構造単位の含有量が、ジアミン由来の全構造単位1モルに対して、20~100モル%である請求項1~5のいずれか一項に記載の横電界用の液晶配向処理剤。 The transverse electric field according to any one of claims 1 to 5, wherein the content of the structural unit represented by the formula (2) is 20 to 100 mol% with respect to 1 mol of all structural units derived from diamine. Liquid crystal alignment treatment agent.
  7.  請求項1~6のいずれか一項に記載の液晶配向処理剤を基板に塗布、焼成して得られる横電界駆動用の液晶配向膜。 A liquid crystal alignment film for driving a horizontal electric field obtained by applying the liquid crystal alignment treatment agent according to any one of claims 1 to 6 to a substrate and baking the substrate.
  8.  請求項7に記載の液晶配向膜を有する横電界駆動用の液晶表示素子。 A liquid crystal display element for driving a horizontal electric field, comprising the liquid crystal alignment film according to claim 7.
PCT/JP2014/057179 2013-03-19 2014-03-17 Liquid crystal aligning agent for in-plane switching WO2014148440A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157029949A KR102206414B1 (en) 2013-03-19 2014-03-17 Liquid crystal aligning agent for in-plane switching
JP2015506773A JP6508040B2 (en) 2013-03-19 2014-03-17 Liquid crystal aligning agent for horizontal electric field drive
CN201480016940.8A CN105051594B (en) 2013-03-19 2014-03-17 Transverse electric field driving aligning agent for liquid crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057263 2013-03-19
JP2013057263 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148440A1 true WO2014148440A1 (en) 2014-09-25

Family

ID=51580119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057179 WO2014148440A1 (en) 2013-03-19 2014-03-17 Liquid crystal aligning agent for in-plane switching

Country Status (5)

Country Link
JP (1) JP6508040B2 (en)
KR (1) KR102206414B1 (en)
CN (1) CN105051594B (en)
TW (1) TWI620793B (en)
WO (1) WO2014148440A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940342B (en) * 2013-11-28 2019-06-21 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
KR20200016261A (en) * 2017-06-08 2020-02-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042752A1 (en) * 2001-11-15 2003-05-22 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent for vertical alignment, alignment layer for liquid crystal, and liquid crystal displays made by using the same
JP2011175121A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
JP2011175122A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
WO2013008906A1 (en) * 2011-07-14 2013-01-17 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
KR101589322B1 (en) * 2008-01-25 2016-01-27 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP5834930B2 (en) * 2011-09-09 2015-12-24 宇部興産株式会社 Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042752A1 (en) * 2001-11-15 2003-05-22 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent for vertical alignment, alignment layer for liquid crystal, and liquid crystal displays made by using the same
JP2011175121A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
JP2011175122A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
WO2013008906A1 (en) * 2011-07-14 2013-01-17 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
CN105051594B (en) 2017-12-05
JP6508040B2 (en) 2019-05-08
KR20150132538A (en) 2015-11-25
CN105051594A (en) 2015-11-11
TW201504344A (en) 2015-02-01
TWI620793B (en) 2018-04-11
KR102206414B1 (en) 2021-01-21
JPWO2014148440A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP6056759B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
WO2015072554A1 (en) Liquid crystal aligning agent, and liquid crystal display element using same
JP6519583B2 (en) Liquid crystal aligning agent containing polyamic acid ester-polyamic acid copolymer, and liquid crystal aligning film using the same
JP6083379B2 (en) Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
WO2018092811A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2013081067A1 (en) Liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6638645B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
WO2018117240A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5630625B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6217648B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6558543B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6508040B2 (en) Liquid crystal aligning agent for horizontal electric field drive
WO2015119168A1 (en) Liquid-crystal-aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016940.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157029949

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14769011

Country of ref document: EP

Kind code of ref document: A1