WO2013008906A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2013008906A1
WO2013008906A1 PCT/JP2012/067901 JP2012067901W WO2013008906A1 WO 2013008906 A1 WO2013008906 A1 WO 2013008906A1 JP 2012067901 W JP2012067901 W JP 2012067901W WO 2013008906 A1 WO2013008906 A1 WO 2013008906A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
diamine
polyamic acid
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2012/067901
Other languages
French (fr)
Japanese (ja)
Inventor
秀則 石井
小野 豪
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013523995A priority Critical patent/JP5633714B2/en
Priority to CN201280044376.1A priority patent/CN103797409B/en
Priority to KR1020147003576A priority patent/KR101610559B1/en
Publication of WO2013008906A1 publication Critical patent/WO2013008906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • Liquid crystal display elements are currently widely used as display devices.
  • a liquid crystal alignment film which is a constituent member of a liquid crystal display element, is a film that uniformly arranges liquid crystals.
  • display defects such as display unevenness and afterimages are liable to occur. Occurrence of display defects may involve ionic impurities in the liquid crystal, and as a method for reducing these impurities, a proposal as in Patent Document 1 has been made.
  • liquid crystal alignment film an alignment process called rubbing is generally performed by rubbing the surface of the polymer film with a cloth.
  • the rubbing resistance of the liquid crystal alignment film is insufficient, the film is scraped to generate scratches or dust, or the film itself is peeled off, thereby degrading the display quality of the liquid crystal display element.
  • the liquid crystal alignment film is required to have high rubbing resistance, and methods as disclosed in Patent Documents 2 to 5 have been proposed.
  • JP 2002-323701 A JP-A-7-120769 JP-A-9-146100 JP 2008-90297 A JP-A-9-258229 International Publication No. 2004/053583
  • an object of the present invention is to provide a liquid crystal alignment film having good liquid crystal alignment and rubbing resistance, a low ion density, and a small accumulated charge in an FFS mode liquid crystal display element.
  • Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining the liquid crystal aligning film.
  • an object of the present invention is to provide a liquid crystal display element having excellent display quality.
  • the present inventor has conducted extensive research. As a result, the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, a diamine having a urea structure, and 2 polymerization reaction sites are included. It has been found that the above object can be achieved by a liquid crystal aligning agent containing a polyamic acid obtained by using a diamine having a secondary amine.
  • the present invention has the following gist. 1.
  • a diamine containing a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, a diamine having a urea structure, and a diamine having a secondary amine at the polymerization reaction site Liquid crystal aligning agent containing the polyamic acid obtained by reaction with a component.
  • liquid crystal aligning agent according to 1, wherein the tetracarboxylic dianhydride component contains 50 mol% or more of a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure.
  • liquid crystal aligning agent according to any one of 1 to 3, wherein the diamine component contains 10 to 70 mol% of a diamine having a urea structure.
  • liquid crystal aligning agent according to any one of 1 to 4, wherein the diamine having a secondary amine at the polymerization reaction site is a diamine represented by the following formula (1).
  • X represents an aromatic ring
  • R 1 represents an alkylene group having 1 to 5 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • liquid crystal aligning agent according to any one of 1 to 5, wherein the diamine having a urea structure is a diamine represented by the following formula (2).
  • Y represents an oxygen atom or a sulfur atom
  • R 3 and R 4 each independently represents an alkylene group having 1 to 3 carbon atoms
  • Z 1 and Z 2 each independently represents a single atom. Represents a bond, —O—, —S—, —OCO—, or —COO—.
  • a liquid crystal display element comprising the liquid crystal alignment film of 8.7.
  • the liquid crystal display device has a high alignment control function for liquid crystal, that is, has excellent liquid crystal alignment properties, high rubbing resistance, low ion density when used as a liquid crystal display device, and further FFS mode liquid crystal display.
  • a liquid crystal aligning agent with little accumulated charge in the device
  • a liquid crystal aligning film obtained using the liquid crystal aligning agent
  • a liquid crystal display device comprising the liquid crystal aligning film.
  • the liquid crystal aligning agent of the present invention contains a polyamic acid obtained by reacting a diamine component and a tetracarboxylic dianhydride component.
  • the tetracarboxylic dianhydride component that is a raw material of polyamic acid contains a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, and is a diamine component that is a raw material of polyamic acid Contains a diamine having a urea structure and a diamine having a secondary amine at the polymerization reaction site.
  • the tetracarboxylic dianhydride contained in the tetracarboxylic dianhydride component and the diamine contained in the diamine component may each be one kind or plural kinds.
  • the diamine contained in the diamine component and the tetracarboxylic dianhydride contained in the tetracarboxylic dianhydride component will be described in detail.
  • ⁇ Diamine having secondary amine at polymerization reaction site> As a specific example of a diamine having a secondary amine at a polymerization reaction site contained as an essential component in the diamine component which is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention, for example, it is represented by the following formula (1). Diamines. Of course, the diamine component is a secondary amine in the polymerization reaction site other than the diamine represented by the formula (1) in place of the diamine represented by the formula (1) or together with the diamine represented by the formula (1).
  • the polymerization reaction site is a site that reacts with the tetracarboxylic dianhydride component, and a secondary amine of a diamine having a secondary amine at the polymerization reaction site, that is, —NH— is a tetracarboxylic dianhydride component. React with.
  • X represents an aromatic ring
  • R 1 represents an alkylene group having 1 to 5 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • X in the formula is a site for giving an aromatic amine site to a diamine having a secondary amine at the polymerization reaction site, and is not particularly limited as long as it is an aromatic ring.
  • X is preferably phenylene or naphthalene from the viewpoint of availability of raw materials, easiness of synthesis, liquid crystal orientation, and the like, and phenylene is particularly preferable from the viewpoint of versatility.
  • the substitution position of R 1 is preferably a meta position or a para position.
  • R 1 represents an alkylene group having 1 to 5 carbon atoms. From the viewpoint of imparting solubility of the polymer (polyamic acid), R 1 may be branched or have a ring structure within this carbon number range, but from the viewpoint of liquid crystal orientation and rubbing resistance, a linear structure From the viewpoint of availability of the reagent, an alkylene group having 1 or 2 carbon atoms is particularly preferable.
  • R 2 represents an alkyl group having 1 to 4 carbon atoms and may have a linear or branched structure.
  • a group as small as possible is preferable, and a methyl group or an ethyl group is particularly preferable.
  • the content of the diamine having a secondary amine at the polymerization reaction site such as the diamine represented by the formula (1) is preferably 10 to 70 mol% of the total diamine component, but has a high rubbing resistance and a small accumulated charge amount. From the viewpoint of compatibility, it is more preferably 15 to 65 mol%, particularly preferably 20 to 60 mol%.
  • diamine having a urea structure included as an essential component in the diamine component that is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention include diamines represented by the following formula (2).
  • the diamine component contains a diamine having a urea structure other than the diamine represented by the formula (2) instead of the diamine represented by the formula (2) or together with the diamine represented by the formula (2). You may do it.
  • Y represents an oxygen atom or a sulfur atom
  • R 3 and R 4 each independently represents an alkylene group having 1 to 3 carbon atoms
  • Z 1 and Z 2 each independently represents a single bond. , -O-, -S-, -OCO-, or -COO-.
  • Y when Y is an oxygen atom, it is a urea group, and when Y is a sulfur atom, it is a thiourea group (hereinafter, the urea group and the thiourea group may be collectively referred to as (thio) urea group).
  • the urea group and the thiourea group may be collectively referred to as (thio) urea group).
  • a urea group or a thiourea group has a urea structure.
  • both oxygen atoms and sulfur atoms are atoms with high electronegativity.
  • two hydrogen atoms with high donor properties exist on the nitrogen atom. Therefore, the oxygen or sulfur atom of the (thio) urea group is relatively strongly self-assembled by non-covalent bonding with two hydrogen atoms of another (thio) urea group.
  • the urea structure of a diamine having a urea structure is preferably a urea group
  • Y in Formula (2) is preferably an oxygen atom. This is because the oxygen atom has a higher electronegativity than the oxygen atom and the sulfur atom, and therefore the urea structure is stronger and more likely to self-assemble than the thiourea structure.
  • the liquid crystal aligning agent of this invention has (thio) urea group derived from diamine which has urea structures, such as diamine represented by Formula (2), in a polymer chain (polyamic acid chain). For this reason, rubbing tolerance can be improved by electrostatic interaction (non-covalent bond) between (thio) urea groups.
  • the present invention is different from a method for improving rubbing resistance by connecting polymer chains generally used in the field of liquid crystal alignment films with a crosslinking agent.
  • R 3 and R 4 each independently represent an alkylene group having 1 to 3 carbon atoms, and the structure thereof may be either linear or branched. Specific examples include methylene group, ethylene group, trimethylene group, 1-methylethylene group, 2-methylethylene group and the like. Among these, from the viewpoint of liquid crystal alignment and rubbing resistance, a structure having as many free rotation sites as possible and having a small steric hindrance is preferable, and specifically, a methylene group, an ethylene group, and a trimethylene group are preferable.
  • Z 1 and Z 2 are each independently a single bond, —O—, —S—, —OCO—, or —COO—.
  • the structures of Z 1 and Z 2 are preferably as flexible as possible and have as little steric hindrance as possible from the viewpoint of liquid crystal orientation and rubbing resistance, and are preferably a single bond, —O—, or —S—.
  • the structure between the (thio) urea group and the benzene ring is preferably symmetrical about the (thio) urea group in the sense of forming a film having a high film density and forming a stronger liquid crystal alignment film.
  • —R 3 —Z 1 — and —R 4 —Z 2 — preferably have the same structure.
  • diamines represented by the formula (2) compounds represented by the following formulas (2-a) to (2-c) are preferable.
  • R 11 and R 21 are both an alkylene group having 1 to 3 carbon atoms.
  • R 12 and R 22 are alkylene groups having 1 to 3 carbon atoms which are different from each other.
  • R 13 and R 23 are each independently an alkylene group having 1 to 3 carbon atoms.
  • the bonding position of the amino group (—NH 2 ) on the benzene ring is not particularly limited, but is preferably a 3-aminophenyl structure or a 4-aminophenyl structure from the viewpoint of liquid crystal alignment.
  • a 4-aminophenyl structure is preferred.
  • the formula (2) is preferably any one of the following formulas (2-1), (2-2), and (2-3), and particularly preferably the formula (2-1).
  • Z 1 , Z 2 , R 3, and R 4 have the same definitions as in the formula (2).
  • formula (2) examples include compounds represented by formula (2-4) to formula (2-15). Among these, it is particularly preferable to use diamines represented by the above formulas (2-8) to (2-11).
  • the content of the diamine represented by the formula (2) is preferably 10 to 70 mol% of the total diamine component, but is more preferably 15 to 65 mol% from the viewpoint of achieving both high rubbing resistance and a small amount of accumulated charge, 20 to 60 mol% is particularly preferable.
  • a diamine component that is a raw material of polyamic acid in addition to a diamine having a secondary amine at the polymerization reaction site or a diamine having a urea structure, It is also possible to contain other diamine compounds. Specific examples of other diamine compounds are listed below.
  • the other diamine compounds mentioned above are of one type depending on characteristics such as volume resistivity, rubbing resistance, ion density characteristics, transmittance, liquid crystal alignment characteristics, voltage holding characteristics and accumulated charges when used as a liquid crystal alignment film. Alternatively, two or more types can be mixed and used.
  • the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure contained as an essential component in the tetracarboxylic dianhydride component that is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention is, for example, It is a tetracarboxylic dianhydride represented by the formula (3).
  • the tetracarboxylic dianhydride component is replaced with the tetracarboxylic dianhydride represented by the formula (3) or together with the tetracarboxylic dianhydride represented by the formula (3).
  • the tetracarboxylic dianhydride which has alicyclic structure or aliphatic structure other than the tetracarboxylic dianhydride represented by this may be contained.
  • a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure and a tetracarboxylic dianhydride other than a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure may be contained. Good.
  • R 5 represents a tetravalent hydrocarbon group having an alicyclic structure or an aliphatic structure.
  • the alicyclic structure is a structure having a carbocyclic ring having no aromaticity, such as cycloalkane or cycloalkene.
  • the aliphatic structure is a chain hydrocarbon group such as a paraffin hydrocarbon group, an olefin hydrocarbon group, an acetylene hydrocarbon group (for example, the chain hydrocarbon group has a total of 4 carbon atoms).
  • Specific examples of R 5 include tetravalent groups represented by the following formulas (3-1) to (3-30).
  • the tetracarboxylic dianhydride component is represented by formulas (3-1) to (3-25) and R 5 having an alicyclic structure or an aliphatic structure such as formula (3-30) is preferred.
  • R 5 is a group represented by the formula (3-1), the formula (3-2), the formula (3-6), the formula (3-25) and the formula (3-
  • a tetracarboxylic dianhydride selected from the group consisting of 30 it is preferable because a liquid crystal alignment film with less accumulated charge can be obtained.
  • the tetracarboxylic dianhydride component preferably contains an aromatic tetracarboxylic dianhydride.
  • an aromatic tetracarboxylic dianhydride is preferably 50 mol% or less, more preferably 30 mol% or less, based on the total amount of the tetracarboxylic dianhydride component.
  • aromatic tetracarboxylic dianhydride examples include tetracarboxylic dianhydrides represented by the following formula (4).
  • R 6 is a group having an aromatic structure.
  • the aromatic structure is a structure having an aromatic ring showing aromaticity such as a benzene ring.
  • Specific examples of R 6 include tetravalent groups represented by the following formulas (3-31) to (3-47).
  • the method for obtaining the polyamic acid contained in the liquid crystal aligning agent of the present invention by reacting the diamine component and the tetracarboxylic dianhydride component (hereinafter also simply referred to as tetracarboxylic dianhydride) is particularly limited.
  • a known method can be applied.
  • a diamine component and a tetracarboxylic dianhydride component are mixed in an organic solvent to cause a polymerization reaction to obtain a polyamic acid.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is, or A method of adding by dispersing or dissolving in an organic solvent, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and alternating a tetracarboxylic dianhydride component and a diamine component And the like.
  • the plurality of types of components may be preliminarily mixed and polymerized separately or sequentially. May be.
  • the temperature at which the tetracarboxylic dianhydride component and the diamine component are subjected to a polymerization reaction in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. The higher the temperature, the faster the polymerization reaction ends. However, when the temperature is too high, a high molecular weight polymer (polyamic acid) may not be obtained.
  • the polymerization reaction can be carried out at any charge concentration, but if the charge concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the charge concentration is too high, the reaction solution will become too viscous and uniform.
  • the amount is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the polymerization reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the charged concentration is the concentration of the total mass of the tetracarboxylic dianhydride component and the diamine component.
  • the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid is soluble.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide or and ⁇ -butyrolactone. These may be used alone or in combination.
  • the solvent may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • the ratio of the tetracarboxylic dianhydride component to the diamine component used in the polymerization reaction for obtaining the polyamic acid is preferably 1: 0.8 to 1: 1.2 in terms of molar ratio, and this molar ratio is 1: The closer to 1, the greater the molecular weight of the polyamic acid obtained. If the molecular weight of the polyamic acid is too small, the strength of the coating film obtained therefrom may be insufficient. Conversely, if the molecular weight of the polyamic acid is too large, the viscosity of the liquid crystal aligning agent produced therefrom will increase. Thus, workability during coating film formation and uniformity of the coating film may be deteriorated. Therefore, the weight average molecular weight of the polyamic acid used in the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
  • the liquid crystal aligning agent of this invention contains 1 or more types of polyamic acid obtained by making it above.
  • a liquid crystal aligning agent containing a polyamic acid obtained by reaction of such a specific diamine component and a specific tetracarboxylic dianhydride component as shown in the examples described later, good liquid crystal alignment properties
  • a liquid crystal alignment film having rubbing resistance, low ion density, and low accumulated charge in the FFS mode liquid crystal display element can be obtained.
  • the liquid crystal aligning agent of the present invention is usually a coating solution in which the polyamic acid is dissolved in an organic solvent, but the liquid crystal aligning agent of the present invention can be used as long as a uniform thin film can be formed on the substrate. May take other forms.
  • the liquid crystal aligning agent of the present invention contains a tetracarboxylic dianhydride containing the above-described tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, as long as the effects of the present invention are not impaired.
  • a polymer having another structure may be contained together with a polyamic acid obtained by a reaction between an anhydride component, a diamine having a urea structure and a diamine component having a diamine having a secondary amine at the polymerization reaction site.
  • Examples of the polymer having another structure include a polyamic acid having a molecular structure different from the above-described polyamic acid, a polyamic acid ester, and the like.
  • a tetracarboxylic dianhydride component containing the above-described tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure And a polyamic acid content obtained by a reaction between a diamine having a urea structure and a diamine component containing a diamine having a secondary amine at the polymerization reaction site, with respect to the total amount (100 mol%) of the polymer component, % To 80 mol% is preferred.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it contains a polymer component such as polyamic acid contained therein.
  • Specific examples of the organic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl Examples thereof include sulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, and 1,3-dimethyl-imidazolidinone. You may use these 1 type or in mixture of 2 or more types.
  • ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy Propoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate N-propyl ester, lactate N-butyl ester
  • the amount of the solvent having a low surface tension is more preferably 5 to 80% by mass, and further preferably 20 to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention may contain various additives in addition to the polymer component and the organic solvent.
  • a fluorine-based surfactant for example, as an additive for improving film thickness uniformity and surface smoothness, a fluorine-based surfactant, a silicone-based surfactant, a nonionic surfactant, and the like can be given.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • Megafac F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
  • additives that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • the amount of these compounds added is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation may be deteriorated.
  • a dielectric or conductive material can be added for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film.
  • a crosslinkable compound or the like may be added for the purpose of increasing the density.
  • the concentration of the solid content in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the film thickness of the target liquid crystal aligning film. Is preferably from 1 to 20% by mass, more preferably from 2 to 10% by mass.
  • the liquid crystal aligning agent of the present invention is applied to a substrate and baked, and then subjected to an alignment treatment such as rubbing treatment or light irradiation, or when applied to a vertical alignment liquid crystal display element, without the alignment treatment.
  • the substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate and a polycarbonate substrate can be used, but ITO (Indium for driving liquid crystal) can be used. It is preferable to use a substrate on which (Tin Oxide) electrodes and the like are formed from the viewpoint of simplification of the process.
  • an opaque substrate such as a silicon wafer can be used as long as the substrate is only on one side. In this case, a material that reflects light, such as aluminum, can be used as the electrode.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, inkjet, or the like is generally used. Other coating methods include a dipping method, a method using a roll coater, a slit coater, a spinner, or the like, and may be appropriately selected from these according to the purpose.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • the polyamic acid in the liquid crystal aligning agent and the polyamic acid ester contained as necessary change the conversion rate to polyimide depending on the firing temperature, but the liquid crystal aligning agent of the present invention does not necessarily need to be imidized 100%.
  • the firing time can be set to an arbitrary time, but if the firing time is too short, display failure may occur due to the influence of the residual solvent. Therefore, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is.
  • the thickness of the coating film after baking is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell fabrication is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed are prepared. Next, spacers are dispersed on the liquid crystal alignment film of one substrate, the other substrate is bonded so that the liquid crystal alignment film surface is on the inside, and then liquid crystal is injected under reduced pressure to seal. Alternatively, after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, the substrate may be bonded to perform sealing.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display element produced using the liquid crystal aligning agent of the present invention is excellent in display quality and reliability, and can be suitably used for a large-screen high-definition liquid crystal television.
  • the liquid crystal aligning agent of the present invention As described above, by using the liquid crystal aligning agent of the present invention, there are few scratches and scratches on the film surface during the rubbing treatment, the liquid crystal orientation is good, and the liquid crystal display element has a low ion density. An alignment film can be obtained.
  • the liquid crystal alignment film obtained using the liquid crystal aligning agent of the present invention has a remarkably high volume resistivity as compared with a general polyamic acid because of the influence of the secondary amine structure and the urea structure. is doing.
  • the value is equivalent to a soluble polyimide that is said to have a high volume resistivity.
  • an FFS mode liquid crystal display element using a liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has a small amount of accumulated charge and can provide a high-quality liquid crystal display element having a low afterimage level.
  • the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has a high volume resistivity, but since the amount of accumulated charges is very small, it is possible to suppress the occurrence of afterimages, and it takes time to erase afterimages. It can be said that this problem does not occur.
  • the liquid crystal alignment agent of the present invention can be used not only to form a liquid crystal alignment film that is aligned by rubbing, but also to form a photo-alignment liquid crystal alignment film, that is, a liquid crystal alignment film that is aligned by light irradiation. It is.
  • CA-1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • CA-2 pyromellitic dianhydride
  • CA-3 bicyclo [3,3,0] octane-2,4,6,8 -Tetracarboxylic dianhydride
  • DA-1 4- (2- (methylamino) ethyl) aniline
  • DA-2 1,3-bis (4-aminophenethyl) urea
  • DA-3 3-((methylamino) Methyl) aniline
  • DA-4 1,5-bis (4-aminophenoxy) pentane
  • DA-5 p-phenylenediamine
  • DA-6 4,4′-diaminodiphenylamine
  • the viscosity of the polyamic acid solution was an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
  • Solid concentration measurement In the synthesis example or the comparative synthesis example, the solid content concentration of the polyamic acid solution was calculated as follows.
  • the polyamic acid solution obtained in the synthesis example or the comparative synthesis example is filtered through a 1.0 ⁇ m filter, and then applied by spin coating on a glass substrate with an ITO solid electrode (ITO film is provided on the entire surface of the glass substrate). Then, after drying on a hot plate at 50 ° C. for 5 minutes, it was baked at 230 ° C. for 30 minutes to obtain a polyimide film having a thickness of 100 nm.
  • the polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. After washing and removing water droplets by air blow, drying was performed at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with such a liquid crystal alignment film are prepared, a 6 ⁇ m spacer is set on the liquid crystal alignment film surface of one substrate, and then the rubbing directions of the two substrates are combined so that they are antiparallel. The periphery was sealed, and an empty cell with a cell gap of 6 ⁇ m was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this cell at room temperature, and the inlet was sealed to obtain an anti-parallel liquid crystal cell.
  • MLC-2041 manufactured by Merck & Co
  • Voltage holding ratio measurement Using the vertical electric field liquid crystal cell produced as described above, measurement was performed with a VHR-1 type voltage holding ratio measurement system manufactured by Toyo Corporation. In the measurement, an AC voltage of ⁇ 4 V was applied for 60 ⁇ sec, and the voltage after 16.67 msec was measured, and the fluctuation from the initial value was calculated as the voltage holding ratio. During the measurement, the temperature of the liquid crystal cell was set to 60 ° C., 98% or more was “good”, and less than 98% was “bad”.
  • the polyamic acid solution obtained in the synthesis example or the comparative synthesis example is filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with an ITO transparent electrode, dried on a hot plate at 70 ° C. for 2 minutes, and 230 The film was baked at 15 ° C. for 15 minutes to form a coating film (liquid crystal alignment film) having a film thickness of about 220 nm.
  • a coating film liquid crystal alignment film
  • Aluminum was vapor-deposited on the surface of the coating film through a mask to form a 1.0 mm ⁇ upper electrode (aluminum electrode), which was used as a sample for volume resistivity measurement.
  • a voltage of 5 V is applied between the ITO electrode and the aluminum electrode of this sample, the current value 180 seconds after the voltage application is measured, and the volume resistivity is calculated from the measured value of the electrode area and the film thickness. did.
  • the first layer on the glass substrate is a 50 nm thick IZO (Indium Zinc Oxide) solid electrode, and the second layer is 500 nm thick.
  • a silicon nitride insulating film is applied by spin coating onto a substrate capable of FFS mode driving having an IZO comb-teeth electrode (electrode width: 3 ⁇ m, electrode interval: 6 ⁇ m) having a thickness of 50 nm as the third layer, on a hot plate at 50 ° C. And then dried at 230 ° C.
  • a polyimide film having a thickness of 100 nm.
  • This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third layer IZO comb-teeth electrode.
  • the substrate was cleaned by irradiating with ultrasonic waves in pure water for 1 minute, and water droplets were removed by air blowing, followed by drying at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • a liquid crystal alignment in which a polyimide film is formed in the same manner as described above on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which an electrode is not formed as a counter substrate, and subjected to an alignment process in the same manner as described above.
  • a substrate with a film was obtained.
  • Liquid crystal ZLI-4792, manufactured by Merck & Co., Inc.
  • this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, 55.1 g of N-methyl-2-pyrrolidone, and 1.0 mass% N-methyl-2-pyrrolidone solution of 3-aminopropyltriethoxysilane. 16.5 g and 60.0 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 5.7% by mass.
  • this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, 48.0 g of N-methyl-2-pyrrolidone, and 1.0% by mass of N-methyl-2-pyrrolidone solution of 3-aminopropyltriethoxysilane. 16.5 g and 60.0 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 5.7% by mass.
  • Methyl-2-pyrrolidone was added, and the mixture was stirred at room temperature for 5 hours under a nitrogen atmosphere to obtain a solution of polyamic acid (A-7).
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 196 mPa ⁇ s.
  • Table 1 shows the blending in the above synthesis examples and comparative synthesis examples.
  • Example 1 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-1) obtained in Synthesis Example 1, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.8% “good”, the ion density is “good” at 6 pC / cm 2 , the volume resistivity is 1.9 ⁇ 10 15 ⁇ ⁇ cm, the residual DC is 1.05 V after 10 minutes, and 1 after 20 minutes. 0.08 V, 60 minutes later, 1.11 V, “good”.
  • Example 2 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-2) obtained in Synthesis Example 2, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.7% “good”, the ion density is 0 pC / cm 2 “good”, and the residual DC is 10 minutes 0.87 V, 20 minutes 0.96 V, 60 minutes 0.99 V “good”. there were.
  • Example 3 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-3) obtained in Synthesis Example 3, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.4% “good”, ion density is 59 pC / cm 2 “good”, residual DC is 0.69 V after 10 minutes, 0.74 V after 20 minutes, 0.81 V after 60 minutes, “good” there were.
  • Example 4 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-4) obtained in Synthesis Example 4, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.1%, the ion density is “good” at 73 pC / cm 2 , and the residual DC is “good” at 1.03 V after 10 minutes, 1.06 V after 20 minutes, and 1.14 V after 60 minutes. there were.
  • Example 5 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-5) obtained in Synthesis Example 5, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 99.1% “good”, the ion density is “good” at 2 pC / cm 2 , the residual DC is 0.38 V after 10 minutes, 0.52 V after 20 minutes, 0.65 V after 60 minutes, “good”. there were.
  • Example 6 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-6) obtained in Synthesis Example 6, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.1%, the ion density is “good” at 13 pC / cm 2 , and the residual DC is “good” at 1.28 V after 10 minutes, 1.43 V after 20 minutes, and 1.50 V after 60 minutes. there were.
  • Example 7 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-7) obtained in Synthesis Example 7, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio 98.5% is “good”, the ion density is “good” at 8 pC / cm 2 , the residual DC is 0.61 V after 10 minutes, 0.71 V after 20 minutes, 0.79 V after 60 minutes and “good”. there were.
  • Example 8> As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-8) obtained in Synthesis Example 8, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.7%, the ion density is “good” at 0 pC / cm 2 , and the residual DC is “good” at 1.58 V after 10 minutes, 1.79 V after 20 minutes, and 1.88 V after 60 minutes. there were.
  • Example 9 As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-9) obtained in Synthesis Example 9, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.8%, the ion density is “good” at 0 pC / cm 2 , and the residual DC is “good” at 1.15 V after 10 minutes, 1.39 V after 20 minutes, and 1.51 V after 60 minutes. there were.
  • Examples 1 to 10 using the liquid crystal aligning agent (polyamic acid solution) of the present invention were excellent in liquid crystal alignment, high rubbing resistance, and low ion density.
  • the residual DC in the FFS mode is low, the accumulated charge in the liquid crystal display element is small.
  • the voltage holding ratio was also good.
  • Examples 2 to 10 using each of the polyamic acid solutions of Synthesis Examples 2 to 10 also had high volume resistivity.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film having excellent rubbing resistance, good liquid crystal aligning property, high voltage holding ratio and low ion density when used as a liquid crystal display element. Moreover, since the liquid crystal alignment film of the present invention has a small amount of accumulated charge in the FFS mode liquid crystal display element, it can be used in an FFS mode liquid crystal display element that requires high display quality.

Abstract

A liquid crystal aligning agent which contains a polyamic acid that is obtained by a reaction between a tetracarboxylic acid dianhydride component that contains a tetracarboxylic acid dianhydride having an alicyclic structure or an aliphatic structure and a diamine component that contains a diamine having a urea structure and a diamine having a secondary amine at a polymerization reaction site.

Description

液晶配向剤、液晶配向膜および液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、液晶配向膜および液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
 液晶表示素子は、表示デバイスとして現在広く使用されている。液晶表示素子の構成部材である液晶配向膜は、液晶を均一に並べる膜であるが、液晶配向性が不十分な場合、表示ムラや残像と言われる表示不良を引き起こし易くなる。表示不良の発生は、液晶中のイオン性不純物が関与する場合もあり、この不純物を低減させる方法として、特許文献1のような提案がなされている。 Liquid crystal display elements are currently widely used as display devices. A liquid crystal alignment film, which is a constituent member of a liquid crystal display element, is a film that uniformly arranges liquid crystals. However, when the liquid crystal alignment is insufficient, display defects such as display unevenness and afterimages are liable to occur. Occurrence of display defects may involve ionic impurities in the liquid crystal, and as a method for reducing these impurities, a proposal as in Patent Document 1 has been made.
 また、液晶配向膜においては、布で高分子膜の表面を擦るラビングという配向処理を行うのが一般的である。しかし、液晶配向膜のラビング耐性が不十分であると、膜が削れて傷や粉塵を発生させたり、膜そのものが剥離したりしてしまい、液晶表示素子の表示品位を低下させてしまう。そのため、液晶配向膜には高いラビング耐性が求められており、特許文献2~5に示されるような手法が提案されている。 Further, in the liquid crystal alignment film, an alignment process called rubbing is generally performed by rubbing the surface of the polymer film with a cloth. However, if the rubbing resistance of the liquid crystal alignment film is insufficient, the film is scraped to generate scratches or dust, or the film itself is peeled off, thereby degrading the display quality of the liquid crystal display element. For this reason, the liquid crystal alignment film is required to have high rubbing resistance, and methods as disclosed in Patent Documents 2 to 5 have been proposed.
 また、液晶配向膜の体積抵抗率が高いと、蓄積電荷が緩和し難くなり、残像が消去するまでの時間がかかるという問題が知られている。残像消去時間を短くする方法としては、特許文献6のような体積抵抗率の低い液晶配向膜を使用する方法が提案されている。 In addition, it is known that when the volume resistivity of the liquid crystal alignment film is high, accumulated charges are difficult to relax and it takes time until the afterimage is erased. As a method for shortening the afterimage erasing time, a method using a liquid crystal alignment film having a low volume resistivity as in Patent Document 6 has been proposed.
特開2002-323701号公報JP 2002-323701 A 特開平7-120769号公報JP-A-7-120769 特開平9-146100号公報JP-A-9-146100 特開2008-90297号公報JP 2008-90297 A 特開平9-258229号公報JP-A-9-258229 国際公開第2004/053583号International Publication No. 2004/053583
 液晶表示素子のモードのひとつとして近年開発されたFFS(Fringe Field Switching)モードにおいて、体積抵抗率の低い液晶配向膜を使用すると、蓄積電荷が緩和するまでの時間は短いものの、電荷が蓄積し易くなることが判明した。電荷が蓄積し易いFFSモード液晶表示素子の場合、短時間の駆動でも残像が発生しやすいことが確認された。 In the FFS (Fringe Field Switching) mode recently developed as one of the liquid crystal display element modes, using a liquid crystal alignment film with low volume resistivity shortens the time until the accumulated charge is relaxed, but charges are likely to accumulate. Turned out to be. In the case of an FFS mode liquid crystal display element in which charge is likely to accumulate, it was confirmed that an afterimage was likely to occur even when driven for a short time.
 本発明は、上記の問題を解決するとともに、液晶表示素子として必要な各種特性を満たす液晶配向膜を提供することを目的として見出されたものである。すなわち、本発明の目的は、良好な液晶配向性及びラビング耐性を有し、イオン密度が小さく、且つ、FFSモード液晶表示素子における蓄積電荷が少ない液晶配向膜を提供することにある。 The present invention has been found for the purpose of solving the above-described problems and providing a liquid crystal alignment film satisfying various characteristics required as a liquid crystal display element. That is, an object of the present invention is to provide a liquid crystal alignment film having good liquid crystal alignment and rubbing resistance, a low ion density, and a small accumulated charge in an FFS mode liquid crystal display element.
 また、本発明の目的は、上記液晶配向膜を得られる液晶配向剤を提供することにある。 Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining the liquid crystal aligning film.
 さらに、本発明の目的は、表示品位に優れた液晶表示素子を提供することにある。 Furthermore, an object of the present invention is to provide a liquid crystal display element having excellent display quality.
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物、ウレア構造を有するジアミン、及び、重合反応部位に2級アミンを有するジアミンを用いて得られるポリアミック酸を含有せしめた液晶配向剤により上記の目的を達成し得ることを見出した。 In order to achieve the above-mentioned object, the present inventor has conducted extensive research. As a result, the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, a diamine having a urea structure, and 2 polymerization reaction sites are included. It has been found that the above object can be achieved by a liquid crystal aligning agent containing a polyamic acid obtained by using a diamine having a secondary amine.
 かくして、本発明は、下記を要旨とするものである。
1.脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、ウレア構造を有するジアミン及び重合反応部位に2級アミンを有するジアミンを含有するジアミン成分との反応により得られるポリアミック酸を含有する液晶配向剤。
Thus, the present invention has the following gist.
1. A diamine containing a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, a diamine having a urea structure, and a diamine having a secondary amine at the polymerization reaction site Liquid crystal aligning agent containing the polyamic acid obtained by reaction with a component.
2.テトラカルボン酸二無水物成分中、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を50mol%以上含有することを特徴とする1記載の液晶配向剤。 2. 2. The liquid crystal aligning agent according to 1, wherein the tetracarboxylic dianhydride component contains 50 mol% or more of a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure.
3.ジアミン成分中、重合反応部位に2級アミンを有するジアミンを10~70mol%含有することを特徴とする1または2に記載の液晶配向剤。 3. 3. The liquid crystal aligning agent according to 1 or 2, wherein the diamine component contains 10 to 70 mol% of a diamine having a secondary amine at a polymerization reaction site.
4.ジアミン成分中、ウレア構造を有するジアミンを、10~70mol%含有することを特徴とする1~3のいずれかに記載の液晶配向剤。 4). 4. The liquid crystal aligning agent according to any one of 1 to 3, wherein the diamine component contains 10 to 70 mol% of a diamine having a urea structure.
5.重合反応部位に2級アミンを有するジアミンが、下記式(1)で表されるジアミンであることを特徴とする1~4のいずれかに記載の液晶配向剤。 5. 5. The liquid crystal aligning agent according to any one of 1 to 4, wherein the diamine having a secondary amine at the polymerization reaction site is a diamine represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Xは芳香環を表し、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~4のアルキル基を表す。) (In formula (1), X represents an aromatic ring, R 1 represents an alkylene group having 1 to 5 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
6.ウレア構造を有するジアミンが、下記式(2)で表されるジアミンであることを特徴とする1~5のいずれかに記載の液晶配向剤。 6). 6. The liquid crystal aligning agent according to any one of 1 to 5, wherein the diamine having a urea structure is a diamine represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Yは酸素原子又は硫黄原子を表し、R、Rはそれぞれ独立して炭素原子数1~3のアルキレン基を表し、Z、Zはそれぞれ独立して単結合、-O-、-S-、-OCO-、または、-COO-を表す。) (In Formula (2), Y represents an oxygen atom or a sulfur atom, R 3 and R 4 each independently represents an alkylene group having 1 to 3 carbon atoms, and Z 1 and Z 2 each independently represents a single atom. Represents a bond, —O—, —S—, —OCO—, or —COO—.)
7.1~6のいずれかに記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of 7.1 to 6.
8.7の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film of 8.7.
 本発明によれば、液晶に対する高い配向制御機能を有する、すなわち優れた液晶配向性を有するとともに、高いラビング耐性を有し、液晶表示素子としたときのイオン密度が小さく、さらにはFFSモード液晶表示素子における蓄積電荷の少ない液晶配向剤、該液晶配向剤を用いて得られる液晶配向膜、及び該液晶配向膜を具備する液晶表示素子が提供される。 According to the present invention, the liquid crystal display device has a high alignment control function for liquid crystal, that is, has excellent liquid crystal alignment properties, high rubbing resistance, low ion density when used as a liquid crystal display device, and further FFS mode liquid crystal display. Provided are a liquid crystal aligning agent with little accumulated charge in the device, a liquid crystal aligning film obtained using the liquid crystal aligning agent, and a liquid crystal display device comprising the liquid crystal aligning film.
 本発明の液晶配向剤は、ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸を含有する。そして、本発明においては、ポリアミック酸の原料であるテトラカルボン酸二無水物成分は、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有し、ポリアミック酸の原料であるジアミン成分は、ウレア構造を有するジアミン及び重合反応部位に2級アミンを有するジアミンを含有する。なお、テトラカルボン酸二無水物成分に含まれるテトラカルボン酸二無水物やジアミン成分に含まれるジアミンは、それぞれ1種でも複数種でもよい。 The liquid crystal aligning agent of the present invention contains a polyamic acid obtained by reacting a diamine component and a tetracarboxylic dianhydride component. In the present invention, the tetracarboxylic dianhydride component that is a raw material of polyamic acid contains a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, and is a diamine component that is a raw material of polyamic acid Contains a diamine having a urea structure and a diamine having a secondary amine at the polymerization reaction site. In addition, the tetracarboxylic dianhydride contained in the tetracarboxylic dianhydride component and the diamine contained in the diamine component may each be one kind or plural kinds.
 以下では、ジアミン成分に含有されるジアミンや、テトラカルボン酸二無水物成分に含有されるテトラカルボン酸二無水物について詳しく説明する。 Hereinafter, the diamine contained in the diamine component and the tetracarboxylic dianhydride contained in the tetracarboxylic dianhydride component will be described in detail.
 <重合反応部位に2級アミンを有するジアミン>
 本発明の液晶配向剤に含有されるポリアミック酸の原料であるジアミン成分に、必須成分として含まれる重合反応部位に2級アミンを有するジアミンの具体例として、例えば、下記式(1)で表されるジアミンが挙げられる。もちろん、ジアミン成分は、式(1)で表されるジアミンの代わりに、または、式(1)で表されるジアミンと共に、式(1)で表されるジアミン以外の重合反応部位に2級アミンを有するジアミンを含有していてもよい。なお、重合反応部位とは、テトラカルボン酸二無水物成分と反応する部位であり、重合反応部位に2級アミンを有するジアミンの2級アミン、すなわち-NH-が、テトラカルボン酸二無水物成分と反応する。
<Diamine having secondary amine at polymerization reaction site>
As a specific example of a diamine having a secondary amine at a polymerization reaction site contained as an essential component in the diamine component which is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention, for example, it is represented by the following formula (1). Diamines. Of course, the diamine component is a secondary amine in the polymerization reaction site other than the diamine represented by the formula (1) in place of the diamine represented by the formula (1) or together with the diamine represented by the formula (1). It may contain a diamine having The polymerization reaction site is a site that reacts with the tetracarboxylic dianhydride component, and a secondary amine of a diamine having a secondary amine at the polymerization reaction site, that is, —NH— is a tetracarboxylic dianhydride component. React with.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Xは芳香環を表し、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~4のアルキル基を表す。 In formula (1), X represents an aromatic ring, R 1 represents an alkylene group having 1 to 5 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.
 式中のXは、芳香族アミン部位を、重合反応部位に2級アミンを有するジアミンに持たせる為の部位であり、従って芳香環であれば特に限定はされない。原料の入手性や合成の容易性、液晶配向性などの観点で、Xはフェニレン、ナフタレンが好ましく、汎用性の点ではフェニレンが特に好ましい。Xがフェニレンの場合、すなわちHN-Xがアミノベンゼンの場合、Rの置換位置はメタ位又はパラ位が好ましい。 X in the formula is a site for giving an aromatic amine site to a diamine having a secondary amine at the polymerization reaction site, and is not particularly limited as long as it is an aromatic ring. X is preferably phenylene or naphthalene from the viewpoint of availability of raw materials, easiness of synthesis, liquid crystal orientation, and the like, and phenylene is particularly preferable from the viewpoint of versatility. When X is phenylene, that is, when H 2 N—X is aminobenzene, the substitution position of R 1 is preferably a meta position or a para position.
 Rは炭素数1~5のアルキレン基を表す。ポリマー(ポリアミック酸)の溶解性付与の観点ではRはこの炭素数の範囲であれば分岐していても環構造をとっていても良いが、液晶配向性やラビング耐性の観点では直鎖構造が好ましく、試薬の入手性の観点からは炭素数が1又は2のアルキレン基が特に好ましい。 R 1 represents an alkylene group having 1 to 5 carbon atoms. From the viewpoint of imparting solubility of the polymer (polyamic acid), R 1 may be branched or have a ring structure within this carbon number range, but from the viewpoint of liquid crystal orientation and rubbing resistance, a linear structure From the viewpoint of availability of the reagent, an alkylene group having 1 or 2 carbon atoms is particularly preferable.
 Rは炭素数1~4のアルキル基を表し、直鎖、又は分岐構造をとっていても良い。一方、液晶配向性やジアミンの反応性の観点からはなるべく小さな基であることが好ましく、メチル基や、エチル基が特に好ましい。 R 2 represents an alkyl group having 1 to 4 carbon atoms and may have a linear or branched structure. On the other hand, from the viewpoint of liquid crystal alignment and diamine reactivity, a group as small as possible is preferable, and a methyl group or an ethyl group is particularly preferable.
 式(1)で表されるジアミンの好ましい例を以下に示すが、これらに限定はされない。 Although the preferable example of the diamine represented by Formula (1) is shown below, it is not limited to these.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)で表されるジアミンなどの重合反応部位に2級アミンを有するジアミンの含有量は、全ジアミン成分の10~70mol%であるのが好ましいが、高いラビング耐性と少ない蓄積電荷量の両立の観点から15~65mol%がより好ましく、20~60mol%が特に好ましい。 The content of the diamine having a secondary amine at the polymerization reaction site such as the diamine represented by the formula (1) is preferably 10 to 70 mol% of the total diamine component, but has a high rubbing resistance and a small accumulated charge amount. From the viewpoint of compatibility, it is more preferably 15 to 65 mol%, particularly preferably 20 to 60 mol%.
 <ウレア構造を有するジアミン>
 本発明の液晶配向剤に含有されるポリアミック酸の原料であるジアミン成分に、必須成分として含まれるウレア構造を有するジアミンの具体例として、下記式(2)で表されるジアミンが挙げられる。もちろん、ジアミン成分は、式(2)で表されるジアミンの代わりに、または、式(2)で表されるジアミンと共に、式(2)で表されるジアミン以外のウレア構造を有するジアミンを含有していてもよい。
<Diamine having a urea structure>
Specific examples of the diamine having a urea structure included as an essential component in the diamine component that is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention include diamines represented by the following formula (2). Of course, the diamine component contains a diamine having a urea structure other than the diamine represented by the formula (2) instead of the diamine represented by the formula (2) or together with the diamine represented by the formula (2). You may do it.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(2)中、Yは酸素原子又は硫黄原子を表し、R、Rはそれぞれ独立して炭素原子数1~3のアルキレン基を表し、Z、Zはそれぞれ独立して単結合、-O-、-S-、-OCO-、または、-COO-を表す。 In formula (2), Y represents an oxygen atom or a sulfur atom, R 3 and R 4 each independently represents an alkylene group having 1 to 3 carbon atoms, and Z 1 and Z 2 each independently represents a single bond. , -O-, -S-, -OCO-, or -COO-.
 式(2)において、Yが酸素原子の場合はウレア基であり、硫黄原子の場合はチオウレア基(以下、ウレア基およびチオウレア基を総称して(チオ)ウレア基ということがある。)である。そして、ウレア基やチオウレア基が、ウレア構造である。 In Formula (2), when Y is an oxygen atom, it is a urea group, and when Y is a sulfur atom, it is a thiourea group (hereinafter, the urea group and the thiourea group may be collectively referred to as (thio) urea group). . A urea group or a thiourea group has a urea structure.
 ここで、酸素原子と硫黄原子はいずれも電気陰性度の高い原子である。また、窒素原子上にはドナー性の高い水素原子が二つ存在している。そのため、(チオ)ウレア基の酸素または硫黄原子は、別の(チオ)ウレア基の二つの水素原子と非共有結合することによって、比較的強く自己集合する。本発明において、ウレア構造を有するジアミンのウレア構造は、ウレア基であることが好ましく、式(2)におけるYは、酸素原子であることが好ましい。これは、酸素原子と硫黄原子を比べると、電気陰性度は酸素原子の方が高いため、ウレア構造の方がチオウレア構造よりも強く自己集合し易いことによる。そして、本発明の液晶配向剤は、高分子鎖(ポリアミック酸鎖)中に、式(2)で表されるジアミン等のウレア構造を有するジアミンに由来する(チオ)ウレア基を有する。このため、(チオ)ウレア基同士の静電気相互作用(非共有結合)によって、ラビング耐性を向上させることができる。この点において、本発明は、液晶配向膜の分野で一般に用いられている高分子鎖間を架橋剤で連結することでラビング耐性を向上させる方法とは異なる。 Here, both oxygen atoms and sulfur atoms are atoms with high electronegativity. In addition, two hydrogen atoms with high donor properties exist on the nitrogen atom. Therefore, the oxygen or sulfur atom of the (thio) urea group is relatively strongly self-assembled by non-covalent bonding with two hydrogen atoms of another (thio) urea group. In the present invention, the urea structure of a diamine having a urea structure is preferably a urea group, and Y in Formula (2) is preferably an oxygen atom. This is because the oxygen atom has a higher electronegativity than the oxygen atom and the sulfur atom, and therefore the urea structure is stronger and more likely to self-assemble than the thiourea structure. And the liquid crystal aligning agent of this invention has (thio) urea group derived from diamine which has urea structures, such as diamine represented by Formula (2), in a polymer chain (polyamic acid chain). For this reason, rubbing tolerance can be improved by electrostatic interaction (non-covalent bond) between (thio) urea groups. In this respect, the present invention is different from a method for improving rubbing resistance by connecting polymer chains generally used in the field of liquid crystal alignment films with a crosslinking agent.
 式(2)において、RおよびRはそれぞれ独立して、炭素数1~3のアルキレン基を示し、その構造は直鎖または分岐鎖のいずれでもよい。具体例としては、メチレン基、エチレン基、トリメチレン基、1-メチルエチレン基、2-メチルエチレン基などが挙げられる。このうち、液晶配向性とラビング耐性の観点から、できるだけ自由回転部位を持ち、且つ、立体障害の小さい構造が好ましく、具体的にはメチレン基、エチレン基、トリメチレン基が好ましい。 In the formula (2), R 3 and R 4 each independently represent an alkylene group having 1 to 3 carbon atoms, and the structure thereof may be either linear or branched. Specific examples include methylene group, ethylene group, trimethylene group, 1-methylethylene group, 2-methylethylene group and the like. Among these, from the viewpoint of liquid crystal alignment and rubbing resistance, a structure having as many free rotation sites as possible and having a small steric hindrance is preferable, and specifically, a methylene group, an ethylene group, and a trimethylene group are preferable.
 式(2)において、ZおよびZはそれぞれ独立して、単結合、-O-、-S-、-OCO-、または、-COO-である。ZおよびZの構造についても、液晶配向性とラビング耐性の観点から、できるだけ柔軟且つ立体障害の小さい構造が好ましく、単結合、-O-、または、-S-が好ましい。 In the formula (2), Z 1 and Z 2 are each independently a single bond, —O—, —S—, —OCO—, or —COO—. The structures of Z 1 and Z 2 are preferably as flexible as possible and have as little steric hindrance as possible from the viewpoint of liquid crystal orientation and rubbing resistance, and are preferably a single bond, —O—, or —S—.
 膜密度の高い膜を形成し、より強固な液晶配向膜を形成するという意味では、(チオ)ウレア基とベンゼン環の間の構造は、(チオ)ウレア基を中心として対称であることが好ましく、-R-Z-と-R-Z-とが同一構造であることが好ましい。また、式(2)で表わされるジアミンの中でも、以下の式(2-a)~式(2-c)で表わされる化合物であることが好ましい。但し、式(2-a)中、R11およびR21は共に炭素数が等しい炭素数1~3のアルキレン基である。また、式(2-b)中、R12およびR22は互いに炭素数が異なる炭素数1~3のアルキレン基である。さらに、式(2-c)中、R13およびR23はそれぞれ独立して炭素数1~3のアルキレン基である。 The structure between the (thio) urea group and the benzene ring is preferably symmetrical about the (thio) urea group in the sense of forming a film having a high film density and forming a stronger liquid crystal alignment film. , —R 3 —Z 1 — and —R 4 —Z 2 — preferably have the same structure. Of the diamines represented by the formula (2), compounds represented by the following formulas (2-a) to (2-c) are preferable. However, in the formula (2-a), R 11 and R 21 are both an alkylene group having 1 to 3 carbon atoms. In the formula (2-b), R 12 and R 22 are alkylene groups having 1 to 3 carbon atoms which are different from each other. In the formula (2-c), R 13 and R 23 are each independently an alkylene group having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(2)において、ベンゼン環上のアミノ基(-NH)の結合位置は特に限定されないが、液晶配向性の観点から3-アミノフェニル構造または4-アミノフェニル構造であることが好ましく、特に好ましくは4-アミノフェニル構造である。例えば、式(2)は、下記式(2-1)、式(2-2)または式(2-3)のいずれかであることが好ましく、特に好ましくは式(2-1)である。尚、式(2-1)、式(2-2)、および式(2-3)において、Z、Z、RおよびRは、式(2)における定義と同義である。 In the formula (2), the bonding position of the amino group (—NH 2 ) on the benzene ring is not particularly limited, but is preferably a 3-aminophenyl structure or a 4-aminophenyl structure from the viewpoint of liquid crystal alignment. A 4-aminophenyl structure is preferred. For example, the formula (2) is preferably any one of the following formulas (2-1), (2-2), and (2-3), and particularly preferably the formula (2-1). In the formulas (2-1), (2-2), and (2-3), Z 1 , Z 2 , R 3, and R 4 have the same definitions as in the formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(2)の具体例として、式(2-4)~式(2-15)で表される化合物を示す。この中でも、上記式(2-8)~式(2-11)で表されるジアミンを使用することが特に好ましい。 Specific examples of formula (2) include compounds represented by formula (2-4) to formula (2-15). Among these, it is particularly preferable to use diamines represented by the above formulas (2-8) to (2-11).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2)で表されるジアミンの含有量は、全ジアミン成分の10~70mol%であるのが好ましいが、高いラビング耐性と少ない蓄積電荷量の両立の観点から15~65mol%がより好ましく、20~60mol%が特に好ましい。 The content of the diamine represented by the formula (2) is preferably 10 to 70 mol% of the total diamine component, but is more preferably 15 to 65 mol% from the viewpoint of achieving both high rubbing resistance and a small amount of accumulated charge, 20 to 60 mol% is particularly preferable.
 <その他のジアミン化合物>
 本発明の液晶配向剤は、本発明の効果を損なわない限りにおいて、ポリアミック酸の原料であるジアミン成分として、上記の重合反応部位に2級アミンを有するジアミンや、ウレア構造を有するジアミン以外に、その他のジアミン化合物を含有させることも可能である。その他のジアミン化合物の具体例を以下に挙げる。
<Other diamine compounds>
As long as the liquid crystal aligning agent of the present invention does not impair the effects of the present invention, as a diamine component that is a raw material of polyamic acid, in addition to a diamine having a secondary amine at the polymerization reaction site or a diamine having a urea structure, It is also possible to contain other diamine compounds. Specific examples of other diamine compounds are listed below.
 2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどが挙げられる。 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3 ' Trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diamino Diphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane Bis (3-aminophenyl) Lan, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3 ' -Diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3 ' -Diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4, 4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminoben Zophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) B) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4 -Aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis ( Methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4 -Phenylenebis (methylene)] dianiline, 3,3 '-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenyle Bis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis ( 4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-amino Phenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-amino) Benzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1 , 4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4 -Aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylsulfone, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- ( 4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino Enyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-amino) Phenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1, 4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, , 7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, , 11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino- 3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diamy Examples include nohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and the like.
 以上で挙げたその他のジアミン化合物は、液晶配向膜とした際の体積抵抗率、ラビング耐性、イオン密度特性、透過率、液晶配向性、電圧保持特性および蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The other diamine compounds mentioned above are of one type depending on characteristics such as volume resistivity, rubbing resistance, ion density characteristics, transmittance, liquid crystal alignment characteristics, voltage holding characteristics and accumulated charges when used as a liquid crystal alignment film. Alternatively, two or more types can be mixed and used.
<脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物>
 本発明の液晶配向剤に含有されるポリアミック酸の原料であるテトラカルボン酸二無水物成分に、必須成分として含まれる脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物は、例えば下記式(3)で表されるテトラカルボン酸二無水物である。もちろん、テトラカルボン酸二無水物成分は、式(3)で表されるテトラカルボン酸二無水物の代わりに、または、式(3)で表されるテトラカルボン酸二無水物と共に、式(3)で表されるテトラカルボン酸二無水物以外の脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有していてもよい。また、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物と共に、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含有していてもよい。
<Tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure>
For example, the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure contained as an essential component in the tetracarboxylic dianhydride component that is a raw material of the polyamic acid contained in the liquid crystal aligning agent of the present invention is, for example, It is a tetracarboxylic dianhydride represented by the formula (3). Of course, the tetracarboxylic dianhydride component is replaced with the tetracarboxylic dianhydride represented by the formula (3) or together with the tetracarboxylic dianhydride represented by the formula (3). The tetracarboxylic dianhydride which has alicyclic structure or aliphatic structure other than the tetracarboxylic dianhydride represented by this may be contained. In addition, a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure and a tetracarboxylic dianhydride other than a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure may be contained. Good.
 ここで、式(3)において、Rは脂環式構造または脂肪族構造を有する4価の炭化水素基を表す。脂環式構造とは、例えばシクロアルカン、シクロアルケン等の芳香族性を持たない炭素環を有する構造である。また、脂肪族構造とは、例えばパラフィン系炭化水素基、オレフィン系炭化水素基、アセチレン系炭化水素基等の鎖状の炭化水素基(例えば、鎖状の炭化水素基の炭素数が合計で4以上)を有する構造である。Rの具体例としては、以下の式(3-1)~式(3-30)で表される4価の基を挙げることができる。 Here, in Formula (3), R 5 represents a tetravalent hydrocarbon group having an alicyclic structure or an aliphatic structure. The alicyclic structure is a structure having a carbocyclic ring having no aromaticity, such as cycloalkane or cycloalkene. The aliphatic structure is a chain hydrocarbon group such as a paraffin hydrocarbon group, an olefin hydrocarbon group, an acetylene hydrocarbon group (for example, the chain hydrocarbon group has a total of 4 carbon atoms). The structure having the above. Specific examples of R 5 include tetravalent groups represented by the following formulas (3-1) to (3-30).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明の液晶配向剤に含有されるポリアミック酸においては、テトラカルボン酸二無水物成分の50モル%以上、好ましくは70モル%以上が、式(3-1)~式(3-25)および式(3-30)のような脂環式構造または脂肪族構造を有するRであることが好ましい。このような成分組成とすることで、液晶表示素子の電圧保持率を向上することができ、また、蓄積電荷量を特に低減できる。さらに、Rが、これら脂環式構造または脂肪族構造のうち、式(3-1)、式(3-2)、式(3-6)、式(3-25)および式(3-30)からなる群から選ばれるテトラカルボン酸二無水物を使用した場合には、蓄積電荷量がより少ない液晶配向膜が得られるので好ましい。 In the polyamic acid contained in the liquid crystal aligning agent of the present invention, 50 mol% or more, preferably 70 mol% or more of the tetracarboxylic dianhydride component is represented by formulas (3-1) to (3-25) and R 5 having an alicyclic structure or an aliphatic structure such as formula (3-30) is preferred. By setting it as such a component composition, the voltage holding rate of a liquid crystal display element can be improved and the amount of stored charges can be particularly reduced. Further, R 5 is a group represented by the formula (3-1), the formula (3-2), the formula (3-6), the formula (3-25) and the formula (3- When a tetracarboxylic dianhydride selected from the group consisting of 30) is used, it is preferable because a liquid crystal alignment film with less accumulated charge can be obtained.
 テトラカルボン酸二無水物成分は、芳香族テトラカルボン酸二無水物を含むことが好ましい。これにより、液晶配向膜の配向性を特に向上させることが可能である。このとき、テトラカルボン酸二無水物成分の全量に対してあまり多くの量の芳香族テトラカルボン酸二無水物を使用すると、ラビング耐性が悪化して液晶表示素子の表示品位低下を引き起こす原因となる。したがって、テトラカルボン酸二無水物成分の全量に対して芳香族テトラカルボン酸二無水物は50モル%以下とすること好ましく、より好ましくは30モル%以下である。芳香族テトラカルボン酸二無水物としては、下記式(4)で表されるテトラカルボン酸二無水物が挙げられる。式(4)において、Rは芳香族構造を有する基である。芳香族構造とは、ベンゼン環等の芳香族性を示す芳香環を有する構造である。Rの具体例としては、以下の式(3-31)~式(3-47)で表される4価の基を挙げることができる。 The tetracarboxylic dianhydride component preferably contains an aromatic tetracarboxylic dianhydride. Thereby, the orientation of the liquid crystal alignment film can be particularly improved. At this time, if an excessive amount of aromatic tetracarboxylic dianhydride is used with respect to the total amount of the tetracarboxylic dianhydride component, the rubbing resistance is deteriorated, which causes the display quality of the liquid crystal display device to deteriorate. . Therefore, the aromatic tetracarboxylic dianhydride is preferably 50 mol% or less, more preferably 30 mol% or less, based on the total amount of the tetracarboxylic dianhydride component. Examples of the aromatic tetracarboxylic dianhydride include tetracarboxylic dianhydrides represented by the following formula (4). In the formula (4), R 6 is a group having an aromatic structure. The aromatic structure is a structure having an aromatic ring showing aromaticity such as a benzene ring. Specific examples of R 6 include tetravalent groups represented by the following formulas (3-31) to (3-47).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 <ポリアミック酸の重合>
 上記したジアミン成分とテトラカルボン酸二無水物成分(以下、単にテトラカルボン酸二無水物ともいう。)とを反応させて、本発明の液晶配向剤に含有されるポリアミック酸を得る方法は特に限定されず、公知の方法が適用できる。一般的には、有機溶剤中でジアミン成分とテトラカルボン酸二無水物成分を混合することにより重合反応をさせてポリアミック酸とすることができる。
<Polyamic acid polymerization>
The method for obtaining the polyamic acid contained in the liquid crystal aligning agent of the present invention by reacting the diamine component and the tetracarboxylic dianhydride component (hereinafter also simply referred to as tetracarboxylic dianhydride) is particularly limited. A known method can be applied. In general, a diamine component and a tetracarboxylic dianhydride component are mixed in an organic solvent to cause a polymerization reaction to obtain a polyamic acid.
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散または溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、または、有機溶媒に分散若しくは溶解させて添加する方法、テトラカルボン酸二無水物成分を有機溶媒に分散または溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられる。また、テトラカルボン酸二無水物成分およびジアミン成分のうち少なくとも一方が複数種の化合物からなる場合は、これら複数種の成分をあらかじめ混合した状態で重合反応させてもよく、個別に順次重合反応させてもよい。 As a method of mixing the tetracarboxylic dianhydride component and the diamine component in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is, or A method of adding by dispersing or dissolving in an organic solvent, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and alternating a tetracarboxylic dianhydride component and a diamine component And the like. In addition, when at least one of the tetracarboxylic dianhydride component and the diamine component is composed of a plurality of types of compounds, the plurality of types of components may be preliminarily mixed and polymerized separately or sequentially. May be.
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶剤中で重合反応させる際の温度は、通常は0~150℃、好ましくは5~100℃、より好ましくは10~80℃である。温度が高い方が重合反応は早く終了するが、高すぎると高分子量の重合体(ポリアミック酸)が得られない場合がある。また、重合反応は任意の仕込み濃度で行うことができるが、仕込み濃度が低すぎると高分子量の重合体を得ることが難しくなり、仕込み濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。尚、重合反応の初期は高濃度で行い、その後、有機溶媒を追加してもよい。また、仕込み濃度とは、テトラカルボン酸二無水物成分とジアミン成分の合計質量の濃度のことである。 The temperature at which the tetracarboxylic dianhydride component and the diamine component are subjected to a polymerization reaction in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. The higher the temperature, the faster the polymerization reaction ends. However, when the temperature is too high, a high molecular weight polymer (polyamic acid) may not be obtained. In addition, the polymerization reaction can be carried out at any charge concentration, but if the charge concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the charge concentration is too high, the reaction solution will become too viscous and uniform. Therefore, the amount is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the polymerization reaction may be performed at a high concentration, and then an organic solvent may be added. The charged concentration is the concentration of the total mass of the tetracarboxylic dianhydride component and the diamine component.
 上記反応の際に用いられる有機溶媒は、生成したポリアミック酸が溶解するものであれば特に限定されない。具体的な例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシドまたはγ-ブチロラクトンなどを挙げることができる。これらは単独で使用してもよく、あるいは、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。 The organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid is soluble. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide or and γ-butyrolactone. These may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
 有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。 Since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 ポリアミック酸を得るための重合反応に用いるテトラカルボン酸二無水物成分とジアミン成分の比率は、モル比で1:0.8~1:1.2であることが好ましく、このモル比が1:1に近いほど得られるポリアミック酸の分子量は大きくなる。ポリアミック酸の分子量は、小さすぎるとそこから得られる塗膜の強度が不十分となる場合があり、逆にポリアミック酸の分子量が大きすぎると、そこから製造される液晶配向剤の粘度が高くなり過ぎて、塗膜形成時の作業性、塗膜の均一性が悪くなる場合がある。したがって、本発明の液晶配向剤に用いるポリアミック酸の重量平均分子量は、2,000~500,000が好ましく、より好ましくは5,000~300,000である。 The ratio of the tetracarboxylic dianhydride component to the diamine component used in the polymerization reaction for obtaining the polyamic acid is preferably 1: 0.8 to 1: 1.2 in terms of molar ratio, and this molar ratio is 1: The closer to 1, the greater the molecular weight of the polyamic acid obtained. If the molecular weight of the polyamic acid is too small, the strength of the coating film obtained therefrom may be insufficient. Conversely, if the molecular weight of the polyamic acid is too large, the viscosity of the liquid crystal aligning agent produced therefrom will increase. Thus, workability during coating film formation and uniformity of the coating film may be deteriorated. Therefore, the weight average molecular weight of the polyamic acid used in the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
 <液晶配向剤>
 本発明の液晶配向剤は、以上のようにして得られたポリアミック酸を1種類以上含有するものである。このような特定のジアミン成分と特定のテトラカルボン酸二無水物成分との反応により得られるポリアミック酸を含有する液晶配向剤とすることにより、後述する実施例に示すように、良好な液晶配向性及びラビング耐性を有し、イオン密度が小さく、且つ、FFSモード液晶表示素子における蓄積電荷が少ない液晶配向膜を得ることができる。なお、本発明の液晶配向剤は、通常は上記ポリアミック酸を有機溶媒に溶解させた塗布液とするが、基板上に均一な薄膜を形成することができるのであれば、本発明の液晶配向剤は他の形態であっても良い。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains 1 or more types of polyamic acid obtained by making it above. By using a liquid crystal aligning agent containing a polyamic acid obtained by reaction of such a specific diamine component and a specific tetracarboxylic dianhydride component, as shown in the examples described later, good liquid crystal alignment properties In addition, a liquid crystal alignment film having rubbing resistance, low ion density, and low accumulated charge in the FFS mode liquid crystal display element can be obtained. The liquid crystal aligning agent of the present invention is usually a coating solution in which the polyamic acid is dissolved in an organic solvent, but the liquid crystal aligning agent of the present invention can be used as long as a uniform thin film can be formed on the substrate. May take other forms.
 また、本発明の液晶配向剤は、本発明の効果が損なわれない限り、重合体成分として、上述した脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、ウレア構造を有するジアミン及び重合反応部位に2級アミンを有するジアミンを含有するジアミン成分との反応により得られるポリアミック酸と共に、他の構造を有する重合体を含有していてもよい。他の構造を有する重合体として、上述したポリアミック酸とは異なる分子構造からなるポリアミック酸や、ポリアミック酸エステルなどが挙げられる。得られるポリイミド膜(液晶配向膜)が所望の特性を実現することを考慮して、上述した脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、ウレア構造を有するジアミン及び重合反応部位に2級アミンを有するジアミンを含有するジアミン成分との反応により得られるポリアミック酸の含有量を、重合体成分全量(100モル%)に対し、10モル%~80モル%とすることが好ましい。 In addition, the liquid crystal aligning agent of the present invention contains a tetracarboxylic dianhydride containing the above-described tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure, as long as the effects of the present invention are not impaired. A polymer having another structure may be contained together with a polyamic acid obtained by a reaction between an anhydride component, a diamine having a urea structure and a diamine component having a diamine having a secondary amine at the polymerization reaction site. . Examples of the polymer having another structure include a polyamic acid having a molecular structure different from the above-described polyamic acid, a polyamic acid ester, and the like. Considering that the obtained polyimide film (liquid crystal alignment film) realizes desired characteristics, a tetracarboxylic dianhydride component containing the above-described tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure And a polyamic acid content obtained by a reaction between a diamine having a urea structure and a diamine component containing a diamine having a secondary amine at the polymerization reaction site, with respect to the total amount (100 mol%) of the polymer component, % To 80 mol% is preferred.
 液晶配向剤に含有される有機溶媒は、含有するポリアミック酸等の重合体成分を溶解させるものであれば特に限定されない。有機溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトンまたは1,3-ジメチル-イミダゾリジノンなどを挙げることができる。これらは1種または2種以上を混合して用いてもよい。 The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as it contains a polymer component such as polyamic acid contained therein. Specific examples of the organic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl Examples thereof include sulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, and 1,3-dimethyl-imidazolidinone. You may use these 1 type or in mixture of 2 or more types.
 また、単独では重合体成分を溶解させない溶媒であっても、重合体成分が析出しない範囲であれば、本発明の液晶配向剤に混合することができる。特に、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸N-プロピルエステル、乳酸N-ブチルエステルおよび乳酸イソアミルエステルなどの低表面張力を有する溶媒は、混在させることで基板への塗膜均一性が向上することが知られている。そのため、これらの溶媒は、1種類でも複数種類を混合して用いてもよい。 Further, even if the solvent alone does not dissolve the polymer component, it can be mixed with the liquid crystal aligning agent of the present invention as long as the polymer component does not precipitate. In particular, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy Propoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate N-propyl ester, lactate N-butyl ester, and lactyl isoamyl ester have low surface tension. The coating film uniformity on the substrate is known to be improved by mix. Therefore, these solvents may be used alone or in combination of a plurality of types.
 低表面張力を有する溶媒の使用量は、液晶配向剤に含まれる溶媒全体の5~80質量%であることがより好ましく、さらに好ましくは20~60質量%である。 The amount of the solvent having a low surface tension is more preferably 5 to 80% by mass, and further preferably 20 to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
 本発明の液晶配向剤は、上記の重合体成分および有機溶媒の他に、各種の添加剤を含有していてもよい。 The liquid crystal aligning agent of the present invention may contain various additives in addition to the polymer component and the organic solvent.
 例えば、膜厚均一性や表面平滑性を向上させる添加剤として、フッ素系界面活性剤、シリコーン系界面活性剤またはノ二オン系界面活性剤などが挙げられる。 For example, as an additive for improving film thickness uniformity and surface smoothness, a fluorine-based surfactant, a silicone-based surfactant, a nonionic surfactant, and the like can be given.
 例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤中に含有される重合体成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 For example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
 液晶配向膜と基板との密着性を向上させる添加剤の具体例としては、官能性シラン含有化合物、エポキシ基含有化合物などが挙げられる。 Specific examples of additives that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。これらの化合物の添加量は、液晶配向剤中に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向性が悪くなる場合がある。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10- Riethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyl Trimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3- Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6- Tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like. The amount of these compounds added is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation may be deteriorated.
 本発明の液晶配向剤には、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で誘電体または導電物質を添加することができ、液晶配向膜にした際の膜の硬度や緻密度を高める目的で架橋性化合物などを添加することもできる。 In the liquid crystal aligning agent of the present invention, a dielectric or conductive material can be added for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film. A crosslinkable compound or the like may be added for the purpose of increasing the density.
 本発明の液晶配向剤における固形分の濃度は、目的とする液晶配向膜の膜厚によって適宜変更することができるが、欠陥のない塗膜を形成させ、且つ、液晶配向膜として適切な膜厚を得ることができるという理由から1~20質量%とすることが好ましく、より好ましくは2~10質量%である。 The concentration of the solid content in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the film thickness of the target liquid crystal aligning film. Is preferably from 1 to 20% by mass, more preferably from 2 to 10% by mass.
 <液晶配向膜>
 本発明の液晶配向剤は、基板上に塗布し焼成した後、ラビング処理または光照射などで配向処理をして、あるいは、垂直配向性の液晶表示素子に適用する場合などでは、配向処理なしに液晶配向膜として用いられる。この際に用いる基板は、透明性の高い基板であれば特に限定されず、ガラス基板、または、アクリル基板およびポリカーボネート基板などのプラスチック基板などを用いることができるが、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板を使用することができる。尚、この場合の電極としては、アルミニウムなどの光を反射する材料も使用可能である。
<Liquid crystal alignment film>
The liquid crystal aligning agent of the present invention is applied to a substrate and baked, and then subjected to an alignment treatment such as rubbing treatment or light irradiation, or when applied to a vertical alignment liquid crystal display element, without the alignment treatment. Used as a liquid crystal alignment film. The substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate and a polycarbonate substrate can be used, but ITO (Indium for driving liquid crystal) can be used. It is preferable to use a substrate on which (Tin Oxide) electrodes and the like are formed from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used as long as the substrate is only on one side. In this case, a material that reflects light, such as aluminum, can be used as the electrode.
 液晶配向剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ法、または、ロールコータ、スリットコータ若しくはスピンナーなどを用いる方法などがあり、目的に応じてこれらから適宜選択してもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, inkjet, or the like is generally used. Other coating methods include a dipping method, a method using a roll coater, a slit coater, a spinner, or the like, and may be appropriately selected from these according to the purpose.
 液晶配向剤が塗布された基板の焼成は、温度100~350℃の任意の温度で行うことができ、好ましくは温度150~300℃であり、さらに好ましくは温度180~250℃である。液晶配向剤中のポリアミック酸や必要に応じて含有させるポリアミック酸エステルは、この焼成温度によってポリイミドへの転化率が変化するが、本発明の液晶配向剤は、必ずしも100%イミド化させる必要はない。そのため焼成時間は任意の時間に設定することができるが、焼成時間が短すぎると残存溶媒の影響で表示不良が発生する場合があるので、好ましくは5~60分間、より好ましくは10~40分間である。 The substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C. The polyamic acid in the liquid crystal aligning agent and the polyamic acid ester contained as necessary change the conversion rate to polyimide depending on the firing temperature, but the liquid crystal aligning agent of the present invention does not necessarily need to be imidized 100%. . For this reason, the firing time can be set to an arbitrary time, but if the firing time is too short, display failure may occur due to the influence of the residual solvent. Therefore, it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes. It is.
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビングまたは偏光紫外線照射などで処理する。 If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is aligned horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 <液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、次の通りである。まず、液晶配向膜の形成された一対の基板を用意する。次いで、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせた後、液晶を減圧注入して封止する。または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行ってもよい。このときのスペーサの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 An example of liquid crystal cell fabrication is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed are prepared. Next, spacers are dispersed on the liquid crystal alignment film of one substrate, the other substrate is bonded so that the liquid crystal alignment film surface is on the inside, and then liquid crystal is injected under reduced pressure to seal. Alternatively, after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, the substrate may be bonded to perform sealing. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 本発明の液晶配向剤を用いて作製された液晶表示素子は、表示品位に優れるとともに信頼性にも優れ、大画面で高精細の液晶テレビなどに好適に利用できる。 The liquid crystal display element produced using the liquid crystal aligning agent of the present invention is excellent in display quality and reliability, and can be suitably used for a large-screen high-definition liquid crystal television.
 以上述べたように、本発明の液晶配向剤を用いることにより、ラビング処理時の膜表面への傷や削れが少なく、液晶配向性が良好で、液晶表示素子としたときにイオン密度が小さい液晶配向膜を得ることができる。 As described above, by using the liquid crystal aligning agent of the present invention, there are few scratches and scratches on the film surface during the rubbing treatment, the liquid crystal orientation is good, and the liquid crystal display element has a low ion density. An alignment film can be obtained.
 また、本発明の液晶配向剤を用いて得られた液晶配向膜は、2級アミン構造とウレア構造による影響のためか、一般的なポリアミック酸と比較しても顕著に高い体積抵抗率を有している。その値は、高い体積抵抗率を有するとされている可溶性ポリイミドと同等のレベルである。しかし、本発明の液晶配向剤を用いて得られた液晶配向膜を用いたFFSモード液晶表示素子における蓄積電荷量は少なく、残像レベルの低い高品位な液晶表示素子を提供することができる。すなわち、本発明の液晶配向剤を用いて得られる液晶配向膜は、高い体積抵抗率を有するが、蓄積電荷量が非常に少ないので残像の発生を抑制することができ、残像の消去に時間がかかるという問題を生じることがないと言える。 In addition, the liquid crystal alignment film obtained using the liquid crystal aligning agent of the present invention has a remarkably high volume resistivity as compared with a general polyamic acid because of the influence of the secondary amine structure and the urea structure. is doing. The value is equivalent to a soluble polyimide that is said to have a high volume resistivity. However, an FFS mode liquid crystal display element using a liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has a small amount of accumulated charge and can provide a high-quality liquid crystal display element having a low afterimage level. That is, the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has a high volume resistivity, but since the amount of accumulated charges is very small, it is possible to suppress the occurrence of afterimages, and it takes time to erase afterimages. It can be said that this problem does not occur.
 尚、本発明の液晶配向剤は、ラビング処理により配向させる液晶配向膜だけでなく、光配向性の液晶配向膜、すなわち光照射により配向処理する液晶配向膜を構成するために使用することも可能である。 The liquid crystal alignment agent of the present invention can be used not only to form a liquid crystal alignment film that is aligned by rubbing, but also to form a photo-alignment liquid crystal alignment film, that is, a liquid crystal alignment film that is aligned by light irradiation. It is.
 以下に実施例を挙げ、本実施の形態をさらに詳しく説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto.
 以下に本合成例で使用した化合物の略号と構造を示す。
CA-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
CA-2:ピロメリット酸二無水物
CA-3:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
DA-1:4-(2-(メチルアミノ)エチル)アニリン
DA-2:1,3-ビス(4-アミノフェネチル)ウレア
DA-3:3-((メチルアミノ)メチル)アニリン
DA-4:1,5-ビス(4-アミノフェノキシ)ペンタン
DA-5:p-フェニレンジアミン
DA-6:4,4’-ジアミノジフェニルアミン
The abbreviations and structures of the compounds used in this synthesis example are shown below.
CA-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride CA-2: pyromellitic dianhydride CA-3: bicyclo [3,3,0] octane-2,4,6,8 -Tetracarboxylic dianhydride DA-1: 4- (2- (methylamino) ethyl) aniline DA-2: 1,3-bis (4-aminophenethyl) urea DA-3: 3-((methylamino) Methyl) aniline DA-4: 1,5-bis (4-aminophenoxy) pentane DA-5: p-phenylenediamine DA-6: 4,4′-diaminodiphenylamine
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (式中、Meはメチル基を表す。) (In the formula, Me represents a methyl group.)
 以下に、粘度、固形分濃度、電圧保持率、イオン密度、体積抵抗率、残留DCの各測定方法、ラビング耐性、液晶配向性の各評価方法、および縦電界液晶セル、横電界液晶セル(FFSモード液晶セル)の各作製方法を示す。 Below, viscosity, solid content concentration, voltage holding ratio, ion density, volume resistivity, residual DC measurement methods, rubbing resistance, liquid crystal orientation evaluation methods, vertical electric field liquid crystal cell, horizontal electric field liquid crystal cell (FFS) Each manufacturing method of a mode liquid crystal cell) is shown.
 [粘度測定]
 合成例または比較合成例において、ポリアミック酸溶液の粘度はE型粘度計TVE-22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[Viscosity measurement]
In the synthesis example or the comparative synthesis example, the viscosity of the polyamic acid solution was an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
 [固形分濃度測定]
 合成例または比較合成例において、ポリアミック酸溶液の固形分濃度の算出は以下のようにして行った。
[Solid concentration measurement]
In the synthesis example or the comparative synthesis example, the solid content concentration of the polyamic acid solution was calculated as follows.
 持手付アルミカップNo.2(アズワン社製)にポリアミック酸溶液をおよそ1.1g量り取り、オーブンDNF400(Yamato社製)で200℃2時間加熱した後に室温で5分間放置し、アルミカップ内に残った固形分の重量を計量した。この固形分重量、および元の溶液重量の値から固形分濃度を算出した。 Aluminum cup with handle No. About 1.1 g of the polyamic acid solution was weighed into 2 (manufactured by ASONE), heated in an oven DNF400 (manufactured by Yamato) at 200 ° C. for 2 hours, and then allowed to stand at room temperature for 5 minutes. The weight of the solid content remaining in the aluminum cup Weighed. The solid content concentration was calculated from the solid content weight and the original solution weight value.
 [ラビング耐性評価]
 合成例または比較合成例で得られたポリアミック酸溶液を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートで塗布し、50℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径120mm、ローラー回転数1000rpm、移動速度20mm/sec、押し込み長0.6mm)した。このポリイミド膜表面における傷の有無を、共焦点レーザ顕微鏡(倍率10倍)で観察した。傷が無いものを「良好」、傷が有るものを「不良」とした。
[Rubbing resistance evaluation]
After filtering the polyamic acid solution obtained in the synthesis example or the comparative synthesis example with a 1.0 μm filter, the solution was applied on a glass substrate with a transparent electrode by spin coating, dried on a hot plate at 50 ° C. for 5 minutes, and then 230 The polyimide film with a film thickness of 100 nm was obtained by baking at 30 ° C. for 30 minutes. This polyimide film was rubbed with a rayon cloth (roller diameter 120 mm, roller rotation speed 1000 rpm, moving speed 20 mm / sec, indentation length 0.6 mm). The presence or absence of scratches on the polyimide film surface was observed with a confocal laser microscope (magnification 10 times). A sample having no scratch was defined as “good”, and a sample having a scratch was defined as “bad”.
 [縦電界液晶セル作製]
 合成例または比較合成例で得られたポリアミック酸溶液を1.0μmのフィルターで濾過した後、ITOベタ電極付きガラス基板(ガラス基板上にITO膜を全面に設けたもの)上にスピンコートで塗布し、50℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.3mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサを設置した後、2枚の基板のラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。このセルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止してアンチパラレル液晶セルとした。
[Vertical electric field liquid crystal cell fabrication]
The polyamic acid solution obtained in the synthesis example or the comparative synthesis example is filtered through a 1.0 μm filter, and then applied by spin coating on a glass substrate with an ITO solid electrode (ITO film is provided on the entire surface of the glass substrate). Then, after drying on a hot plate at 50 ° C. for 5 minutes, it was baked at 230 ° C. for 30 minutes to obtain a polyimide film having a thickness of 100 nm. The polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. After washing and removing water droplets by air blow, drying was performed at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with such a liquid crystal alignment film are prepared, a 6 μm spacer is set on the liquid crystal alignment film surface of one substrate, and then the rubbing directions of the two substrates are combined so that they are antiparallel. The periphery was sealed, and an empty cell with a cell gap of 6 μm was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this cell at room temperature, and the inlet was sealed to obtain an anti-parallel liquid crystal cell.
 [液晶配向性評価]
 上記のようにして作製した縦電界液晶セルの配向状態を偏光顕微鏡にて観察し、配向欠陥がないものを「良好」、配向欠陥があるものを「不良」とした。
[Liquid crystal orientation evaluation]
The alignment state of the vertical electric field liquid crystal cell produced as described above was observed with a polarizing microscope, and the sample having no alignment defect was defined as “good” and the sample having an alignment defect was defined as “bad”.
 [電圧保持率測定]
 上記のようにして作製した縦電界液晶セルを用い、東陽テクニカ社製のVHR-1型電圧保持率測定システムにて測定を行った。測定は±4Vの交流電圧を60μ秒間印加し、16.67m秒後の電圧を測定することで、初期値からの変動を電圧保持率として計算した。測定の際、液晶セルの温度を60℃とし、98%以上を「良好」、98%未満を「不良」とした。
[Voltage holding ratio measurement]
Using the vertical electric field liquid crystal cell produced as described above, measurement was performed with a VHR-1 type voltage holding ratio measurement system manufactured by Toyo Corporation. In the measurement, an AC voltage of ± 4 V was applied for 60 μsec, and the voltage after 16.67 msec was measured, and the fluctuation from the initial value was calculated as the voltage holding ratio. During the measurement, the temperature of the liquid crystal cell was set to 60 ° C., 98% or more was “good”, and less than 98% was “bad”.
 [イオン密度測定]
 上記のようにして作製した縦電界液晶セルを用い、東陽テクニカ社製の6254型液晶物性評価システムにて測定を行った。測定は±10V、0.01Hzの三角波を印加し、得られた波形のイオン密度に相当する面積を三角形近似法により算出してイオン密度とした。測定の際、液晶セルの温度は23℃とし、100pC/cm未満を「良好」、100pC/cm以上を「不良」とした。
[Ion density measurement]
Using the vertical electric field liquid crystal cell produced as described above, measurement was performed with a 6254 type liquid crystal physical property evaluation system manufactured by Toyo Technica. In the measurement, a triangular wave of ± 10 V and 0.01 Hz was applied, and an area corresponding to the ion density of the obtained waveform was calculated by a triangle approximation method to obtain an ion density. At the time of measurement, the temperature of the liquid crystal cell was 23 ° C., “less than 100 pC / cm 2 ” was defined as “good”, and 100 pC / cm 2 or more was defined as “bad”.
 [体積抵抗率の測定]
 合成例または比較合成例で得られたポリアミック酸溶液を1.0μmのフィルターで濾過した後、ITO透明電極付きガラス基板上にスピンコート塗布し、70℃のホットプレート上で2分間乾燥後、230℃で15分焼成し、膜厚約220nmの塗膜(液晶配向膜)を形成させた。この塗膜表面にマスクを介してアルミを蒸着させ、1.0mmφの上部電極(アルミ電極)を形成し体積抵抗率測定用の試料とした。この試料のITO電極とアルミ電極との間に5Vの電圧を印加し、電圧印加から180秒後の電流値を測定し、この値と電極面積、膜厚の測定値とから体積抵抗率を算出した。
[Measurement of volume resistivity]
The polyamic acid solution obtained in the synthesis example or the comparative synthesis example is filtered through a 1.0 μm filter, spin-coated on a glass substrate with an ITO transparent electrode, dried on a hot plate at 70 ° C. for 2 minutes, and 230 The film was baked at 15 ° C. for 15 minutes to form a coating film (liquid crystal alignment film) having a film thickness of about 220 nm. Aluminum was vapor-deposited on the surface of the coating film through a mask to form a 1.0 mmφ upper electrode (aluminum electrode), which was used as a sample for volume resistivity measurement. A voltage of 5 V is applied between the ITO electrode and the aluminum electrode of this sample, the current value 180 seconds after the voltage application is measured, and the volume resistivity is calculated from the measured value of the electrode area and the film thickness. did.
 [FFSモード液晶セル作製]
 合成例または比較合成例で得られたポリアミック酸溶液を1.0μmのフィルターで濾過した後、ガラス基板上1層目に厚み50nmのIZO(Indium Zinc Oxide)ベタ電極、2層目に厚み500nmの窒化ケイ素絶縁膜、3層目に厚み50nmのIZO櫛歯電極(電極幅:3μm、電極間隔:6μm)を有するFFSモード駆動が可能な基板上にスピンコートで塗布し、50℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板上にも、上記と同様にしてポリイミド膜を形成し、上記と同様の手順で配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、2枚の基板のラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。このセルに液晶(ZLI-4792、メルク社製)を常温で真空注入し、注入口を封止してアンチパラレル液晶セルとした。
[FFS mode liquid crystal cell fabrication]
After the polyamic acid solution obtained in the synthesis example or the comparative synthesis example is filtered through a 1.0 μm filter, the first layer on the glass substrate is a 50 nm thick IZO (Indium Zinc Oxide) solid electrode, and the second layer is 500 nm thick. A silicon nitride insulating film is applied by spin coating onto a substrate capable of FFS mode driving having an IZO comb-teeth electrode (electrode width: 3 μm, electrode interval: 6 μm) having a thickness of 50 nm as the third layer, on a hot plate at 50 ° C. And then dried at 230 ° C. for 30 minutes to obtain a polyimide film having a thickness of 100 nm. This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third layer IZO comb-teeth electrode Then, the substrate was cleaned by irradiating with ultrasonic waves in pure water for 1 minute, and water droplets were removed by air blowing, followed by drying at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film. Further, a liquid crystal alignment in which a polyimide film is formed in the same manner as described above on a glass substrate having a columnar spacer having a height of 4 μm on which an electrode is not formed as a counter substrate, and subjected to an alignment process in the same manner as described above. A substrate with a film was obtained. Combine these two substrates with a liquid crystal alignment film into a set so that the rubbing directions of the two substrates are antiparallel, seal the surroundings leaving the liquid crystal injection port, and create an empty cell with a cell gap of 4 μm did. Liquid crystal (ZLI-4792, manufactured by Merck & Co., Inc.) was vacuum-injected into this cell at room temperature, and the inlet was sealed to obtain an anti-parallel liquid crystal cell.
 [残留DC(誘電吸収法)測定]
 上記のようにして作製したFFSモード液晶セルを用い、東陽テクニカ社製の6254型液晶物性評価システムにて測定を行った。測定は+4Vの直流電圧を30分間印加した後、1秒間放電し、その後60分間の残留DC量を計測した。測定の際、液晶セルの温度は60℃とし、放電から60分後の残留DC量が2.0V未満を「良好」、2.0V以上を「不良」とした。
[Residual DC (dielectric absorption method) measurement]
Using the FFS mode liquid crystal cell produced as described above, measurement was performed with a 6254 type liquid crystal physical property evaluation system manufactured by Toyo Corporation. In the measurement, a DC voltage of +4 V was applied for 30 minutes and then discharged for 1 second, and then the amount of residual DC for 60 minutes was measured. At the time of measurement, the temperature of the liquid crystal cell was set to 60 ° C., and the residual DC amount after 60 minutes after the discharge was determined to be “good” when the amount was less than 2.0 V and “bad” when 2.0 V or more.
 (合成例1)
 撹拌装置付きおよび窒素導入管付きの200mL四つ口フラスコにDA-1を2.83g(18.8mmol)、DA-2を5.61g(18.8mmol)、およびDA-4を2.70g(9.40mmol)取り、N-メチル-2-ピロリドン126gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を8.84g(45.1mmol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で2時間撹拌してポリアミック酸(A-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は135mPa・sであった。
(Synthesis Example 1)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.83 g (18.8 mmol) of DA-1, 5.61 g (18.8 mmol) of DA-2, and 2.70 g of DA-4 ( 9.40 mmol), 126 g of N-methyl-2-pyrrolidone was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 8.84 g (45.1 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 10% by mass, and at room temperature under a nitrogen atmosphere. The solution was stirred for 2 hours to obtain a solution of polyamic acid (A-1). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 135 mPa · s.
 このポリアミック酸溶液21.2gを撹拌子の入った50mL三角フラスコに取り、N-メチル-2-ピロリドン2.67g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液2.08g、およびブチルセロソルブ8.66gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 21.2 g of this polyamic acid solution was placed in a 50 mL Erlenmeyer flask containing a stir bar, and 2.67 g of N-methyl-2-pyrrolidone and 1.0% by mass of N-methyl-2-pyrrole of 3-aminopropyltriethoxysilane were added. 2.08 g of pyrrolidone solution and 8.66 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 6.0% by mass.
 (合成例2)
 撹拌装置付きおよび窒素導入管付きの300mL四つ口フラスコにDA-1を3.55g(23.6mmol)、およびDA-2を10.6g(35.4mmol)取り、N-メチル-2-ピロリドン136gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を11.3g(57.6mmol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で5時間撹拌してポリアミック酸(A-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は156mPa・sであった。
(Synthesis Example 2)
In a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.51 g (23.6 mmol) of DA-1 and 10.6 g (35.4 mmol) of DA-2 were taken, and N-methyl-2-pyrrolidone 136 g was added and dissolved by stirring while feeding nitrogen. While stirring the diamine solution, 11.3 g (57.6 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 10% by mass. The solution was stirred for 5 hours to obtain a solution of polyamic acid (A-2). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 156 mPa · s.
 このポリアミック酸溶液168gを撹拌子の入った500mL三角フラスコに取り、N-メチル-2-ピロリドン55.1g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液16.5g、およびブチルセロソルブ60.0gを加え、2時間撹拌して固形分濃度5.7質量%のポリアミック酸溶液を得た。 168 g of this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, 55.1 g of N-methyl-2-pyrrolidone, and 1.0 mass% N-methyl-2-pyrrolidone solution of 3-aminopropyltriethoxysilane. 16.5 g and 60.0 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 5.7% by mass.
 (合成例3)
 撹拌装置付きおよび窒素導入管付きの5LセパラブルフラスコにDA-1を72.1g(480mmol)、DA-2を71.5g(240mmol)、およびDA-4を137g(480mmol)取り、N-メチル-2-ピロリドン3200gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を227g(1.16mol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で1時間撹拌してポリアミック酸(A-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は155mPa・sであった。
(Synthesis Example 3)
In a 5 L separable flask with a stirrer and a nitrogen inlet tube, 72.1 g (480 mmol) of DA-1, 71.5 g (240 mmol) of DA-2, and 137 g (480 mmol) of DA-4 were taken, and N-methyl -2-Pyrrolidone 3200 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 227 g (1.16 mol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration would be 10% by mass, and one hour at room temperature in a nitrogen atmosphere. By stirring, a solution of polyamic acid (A-3) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 155 mPa · s.
 このポリアミック酸溶液176gを撹拌子の入った500mL三角フラスコに取り、N-メチル-2-ピロリドン48.0g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液16.5g、およびブチルセロソルブ60.0gを加え、2時間撹拌して固形分濃度5.7質量%のポリアミック酸溶液を得た。 176 g of this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, 48.0 g of N-methyl-2-pyrrolidone, and 1.0% by mass of N-methyl-2-pyrrolidone solution of 3-aminopropyltriethoxysilane. 16.5 g and 60.0 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 5.7% by mass.
 (合成例4)
 撹拌装置付きおよび窒素導入管付きの300mL四つ口フラスコにDA-1を1.68g(11.2mmol)、DA-2を6.68g(22.4mmol)、およびDA-4を6.42g(22.4mmol)取り、N-メチル-2-ピロリドン157gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を10.6g(54.0mmol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で5時間撹拌してポリアミック酸(A-4)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は148mPa・sであった。
(Synthesis Example 4)
1.68 g (11.2 mmol) of DA-1, 6.68 g (22.4 mmol) of DA-2, and 6.42 g of DA-4 in a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube 22.4 mmol), 157 g of N-methyl-2-pyrrolidone was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 10.6 g (54.0 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 10% by mass. The solution was stirred for 5 hours to obtain a solution of polyamic acid (A-4). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 148 mPa · s.
 このポリアミック酸溶液172gを撹拌子の入った500mL三角フラスコに取り、N-メチル-2-ピロリドン51.6g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液16.5g、およびブチルセロソルブ60.0gを加え、2時間撹拌して固形分濃度5.6質量%のポリアミック酸溶液を得た。 172 g of this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, 51.6 g of N-methyl-2-pyrrolidone, and 1.0 mass% N-methyl-2-pyrrolidone solution of 3-aminopropyltriethoxysilane. 16.5 g and 60.0 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 5.6% by mass.
 (合成例5)
 撹拌装置付きおよび窒素導入管付きの300mL四つ口フラスコにDA-1を5.41g(36.0mmol)、DA-2を3.59g(12.0mmol)、およびDA-4を3.44g(12.0mmol)取り、N-メチル-2-ピロリドン151gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を11.5g(58.7mmol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で2時間撹拌してポリアミック酸(A-5)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は159mPa・sであった。
(Synthesis Example 5)
In a 300 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 (5.41 g, 36.0 mmol), DA-2 (3.59 g, 12.0 mmol), and DA-4 (3.44 g) 12.0 mmol), and 151 g of N-methyl-2-pyrrolidone was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 11.5 g (58.7 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration would be 10% by mass. The solution was stirred for 2 hours to obtain a solution of polyamic acid (A-5). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 159 mPa · s.
 このポリアミック酸溶液215gを撹拌子の入った500mL三角フラスコに取り、N-メチル-2-ピロリドン43.2g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液20.9g、およびブチルセロソルブ69.7gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 215 g of this polyamic acid solution is placed in a 500 mL Erlenmeyer flask containing a stir bar, and 43.2 g of N-methyl-2-pyrrolidone and an N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane 20.9 g and 69.7 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 6.0% by mass.
 (合成例6)
 撹拌装置付きおよび窒素導入管付きの500mL四つ口フラスコにDA-1を3.30g(22.0mmol)、DA-2を16.4g(55.0mmol)、およびDA-4を9.45g(33.0mmol)取り、N-メチル-2-ピロリドン229gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を15.1g(77.0mmol)、およびCA-3を7.79g(31.1mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、40℃で40時間撹拌してポリアミック酸(A-6)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は295mPa・sであった。
(Synthesis Example 6)
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, DA-1 3.30 g (22.0 mmol), DA-2 16.4 g (55.0 mmol), and DA-4 9.45 g ( 33.0 mmol), 229 g of N-methyl-2-pyrrolidone was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 15.1 g (77.0 mmol) of CA-1 and 7.79 g (31.1 mmol) of CA-3 were added, and N— was added so that the solid content concentration became 12% by mass. Methyl-2-pyrrolidone was added and stirred at 40 ° C. for 40 hours under a nitrogen atmosphere to obtain a solution of polyamic acid (A-6). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 295 mPa · s.
 このポリアミック酸溶液751gを撹拌子の入った3L三角フラスコに取り、N-メチル-2-ピロリドン461g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液92.1g、およびブチルセロソルブ225gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 751 g of this polyamic acid solution was placed in a 3 L Erlenmeyer flask containing a stir bar, and 461 g of N-methyl-2-pyrrolidone and an N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane, 92. 1 g and 225 g of butyl cellosolve were added and stirred for 2 hours to obtain a polyamic acid solution having a solid concentration of 6.0% by mass.
 (合成例7)
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-1を1.57g(10.4mmol)、およびDA-2を4.65g(15.6mmol)取り、N-メチル-2-ピロリドン57.9gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を3.44g(17.6mmol)、およびCA-2を1.70g(7.80mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で5時間撹拌してポリアミック酸(A-7)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は196mPa・sであった。
(Synthesis Example 7)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.51 g (10.4 mmol) of DA-1 and 4.65 g (15.6 mmol) of DA-2 were taken, and N-methyl-2-pyrrolidone was added. 57.9 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 3.41 g (17.6 mmol) of CA-1 and 1.70 g (7.80 mmol) of CA-2 were added, and N— was added so that the solid content concentration became 12% by mass. Methyl-2-pyrrolidone was added, and the mixture was stirred at room temperature for 5 hours under a nitrogen atmosphere to obtain a solution of polyamic acid (A-7). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 196 mPa · s.
 このポリアミック酸溶液45.1gを撹拌子の入った100mL三角フラスコに取り、N-メチル-2-ピロリドン27.2g、およびブチルセロソルブ18.0gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 Take 45.1 g of this polyamic acid solution in a 100 mL Erlenmeyer flask containing a stir bar, add 27.2 g of N-methyl-2-pyrrolidone and 18.0 g of butyl cellosolve, and stir for 2 hours to obtain a solid content concentration of 6.0 mass. % Polyamic acid solution was obtained.
 (合成例8)
 撹拌装置付きおよび窒素導入管付きの200mL四つ口フラスコにDA-1を3.49g(23.2mmol)、DA-2を6.92g(23.2mmol)、およびDA-6を2.31g(11.6mmol)取り、N-メチル-2-ピロリドン125gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を9.10g(46.4mmol)、およびCA-3を2.57g(10.3mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、40℃で24時間撹拌してポリアミック酸(A-8)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は348mPa・sであった。
(Synthesis Example 8)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.49 g (23.2 mmol) of DA-1, 6.92 g (23.2 mmol) of DA-2, and 2.31 g of DA-6 ( 11.6 mmol), 125 g of N-methyl-2-pyrrolidone was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring the diamine solution, 9.10 g (46.4 mmol) of CA-1 and 2.57 g (10.3 mmol) of CA-3 were added, and N— was added so that the solid content concentration became 12% by mass. Methyl-2-pyrrolidone was added and stirred at 40 ° C. for 24 hours under a nitrogen atmosphere to obtain a solution of polyamic acid (A-8). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 348 mPa · s.
 このポリアミック酸溶液19.8gを撹拌子の入った50mL三角フラスコに取り、N-メチル-2-ピロリドン8.07g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液2.42g、およびブチルセロソルブ10.1gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 19.8 g of this polyamic acid solution was placed in a 50 mL Erlenmeyer flask containing a stir bar, and 8.07 g of N-methyl-2-pyrrolidone and 1.0% by weight of N-methyl-2-pyrrolidone containing 3-aminopropyltriethoxysilane were added. The pyrrolidone solution 2.42g and the butyl cellosolve 10.1g were added, and it stirred for 2 hours, and obtained the polyamic acid solution with a solid content density | concentration of 6.0 mass%.
 (合成例9)
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-1を1.68g(11.2mmol)、DA-2を2.51g(8.40mmol)、およびDA-5を0.91g(8.40mmol)取り、N-メチル-2-ピロリドン43gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を5.30g(27.0mmol)添加し、更に固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で2時間撹拌してポリアミック酸(A-9)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は125mPa・sであった。
(Synthesis Example 9)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.68 g (11.2 mmol) of DA-1, 2.51 g (8.40 mmol) of DA-2, and 0.91 g of DA-5 ( 8.40 mmol), 43 g of N-methyl-2-pyrrolidone was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.30 g (27.0 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration would be 10% by mass. The mixture was stirred for 2 hours to obtain a solution of polyamic acid (A-9). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 125 mPa · s.
 このポリアミック酸溶液54.0gを撹拌子の入った100mL三角フラスコに取り、γ-ブチロラクトン3.60g、3-アミノプロピルトリエトキシシランが1.0質量%のγ-ブチロラクトン溶液5.40g、およびブチルセロソルブ27.0gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 54.0 g of this polyamic acid solution is placed in a 100 mL Erlenmeyer flask containing a stir bar, and 3.60 g of γ-butyrolactone, 5.40 g of γ-butyrolactone solution containing 1.0% by weight of 3-aminopropyltriethoxysilane, and butyl cellosolve 27.0 g was added and stirred for 2 hours to obtain a polyamic acid solution having a solid content concentration of 6.0% by mass.
 (合成例10)
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-3を1.64g(12.0mmol)、およびDA-2を5.38g(18.0mmol)取り、N-メチル-2-ピロリドン64.7gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を5.68g(29.0mmol)を添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で3.5時間撹拌してポリアミック酸(A-10)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は211mPa・sであった。
(Synthesis Example 10)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.64 g (12.0 mmol) of DA-3 and 5.38 g (18.0 mmol) of DA-2 were taken, and N-methyl-2-pyrrolidone was added. 64.7 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.68 g (29.0 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 3.5 hours to obtain a solution of polyamic acid (A-10). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 211 mPa · s.
 このポリアミック酸溶液47.1gを撹拌子の入った100mL三角フラスコに取り、N-メチル-2-ピロリドン28.3g、およびブチルセロソルブ18.7gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 47.1 g of this polyamic acid solution is placed in a 100 mL Erlenmeyer flask containing a stirring bar, 28.3 g of N-methyl-2-pyrrolidone and 18.7 g of butyl cellosolve are added, and the mixture is stirred for 2 hours to a solid content concentration of 6.0 mass. % Polyamic acid solution was obtained.
 (比較合成例1)
 撹拌装置付きおよび窒素導入管付きの2LセパラブルフラスコにDA-5を31.7g(294mmol)、およびDA-2を37.6g(126mmol)取り、N-メチル-2-ピロリドン864gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を78.2g(399mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で6時間撹拌してポリアミック酸(B-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は308mPa・sであった。
(Comparative Synthesis Example 1)
In a 2 L separable flask equipped with a stirrer and a nitrogen inlet tube, 31.7 g (294 mmol) of DA-5 and 37.6 g (126 mmol) of DA-2 were added, and 864 g of N-methyl-2-pyrrolidone was added. Was dissolved by stirring while feeding. While stirring this diamine solution, 78.2 g (399 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration would be 12% by mass, and 6 hours at room temperature in a nitrogen atmosphere. By stirring, a solution of polyamic acid (B-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 308 mPa · s.
 このポリアミック酸溶液1155gを撹拌子の入った3L三角フラスコに取り、N-メチル-2-ピロリドン482g、3-アミノプロピルトリエトキシシランが1.0質量%のN-メチル-2-ピロリドン溶液133g、およびブチルセロソルブ442gを加え、3時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 1155 g of this polyamic acid solution was placed in a 3 L Erlenmeyer flask containing a stir bar, 482 g of N-methyl-2-pyrrolidone, 133 g of an N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane, And 442 g of butyl cellosolve were added and stirred for 3 hours to obtain a polyamic acid solution having a solid content of 6.0% by mass.
 (比較合成例2)
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-1を5.25g(35.0mmol)取り、N-メチル-2-ピロリドン60.5gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-1を6.79g(34.7mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で4.5時間撹拌してポリアミック酸(B-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は275mPa・sであった。
(Comparative Synthesis Example 2)
Take DA25 (5.25 g, 35.0 mmol) in a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, add 60.5 g of N-methyl-2-pyrrolidone, and dissolve by stirring while feeding nitrogen. I let you. While stirring this diamine solution, 6.79 g (34.7 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The solution was stirred for 4.5 hours to obtain a solution of polyamic acid (B-2). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 275 mPa · s.
 このポリアミック酸溶液47.0gを撹拌子の入った100mL三角フラスコに取り、N-メチル-2-ピロリドン28.2g、およびブチルセロソルブ18.8gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 47.0 g of this polyamic acid solution is placed in a 100 mL Erlenmeyer flask containing a stir bar, 28.2 g of N-methyl-2-pyrrolidone and 18.8 g of butyl cellosolve are added, and the mixture is stirred for 2 hours to a solid content concentration of 6.0 mass. % Polyamic acid solution was obtained.
 (比較合成例3)
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-1を3.16g(21.0mmol)、およびDA-2を2.69g(9.00mmol)取り、N-メチル-2-ピロリドン62.3gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-2を6.28g(29.7mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、室温で5時間撹拌してポリアミック酸(B-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は65mPa・sであった。
(Comparative Synthesis Example 3)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.16 g (21.0 mmol) of DA-1 and 2.69 g (9.00 mmol) of DA-2 were taken, and N-methyl-2-pyrrolidone 62.3 g was added and dissolved by stirring while feeding nitrogen. While stirring the diamine solution, 6.28 g (29.7 mmol) of CA-2 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The solution was stirred for 5 hours to obtain a solution of polyamic acid (B-3). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 65 mPa · s.
 このポリアミック酸溶液49.7gを撹拌子の入った100mL三角フラスコに取り、N-メチル-2-ピロリドン29.8g、およびブチルセロソルブ19.8gを加え、2時間撹拌して固形分濃度6.0質量%のポリアミック酸溶液を得た。 49.7 g of this polyamic acid solution is placed in a 100 mL Erlenmeyer flask containing a stir bar, 29.8 g of N-methyl-2-pyrrolidone and 19.8 g of butyl cellosolve are added, and the mixture is stirred for 2 hours to a solid content concentration of 6.0 mass. % Polyamic acid solution was obtained.
 表1に、上記合成例及び比較合成例での配合を記載する。 Table 1 shows the blending in the above synthesis examples and comparative synthesis examples.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 <実施例1>
 合成例1で得られたポリアミック酸(A-1)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.8%で「良好」、イオン密度は6pC/cmで「良好」、体積抵抗率は1.9×1015Ω・cm、残留DCは10分後1.05V、20分後1.08V、60分後1.11Vで「良好」であった。
<Example 1>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-1) obtained in Synthesis Example 1, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.8% “good”, the ion density is “good” at 6 pC / cm 2 , the volume resistivity is 1.9 × 10 15 Ω · cm, the residual DC is 1.05 V after 10 minutes, and 1 after 20 minutes. 0.08 V, 60 minutes later, 1.11 V, “good”.
 <実施例2>
 合成例2で得られたポリアミック酸(A-2)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.7%で「良好」、イオン密度は0pC/cmで「良好」、残留DCは10分後0.87V、20分後0.96V、60分後0.99Vで「良好」であった。
<Example 2>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-2) obtained in Synthesis Example 2, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.7% “good”, the ion density is 0 pC / cm 2 “good”, and the residual DC is 10 minutes 0.87 V, 20 minutes 0.96 V, 60 minutes 0.99 V “good”. there were.
 <実施例3>
 合成例3で得られたポリアミック酸(A-3)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.4%で「良好」、イオン密度は59pC/cmで「良好」、残留DCは10分後0.69V、20分後0.74V、60分後0.81Vで「良好」であった。
<Example 3>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-3) obtained in Synthesis Example 3, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.4% “good”, ion density is 59 pC / cm 2 “good”, residual DC is 0.69 V after 10 minutes, 0.74 V after 20 minutes, 0.81 V after 60 minutes, “good” there were.
 <実施例4>
 合成例4で得られたポリアミック酸(A-4)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.1%で「良好」、イオン密度は73pC/cmで「良好」、残留DCは10分後1.03V、20分後1.06V、60分後1.14Vで「良好」であった。
<Example 4>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-4) obtained in Synthesis Example 4, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.1%, the ion density is “good” at 73 pC / cm 2 , and the residual DC is “good” at 1.03 V after 10 minutes, 1.06 V after 20 minutes, and 1.14 V after 60 minutes. there were.
 <実施例5>
 合成例5で得られたポリアミック酸(A-5)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は99.1%で「良好」、イオン密度は2pC/cmで「良好」、残留DCは10分後0.38V、20分後0.52V、60分後0.65Vで「良好」であった。
<Example 5>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-5) obtained in Synthesis Example 5, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 99.1% “good”, the ion density is “good” at 2 pC / cm 2 , the residual DC is 0.38 V after 10 minutes, 0.52 V after 20 minutes, 0.65 V after 60 minutes, “good”. there were.
 <実施例6>
 合成例6で得られたポリアミック酸(A-6)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.1%で「良好」、イオン密度は13pC/cmで「良好」、残留DCは10分後1.28V、20分後1.43V、60分後1.50Vで「良好」であった。
<Example 6>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-6) obtained in Synthesis Example 6, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.1%, the ion density is “good” at 13 pC / cm 2 , and the residual DC is “good” at 1.28 V after 10 minutes, 1.43 V after 20 minutes, and 1.50 V after 60 minutes. there were.
 <実施例7>
 合成例7で得られたポリアミック酸(A-7)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.5%で「良好」、イオン密度は8pC/cmで「良好」、残留DCは10分後0.61V、20分後0.71V、60分後0.79Vで「良好」であった。
<Example 7>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-7) obtained in Synthesis Example 7, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio 98.5% is “good”, the ion density is “good” at 8 pC / cm 2 , the residual DC is 0.61 V after 10 minutes, 0.71 V after 20 minutes, 0.79 V after 60 minutes and “good”. there were.
 <実施例8>
 合成例8で得られたポリアミック酸(A-8)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.7%で「良好」、イオン密度は0pC/cmで「良好」、残留DCは10分後1.58V、20分後1.79V、60分後1.88Vで「良好」であった。
<Example 8>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-8) obtained in Synthesis Example 8, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.7%, the ion density is “good” at 0 pC / cm 2 , and the residual DC is “good” at 1.58 V after 10 minutes, 1.79 V after 20 minutes, and 1.88 V after 60 minutes. there were.
 <実施例9>
 合成例9で得られたポリアミック酸(A-9)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.8%で「良好」、イオン密度は0pC/cmで「良好」、残留DCは10分後1.15V、20分後1.39V、60分後1.51Vで「良好」であった。
<Example 9>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-9) obtained in Synthesis Example 9, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is “good” at 98.8%, the ion density is “good” at 0 pC / cm 2 , and the residual DC is “good” at 1.15 V after 10 minutes, 1.39 V after 20 minutes, and 1.51 V after 60 minutes. there were.
 <実施例10>
 合成例10で得られたポリアミック酸(A-10)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.7%で「良好」、イオン密度は2pC/cmで「良好」、残留DCは10分後0.19V、20分後0.27V、60分後0.43Vで「良好」であった。
<Example 10>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (A-10) obtained in Synthesis Example 10, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage holding ratio Is 98.7% "good", the ion density is 2pC / cm 2 "good", the residual DC is 0.19V after 10 minutes, 0.27V after 20 minutes, 0.43V after 60 minutes, "good" there were.
 <比較例1>
 比較合成例1で得られたポリアミック酸(B-1)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「良好」、液晶配向性は「良好」、電圧保持率は98.4%で「良好」、イオン密度は1pC/cmで「良好」、残留DCは10分後1.99V、20分後2.07V、60分後2.12Vで「不良」であった。
<Comparative Example 1>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (B-1) obtained in Comparative Synthesis Example 1, the rubbing resistance was “good”, the liquid crystal orientation was “good”, and the voltage was maintained. The rate is “good” at 98.4%, the ion density is “good” at 1 pC / cm 2 , the residual DC is “bad” at 1.99 V after 10 minutes, 2.07 V after 20 minutes, and 2.12 V after 60 minutes. Met.
 <比較例2>
 比較合成例2で得られたポリアミック酸(B-2)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「不良」、液晶配向性は「不良」、電圧保持率は99.0%で「良好」、イオン密度は0pC/cmで「良好」、残留DCは10分後0.95V、20分後1.21V、60分後1.42Vで「良好」であった。
<Comparative example 2>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (B-2) obtained in Comparative Synthesis Example 2, the rubbing resistance was “poor”, the liquid crystal alignment was “poor”, and the voltage was maintained. The rate is “good” at 99.0%, the ion density is “good” at 0 pC / cm 2 , and the residual DC is “good” at 0.95 V after 10 minutes, 1.21 V after 20 minutes, and 1.42 V after 60 minutes. Met.
 <比較例3>
 比較合成例3で得られたポリアミック酸(B-3)を含有するポリアミック酸溶液の各評価、および各測定を行った結果、ラビング耐性は「不良」、液晶配向性は「良好」、電圧保持率は98.8%で「良好」、イオン密度は3pC/cmで「良好」、残留DCは10分後0.29V、20分後0.42V、60分後0.67Vで「良好」であった。
<Comparative Example 3>
As a result of each evaluation and measurement of the polyamic acid solution containing the polyamic acid (B-3) obtained in Comparative Synthesis Example 3, the rubbing resistance was “poor”, the liquid crystal orientation was “good”, and the voltage was maintained. The rate is “good” at 98.8%, the ion density is “good” at 3 pC / cm 2 , and the residual DC is “good” at 0.29 V after 10 minutes, 0.42 V after 20 minutes, and 0.67 V after 60 minutes. Met.
 結果を表2に示す。これらの結果、本発明の液晶配向剤(ポリアミック酸溶液)を用いた実施例1~10は、液晶配向性に優れ、高いラビング耐性を有し、イオン密度が小さかった。そして、実施例1~10は、FFSモードでの残留DCが低いため、液晶表示素子における蓄積電荷が少ない。なお、実施例1~10は、電圧保持率も良好であった。また、合成例1のポリアミック酸溶液を用いた実施例1と同様に、合成例2~10の各ポリアミック酸溶を用いた実施例2~10においても、体積抵抗率が高かった。 The results are shown in Table 2. As a result, Examples 1 to 10 using the liquid crystal aligning agent (polyamic acid solution) of the present invention were excellent in liquid crystal alignment, high rubbing resistance, and low ion density. In Examples 1 to 10, since the residual DC in the FFS mode is low, the accumulated charge in the liquid crystal display element is small. In Examples 1 to 10, the voltage holding ratio was also good. Similarly to Example 1 using the polyamic acid solution of Synthesis Example 1, Examples 2 to 10 using each of the polyamic acid solutions of Synthesis Examples 2 to 10 also had high volume resistivity.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 本発明の液晶配向剤を用いることにより、ラビング耐性に優れ、液晶配向性が良好であり、液晶表示素子としたときの電圧保持率が高く、イオン密度が小さい液晶配向膜を得ることができる。また、本発明の液晶配向膜は、FFSモード液晶表示素子における蓄積電荷量が少ないため、高い表示品位が求められるFFSモード液晶表示素子における利用が可能である。 By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film having excellent rubbing resistance, good liquid crystal aligning property, high voltage holding ratio and low ion density when used as a liquid crystal display element. Moreover, since the liquid crystal alignment film of the present invention has a small amount of accumulated charge in the FFS mode liquid crystal display element, it can be used in an FFS mode liquid crystal display element that requires high display quality.

Claims (8)

  1.  脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、ウレア構造を有するジアミン及び重合反応部位に2級アミンを有するジアミンを含有するジアミン成分との反応により得られるポリアミック酸を含有することを特徴とする液晶配向剤。 A tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure; a diamine component containing a diamine having a urea structure and a diamine having a secondary amine at the polymerization reaction site; The liquid crystal aligning agent characterized by including the polyamic acid obtained by reaction of this.
  2.  テトラカルボン酸二無水物成分中、脂環式構造または脂肪族構造を有するテトラカルボン酸二無水物を50mol%以上含有することを特徴とする請求項1記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic dianhydride component contains 50 mol% or more of a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure.
  3.  ジアミン成分中、重合反応部位に2級アミンを有するジアミンを10~70mol%含有することを特徴とする請求項1または2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the diamine component contains 10 to 70 mol% of a diamine having a secondary amine at a polymerization reaction site.
  4.  ジアミン成分中、ウレア構造を有するジアミンを10~70mol%含有することを特徴とする請求項1~3のいずれかに記載の液晶配向剤。 4. The liquid crystal aligning agent according to claim 1, wherein the diamine component contains 10 to 70 mol% of a diamine having a urea structure.
  5.  重合反応部位に2級アミンを有するジアミンが、下記式(1)で表されるジアミンであることを特徴とする請求項1~4のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは芳香環を表し、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~4のアルキル基を表す。)
    5. The liquid crystal aligning agent according to claim 1, wherein the diamine having a secondary amine at the polymerization reaction site is a diamine represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), X represents an aromatic ring, R 1 represents an alkylene group having 1 to 5 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms.)
  6.  ウレア構造を有するジアミンが、下記式(2)で表されるジアミンであることを特徴とする請求項1~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Yは酸素原子又は硫黄原子を表し、R、Rはそれぞれ独立して炭素原子数1~3のアルキレン基を表し、Z、Zはそれぞれ独立して単結合、-O-、-S-、-OCO-、または、-COO-を表す。)
    6. The liquid crystal aligning agent according to claim 1, wherein the diamine having a urea structure is a diamine represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), Y represents an oxygen atom or a sulfur atom, R 3 and R 4 each independently represents an alkylene group having 1 to 3 carbon atoms, and Z 1 and Z 2 each independently represents a single atom. Represents a bond, —O—, —S—, —OCO—, or —COO—.)
  7.  請求項1~6のいずれかに記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項7の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film of claim 7.
PCT/JP2012/067901 2011-07-14 2012-07-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2013008906A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013523995A JP5633714B2 (en) 2011-07-14 2012-07-13 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201280044376.1A CN103797409B (en) 2011-07-14 2012-07-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020147003576A KR101610559B1 (en) 2011-07-14 2012-07-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011155776 2011-07-14
JP2011-155776 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008906A1 true WO2013008906A1 (en) 2013-01-17

Family

ID=47506181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067901 WO2013008906A1 (en) 2011-07-14 2012-07-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP5633714B2 (en)
KR (1) KR101610559B1 (en)
CN (1) CN103797409B (en)
TW (1) TWI499656B (en)
WO (1) WO2013008906A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123045A1 (en) * 2013-02-07 2014-08-14 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
WO2014148440A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Liquid crystal aligning agent for in-plane switching
WO2016068085A1 (en) * 2014-10-28 2016-05-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US10308767B2 (en) 2014-08-12 2019-06-04 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480264B (en) * 2013-04-12 2015-04-11 Daxin Materials Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element and method of manufacturing the same
JP6852347B2 (en) * 2016-01-29 2021-03-31 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP7196847B2 (en) * 2017-08-29 2022-12-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN110716352B (en) * 2018-07-12 2022-11-15 香港科技大学 Composition for preparing liquid crystal photoalignment layer and application method thereof
CN113956475B (en) * 2021-11-05 2022-07-29 深圳市道尔顿电子材料有限公司 Polyimide liquid crystal aligning agent chelated with metal ions, liquid crystal alignment film and preparation method of liquid crystal alignment film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013058A1 (en) * 1998-08-26 2000-03-09 Nissan Chemical Industries, Ltd. Treating agent for liquid crystal alignment layer and liquid crystal device using the same, and method for alignment of liquid crystal
WO2005105892A1 (en) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
WO2008078796A1 (en) * 2006-12-27 2008-07-03 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film using the same, and liquid crystal display element
WO2010053128A1 (en) * 2008-11-06 2010-05-14 日産化学工業株式会社 Liquid crystal aligning agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386435B (en) * 2006-04-25 2013-02-21 Jsr Corp Vertical alignment mode liquid crystal alignment agent and vertical alignment mode liquid crystal display device
JP5321781B2 (en) * 2007-01-09 2013-10-23 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
WO2011010619A1 (en) * 2009-07-21 2011-01-27 日産化学工業株式会社 Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent
JP5915523B2 (en) * 2010-03-15 2016-05-11 日産化学工業株式会社 Polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013058A1 (en) * 1998-08-26 2000-03-09 Nissan Chemical Industries, Ltd. Treating agent for liquid crystal alignment layer and liquid crystal device using the same, and method for alignment of liquid crystal
WO2005105892A1 (en) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
WO2008078796A1 (en) * 2006-12-27 2008-07-03 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film using the same, and liquid crystal display element
WO2010053128A1 (en) * 2008-11-06 2010-05-14 日産化学工業株式会社 Liquid crystal aligning agent

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968709A (en) * 2013-02-07 2015-10-07 株式会社钟化 Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
JPWO2014123045A1 (en) * 2013-02-07 2017-02-02 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using the same, and method for producing laminate
US10626218B2 (en) 2013-02-07 2020-04-21 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
US10435510B2 (en) 2013-02-07 2019-10-08 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
WO2014123045A1 (en) * 2013-02-07 2014-08-14 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
CN105051594B (en) * 2013-03-19 2017-12-05 日产化学工业株式会社 Transverse electric field driving aligning agent for liquid crystal
WO2014148440A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Liquid crystal aligning agent for in-plane switching
CN105051594A (en) * 2013-03-19 2015-11-11 日产化学工业株式会社 Liquid crystal aligning agent for in-plane switching
KR20150132538A (en) * 2013-03-19 2015-11-25 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent for in-plane switching
KR102206414B1 (en) * 2013-03-19 2021-01-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent for in-plane switching
JPWO2014148440A1 (en) * 2013-03-19 2017-02-16 日産化学工業株式会社 Liquid crystal alignment treatment agent for lateral electric field drive
US10308767B2 (en) 2014-08-12 2019-06-04 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
CN107111190A (en) * 2014-10-28 2017-08-29 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
JPWO2016068085A1 (en) * 2014-10-28 2017-08-03 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20170077144A (en) * 2014-10-28 2017-07-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2016068085A1 (en) * 2014-10-28 2016-05-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102488715B1 (en) * 2014-10-28 2023-01-13 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2013008906A1 (en) 2015-02-23
TW201309784A (en) 2013-03-01
CN103797409B (en) 2017-05-24
JP5633714B2 (en) 2014-12-03
TWI499656B (en) 2015-09-11
KR101610559B1 (en) 2016-04-07
CN103797409A (en) 2014-05-14
KR20140041834A (en) 2014-04-04

Similar Documents

Publication Publication Date Title
JP5633714B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102125106B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
JP6593603B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2010074269A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6102743B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2009093711A1 (en) Liquid crystal aligning agent and liquid crystal display element
KR101819769B1 (en) Liquid crystal aligning agent, liquid crystal alignment film using same, and liquid crystal display element
KR20180098328A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014133042A1 (en) Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013111836A1 (en) Method for preparing polyimide varnish, and liquid crystal aligning agent
JP6217937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6278216B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
KR20120104987A (en) Liquid crystal aligning agent and liquid crystal display element using same
JP6183616B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2012121259A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2018043326A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6996509B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP6319581B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092170A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6264577B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003576

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12811419

Country of ref document: EP

Kind code of ref document: A1