WO2014133042A1 - Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2014133042A1
WO2014133042A1 PCT/JP2014/054766 JP2014054766W WO2014133042A1 WO 2014133042 A1 WO2014133042 A1 WO 2014133042A1 JP 2014054766 W JP2014054766 W JP 2014054766W WO 2014133042 A1 WO2014133042 A1 WO 2014133042A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbon atoms
formula
group
crystal alignment
Prior art date
Application number
PCT/JP2014/054766
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 菊池
徳俊 三木
幸司 巴
雅章 片山
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157026351A priority Critical patent/KR102184058B1/en
Priority to CN201480024175.4A priority patent/CN105164579B/en
Priority to JP2015502996A priority patent/JP6368955B2/en
Publication of WO2014133042A1 publication Critical patent/WO2014133042A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polymer, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • An MVA (Multi-domain Vertical Alignment) mode capable of obtaining a wide viewing angle is known as a liquid crystal display device that is superior in viewing angle characteristics as compared with a conventional TN (Twisted Nematic) mode liquid crystal display device.
  • a liquid crystal having negative dielectric anisotropy, a liquid crystal alignment film for vertically aligning the liquid crystal, and an alignment control structure for controlling the alignment direction of the liquid crystal are used.
  • the liquid crystal is tilted in a vertical direction along the alignment control structure.
  • the aperture ratio is lower than that of the TN mode or the like, and the light transmittance from the backlight is lowered.
  • Patent Document 1 a method of controlling the alignment direction of the liquid crystal during driving using a polymer.
  • a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound (also referred to as a monomer) that is polymerized by heat or ultraviolet irradiation is used.
  • a voltage is applied between the substrates to tilt the liquid crystal molecules, and then the monomer is polymerized by heat or ultraviolet irradiation to form a polymer (the above method is also referred to as PSA treatment).
  • a liquid crystal layer having a predetermined tilt angle (also referred to as a pretilt angle) can be obtained even when no voltage is applied, and a liquid crystal display element having a high light transmittance and a faster liquid crystal response speed can be obtained.
  • a step of filling a liquid crystal between two substrates (cell gaps) on which a liquid crystal alignment film is formed is necessary.
  • the filling of liquid crystal has been generally performed by a vacuum injection method in which a liquid crystal is filled between two substrates by utilizing a pressure difference between atmospheric pressure and vacuum.
  • a liquid crystal dropping method ODF (One Drop Fill) method
  • ODF One Drop Fill
  • the liquid crystal is directly dropped on the liquid crystal alignment film, so that the liquid crystal alignment film is physically stressed when the liquid crystal is dropped, and it is necessary to fill the liquid crystal over the entire panel, and it is necessary to increase the dropping point of the liquid crystal. is there. Therefore, so-called alignment unevenness such as dripping traces and lattice unevenness occurs in the liquid crystal dropping portion or the portion where the liquid crystal droplets are in contact with the adjacent liquid droplets.
  • this is used as a liquid crystal display element, display unevenness due to alignment unevenness occurs. There was a problem that occurred.
  • an object of the present invention is to provide a polymer, a liquid crystal alignment treatment agent, a liquid crystal alignment film, and a liquid crystal display element that can improve the alignment unevenness of the liquid crystal alignment film and are excellent in heat resistance of the pretilt angle.
  • the inventor has obtained a polyimide precursor obtained by reacting a tetracarboxylic acid component having a tetracarboxylic dianhydride having a specific structure with a diamine component having a diamine compound having a specific structure, and
  • the liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing the polyimide precursor is found to be extremely effective for achieving the above object, and the present invention is completed. It came to.
  • the present invention has the following gist. (1) Obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] with a diamine component containing a diamine compound having a side chain represented by the following formula [2]
  • the liquid crystal aligning agent characterized by including the polyimide precursor and the at least 1 polymer chosen from the polyimide obtained by imidating this polyimide precursor.
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton
  • Z 1 is at least one tetravalent group selected from Formula [3a] to Formula [3j] below).
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms
  • a liquid crystal display element comprising the liquid crystal alignment film according to (5) or (6).
  • a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (8).
  • a liquid crystal alignment film comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (10).
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton
  • a polyimide precursor obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride having a specific structure with a diamine component containing a diamine compound having a side chain of a specific structure, and the polyimide precursor
  • a liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing the body, alignment unevenness generated in a liquid crystal display device produced by the ODF method can be improved.
  • the PSA mode is adopted, the dispersibility of the polymerizable compound contained in the liquid crystal display element can be made uniform, and the alignment unevenness can be further improved.
  • the heat resistance of a pretilt angle can be made excellent by using the liquid-crystal aligning agent of this invention. Therefore, the liquid crystal display element having the liquid crystal alignment film of the present invention does not have alignment defects due to alignment unevenness and has excellent heat resistance, so that it becomes a highly reliable liquid crystal display element.
  • the liquid-crystal aligning agent of this invention is a tetracarboxylic-acid component containing the tetracarboxylic dianhydride (it is also called specific tetracarboxylic dianhydride) shown by following formula [1], and following formula [2]
  • a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain shown (also referred to as a specific side chain diamine compound) and a polyimide obtained by imidizing the polyimide precursor
  • the polymer also referred to as a specific polymer).
  • the polyimide precursor refers to polyamic acid (also called polyamic acid) or polyamic acid alkyl ester.
  • the polyimide precursor is composed of a tetracarboxylic acid component (eg, a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a dicarboxylic acid dihalide compound, a dicarboxylic acid dialkyl ester compound, a dialkyl ester dihalide compound) and a primary or secondary molecule.
  • a tetracarboxylic acid component eg, a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a dicarboxylic acid dihalide compound, a dicarboxylic acid dialkyl ester compound, a dialkyl ester dihalide compound
  • polyimide is obtained by reaction with a diamine component, which is a diamine compound having two amino groups, and polyimide is obtained by dehydrating and ring-closing (imidizing) this polyamic acid, or by heating and ring-closing (imidizing) a polyamic acid alkyl ester. It is done. Any of the polyamic acid, polyamic acid alkyl ester, and polyimide is useful as a specific polymer to be contained in the liquid crystal aligning agent of the present invention.
  • the specific tetracarboxylic dianhydride contained in the tetracarboxylic acid component that is the raw material of the polymer contained in the liquid crystal aligning agent of the present invention is a tetracarboxylic dianhydride represented by the following formula [1].
  • the tetracarboxylic dianhydride represented by the formula [1] is preferably 20 mol% to 100 mol% in the total tetracarboxylic acid component. In particular, it is preferably 30 mol% to 70 mol%. Particularly preferred is 30 to 50 mol%.
  • tetracarboxylic acid compounds also referred to as other tetracarboxylic acid compounds
  • other tetracarboxylic acid compounds other than the specific tetracarboxylic dianhydride may be used in combination as a tetracarboxylic acid component. it can.
  • tetracarboxylic dianhydrides represented by the following formula [3] and tetracarboxylic acid compounds and dicarboxylic acid dihalide compounds are tetracarboxylic acid derivatives thereof. It is preferable to use it.
  • Z 1 is a group having a structure selected from the following formulas [3a] to [3j].)
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 represents the formula [3a], the formula [3c], the formula [3d], the formula from the viewpoint of easy synthesis and the ease of the polymerization reaction when producing the polymer.
  • a structure represented by [3e], formula [3f] or formula [3g] is preferable. More preferred is a structure represented by formula [3a], formula [3e], formula [3f] or formula [3g], and particularly preferred is formula [3e], formula [3f] or formula [3g]. It is.
  • the tetracarboxylic acid compound other than the specific tetracarboxylic dianhydride and other tetracarboxylic acid compounds can also be used.
  • tetracarboxylic dianhydrides tetracarboxylic acid compounds or dicarboxylic acid dihalide compounds.
  • tetracarboxylic acid compounds and the above-mentioned tetracarboxylic acid compounds are the solubility of the specific polymer of the present invention in a solvent, the coating property of a liquid crystal aligning agent, the alignment property of liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the specific side chain diamine compound contained in the diamine component that is the raw material of the polymer contained in the liquid crystal aligning agent of the present invention is a diamine compound having a side chain represented by the following formula [2].
  • the side chain of the diamine compound means a structure branched from a structure connecting two amino groups.
  • the diamine compound having a side chain represented by the formula [2] is preferably 20 mol% to 70 mol% in the total diamine component.
  • the content is preferably 20 mol% to 50 mol%.
  • Particularly preferred is 20 mol% to 40 mol%.
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4.
  • 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2] are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751. And the same combinations as (2-1) to (2-629).
  • Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
  • an organic group having 12 to 25 carbon atoms having a steroid skeleton is read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
  • diamine compound having a side chain represented by the formula [2] include diamine compounds represented by the following formulas [2b-1] to [2b-31].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—
  • R 2 represents carbon An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group represented by formulas 1 to 22.
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 - indicates
  • R 4 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group of 1 to 22 carbon atoms).
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—
  • R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • R 8 represents an alkyl group having 3 to 12 carbon atoms.
  • the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 )
  • B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 ⁇ 10
  • a 3 is 0 or 1 Indicates an integer).
  • the liquid crystal aligning agent using the diamine compound having a side chain represented by the formula [2] can increase the pretilt angle of the liquid crystal when the liquid crystal alignment film is used.
  • the diamine compounds represented by the formulas [2b-1] to [2b-13] or the formulas [2b-22] to [2b-31] Is preferably used. More preferred are diamine compounds represented by the formulas [2b-1] to [2b-12] or the formulas [2b-22] to [2b-29].
  • these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the point of the applicability
  • the diamine compound having a side chain represented by the formula [2] is a solubility of a specific polymer in a solvent, a coating property of a liquid crystal aligning agent, a liquid crystal alignment property in a liquid crystal alignment film, a voltage holding ratio, One type or a mixture of two or more types can be used in accordance with characteristics such as accumulated charge.
  • a diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention a known diamine compound can be used in addition to the diamine compound having a side chain represented by the formula [2].
  • the diamine compound which has a structure shown by the following formula [4a].
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • diamine compound having a structure represented by the formula [4a] include a diamine compound represented by the following formula [4a-1].
  • a represents an integer of 0 to 4. Among these, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • n represents an integer of 1 to 4. Among these, 1 is preferable from the viewpoint of ease of synthesis.
  • the method for producing the diamine compound represented by the formula [4a] is not particularly limited, but preferred methods include those shown below.
  • a diamine compound represented by the formula [4a-1] is obtained by synthesizing a dinitro compound represented by the following formula [4a-A], and further reducing the nitro group to convert it to an amino group. It is done.
  • a represents an integer of 0 to 4 and n represents an integer of 1 to 4).
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [4a-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • Examples of the diamine compound represented by the formula [4a] further include diamine compounds represented by the following formulas [4a-2] to [4a-5].
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —COO— or —OCO— is preferred. More preferred is a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH— or —N (CH 3 ) —.
  • n 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4. Among them, m 1 + m 2 is 1 or 2 are preferred.
  • n 3 and m 4 each represent an integer of 1 to 5. Of these, 1 or 2 is preferable from the viewpoint of ease of synthesis.
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. Of these, a linear alkyl group having 1 to 3 carbon atoms is preferable.
  • m 5 represents an integer of 1 to 5. Of these, 1 or 2 is preferable.
  • a 3 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , —COO— or —OCO— is preferable. More preferred is —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—.
  • m 6 represents an integer of 1 to 4. Of these, 1 is preferable from the viewpoint of ease of synthesis.
  • the diamine compound represented by the formula [4a-1] to the formula [4a-5] is preferably 30 mol% to 80 mol%, more preferably 50 mol% to 80 mol%, based on the total diamine component. It is preferable that
  • the diamine compounds represented by the above formulas [4a-1] to [4a-5] are soluble in a specific polymer in a solvent, applicability of a liquid crystal aligning agent, and alignment of liquid crystals when used as a liquid crystal alignment film. Depending on the characteristics such as voltage holding ratio and accumulated charge, one kind or a mixture of two or more kinds can be used.
  • diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention it is also preferable to use a diamine compound represented by the following formula [4b].
  • Y represents at least one monovalent group selected from the following formula [4b-1], formula [4b-2], formula [4b-3], or formula [4b-4].
  • M represents an integer of 0 to 4
  • — (Y) m represents that there are m substituents Y.
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • Y 7 represents an alkyl group having 8 to 22 carbon atoms.
  • Y 8 and Y 9 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
  • Y 10 represents an alkyl group having 1 to 8 carbon atoms.
  • the method for producing the diamine compound represented by the formula [4b] is not particularly limited, but preferred methods include those shown below.
  • a diamine compound represented by the formula [4b] can be obtained by synthesizing a dinitro compound represented by the following formula [4b-A] and further reducing the nitro group to convert it to an amino group.
  • Y represents a substituent having at least one structure selected from Formula [4b-1], Formula [4b-2], Formula [4b-3] or Formula [4b-4].
  • M represents an integer of 0 to 4).
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [4b-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • the diamine compound represented by the formula [4b] includes m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol.
  • diamine compounds having structures represented by the following formulas [4b-6] to [4b-15] are exemplified. be able to.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention examples include diamine compounds represented by the formulas [4a-1] to [4a-5] and diamines represented by the formula [4b].
  • Diamine compounds other than the compounds also referred to as other diamine compounds
  • the specific example is given to the following, it is not limited to these examples.
  • diamine compounds include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. It can be used as long as the effect is not impaired.
  • diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
  • p represents an integer of 1 to 10).
  • n represents an integer of 1 to 5
  • a diamine compound represented by the following formula [DA14] can also be used as long as the effects of the present invention are not impaired.
  • a 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
  • a 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 is an integer).
  • diamine compounds represented by the following formula [DA15] and formula [DA16] can also be used.
  • a diamine compound represented by the following formula [DA17] can also be used.
  • X 1 and X 2 each independently represent an H atom, a methyl group or an ethyl group, and m represents an integer of 1 to 3).
  • examples of the diamine compound represented by the formula [DA17] include diamine compounds having structures represented by the following formulas [DA17-1] to [DA17-6].
  • the above-mentioned other diamine compounds have characteristics such as solubility of the specific polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. Depending on the case, one kind or a mixture of two or more kinds may be used.
  • the specific polymer contained in the liquid crystal aligning agent of the present invention is a diamine having the tetracarboxylic acid component containing the tetracarboxylic dianhydride represented by the formula [1] and a side chain represented by the formula [2]. It is at least one polymer selected from a polyimide precursor obtained by reacting the diamine component containing a compound and a polyimide obtained by imidizing the polyimide precursor.
  • the precursor has a structure represented by the following formula [A], for example.
  • R 1 is a tetravalent organic group derived from a tetracarboxylic acid component
  • R 2 is a divalent organic group derived from a diamine component
  • a 1 and A 2 are hydrogen atoms or Represents an alkyl group having 1 to 8 carbon atoms, which may be the same or different
  • a 3 and A 4 represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and are the same.
  • n may be different, and n represents a positive integer).
  • the specific polymer contained in the liquid crystal aligning agent of the present invention is relatively simple by using a tetracarboxylic acid component represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials. From the reason that it is obtained, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
  • R 1 and R 2 are as defined in formula [A]).
  • the polymer of the formula [D] obtained above is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] by a usual synthesis method. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • the specific polymer is obtained by reacting the diamine component with the tetracarboxylic acid component.
  • a method of obtaining a polyamic acid by polycondensation of a tetracarboxylic dianhydride and a diamine component a method of obtaining a polyamic acid by a dehydration polycondensation reaction of a tetracarboxylic acid and a diamine component, or a dicarboxylic acid dihalide and A method of obtaining polyamic acid by polycondensation with a diamine component is used.
  • Polyamide acid alkyl ester is obtained by polycondensation of a carboxylic acid group dialkyl esterified tetracarboxylic acid and a diamine component, a dicarboxylic ester dicarboxylic ester dicarboxylic acid dihalide and a diamine component. Or the method of converting the carboxyl group of a polyamic acid into ester is used.
  • polyimide In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out with the diamine component and the tetracarboxylic acid component in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and solvents represented by the following formulas [D-1] to [D-3].
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the specific polymer contained in the liquid crystal alignment treatment agent of the present invention is GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties.
  • the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, and contains a polymer component and a solvent, and is a coating solution for forming a polymer film.
  • the liquid-crystal aligning agent of this invention is a tetracarboxylic-acid component containing the said specific polymer, ie, the tetracarboxylic dianhydride shown by said Formula [1], as a polymer component, and At least one polymer selected from a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain represented by the above formula [2] and a polyimide obtained by imidizing the polyimide precursor
  • the present invention has a structure in which physical stress on the liquid crystal alignment film during liquid crystal dropping is reduced and has a structure with high hydrophobicity, as shown in the examples described later.
  • a liquid crystal display device comprising a liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent should have improved alignment unevenness and excellent heat resistance at a pretilt angle. Kill.
  • the alignment unevenness of the liquid crystal display element is caused by physical stress applied to the liquid crystal alignment film when the liquid crystal is dropped by the ODF method and the vertical alignment of the liquid crystal is lowered. Also, adsorbed water and impurities adhering to the surface of the liquid crystal alignment film are swept away by the liquid crystal dropped in the ODF process, and the amount of adsorbed water and impurities is different at the liquid crystal dropping part and the part where the liquid crystal droplets are in contact with each other. This is considered to occur.
  • the ODF method refers to dropping liquid crystal directly onto a liquid crystal alignment film formed on a substrate.
  • the specific polymer contained in the liquid crystal aligning agent of the present invention has a methylene group derived from the tetracarboxylic dianhydride represented by the formula [1] in the main chain, it is flexible and has a liquid crystal alignment.
  • the specific polymer When the treatment agent is applied to the substrate, the specific polymer easily moves to the surface layer (that is, the side opposite to the substrate) of the coating film (and thus the liquid crystal alignment film).
  • this specific polymer has the side chain shown by Formula [2] derived from the diamine compound which has a side chain shown by Formula [2], in the surface layer of a coating film or a liquid crystal aligning film, it is Formula [2].
  • the density of the side chain indicated by increases. As described above, the specific polymer moves to the surface layer, and the density of the side chain represented by the formula [2] on the surface layer is increased, thereby reducing physical stress on the liquid crystal alignment film at the time of liquid crystal dropping.
  • the specific polymer migrates to the surface layer and the density of the side chain represented by the formula [2] on the surface layer increases, so that the hydrophobicity of the liquid crystal alignment film increases.
  • the tetracarboxylic dianhydride represented by the formula [1] thermal imidization that occurs when the liquid crystal alignment treatment agent is applied to the substrate and then baked easily proceeds, and the hydrophobicity of the liquid crystal alignment film is increased. Get higher.
  • the amount of adsorbed water and impurities in the liquid crystal dropping part can be made uniform.
  • PSA is a liquid crystal display element of a method (vertical alignment method) in which liquid crystal molecules aligned perpendicular to a substrate are responded by an electric field (polymeric compound is previously added to the liquid crystal composition).
  • the polymerizable compound refers to a compound that is polymerized by at least one of active energy rays and heat.
  • liquid crystal aligning agent of the present invention since the hydrophobicity is high, the dispersibility of the monomer can be made uniform, and variation in the pretilt angle can be suppressed, Uneven alignment can be improved.
  • liquid crystal aligning agent of this invention is excellent in printability, and can obtain the uniform coating film without a repellency and film thickness nonuniformity.
  • a liquid crystal display element having a liquid crystal alignment film produced using the liquid crystal alignment treatment agent of the present invention has no alignment defect due to alignment unevenness and is excellent in thermal stability of a pretilt angle.
  • a liquid crystal display element with excellent quality and high reliability is obtained.
  • All the polymer components in the liquid crystal aligning agent of the present invention may be all specific polymers, or other polymers may be mixed.
  • the content of the other polymer is 0.5 mass% to 15 mass%, preferably 1 mass% to 10 mass% of the specific polymer.
  • Other polymers include polyimide precursors or polyimides that do not use the tetracarboxylic dianhydride represented by the formula [1].
  • an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
  • the solid content concentration in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and preferably 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated.
  • the term “solid content” as used herein refers to a component obtained by removing the solvent from the liquid crystal aligning agent, and means the above-described specific polymer, other polymers, and various additives described later.
  • the organic solvent in the liquid crystal alignment treatment agent of the present invention preferably has an organic solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform liquid crystal alignment film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent (also referred to as a good solvent) that dissolves the specific polymer.
  • an organic solvent also referred to as a good solvent
  • a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, the solvents represented by the above formulas [D-1] to [D-3], and the like can be given. These may be used alone or in combination.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • ⁇ -butyrolactone are preferably used.
  • the solubility of the specific polymer in the solvent it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid-crystal aligning agent of this invention is an organic solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid-crystal aligning film at the time of apply
  • a poor solvent is an organic solvent which improves the coating property and surface smoothness of a liquid-crystal aligning film at the time of apply
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • These poor solvents are preferably 1 to 70% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
  • the liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired.
  • a crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751.
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2011 / 132751 may be mentioned.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • liquid crystal alignment treatment agent of the present invention a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
  • Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
  • the liquid crystal alignment treatment agent of the present invention includes the above poor solvent, a crosslinkable compound, a compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that adheres to the substrate.
  • a dielectric material or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
  • Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the liquid crystal aligning agent After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method. For example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment treatment agent of the present invention provided between the substrate and the liquid crystal layer.
  • a liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film.
  • a vertical alignment (VA) method a horizontal alignment (IPS: In-Plane Switching) method, a twisted nematic (TN) method, an OCB alignment (OCB).
  • PB Optically Compensated Bend
  • PSA Polymer Sustained Alignment
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film on one substrate, and place the liquid crystal alignment film surface on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the substrate after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the substrate after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed As described above, in the ODF method, alignment unevenness is likely to occur. However, by using the liquid crystal aligning agent of the present invention, the occurrence of alignment unevenness can be suppressed even in the ODF method.
  • a PSA-type liquid crystal display element uses a liquid crystal material (liquid crystal composition) in which a liquid crystal is mixed with a polymerizable compound that is polymerized by at least one of active energy rays and heat, and ultraviolet rays are applied while applying a voltage to a liquid crystal cell. It is obtained by irradiation.
  • Examples of the polymerizable compound include a polymerizable compound having a photopolymerizable group at each of two ends as represented by the following formula (III), and a photopolymerizable group represented by the following formula (IV). And a polymerizable compound having a photocrosslinkable group and a polymerizable compound having a photocrosslinkable group at each of two terminals represented by the following formula (V).
  • R 12 is H or an alkyl group having 1 to 4 carbon atoms
  • Z 1 is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
  • An optionally substituted divalent aromatic ring or heterocyclic ring, Z 2 is a monovalent aromatic ring or heterocyclic ring, and the monovalent aromatic ring or heterocyclic ring is an alkyl group having 1 to 12 carbon atoms and It may be substituted with one or more substituents selected from alkoxy groups having 1 to 12 carbon atoms, and Q 1 is a divalent organic group.
  • Q 1 has a ring structure such as a phenylene group (—C 6 H 4 —), a biphenylene group (—C 6 H 4 —C 6 H 4 —), a cyclohexylene group (—C 6 H 10 —), and the like. Preferably it is. This is because the interaction with the liquid crystal tends to increase.
  • V represents a single bond or —R 19 O—
  • R 19 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and preferably represents —R 19 O— and R 19 represents A linear or branched alkylene group having 2 to 6 carbon atoms.
  • W represents a single bond or —OR 20 — and R 20 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and preferably represents —OR 20 — and R 20 represents a linear or A branched alkylene group having 2 to 6 carbon atoms.
  • V and W may be the same or different, but if they are the same, synthesis is easy.
  • polymerizable compound represented by the formula (III) include polymerizable compounds of the following formula.
  • V represents a single bond or —R 19 O—
  • R 19 represents a linear or branched alkylene group having 1 to 10 carbon atoms, preferably represented by —R 19 O— and represented by R 19 Is a linear or branched alkylene group having 2 to 6 carbon atoms
  • W is a single bond or —OR 20 —
  • R 20 is a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the production method of such a polymerizable compound is not particularly limited.
  • the polymerizable compound represented by the following formula (1) can be synthesized by combining techniques in organic synthetic chemistry.
  • Taraga and the like represented by the following reaction formula can use 2- (bromomethyl) acrylic acid with SnCl 2 according to the method proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990). It can be synthesized by reacting (2- (bromomethyl) propenic acid) with an aldehyde or a ketone.
  • Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
  • R ′ represents a monovalent organic group.
  • 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO'Donnell and KDBerlin, Organic Synthesis, vol. 61, 56-59 (1983) It can be synthesized by the method proposed in.
  • the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film or the liquid crystal layer is performed by applying a voltage between electrodes placed on a substrate, for example. And a method of applying an electric field to the liquid crystal layer and irradiating ultraviolet rays while maintaining the electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved.
  • the wavelength of the irradiated ultraviolet light is, for example, 200 nm to 400 nm.
  • the polymerizable compound when ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film or the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
  • the response speed of the obtained liquid crystal display element can be increased.
  • the PSA type liquid crystal display element manufactured by adding a polymerizable compound to the liquid crystal forming the liquid crystal alignment film has been described.
  • the liquid crystal display element of the present invention has an active energy ray and a heat It may be prepared by containing a component containing a polymerizable group that is polymerized by at least one of the above (SC-PVA method).
  • the component containing a polymerizable group that is polymerized by at least one of active energy rays and heat is a polymerizable compound that is the same as that in the PSA system, or a polymer that contains a polymerizable group that is polymerized by at least one of active energy rays and heat. .
  • a liquid crystal display element having a liquid crystal alignment film prepared using the liquid crystal alignment treatment agent of the present invention has no alignment defect due to alignment unevenness and is excellent in thermal stability of a pretilt angle.
  • a liquid crystal display element with excellent quality and high reliability is obtained. In particular, it can be suitably used for a large-screen high-definition liquid crystal television.
  • A2 1,2,3,4-cyclobutanetetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A2])
  • A3 Bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A3])
  • A4 Tetracarboxylic dianhydride represented by the following formula [A4]
  • A5 Tetracarboxylic dianhydride represented by the following formula [A5]
  • C1 m-phenylenediamine (diamine compound represented by the following formula [C1])
  • C2 p-phenylenediamine (diamine compound represented by the following formula [C2])
  • C3 3,5-diaminobenzoic acid (diamine compound represented by the following formula [C3])
  • C4 Diamine compound represented by the following formula [C4]
  • C5 Diamine compound represented by the following formula [C5]
  • C6 1,3-diamino-4-octadecyloxybenzene (diamine represented by the following formula [C6] Compound)
  • the molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • equation using the integrated value. Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 1 The polyamic acid solution (A) (9.03 g), NMP (8.91 g) and BCS (12.0 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 1 were mixed at 25 ° C. for 6 hours. As a result, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 2 The polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (2.72 g), NEP (9.03 g) and BCS (16.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 3 The polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NEP (13.2 g), BCS (7.50 g) and PB (7.53 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 4 The polyimide powder (D) (1.81 g), NMP (7.41 g), NEP (9.10 g), BCS (6.00 g) and PB (6.04 g) obtained in Synthesis Example 4 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 5 The polyimide powder (E) obtained in Synthesis Example 5 (1.79 g), NMP (4.20 g), NEP (11.9 g) and PB (11.9 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (5) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 6 The polyimide powder (F) obtained in Synthesis Example 6 (1.80 g), NEP (7.20 g), G-BL (9.06 g) and BCS (12.0 g) were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (6) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 7 Polyimide powder (G) (1.80 g), NEP (13.2 g), G-BL (6.02 g), BCS (6.01 g) and PB (3.00 g) obtained in Synthesis Example 7 By mixing at 8 ° C. for 8 hours, a liquid crystal aligning agent (7) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 8 Polyamic acid solution (H) (9.00 g), G-BL (9.00 g), BCS (6.04 g) and PB (6.00 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 8 Were mixed at 25 ° C. for 6 hours to obtain a liquid crystal aligning agent (8).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 9 The polyimide powder (I) (1.80 g), NMP (14.7 g), and BCS (13.5 g) obtained in Synthesis Example 9 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (9). Got. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 10 The polyimide powder (J) (1.80 g), NMP (1.22 g), NEP (12.0 g), BCS (9.01 g) and PB (6.00 g) obtained in Synthesis Example 10 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 11 Polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (1.23 g), NEP (12.0 g), BCS (9.02 g), PB (6.03 g) and D1 (0.0. 05 g) was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (11).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 12 The polyimide powder (C) (1.80 g), G-BL (19.2 g), BCS (9.01 g) and D2 (0.05 g) obtained in Synthesis Example 3 were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (12) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 13 Polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NMP (8.70 g), G-BL (9.00 g), BCS (9.01 g), PB (9.00 g) and D3 ( 0.05 g) was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (13).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 14 Polyimide powder (B) obtained in Synthesis Example 2 (1.05 g), NMP (2.00 g), G-BL (9.02 g), BCS (9.02 g) and PB (9.02 g)
  • the liquid crystal aligning agent (14) was obtained by mixing at 0 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 15 The polyimide powder (C) (1.06 g), NMP (5.01 g), NEP (9.10 g), BCS (7.60 g) and PB (7.60 g) obtained in Synthesis Example 3 were cooled to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • liquid crystal alignment treatment agents obtained in Examples 1 to 15 and Comparative Examples 1 to 5 were spin-coated on the ITO surface of the substrate with 30 ⁇ 40 mm ITO electrode, and heat-cleaning clean at 80 ° C. for 5 minutes on a hot plate.
  • a heat treatment was performed at 230 ° C. for 30 minutes in an oven to obtain a substrate with a liquid crystal alignment film (polyimide film) having a thickness of 100 nm.
  • the obtained polyimide film surface was rubbed with a rayon cloth using a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.2 mm, and a liquid crystal alignment film An attached substrate was obtained.
  • the pretilt angle of the liquid crystal cell produced above was measured.
  • the liquid crystal cell was heated in a heat circulation oven at 120 ° C. for 24 hours, and then the pretilt angle was measured.
  • the tilt measurement device (ELSICON model PAS-301) was used. The results are shown in Table 2.
  • liquid crystal alignment treatment agents obtained in Examples 1 to 5 and Comparative Examples 3 and 5 were spin-coated on the ITO surface of the substrate with 30 ⁇ 40 mm ITO electrode, and heat-cleaning clean at 80 ° C. for 5 minutes on a hot plate.
  • the substrate was heat-treated at 230 ° C. for 30 minutes in an oven to obtain a substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm.
  • a voltage of 1 V is applied to the liquid crystal cell produced above at a temperature of 80 ° C. at 60 ⁇ m, the voltage after 16.67 ms and 50 ms is measured, and the voltage holding ratio (VHR) indicates how much the voltage can be maintained. As calculated.
  • the measurement was performed using a VHR-1 voltage holding ratio measuring device (manufactured by Toyo Technica) with settings of Voltage: ⁇ 1 V, Pulse Width: 60 ⁇ s, Frame Period: 16.67 ms or 50 ms.
  • the liquid crystal cell for which the measurement of the voltage holding ratio was completed was irradiated with 50 J / cm 2 of ultraviolet rays in terms of 365 nm, and then the voltage holding ratio was measured under the same conditions as described above.
  • the ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (manufactured by SEN LIGHT CORPORATION). The results are shown in Table 3.
  • a spacer of 4 ⁇ m is fixed on the liquid crystal alignment film surface of the substrate with the liquid crystal alignment film, and a nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) has a polymerizable compound (also referred to as a monomer) represented by the following formula. ) (1) was added dropwise at 1 point to a liquid crystal prepared by mixing 0.7% by weight of the polymerizable compound (1) with respect to 100% by weight of the nematic liquid crystal (MLC-6608). Were bonded to obtain a liquid crystal cell for monomer dispersibility evaluation.
  • MLC-6608 polymerizable compound represented by the following formula.
  • the dispersion region of the monomer in the liquid crystal cell is displayed in black by applying an AC voltage of 5 V to the obtained liquid crystal cell.
  • the dispersibility of the monomer can be evaluated by measuring the size of a black display circle generated when a voltage is applied. Table 2 shows the measurement results of the diameters of the black display circles generated when the voltage is applied.
  • Example 14 of the present invention ⁇ Evaluation of inkjet coating property of liquid crystal aligning agent>
  • the liquid crystal aligning agent (14) obtained in Example 14 of the present invention and the liquid crystal aligning agent (15) obtained in Example 15 were pressure filtered through a membrane filter having a pore size of 1 ⁇ m, and evaluation of ink jet coatability was performed. Went.
  • As the ink jet coater HIS-200 (manufactured by Hitachi Plant Technology) was used.
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 1 to 15 were compared with the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 1 to 5.
  • the monomer dispersion is wide. Therefore, it can be said that Examples 1 to 15 have high hydrophobicity and little alignment unevenness.
  • Example 3 and Comparative Example 2 which is the same as Example 3 except that C6 was used instead of B1, it can be said that Example 3 has a very wide dispersibility of the monomer.
  • the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 1 to 15 were changed to the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 1 to 5. In comparison, the change in the pretilt angle before and after heating is small, and it can be said that the heat resistance of the pretilt angle is excellent.
  • the liquid crystal cell obtained from the liquid crystal aligning agent of the example has a small decrease in voltage holding ratio even after being exposed to ultraviolet rays.
  • a comparison with Comparative Example 3 having the same configuration as Example 1 or A3 is used instead of Examples 4 and A1
  • Comparative Example 5 which is the same as Example 4.
  • the liquid crystal aligning agent of the present invention contains a polymer (polyimide or polyimide precursor) using the tetracarboxylic dianhydride shown in [1] as a raw material, and thus firing when forming a liquid crystal alignment film.
  • a polymer polyimide or polyimide precursor
  • the tetracarboxylic dianhydride shown in [1] as a raw material, and thus firing when forming a liquid crystal alignment film.
  • the structure derived from the tetracarboxylic dianhydride represented by [1] crosslinks the polymer to cause imidization between the polymer molecules, the voltage holding ratio is excellent in light resistance. Guessed.
  • the liquid crystal alignment treatment agent of the present invention can provide a liquid crystal alignment film with improved alignment unevenness and excellent heat resistance at a pretilt angle. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is a liquid crystal alignment treatment agent that contains at least one polymer chosen from among polyimide precursors obtained by reacting a diamine component including a diamine compound having a side chain as shown in formula [2] with a tetracarboxylic acid component including a tetracarboxylic dianhydride as shown in formula [1] and polyimides obtained by imidization of the polyimide precursor. (In formula [2], Y1 indicates a single bond, −(CH2)a− (wherein a is an integer from 1 to 15), −O−, or the like; Y2 indicates a single bond or −(CH2)b− (wherein b is an integer from 1 to 15); Y3 indicates a single bond, −(CH2)c− (wherein c is an integer from 1 to 15), −O−, or the like; Y4 indicates a benzene ring, a cyclohexane ring, or the like; Y5 indicates a benzene ring, a cyclohexane ring, or the like; n is an integer from 0 to 4; and Y6 indicates a C1−18 alkyl group or the like.)

Description

重合体、液晶配向処理剤、液晶配向膜および液晶表示素子Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、重合体、液晶表示素子の製造において用いられる液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜およびこの液晶配向膜を使用した液晶表示素子に関するものである。  The present invention relates to a polymer, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
 従来のTN(Twisted Nematic)モードの液晶表示素子に比べて視野角特性に優れる液晶表示素子として、広視野角が得られるMVA(Multi-domain Vertical Alignment)モードが知られている。MVAモードでは、負の誘電率異方性を有する液晶、液晶を垂直に配向させる液晶配向膜、更に液晶の配向方向を制御する配向制御用の構造物が用いられている。そして、電圧が印加された際、液晶は、配向制御用の構造物に沿って、垂直な方向に傾斜する。しかしながら、MVAモードでは、配向制御用の構造物の突起が、画素内に形成されているため、TNモード等に比べて開口率が低くなり、バックライトからの光透過率が低下してしまう。  An MVA (Multi-domain Vertical Alignment) mode capable of obtaining a wide viewing angle is known as a liquid crystal display device that is superior in viewing angle characteristics as compared with a conventional TN (Twisted Nematic) mode liquid crystal display device. In the MVA mode, a liquid crystal having negative dielectric anisotropy, a liquid crystal alignment film for vertically aligning the liquid crystal, and an alignment control structure for controlling the alignment direction of the liquid crystal are used. When a voltage is applied, the liquid crystal is tilted in a vertical direction along the alignment control structure. However, in the MVA mode, since the protrusion of the alignment control structure is formed in the pixel, the aperture ratio is lower than that of the TN mode or the like, and the light transmittance from the backlight is lowered.
 この問題に対して、高い光透過率で、更に液晶の応答速度を早くするために、ポリマーを用いて、駆動時の液晶の配向方向を制御する方法が提案されている(例えば、特許文献1参照)。この方法では、液晶に熱や紫外線照射により重合する重合性化合物(モノマーともいわれる)を混合した液晶材料を用いる。この方法では、基板間に電圧を印加して液晶分子を傾斜させた状態下、熱や紫外線照射によりモノマーを重合させてポリマーを形成させる(以上の方法をPSA化処理ともいう)。これにより、電圧無印加でも所定の傾斜角(プレチルト角ともいう)を持つ液晶層が得られ、高い光透過率で、更に液晶の応答速度が早い液晶表示素子を得ることができる。  In order to solve this problem, in order to further increase the response speed of the liquid crystal with high light transmittance, a method of controlling the alignment direction of the liquid crystal during driving using a polymer has been proposed (for example, Patent Document 1). reference). In this method, a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound (also referred to as a monomer) that is polymerized by heat or ultraviolet irradiation is used. In this method, a voltage is applied between the substrates to tilt the liquid crystal molecules, and then the monomer is polymerized by heat or ultraviolet irradiation to form a polymer (the above method is also referred to as PSA treatment). Accordingly, a liquid crystal layer having a predetermined tilt angle (also referred to as a pretilt angle) can be obtained even when no voltage is applied, and a liquid crystal display element having a high light transmittance and a faster liquid crystal response speed can be obtained.
特開2003-149647号公報JP 2003-149647 A
 液晶表示素子の作製には、液晶配向膜が形成された基板2枚の間(セルギャップ)に、液晶を充填する工程が必要である。これまで、液晶の充填には大気圧と真空の圧力差を利用して2枚の基板間に液晶を充填する真空注入方式が一般的であった。しかしながら、現在では、生産効率の向上を目的に、液晶滴下方式(ODF(One Drop Fill)方式)が、液晶の充填方法として用いられている。  For the production of a liquid crystal display element, a step of filling a liquid crystal between two substrates (cell gaps) on which a liquid crystal alignment film is formed is necessary. Until now, the filling of liquid crystal has been generally performed by a vacuum injection method in which a liquid crystal is filled between two substrates by utilizing a pressure difference between atmospheric pressure and vacuum. However, at present, a liquid crystal dropping method (ODF (One Drop Fill) method) is used as a liquid crystal filling method for the purpose of improving production efficiency.
 ODF方式では、液晶を直接液晶配向膜上に滴下するため、液晶滴下時に液晶配向膜に物理的なストレスがかかることや、パネル全域に液晶を充填する必要上、液晶の滴下点を増やす必要がある。そのため、液晶滴下部や液晶の液滴が隣接する液滴と接する部分に、滴下跡や格子ムラといった、いわゆる配向ムラが発生し、これを液晶表示素子とした場合に、配向ムラ起因の表示ムラが発生する問題があった。  In the ODF method, the liquid crystal is directly dropped on the liquid crystal alignment film, so that the liquid crystal alignment film is physically stressed when the liquid crystal is dropped, and it is necessary to fill the liquid crystal over the entire panel, and it is necessary to increase the dropping point of the liquid crystal. is there. Therefore, so-called alignment unevenness such as dripping traces and lattice unevenness occurs in the liquid crystal dropping portion or the portion where the liquid crystal droplets are in contact with the adjacent liquid droplets. When this is used as a liquid crystal display element, display unevenness due to alignment unevenness occurs. There was a problem that occurred.
 また、液晶表示素子を構成するバックライトの照射によって液晶表示素子が加熱されると、プレチルト角が変化してしまい表示不良が発生するという問題もある。このため、熱に対する高い安定性が要求されている。  Further, when the liquid crystal display element is heated by irradiation of the backlight that constitutes the liquid crystal display element, there is a problem that the pretilt angle changes and display defect occurs. For this reason, high stability to heat is required.
 そこで本発明は、液晶配向膜の配向ムラを改善でき、且つプレチルト角の耐熱性に優れた重合体、液晶配向処理剤、液晶配向膜および液晶表示素子を提供することを目的とする。  Accordingly, an object of the present invention is to provide a polymer, a liquid crystal alignment treatment agent, a liquid crystal alignment film, and a liquid crystal display element that can improve the alignment unevenness of the liquid crystal alignment film and are excellent in heat resistance of the pretilt angle.
 本発明者は、鋭意研究を行った結果、特定構造を有するテトラカルボン酸二無水物を有するテトラカルボン酸成分と特定構造を有するジアミン化合物を有するジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。  As a result of earnest research, the inventor has obtained a polyimide precursor obtained by reacting a tetracarboxylic acid component having a tetracarboxylic dianhydride having a specific structure with a diamine component having a diamine compound having a specific structure, and The liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing the polyimide precursor is found to be extremely effective for achieving the above object, and the present invention is completed. It came to.
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の式[1]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と下記の式[2]で示される側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有することを特徴とする液晶配向処理剤。 
That is, the present invention has the following gist.
(1) Obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] with a diamine component containing a diamine compound having a side chain represented by the following formula [2] The liquid crystal aligning agent characterized by including the polyimide precursor and the at least 1 polymer chosen from the polyimide obtained by imidating this polyimide precursor.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す)。 
Figure JPOXMLDOC01-appb-C000009
(In formula [2], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms May be substituted with an alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom , Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic groups, an alkyl group having 1 to 3 carbon atoms, having 1 to 3 carbon atoms May be substituted with an alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 represents a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
(2)前記テトラカルボン酸成分は、下記の式[3]で示されるテトラカルボン酸無水物を含むことを特徴とする上記(1)に記載の液晶配向処理剤。  (2) The liquid crystal aligning agent according to the above (1), wherein the tetracarboxylic acid component contains a tetracarboxylic acid anhydride represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000010
(式[3]中、Zは下記の式[3a]~式[3j]から選ばれる少なくとも1種の4価の基である)。 
Figure JPOXMLDOC01-appb-C000010
(In Formula [3], Z 1 is at least one tetravalent group selected from Formula [3a] to Formula [3j] below).
Figure JPOXMLDOC01-appb-C000011
(式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい)。 
Figure JPOXMLDOC01-appb-C000011
(In the formula [3a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [3g], Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
(3)液晶配向処理剤中の溶媒として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンを含有することを特徴とする上記(1)または上記(2)に記載の液晶配向処理剤。  (3) The solvent according to (1) or (2) above, which contains N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone as a solvent in the liquid crystal aligning agent Liquid crystal alignment treatment agent.
(4)液晶配向処理剤中の溶媒として、下記の式[D-1]~式[D-3]で示される溶媒から選ばれる溶媒を含有する上記(1)~上記(3)のいずれかに記載の液晶配向処理剤。  (4) Any one of (1) to (3) above, which contains a solvent selected from the solvents represented by the following formulas [D-1] to [D-3] as a solvent in the liquid crystal aligning agent Liquid crystal aligning agent as described in.
Figure JPOXMLDOC01-appb-C000012

(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す)。 
Figure JPOXMLDOC01-appb-C000012

(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 ], D 3 represents an alkyl group having 1 to 4 carbon atoms).
(5)上記(1)~上記(4)に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。  (5) A liquid crystal alignment film obtained by using the liquid crystal aligning agent described in (1) to (4) above.
(6)上記(1)~上記(4)に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。  (6) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal aligning agent described in (1) to (4) above.
(7)上記(5)または上記(6)に記載の液晶配向膜を有することを特徴とする液晶表示素子。  (7) A liquid crystal display element comprising the liquid crystal alignment film according to (5) or (6).
(8)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(5)または上記(6)に記載の液晶配向膜。  (8) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (5) or (6), wherein the liquid crystal alignment film is used for a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(9)上記(8)に記載の液晶配向膜を有することを特徴とする液晶表示素子。  (9) A liquid crystal display element comprising the liquid crystal alignment film according to (8).
(10)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(5)または上記(6)に記載の液晶配向膜。  (10) A liquid crystal alignment film comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (5) or (6), wherein the liquid crystal alignment film is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
(11)上記(10)に記載の液晶配向膜を有することを特徴とする液晶表示素子。  (11) A liquid crystal display element comprising the liquid crystal alignment film according to (10).
(12)下記の式[1]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と下記の式[2]で示される側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種からなることを特徴とする重合体。  (12) Obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] with a diamine component containing a diamine compound having a side chain represented by the following formula [2] A polymer comprising at least one selected from a polyimide precursor obtained and a polyimide obtained by imidizing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す)。 
Figure JPOXMLDOC01-appb-C000014
(In formula [2], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms May be substituted with an alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom , Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic groups, an alkyl group having 1 to 3 carbon atoms, having 1 to 3 carbon atoms May be substituted with an alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 represents a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
 本発明によれば、特定構造を有するテトラカルボン酸二無水物を含むテトラカルボン酸成分と特定構造の側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向処理剤を用いることにより、ODF方式で作製された液晶表示素子に発生する配向ムラを改善することができる。特に、PSAモードを採用した場合では、液晶表示素子に含まれる重合性化合物の分散性を均一にすることができ、配向ムラをより改善することができる。また、本発明の液晶配向処理剤を用いることにより、プレチルト角の耐熱性が優れたものとすることができる。したがって、本発明の液晶配向膜を有する液晶表示素子は、配向ムラに伴う配向欠陥が無く、また、耐熱性が優れているため、信頼性が高い液晶表示素子となる。  According to the present invention, a polyimide precursor obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride having a specific structure with a diamine component containing a diamine compound having a side chain of a specific structure, and the polyimide precursor By using a liquid crystal aligning agent containing at least one polymer selected from polyimides obtained by imidizing the body, alignment unevenness generated in a liquid crystal display device produced by the ODF method can be improved. In particular, when the PSA mode is adopted, the dispersibility of the polymerizable compound contained in the liquid crystal display element can be made uniform, and the alignment unevenness can be further improved. Moreover, the heat resistance of a pretilt angle can be made excellent by using the liquid-crystal aligning agent of this invention. Therefore, the liquid crystal display element having the liquid crystal alignment film of the present invention does not have alignment defects due to alignment unevenness and has excellent heat resistance, so that it becomes a highly reliable liquid crystal display element.
 本発明の液晶配向処理剤は、下記の式[1]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)を含むテトラカルボン酸成分と、下記の式[2]で示される側鎖を有するジアミン化合物(特定側鎖型ジアミン化合物ともいう)を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体(特定重合体ともいう)を含有するものである。  The liquid-crystal aligning agent of this invention is a tetracarboxylic-acid component containing the tetracarboxylic dianhydride (it is also called specific tetracarboxylic dianhydride) shown by following formula [1], and following formula [2] At least one selected from a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain shown (also referred to as a specific side chain diamine compound) and a polyimide obtained by imidizing the polyimide precursor The polymer (also referred to as a specific polymer).
 ここで、ポリイミド前駆体とは、ポリアミド酸(ポリアミック酸ともいわれる)またはポリアミド酸アルキルエステルを言う。ポリイミド前駆体は、テトラカルボン酸成分(例えば、テトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物、ジアルキルエステルジハライド化合物)と分子内に1級または2級のアミノ基を2個有するジアミン化合物であるジアミン成分との反応によって得られ、ポリイミドはこのポリアミド酸を脱水閉環(イミド化)させる、あるいはポリアミド酸アルキルエステルを加熱閉環(イミド化)させることにより得られる。かかるポリアミド酸、ポリアミド酸アルキルエステル及びポリイミドのいずれも本発明の液晶配向剤に含有させる特定重合体として有用である。  Here, the polyimide precursor refers to polyamic acid (also called polyamic acid) or polyamic acid alkyl ester. The polyimide precursor is composed of a tetracarboxylic acid component (eg, a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a dicarboxylic acid dihalide compound, a dicarboxylic acid dialkyl ester compound, a dialkyl ester dihalide compound) and a primary or secondary molecule. It is obtained by reaction with a diamine component, which is a diamine compound having two amino groups, and polyimide is obtained by dehydrating and ring-closing (imidizing) this polyamic acid, or by heating and ring-closing (imidizing) a polyamic acid alkyl ester. It is done. Any of the polyamic acid, polyamic acid alkyl ester, and polyimide is useful as a specific polymer to be contained in the liquid crystal aligning agent of the present invention.
 <特定テトラカルボン酸二無水物>
 本発明の液晶配向処理剤が含有する重合体の原料であるテトラカルボン酸成分が含む特定テトラカルボン酸二無水物は、下記の式[1]で示されるテトラカルボン酸二無水物である。 
<Specific tetracarboxylic dianhydride>
The specific tetracarboxylic dianhydride contained in the tetracarboxylic acid component that is the raw material of the polymer contained in the liquid crystal aligning agent of the present invention is a tetracarboxylic dianhydride represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式[1]で示されるテトラカルボン酸二無水物は、全テトラカルボン酸成分中の20モル%~100モル%であることが好ましい。なかでも、30モル%~70モル%であることが好ましい。特に好ましいのは、30モル%~50モル%である。  The tetracarboxylic dianhydride represented by the formula [1] is preferably 20 mol% to 100 mol% in the total tetracarboxylic acid component. In particular, it is preferably 30 mol% to 70 mol%. Particularly preferred is 30 to 50 mol%.
 <その他テトラカルボン酸化合物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸化合物(その他テトラカルボン酸化合物ともいう)を、テトラカルボン酸成分として併用することができる。 
<Other tetracarboxylic acid compounds>
In the present invention, as long as the effects of the present invention are not impaired, other tetracarboxylic acid compounds (also referred to as other tetracarboxylic acid compounds) other than the specific tetracarboxylic dianhydride may be used in combination as a tetracarboxylic acid component. it can.
 なかでも、下記の式[3]で示されるテトラカルボン酸二無水物やそのテトラカルボン酸誘導体であるテトラカルボン酸化合物およびジカルボン酸ジハライド化合物(すべてを総称してその他テトラカルボン酸化合物ともいう)を用いることが好ましい。  Among these, tetracarboxylic dianhydrides represented by the following formula [3] and tetracarboxylic acid compounds and dicarboxylic acid dihalide compounds (which are collectively referred to as other tetracarboxylic acid compounds) are tetracarboxylic acid derivatives thereof. It is preferable to use it.
Figure JPOXMLDOC01-appb-C000016
(式[3]中、Zは下記の式[3a]~式[3j]から選ばれる構造の基である。) 
Figure JPOXMLDOC01-appb-C000016
(In formula [3], Z 1 is a group having a structure selected from the following formulas [3a] to [3j].)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよい。  In the formula [3a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
 式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なっていてもよい。  In the formula [3g], Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
 式[3]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応のし易さの点から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]または式[3g]で示される構造が好ましい。より好ましいのは、式[3a]、式[3e]、式[3f]または式[3g]で示される構造であり、特に好ましいのは、式[3e]、式[3f]または式[3g]である。  In the structure represented by the formula [3], Z 1 represents the formula [3a], the formula [3c], the formula [3d], the formula from the viewpoint of easy synthesis and the ease of the polymerization reaction when producing the polymer. A structure represented by [3e], formula [3f] or formula [3g] is preferable. More preferred is a structure represented by formula [3a], formula [3e], formula [3f] or formula [3g], and particularly preferred is formula [3e], formula [3f] or formula [3g]. It is.
 本発明の液晶配向処理剤が含有する特定重合体におけるテトラカルボン酸成分は、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物およびその他テトラカルボン酸化合物以外のテトラカルボン酸化合物を用いることもできる。  As long as the tetracarboxylic acid component in the specific polymer contained in the liquid crystal aligning agent of the present invention does not impair the effects of the present invention, the tetracarboxylic acid compound other than the specific tetracarboxylic dianhydride and other tetracarboxylic acid compounds It can also be used.
 その具体例としては、以下に示すテトラカルボン酸二無水物、テトラカルボン酸化合物またはジカルボン酸ジハライド化合物が挙げられる。  Specific examples thereof include the following tetracarboxylic dianhydrides, tetracarboxylic acid compounds or dicarboxylic acid dihalide compounds.
 すなわち、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。  That is, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6 , 7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) Methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) Nyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3 4-cyclobutanetetracarboxylic acid.
 その他のテトラカルボン酸化合物および上記テトラカルボン酸化合物は、本発明の特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。  Other tetracarboxylic acid compounds and the above-mentioned tetracarboxylic acid compounds are the solubility of the specific polymer of the present invention in a solvent, the coating property of a liquid crystal aligning agent, the alignment property of liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
 <特定側鎖ジアミン化合物>
 本発明の液晶配向処理剤が含有する重合体の原料であるジアミン成分が含む特定側鎖ジアミン化合物は、下記の式[2]で示される側鎖を有するジアミン化合物である。なお、本明細書において、ジアミン化合物の側鎖とは、2つのアミノ基を結ぶ構造から枝分かれした構造を意味する。 
<Specific side chain diamine compound>
The specific side chain diamine compound contained in the diamine component that is the raw material of the polymer contained in the liquid crystal aligning agent of the present invention is a diamine compound having a side chain represented by the following formula [2]. In the present specification, the side chain of the diamine compound means a structure branched from a structure connecting two amino groups.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式[2]で示される側鎖を有するジアミン化合物は、全ジアミン成分中の20モル%~70モル%であることが好ましい。なかでも、20モル%~50モル%であることが好ましい。特に好ましいのは、20モル%~40モル%である。  The diamine compound having a side chain represented by the formula [2] is preferably 20 mol% to 70 mol% in the total diamine component. In particular, the content is preferably 20 mol% to 50 mol%. Particularly preferred is 20 mol% to 40 mol%.
 式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-である。  In the formula [2], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[2]中、Yは単結合または-(CH-(bは1~15の整数である)を示す。なかでも、単結合または-(CH-(bは1~10の整数である)が好ましい。  In the formula [2], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[2]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-または-COO-である。  In the formula [2], Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[2]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数17~51の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環またはステロイド骨格を有する炭素数17~51の有機基が好ましい。  In the formula [2], Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
 式[2]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。なかでも、ベンゼン環またはシクロへキサン環が好ましい。  In formula [2], Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[2]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。  In the formula [2], n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
 式[2]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。  In the formula [2], Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[2]におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせとしては、国際公開公報WO2011/132751の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。また、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。  Preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2] are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751. And the same combinations as (2-1) to (2-629). In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 . Further, an organic group having 12 to 25 carbon atoms having a steroid skeleton is read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
 式[2]で示される側鎖を有するジアミン化合物の具体例としては、下記の式[2b-1]~式[2b-31]で示されるジアミン化合物が挙げられる。  Specific examples of the diamine compound having a side chain represented by the formula [2] include diamine compounds represented by the following formulas [2b-1] to [2b-31].
Figure JPOXMLDOC01-appb-C000019
(式[2b-1]~式[2b-3]中、Rは-O-、-OCH-、-CHO-、-COOCH-またはCHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。 
Figure JPOXMLDOC01-appb-C000019
(In the formulas [2b-1] to [2b-3], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—, and R 2 represents carbon An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group represented by formulas 1 to 22.
Figure JPOXMLDOC01-appb-C000020
(式[2b-4]~式[2b-6]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-または-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。 
Figure JPOXMLDOC01-appb-C000020
(In the formulas [2b-4] to [2b-6], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 - indicates, R 4 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group of 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000021
(式[2b-7]および式[2b-8]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-または-O-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である)。 
Figure JPOXMLDOC01-appb-C000021
(In the formulas [2b-7] and [2b-8], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—, and R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
Figure JPOXMLDOC01-appb-C000022
(式[2b-9]および式[2b-10]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。 
Figure JPOXMLDOC01-appb-C000022
(In Formula [2b-9] and Formula [2b-10], R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
Figure JPOXMLDOC01-appb-C000023
(式[2b-11]および式[2b-12]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。 
Figure JPOXMLDOC01-appb-C000023
(In the formulas [2b-11] and [2b-12], R 8 represents an alkyl group having 3 to 12 carbon atoms. The cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
Figure JPOXMLDOC01-appb-C000024
(式[2b-13]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基または1,4-フェニレン基を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手がBと結合する)を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手が(CH)aと結合する)を示す。また、aは0または1の整数を示し、aは2~10の整数を示し、aは0または1の整数を示す)。 
Figure JPOXMLDOC01-appb-C000024
(In the formula [2b-13], B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group. B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 ), and B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2). Further, a 1 represents an integer of 0 or 1, a 2 represents an integer of 2 ~ 10, a 3 is 0 or 1 Indicates an integer).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式[2]で示される側鎖を有するジアミン化合物を用いた液晶配向処理剤は、液晶配向膜にした場合に、液晶のプレチルト角を高くすることができる。その際、これらの効果を高めることを目的に、上記ジアミン化合物の中でも、式[2b-1]~式[2b-13]または式[2b-22]~[2b-31]で示されるジアミン化合物を用いることが好ましい。より好ましいのは、式[2b-1]~式[2b-12]または式[2b-22]~式[2b-29]で示されるジアミン化合物である。また、よりこれらの効果を高めるため、これらジアミン化合物は、ジアミン成分全体の5モル%以上80モル%以下であることが好ましい。より好ましくは、液晶配向処理剤の塗布性や液晶配向膜としての電気特性の点から、これらジアミン化合物は、ジアミン成分全体の5モル%以上60モル%以下である。  The liquid crystal aligning agent using the diamine compound having a side chain represented by the formula [2] can increase the pretilt angle of the liquid crystal when the liquid crystal alignment film is used. At that time, for the purpose of enhancing these effects, among the above diamine compounds, the diamine compounds represented by the formulas [2b-1] to [2b-13] or the formulas [2b-22] to [2b-31] Is preferably used. More preferred are diamine compounds represented by the formulas [2b-1] to [2b-12] or the formulas [2b-22] to [2b-29]. Moreover, in order to improve these effects, it is preferable that these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the point of the applicability | paintability of a liquid crystal aligning agent, and the electrical property as a liquid crystal aligning film.
 前記式[2]で示される側鎖を有するジアミン化合物は、特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することができる。  The diamine compound having a side chain represented by the formula [2] is a solubility of a specific polymer in a solvent, a coating property of a liquid crystal aligning agent, a liquid crystal alignment property in a liquid crystal alignment film, a voltage holding ratio, One type or a mixture of two or more types can be used in accordance with characteristics such as accumulated charge.
 <その他ジアミン成分>
 本発明の液晶配向処理剤が含有する特定重合体を作製するためのジアミン成分としては、式[2]で示される側鎖を有するジアミン化合物に加えて、公知のジアミン化合物を用いることができる。 
<Other diamine components>
As a diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention, a known diamine compound can be used in addition to the diamine compound having a side chain represented by the formula [2].
 なかでも、下記の式[4a]で示される構造を有するジアミン化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000034
Especially, it is preferable to use the diamine compound which has a structure shown by the following formula [4a].
Figure JPOXMLDOC01-appb-C000034
 式[4a]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。  In the formula [4a], a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.
 式[4a]で示される構造を有するジアミン化合物として、具体的には、下記の式[4a-1]で示されるジアミン化合物が挙げられる。  Specific examples of the diamine compound having a structure represented by the formula [4a] include a diamine compound represented by the following formula [4a-1].
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式[4a-1]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1が好ましい。  In the formula [4a-1], a represents an integer of 0 to 4. Among these, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis.
 式[4a-1]中、nは1~4の整数を示す。なかでも、合成の容易さの点から1が好ましい。  In the formula [4a-1], n represents an integer of 1 to 4. Among these, 1 is preferable from the viewpoint of ease of synthesis.
 前記式[4a]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。一例として、式[4a-1]で示されるジアミン化合物は、下記の式[4a-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。  The method for producing the diamine compound represented by the formula [4a] is not particularly limited, but preferred methods include those shown below. As an example, a diamine compound represented by the formula [4a-1] is obtained by synthesizing a dinitro compound represented by the following formula [4a-A], and further reducing the nitro group to convert it to an amino group. It is done.
Figure JPOXMLDOC01-appb-C000036
(式[4a-A]中、aは0~4の整数を示し、nは1~4の整数を示す)。 
Figure JPOXMLDOC01-appb-C000036
(In the formula [4a-A], a represents an integer of 0 to 4 and n represents an integer of 1 to 4).
 式[4a-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサンまたはアルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナまたは硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジンまたは塩化水素下で反応させる方法がある。  The method for reducing the dinitro group of the dinitro compound represented by the formula [4a-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent. There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
 前記式[4a]で示されるジアミン化合物としては、さらに、下記の式[4a-2]~式[4a-5]で示されるジアミン化合物も挙げられる。  Examples of the diamine compound represented by the formula [4a] further include diamine compounds represented by the following formulas [4a-2] to [4a-5].
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式[4a-2]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示す。なかでも、合成の容易さの点から、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-または-OCO-が好ましい。より好ましいのは、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-または-N(CH)-である。  In the formula [4a-2], A 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among these, from the viewpoint of ease of synthesis, a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —COO— or —OCO— is preferred. More preferred is a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH— or —N (CH 3 ) —.
 式[4a-2]中、mおよびmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示す。なかでも、m+mが1または2が好ましい。  In the formula [4a-2], m 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4. Among them, m 1 + m 2 is 1 or 2 are preferred.
 式[4a-3]中、mおよびmはそれぞれ1~5の整数を示す。なかでも、合成の容易さの点から、1または2が好ましい。  In the formula [4a-3], m 3 and m 4 each represent an integer of 1 to 5. Of these, 1 or 2 is preferable from the viewpoint of ease of synthesis.
 式[4a-4]中、Aは炭素数1~5の直鎖または分岐アルキル基を示す。なかでも、炭素数1~3の直鎖アルキル基が好ましい。  In the formula [4a-4], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. Of these, a linear alkyl group having 1 to 3 carbon atoms is preferable.
 式[4a-4]中、mは1~5の整数を示す。なかでも、1または2が好ましい。  In formula [4a-4], m 5 represents an integer of 1 to 5. Of these, 1 or 2 is preferable.
 式[4a-5]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示す。なかでも、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-または-OCO-が好ましい。より好ましいのは、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-または-OCO-である。  In the formula [4a-5], A 3 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among them, a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , —COO— or —OCO— is preferable. More preferred is —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—.
 式[4a-5]中、mは1~4の整数を示す。なかでも、合成の容易さの点から、1が好ましい。  In the formula [4a-5], m 6 represents an integer of 1 to 4. Of these, 1 is preferable from the viewpoint of ease of synthesis.
 前記式[4a-1]~式[4a-5]で示されるジアミン化合物は、全ジアミン成分中の30モル%~80モル%であることが好ましく、より好ましくは、50モル%~80モル%であることが好ましい。  The diamine compound represented by the formula [4a-1] to the formula [4a-5] is preferably 30 mol% to 80 mol%, more preferably 50 mol% to 80 mol%, based on the total diamine component. It is preferable that
 前記式[4a-1]~式[4a-5]で示されるジアミン化合物は、特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することができる。  The diamine compounds represented by the above formulas [4a-1] to [4a-5] are soluble in a specific polymer in a solvent, applicability of a liquid crystal aligning agent, and alignment of liquid crystals when used as a liquid crystal alignment film. Depending on the characteristics such as voltage holding ratio and accumulated charge, one kind or a mixture of two or more kinds can be used.
 本発明の液晶配向処理剤が含有する特定重合体を作製するためのジアミン成分としては、下記の式[4b]で示されるジアミン化合物を用いることも好ましい。  As the diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention, it is also preferable to use a diamine compound represented by the following formula [4b].
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式[4b]中、Yは下記の式[4b-1]、式[4b-2]、式[4b-3]、または式[4b-4]から選ばれる少なくとも1つの1価の基を示し、mは0~4の整数を示し、-(Y)は置換基Yがm個あることを示す。  In the formula [4b], Y represents at least one monovalent group selected from the following formula [4b-1], formula [4b-2], formula [4b-3], or formula [4b-4]. , M represents an integer of 0 to 4, and — (Y) m represents that there are m substituents Y.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式[4b-1]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。  In the formula [4b-1], a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.
 式[4b-2]中、Yは炭素数8~22のアルキル基を示す。  In the formula [4b-2], Y 7 represents an alkyl group having 8 to 22 carbon atoms.
 式[4b-3]中、YおよびYはそれぞれ独立して炭素数1~12の炭化水素基を示す。  In the formula [4b-3], Y 8 and Y 9 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
 式[4b-4]中、Y10は炭素数1~8のアルキル基を示す。  In the formula [4b-4], Y 10 represents an alkyl group having 1 to 8 carbon atoms.
 前記式[4b]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。  The method for producing the diamine compound represented by the formula [4b] is not particularly limited, but preferred methods include those shown below.
 一例として、式[4b]で示されるジアミン化合物は、下記の式[4b-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。  As an example, a diamine compound represented by the formula [4b] can be obtained by synthesizing a dinitro compound represented by the following formula [4b-A] and further reducing the nitro group to convert it to an amino group.
Figure JPOXMLDOC01-appb-C000040
(式[4b-A]中、Yは前記式[4b-1]、式[4b-2]、式[4b-3]または式[4b-4]から選ばれる少なくとも1つの構造の置換基を示し、mは0~4の整数を示す)。 
Figure JPOXMLDOC01-appb-C000040
(In Formula [4b-A], Y represents a substituent having at least one structure selected from Formula [4b-1], Formula [4b-2], Formula [4b-3] or Formula [4b-4]. M represents an integer of 0 to 4).
 式[4b-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサンまたはアルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナまたは硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジンまたは塩化水素下で反応させる方法がある。  The method for reducing the dinitro group of the dinitro compound represented by the formula [4b-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent. There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
 下記に、前記式[4b]で示されるジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。  Specific examples of the structure of the diamine compound represented by the formula [4b] are given below, but are not limited to these examples.
 すなわち、式[4b]で示されるジアミン化合物としては、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他に、下記の式[4b-6]~[4b-15]で示される構造のジアミン化合物を挙げることができる。  That is, the diamine compound represented by the formula [4b] includes m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol. In addition to 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol and 4,6-diaminoresorcinol, diamine compounds having structures represented by the following formulas [4b-6] to [4b-15] are exemplified. be able to.
Figure JPOXMLDOC01-appb-C000041
(式[4b-6]~式[4b-9]中、Aは、炭素数1~22のアルキル基またはフッ素含有アルキル基を示す)。 
Figure JPOXMLDOC01-appb-C000041
(In the formulas [4b-6] to [4b-9], A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 本発明の液晶配向処理剤が含有する特定重合体を作製するためのジアミン成分としては、式[4a-1]~式[4a-5]で示されるジアミン化合物および式[4b]で示されるジアミン化合物以外のジアミン化合物(その他ジアミン化合物ともいう)をジアミン成分として用いることができる。下記に、その具体例を挙げるが、これらの例に限定されるものではない。  Examples of the diamine component for producing the specific polymer contained in the liquid crystal aligning agent of the present invention include diamine compounds represented by the formulas [4a-1] to [4a-5] and diamines represented by the formula [4b]. Diamine compounds other than the compounds (also referred to as other diamine compounds) can be used as the diamine component. Although the specific example is given to the following, it is not limited to these examples.
 例えば、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどが挙げられる。  For example, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy-4,4 '-Diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 3,3'-trifluoromethyl-4,4'- Diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4, '-Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3' -Sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'- Thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N -Methyl (4,4'-diame Diphenyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl ( 2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2, , 3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2, , 7-Diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-amino Phenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4 -Aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3 -Bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, , 3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dia Phosphorus, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylenebis (Methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3- Aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate) 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate) Zoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4 -Phenylene) bis (4-aminobenzamide), N, N '-(1,3-phenylene) bis (4-aminobenzamide), N, N'-(1,4-phenylene) bis (3-aminobenzamide) N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4 -(4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2'- Bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis ( 3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propa 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) ) Pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3 -Aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane, 1,11-bis (4-aminophene) Xyl) undecane, 1,11-bis (3-aminophenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane, 1,12-bis (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) Methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, and the like.
 また、その他ジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環または複素環を有するもの、さらに、これらからなる大環状置換体を有するものなども、本発明の効果を損なわない限り、用いることができる。具体的には、下記の式[DA1]~[DA13]で示されるジアミン化合物を例示することができる。  Other diamine compounds include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. It can be used as long as the effect is not impaired. Specifically, diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
(式[DA1]~式[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-または-NH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。 
Figure JPOXMLDOC01-appb-C000046
(In the formulas [DA1] to [DA6], A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000047
(式[DA7]中、pは1~10の整数を示す)。 
Figure JPOXMLDOC01-appb-C000047
(In the formula [DA7], p represents an integer of 1 to 10).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
(式[DA10]中、mは0~3の整数を示し、式[DA13]中、nは1~5の整数を示す)。 
Figure JPOXMLDOC01-appb-C000049
(In the formula [DA10], m represents an integer of 0 to 3, and in the formula [DA13], n represents an integer of 1 to 5).
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA14]で示されるジアミン化合物を用いることもできる。  Furthermore, a diamine compound represented by the following formula [DA14] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000050
(式[DA14]中、Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-または-N(CH)CO-より選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基または芳香族炭化水素基であり、Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-または-O(CH-(mは1~5の整数である)より選ばれ、Aは窒素含有芳香族複素環であり、nは1~4の整数である)。
Figure JPOXMLDOC01-appb-C000050
(In the formula [DA14], A 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ). A divalent organic group selected from — or —N (CH 3 ) CO—, and A 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group or an aromatic group. A 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 is an integer).
 加えて、その他ジアミン化合物として、下記の式[DA15]および式[DA16]で示されるジアミン化合物を用いることもできる。  In addition, as other diamine compounds, diamine compounds represented by the following formula [DA15] and formula [DA16] can also be used.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 その他ジアミン化合物としては、下記の式[DA17]で示されるジアミン化合物を用いることもできる。  As the other diamine compound, a diamine compound represented by the following formula [DA17] can also be used.
Figure JPOXMLDOC01-appb-C000052
(式[DA17]中、X、Xはそれぞれ独立して、H原子、メチル基、エチル基を示し、mは1~3の整数を示す)。 
Figure JPOXMLDOC01-appb-C000052
(In the formula [DA17], X 1 and X 2 each independently represent an H atom, a methyl group or an ethyl group, and m represents an integer of 1 to 3).
 下記に、式[DA17]で示されるジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。  Specific examples of the structure of the diamine compound represented by the formula [DA17] are shown below, but are not limited to these examples.
 すなわち、式[DA17]で示されるジアミン化合物としては、下記の式[DA17-1]~[DA17-6]で示される構造のジアミン化合物を挙げることができる。  That is, examples of the diamine compound represented by the formula [DA17] include diamine compounds having structures represented by the following formulas [DA17-1] to [DA17-6].
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 上記のその他ジアミン化合物は、本発明の特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。  The above-mentioned other diamine compounds have characteristics such as solubility of the specific polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. Depending on the case, one kind or a mixture of two or more kinds may be used.
 <特定重合体>
 本発明の液晶配向剤が含有する特定重合体は、前記式[1]で示されるテトラカルボン酸二無水物を含む前記テトラカルボン酸成分と、前記式[2]で示される側鎖を有するジアミン化合物を含む上記ジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体である。 
<Specific polymer>
The specific polymer contained in the liquid crystal aligning agent of the present invention is a diamine having the tetracarboxylic acid component containing the tetracarboxylic dianhydride represented by the formula [1] and a side chain represented by the formula [2]. It is at least one polymer selected from a polyimide precursor obtained by reacting the diamine component containing a compound and a polyimide obtained by imidizing the polyimide precursor.
 前記式[1]で示されるテトラカルボン酸二無水物を含む前記テトラカルボン酸成分と、前記式[2]で示される側鎖を有するジアミン化合物を含む前記ジアミン成分とを反応させて得られるポリイミド前駆体は、例えば下記の式[A]で示される構造である。  A polyimide obtained by reacting the tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the formula [1] with the diamine component containing a diamine compound having a side chain represented by the formula [2] The precursor has a structure represented by the following formula [A], for example.
Figure JPOXMLDOC01-appb-C000055
(式[A]中、Rはテトラカルボン酸成分に由来する4価の有機基であり、Rはジアミン成分に由来する2価の有機基であり、AおよびAは水素原子または炭素数1~8のアルキル基を示し、それぞれ同じであっても異なっていてもよく、AおよびAは水素原子、炭素数1~5のアルキル基またはアセチル基を示し、それぞれ同じであっても異なっていてもよく、nは正の整数を示す)。 
Figure JPOXMLDOC01-appb-C000055
(In Formula [A], R 1 is a tetravalent organic group derived from a tetracarboxylic acid component, R 2 is a divalent organic group derived from a diamine component, and A 1 and A 2 are hydrogen atoms or Represents an alkyl group having 1 to 8 carbon atoms, which may be the same or different, and A 3 and A 4 represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and are the same. Or n may be different, and n represents a positive integer).
 本発明の液晶配向処理剤が含有する特定重合体は、下記の式[B]で示されるテトラカルボン酸成分と下記の式[C]で示されるジアミン化合物を原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸または該ポリアミド酸をイミド化させたポリイミドが好ましい。  The specific polymer contained in the liquid crystal aligning agent of the present invention is relatively simple by using a tetracarboxylic acid component represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials. From the reason that it is obtained, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000056
(式[B]および式[C]中、RおよびRは式[A]で定義したものと同意義である)。 
Figure JPOXMLDOC01-appb-C000056
(In formula [B] and formula [C], R 1 and R 2 are as defined in formula [A]).
Figure JPOXMLDOC01-appb-C000057
(式[D]中、RおよびRは式[A]で定義したものと同意義である)。 
Figure JPOXMLDOC01-appb-C000057
(In formula [D], R 1 and R 2 have the same meaning as defined in formula [A]).
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるAおよびAの炭素数1~8のアルキル基、および式[A]で示されるAおよびAの炭素数1~5のアルキル基またはアセチル基を導入することもできる。  In addition, the polymer of the formula [D] obtained above is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] by a usual synthesis method. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
 <特定重合体の製造方法>
 本発明において、特定重合体は、上記ジアミン成分と上記テトラカルボン酸成分とを反応させて得られる。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法またはジカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。 
<Method for producing specific polymer>
In the present invention, the specific polymer is obtained by reacting the diamine component with the tetracarboxylic acid component. Specifically, a method of obtaining a polyamic acid by polycondensation of a tetracarboxylic dianhydride and a diamine component, a method of obtaining a polyamic acid by a dehydration polycondensation reaction of a tetracarboxylic acid and a diamine component, or a dicarboxylic acid dihalide and A method of obtaining polyamic acid by polycondensation with a diamine component is used.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したジカルボン酸ジハライドとジアミン成分とを重縮合させる方法またはポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。  Polyamide acid alkyl ester is obtained by polycondensation of a carboxylic acid group dialkyl esterified tetracarboxylic acid and a diamine component, a dicarboxylic ester dicarboxylic ester dicarboxylic acid dihalide and a diamine component. Or the method of converting the carboxyl group of a polyamic acid into ester is used.
 ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。  In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The reaction between the diamine component and the tetracarboxylic acid component is usually carried out with the diamine component and the tetracarboxylic acid component in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンまたは下記の式[D-1]~式[D-3]で示される溶媒などが挙げられる。  For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and solvents represented by the following formulas [D-1] to [D-3].
Figure JPOXMLDOC01-appb-C000058
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す)。 
Figure JPOXMLDOC01-appb-C000058
(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 ], D 3 represents an alkyl group having 1 to 4 carbon atoms).
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。  These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。  When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。  In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。  The polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。  Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。  When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。  The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。  When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 本発明の液晶配向処理剤が含有する特定重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性および塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。  The molecular weight of the specific polymer contained in the liquid crystal alignment treatment agent of the present invention is GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties. The weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 <液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布溶液であり、重合体成分および溶媒を含有し、重合体被膜を形成するための塗布溶液である。 
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, and contains a polymer component and a solvent, and is a coating solution for forming a polymer film.
 そして、上述したように、本発明の液晶配向処理剤は、重合体成分として、上記特定重合体、すなわち、上述の式[1]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と上述の式[2]で示される側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有するものであり、液晶滴下時における液晶配向膜への物理的なストレスが軽減される構造を有し、疎水性が高い構造を有するためか、後述する実施例に示すように、本発明の液晶配向処理剤を用いて得られる液晶配向膜を具備する液晶表示素子は、配向ムラが改善され、且つ、プレチルト角の耐熱性に優れたものとすることができる。  And as above-mentioned, the liquid-crystal aligning agent of this invention is a tetracarboxylic-acid component containing the said specific polymer, ie, the tetracarboxylic dianhydride shown by said Formula [1], as a polymer component, and At least one polymer selected from a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain represented by the above formula [2] and a polyimide obtained by imidizing the polyimide precursor The present invention has a structure in which physical stress on the liquid crystal alignment film during liquid crystal dropping is reduced and has a structure with high hydrophobicity, as shown in the examples described later. A liquid crystal display device comprising a liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent should have improved alignment unevenness and excellent heat resistance at a pretilt angle. Kill.
 詳述すると、液晶表示素子の配向ムラは、ODF方式による液晶滴下時に、液晶配向膜に物理的なストレスがかかり、液晶の垂直配向性が低下することで発生すると考えられる。また、液晶配向膜表面に付着した吸着水や不純物が、ODF工程において滴下された液晶により掃き寄せられ、液晶滴下部や液晶の液滴同士が接する部分で吸着水や不純物の量が異なることなどにより、発生すると考えられる。ここで、ODF方式とは、液晶を直接基板上に形成された液晶配向膜に滴下することを言う。  More specifically, it is considered that the alignment unevenness of the liquid crystal display element is caused by physical stress applied to the liquid crystal alignment film when the liquid crystal is dropped by the ODF method and the vertical alignment of the liquid crystal is lowered. Also, adsorbed water and impurities adhering to the surface of the liquid crystal alignment film are swept away by the liquid crystal dropped in the ODF process, and the amount of adsorbed water and impurities is different at the liquid crystal dropping part and the part where the liquid crystal droplets are in contact with each other. This is considered to occur. Here, the ODF method refers to dropping liquid crystal directly onto a liquid crystal alignment film formed on a substrate.
 本発明の液晶配向処理剤が含有する上記特定重合体は、主鎖に式[1]で示されるテトラカルボン酸二無水物に由来するメチレン基を有するため、フレキシブル(柔軟)であり、液晶配向処理剤を基板に塗布した際に、特定重合体が塗膜(ひいては液晶配向膜)の表層(すなわち基板とは反対側)に移行し易い。そして、この特定重合体は、式[2]で示される側鎖を有するジアミン化合物に由来する式[2]で示される側鎖を有するため、塗膜や液晶配向膜の表層において式[2]で示される側鎖の密度が高くなる。このように、特定重合体が表層に移行し、且つ、表層の式[2]で示される側鎖の密度が高くなることにより、液晶滴下時における液晶配向膜への物理的なストレスが軽減される。  Since the specific polymer contained in the liquid crystal aligning agent of the present invention has a methylene group derived from the tetracarboxylic dianhydride represented by the formula [1] in the main chain, it is flexible and has a liquid crystal alignment. When the treatment agent is applied to the substrate, the specific polymer easily moves to the surface layer (that is, the side opposite to the substrate) of the coating film (and thus the liquid crystal alignment film). And since this specific polymer has the side chain shown by Formula [2] derived from the diamine compound which has a side chain shown by Formula [2], in the surface layer of a coating film or a liquid crystal aligning film, it is Formula [2]. The density of the side chain indicated by increases. As described above, the specific polymer moves to the surface layer, and the density of the side chain represented by the formula [2] on the surface layer is increased, thereby reducing physical stress on the liquid crystal alignment film at the time of liquid crystal dropping. The
 そして、特定重合体が表層に移行し且つ表層の式[2]で示される側鎖の密度が高くなることにより、液晶配向膜の疎水性が高くなる。さらに、式[1]で示されるテトラカルボン酸二無水物を用いることにより液晶配向処理剤を基板に塗布した後焼成する際に生じる熱イミド化が進行し易くなり、液晶配向膜の疎水性が高くなる。このように、疎水性が高いものであるため、液晶滴下部などにおける吸着水や不純物の量を均一にすることができる。  Then, the specific polymer migrates to the surface layer and the density of the side chain represented by the formula [2] on the surface layer increases, so that the hydrophobicity of the liquid crystal alignment film increases. Furthermore, by using the tetracarboxylic dianhydride represented by the formula [1], thermal imidization that occurs when the liquid crystal alignment treatment agent is applied to the substrate and then baked easily proceeds, and the hydrophobicity of the liquid crystal alignment film is increased. Get higher. Thus, since it is highly hydrophobic, the amount of adsorbed water and impurities in the liquid crystal dropping part can be made uniform.
 この結果、ODF方式で発生する配向ムラの改善を実現することができると推測される。  As a result, it is presumed that the alignment unevenness generated by the ODF method can be improved.
 特に、PSAモードにおいては、ODF方式によりモノマー(重合性化合物)を含む液晶を液晶配向膜上に滴下すると、液晶が濡れ拡がる際に、モノマーの分離現象(クロマト現象ともいう)が起こり、この状態でPSA化処理を行うと、液晶のプレチルト角が異なる領域が発生し、配向ムラを生じ易い。ここで、PSAとは、基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向方式)の液晶表示素子のうち、あらかじめ液晶組成物中に重合性化合物を添加したものを言う。また、重合性化合物とは、活性エネルギー線および熱の少なくとも一方により重合する化合物を言う。  In particular, in the PSA mode, when a liquid crystal containing a monomer (polymerizable compound) is dropped onto the liquid crystal alignment film by the ODF method, a monomer separation phenomenon (also referred to as a chromatographic phenomenon) occurs when the liquid crystal spreads. When the PSA treatment is performed, regions having different pretilt angles of the liquid crystal are generated, and alignment unevenness is likely to occur. Here, PSA is a liquid crystal display element of a method (vertical alignment method) in which liquid crystal molecules aligned perpendicular to a substrate are responded by an electric field (polymeric compound is previously added to the liquid crystal composition). Say. The polymerizable compound refers to a compound that is polymerized by at least one of active energy rays and heat.
 このようなPSAモードの場合においても、本発明の液晶配向処理剤によれば、疎水性が高いものであるため、モノマーの分散性を均一にすることができ、プレチルト角のバラツキを抑制でき、配向ムラを改善することができる。  Even in such a PSA mode, according to the liquid crystal aligning agent of the present invention, since the hydrophobicity is high, the dispersibility of the monomer can be made uniform, and variation in the pretilt angle can be suppressed, Uneven alignment can be improved.
 また、特定重合体が表層に移行し且つ表層の式[2]で示される側鎖の密度が高くなることにより、式[2]で示される側鎖が安定して、プレチルト角の耐熱性が良好になったと推測される。  In addition, when the specific polymer moves to the surface layer and the density of the side chain represented by the formula [2] on the surface layer increases, the side chain represented by the formula [2] becomes stable, and the heat resistance of the pretilt angle is improved. Presumably improved.
 そして、本発明の液晶配向処理剤は、印刷性に優れたものであり、はじきや膜厚ムラのない均一な塗膜を得ることができる。  And the liquid crystal aligning agent of this invention is excellent in printability, and can obtain the uniform coating film without a repellency and film thickness nonuniformity.
 このような本発明の液晶配向処理剤を用いて作製された液晶配向膜を有する液晶表示素子は、配向ムラに伴う配向欠陥が無く、また、プレチルト角の熱安定性に優れているため、表示品位の優れた信頼性の高い液晶表示素子となる。  A liquid crystal display element having a liquid crystal alignment film produced using the liquid crystal alignment treatment agent of the present invention has no alignment defect due to alignment unevenness and is excellent in thermal stability of a pretilt angle. A liquid crystal display element with excellent quality and high reliability is obtained.
 本発明の液晶配向処理剤における、すべての重合体成分は、すべてが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、特定重合体の0.5質量%~15質量%、好ましくは1質量%~10質量%である。それ以外の他の重合体としては、前記式[1]で示されるテトラカルボン酸二無水物を用いていないポリイミド前駆体またはポリイミドが挙げられる。さらには、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミドまたはポリシロキサンなどが挙げられる。  All the polymer components in the liquid crystal aligning agent of the present invention may be all specific polymers, or other polymers may be mixed. In that case, the content of the other polymer is 0.5 mass% to 15 mass%, preferably 1 mass% to 10 mass% of the specific polymer. Other polymers include polyimide precursors or polyimides that do not use the tetracarboxylic dianhydride represented by the formula [1]. Furthermore, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
 本発明の液晶配向処理剤中の固形分濃度は、形成する液晶配向膜の厚みの設定によって適宜変更することができるが、0.5~10質量%とすることが好ましく、1~8質量%とすることがより好ましい。固形分濃度が0.5質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。ここで言う固形分とは、液晶配向処理剤から溶媒を除いた成分を言い、上記した特定重合体や、それ以外の他の重合体、後述する各種の添加剤を意味する。  The solid content concentration in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and preferably 1 to 8% by mass. More preferably. If the solid content concentration is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated. The term “solid content” as used herein refers to a component obtained by removing the solvent from the liquid crystal aligning agent, and means the above-described specific polymer, other polymers, and various additives described later.
 本発明の液晶配向処理剤中の有機溶媒は、塗布により均一な液晶配向膜を形成するという観点から、有機溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。  The organic solvent in the liquid crystal alignment treatment agent of the present invention preferably has an organic solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform liquid crystal alignment film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 本発明の液晶配向処理剤に用いる有機溶媒は、特定重合体を溶解させる有機溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。  The organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent (also referred to as a good solvent) that dissolves the specific polymer. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンまたは上述した前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。これらは単独で使用しても、混合して使用してもよい。  For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone. Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, the solvents represented by the above formulas [D-1] to [D-3], and the like can be given. These may be used alone or in combination.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。さらには、特定重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。  Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone are preferably used. Furthermore, when the solubility of the specific polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
 本発明の液晶配向処理剤における良溶媒は、液晶配向処理剤に含まれる溶媒全体の10~100質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。  The good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる有機溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。  Unless the effect of this invention is impaired, the liquid-crystal aligning agent of this invention is an organic solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid-crystal aligning film at the time of apply | coating a liquid-crystal aligning agent. Can be used. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルまたは上述した前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。  For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1 , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, -Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene Carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1 -(Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol Diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, Methyl lactate, ethyl lactate, methyl acetate, acetic acid Chill, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate or the above formula [D -1] to a solvent represented by the formula [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテルまたはエチレングリコールモノブチルエーテル、または上述した前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。  Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether or ethylene glycol monobutyl ether, or the above-mentioned formulas [D-1] to [D-3] It is preferable to use a solvent represented by
 これら貧溶媒は、液晶配向処理剤に含まれる有機溶媒全体の1~70質量%であることが好ましい。なかでも、1~60質量%が好ましい。より好ましいのは5~60質量%である。  These poor solvents are preferably 1 to 70% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
 本発明の液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、または重合性不飽和結合を有する架橋性化合物を含有させることもできる。これらの置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。  The liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired. A crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基またはイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパンまたは1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。  Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3- Epoxypropoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2, And 3-epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol.
 オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。  The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 具体的には、国際公開公報WO2011/132751の58頁~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。  Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751.
 シクロカーボネート基を有する架橋性化合物は、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。  The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 具体的には、国際公開公報WO2011/132751の76頁~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。  Specifically, the crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2011 / 132751 may be mentioned.
 ヒドロキシル基およびアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基またはアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂またはエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基またはアルコキシメチル基またはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、またはグリコールウリルを用いることができる。このメラミン誘導体またはベンゾグアナミン誘導体は、2量体または3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基またはアルコキシメチル基を平均3個以上6個以下有するものが好ましい。  Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinilamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体またはベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。  Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, and 254, butoxymethylated melamine such as Cymel 506 and 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated eth Cymethylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基またはアルコキシル基を有するベンゼンまたはフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼンまたは2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。  Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報WO2011/132751の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。  More specifically, there are crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパンまたはグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレートまたはヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステルまたはN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。  Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition to 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro -One polymerizable unsaturated group such as 2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide in the molecule A crosslinkable compound is mentioned.
 加えて、下記の式[7]で示される化合物を用いることもできる。  In addition, a compound represented by the following formula [7] can also be used.
Figure JPOXMLDOC01-appb-C000061
(式[7]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環またはフェナントレン環からからなる群から選ばれる基を示し、Eは下記の式[7a]または式[7b]から選ばれる基を示し、nは1~4の整数を示す)。 
Figure JPOXMLDOC01-appb-C000061
(In the formula [7], E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。  The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。  In the liquid crystal aligning agent of the present invention, the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
 本発明の液晶配向処理剤を用いて液晶配向膜とした際、液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。このアミン化合物は、組成物に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。  When a liquid crystal alignment film is formed using the liquid crystal alignment treatment agent of the present invention, as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film, International Publication No. WO 2011 It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of / 132751. This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。  For the liquid crystal alignment treatment agent of the present invention, a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。  Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。  More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。  Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどが挙げられる。  For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10- Riethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyl Trimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3- Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6- Tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N Examples include ', N'-tetraglycidyl-4,4'-diaminodiphenylmethane.
 これら基板との密着させる化合物を使用する場合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向処理剤の保存安定性が悪くなる場合がある。  When using a compound to be adhered to these substrates, the amount is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
 本発明の液晶配向処理剤には、上記の貧溶媒、架橋性化合物、液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物および基板との密着させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。  The liquid crystal alignment treatment agent of the present invention includes the above poor solvent, a crosslinkable compound, a compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that adheres to the substrate. As long as the effect is not impaired, a dielectric material or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
 <液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。 
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。  The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used. Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビングまたは偏光紫外線照射などで処理する。  After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向処理剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式、ツイストネマティック(TN:Twisted Nematic)方式、OCB配向(OCB:Optically Compensated Bend)方式等、種々のものが挙げられ、また、PSA(Polymer Sustained Alignment)方式等の方式でもよい。なお、液晶配向膜は、2枚の基板のうち、少なくとも一方に設けられていればよい。  The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method. For example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment treatment agent of the present invention provided between the substrate and the liquid crystal layer. A liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film. As such a liquid crystal display element of the present invention, a vertical alignment (VA) method, a horizontal alignment (IPS: In-Plane Switching) method, a twisted nematic (TN) method, an OCB alignment (OCB). Various methods such as an Optically Compensated Bend (PB) method may be used, and a PSA (Polymer Sustained Alignment) method may be used. Note that the liquid crystal alignment film only needs to be provided on at least one of the two substrates.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このようODF方式では配向ムラが発生し易いが、本発明の液晶配向処理剤を用いることにより、ODF方式であっても配向ムラの発生を抑制することができる。  As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film on one substrate, and place the liquid crystal alignment film surface on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the substrate after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed. As described above, in the ODF method, alignment unevenness is likely to occur. However, by using the liquid crystal aligning agent of the present invention, the occurrence of alignment unevenness can be suppressed even in the ODF method.
 PSA方式の液晶表示素子を製造する場合、液晶セルの液晶配向膜や液晶層に電圧を印加しながら紫外線を照射する工程を有する。なお、PSA方式の液晶表示素子は、液晶に、活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を混合した液晶材料(液晶組成物)を用い、液晶セルに電圧を印加しながら紫外線を照射することにより得られるものである。  When manufacturing a PSA type liquid crystal display element, there is a step of irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film or liquid crystal layer of the liquid crystal cell. A PSA-type liquid crystal display element uses a liquid crystal material (liquid crystal composition) in which a liquid crystal is mixed with a polymerizable compound that is polymerized by at least one of active energy rays and heat, and ultraviolet rays are applied while applying a voltage to a liquid crystal cell. It is obtained by irradiation.
 重合性化合物としては、例えば、下記式(III)で表されるような2つの末端のそれぞれに光重合する基を有する重合性化合物、下記式(IV)で表されるような光重合する基を有する末端と光架橋する基を有する末端を持つ重合性化合物や、下記式(V)で表されるような2つの末端のそれぞれに光架橋する基を有する重合性化合物が挙げられる。なお、下記式(III)~(V)において、R12はHまたは炭素数1~4のアルキル基であり、Zは炭素数1~12のアルキル基または炭素数1~12のアルコキシル基によって置換されていてもよい二価の芳香環もしくは複素環であり、Zは一価の芳香環または複素環であり、当該一価の芳香環または複素環は炭素数1~12のアルキル基および炭素数1~12のアルコキシル基から選ばれる1種以上の置換基によって置換されていてもよく、Qは二価の有機基である。Qは、フェニレン基(-C-)、ビフェニレン基(-C-C-)やシクロヘキシレン基(-C10-)等の環構造を有していることが好ましい。液晶との相互作用が大きくなりやすいためである。   Examples of the polymerizable compound include a polymerizable compound having a photopolymerizable group at each of two ends as represented by the following formula (III), and a photopolymerizable group represented by the following formula (IV). And a polymerizable compound having a photocrosslinkable group and a polymerizable compound having a photocrosslinkable group at each of two terminals represented by the following formula (V). In the following formulas (III) to (V), R 12 is H or an alkyl group having 1 to 4 carbon atoms, and Z 1 is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. An optionally substituted divalent aromatic ring or heterocyclic ring, Z 2 is a monovalent aromatic ring or heterocyclic ring, and the monovalent aromatic ring or heterocyclic ring is an alkyl group having 1 to 12 carbon atoms and It may be substituted with one or more substituents selected from alkoxy groups having 1 to 12 carbon atoms, and Q 1 is a divalent organic group. Q 1 has a ring structure such as a phenylene group (—C 6 H 4 —), a biphenylene group (—C 6 H 4 —C 6 H 4 —), a cyclohexylene group (—C 6 H 10 —), and the like. Preferably it is. This is because the interaction with the liquid crystal tends to increase.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 式(III)で表される重合性化合物の具体例としては、下記の重合性化合物が挙げられる。式中、Vは、単結合又は-R19O-で表されR19は直鎖もしくは分岐の炭素数1~10のアルキレン基であり、好ましくは、-R19O-で表されR19は直鎖もしくは分岐の炭素数2~6のアルキレン基である。また、Wは、単結合又は-OR20-で表されR20は直鎖もしくは分岐の炭素数1~10のアルキレン基であり、好ましくは、-OR20-で表されR20は直鎖もしくは分岐の炭素数2~6のアルキレン基である。なお、V及びWは同一の構造でも異なっていてもよいが、同一であると合成が容易である。   Specific examples of the polymerizable compound represented by the formula (III) include the following polymerizable compounds. In the formula, V represents a single bond or —R 19 O—, and R 19 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and preferably represents —R 19 O— and R 19 represents A linear or branched alkylene group having 2 to 6 carbon atoms. W represents a single bond or —OR 20 — and R 20 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and preferably represents —OR 20 — and R 20 represents a linear or A branched alkylene group having 2 to 6 carbon atoms. V and W may be the same or different, but if they are the same, synthesis is easy.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 また、式(III)で表される重合性化合物のその他の具体例としては、下記式の重合性化合物が挙げられる。   Also, other specific examples of the polymerizable compound represented by the formula (III) include polymerizable compounds of the following formula.
Figure JPOXMLDOC01-appb-C000067
(式中、Vは、単結合又は-R19O-で表されR19は直鎖もしくは分岐の炭素数1~10のアルキレン基であり、好ましくは、-R19O-で表されR19は直鎖もしくは分岐の炭素数2~6のアルキレン基である。また、Wは、単結合又は-OR20-で表されR20は直鎖もしくは分岐の炭素数1~10のアルキレン基であり、好ましくは、-OR20-で表されR20は直鎖もしくは分岐の炭素数2~6のアルキレン基である。V及びWは同一の構造でも異なっていてもよいが、同一であると合成が容易である。また、R12はHまたは炭素数1~4のアルキル基である。) 
Figure JPOXMLDOC01-appb-C000067
(In the formula, V represents a single bond or —R 19 O—, and R 19 represents a linear or branched alkylene group having 1 to 10 carbon atoms, preferably represented by —R 19 O— and represented by R 19 Is a linear or branched alkylene group having 2 to 6 carbon atoms, W is a single bond or —OR 20 —, and R 20 is a linear or branched alkylene group having 1 to 10 carbon atoms. preferably, -OR 20 - synthesis and is represented by R 20 .V and W is a linear or branched alkylene group having 2 to 6 carbon atoms may be the same or different structure but the same R 12 is H or an alkyl group having 1 to 4 carbon atoms.)
 このような重合性化合物の製造方法は特に限定されず、例えば、下記式(1)で表される重合性化合物は、有機合成化学における手法を組み合わせることによって合成することができる。例えば、下記反応式で表されるタラガ等がP.Talaga,M.Schaeffer,C.Benezra and J.L.Stampf,Synthesis,530(1990)で提案する方法により、SnCl2を用いて2-(ブロモメチル)アクリル酸(2-(bromomethyl)propenoic acid)と、アルデヒドまたはケトンとを反応させて、合成することができる。なお、Amberlyst 15は、ロームアンドハース社製の強酸性イオン交換樹脂である。   The production method of such a polymerizable compound is not particularly limited. For example, the polymerizable compound represented by the following formula (1) can be synthesized by combining techniques in organic synthetic chemistry. For example, Taraga and the like represented by the following reaction formula can use 2- (bromomethyl) acrylic acid with SnCl 2 according to the method proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990). It can be synthesized by reacting (2- (bromomethyl) propenic acid) with an aldehyde or a ketone. Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
(式中、R’は一価の有機基を表す。)  
Figure JPOXMLDOC01-appb-C000069
(In the formula, R ′ represents a monovalent organic group.)
 また、2-(ブロモメチル)アクリル酸は、下記反応式で表されるラマラーン等がK.Ramarajan,K.Kamalingam,D.J.O' Donnell and K.D.Berlin, Organic Synthesis,vol.61,56-59(1983)で提案する方法で合成することができる。   In addition, 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO'Donnell and KDBerlin, Organic Synthesis, vol. 61, 56-59 (1983) It can be synthesized by the method proposed in.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 具体的な合成例としては、Vが-RO-、Wが-OR-でRとRが同一である上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される2つの方法が挙げられる。   As a specific synthesis example, when synthesizing a polymerizable compound represented by the above formula (1) in which V is —R 1 O—, W is —OR 2 —, and R 1 and R 2 are the same, There are two methods shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 また、R19とR20が異なる上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。  Moreover, when synthesizing the polymerizable compound represented by the above formula (1) in which R 19 and R 20 are different, a method represented by the following reaction formula is exemplified.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 そして、V及びWが単結合である上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。   And when synthesize | combining the polymeric compound represented by the said Formula (1) whose V and W are single bonds, the method shown by following Reaction Formula is mentioned.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 液晶配向膜や液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程(PSA化処理)は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては例えば5~30Vp-p、好ましくは5~20Vp-pである。紫外線の照射量は、例えば1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。また、照射する紫外線の波長は、例えば、200nm~400nmである。  The step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film or the liquid crystal layer (PSA treatment) is performed by applying a voltage between electrodes placed on a substrate, for example. And a method of applying an electric field to the liquid crystal layer and irradiating ultraviolet rays while maintaining the electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved. In addition, the wavelength of the irradiated ultraviolet light is, for example, 200 nm to 400 nm.
 このように、液晶配向膜や液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。  Thus, when ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film or the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer. The response speed of the obtained liquid crystal display element can be increased.
 PSA方式では、ODF方式によりモノマー(重合性化合物)を含む液晶を液晶配向膜上に滴下すると、液晶が濡れ拡がる際に、モノマーの分離現象が起こり、この状態でPSA化処理を行うと、液晶のプレチルト角が異なる領域が発生し、配向ムラを生じ易いが、本発明の液晶表示素子においては、上記本発明の液晶配向処理剤を用いているため、配向ムラが抑制されたものとなる。  In the PSA method, when a liquid crystal containing a monomer (polymerizable compound) is dropped on the liquid crystal alignment film by the ODF method, a separation phenomenon of the monomer occurs when the liquid crystal spreads. When the PSA treatment is performed in this state, the liquid crystal However, in the liquid crystal display element of the present invention, since the liquid crystal aligning agent of the present invention is used, the alignment unevenness is suppressed.
 上記では、液晶配向膜を形成する液晶に重合性化合物を含有させて作製されたPSA方式の液晶表示素子について説明したが、本発明の液晶表示素子は、液晶配向処理剤に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む成分を含有させて作製されたものであってもよい(SC-PVA方式)。活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む成分は、上記PSA方式と同様な重合性化合物や、活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む重合体である。このようなSC-PVA方式の場合は、上記PSA方式と同様に、液晶セルの液晶配向膜や液晶層に電圧を印加しながら紫外線を照射する工程を有する。このように、液晶配向膜や液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物や重合性基を含む重合体が反応して重合体を形成する等し、これにより液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。  In the above description, the PSA type liquid crystal display element manufactured by adding a polymerizable compound to the liquid crystal forming the liquid crystal alignment film has been described. However, the liquid crystal display element of the present invention has an active energy ray and a heat It may be prepared by containing a component containing a polymerizable group that is polymerized by at least one of the above (SC-PVA method). The component containing a polymerizable group that is polymerized by at least one of active energy rays and heat is a polymerizable compound that is the same as that in the PSA system, or a polymer that contains a polymerizable group that is polymerized by at least one of active energy rays and heat. . In the case of such an SC-PVA method, there is a step of irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film or liquid crystal layer of the liquid crystal cell, as in the PSA method. As described above, when ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film or the liquid crystal layer, the polymer containing the polymerizable compound or the polymerizable group reacts to form a polymer, and thereby the liquid crystal molecules are inclined. By storing the direction, the response speed of the obtained liquid crystal display element can be increased.
 このような本発明の液晶配向処理剤を用いて作製された液晶配向膜を有する液晶表示素子は、配向ムラに伴う配向欠陥が無く、且つ、プレチルト角の熱安定性に優れているため、表示品位の優れた信頼性の高い液晶表示素子となる。特に、大画面で高精細の液晶テレビなどに好適に利用できるものである。  A liquid crystal display element having a liquid crystal alignment film prepared using the liquid crystal alignment treatment agent of the present invention has no alignment defect due to alignment unevenness and is excellent in thermal stability of a pretilt angle. A liquid crystal display element with excellent quality and high reliability is obtained. In particular, it can be suitably used for a large-screen high-definition liquid crystal television.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。
 合成例、実施例1~15および比較例1~5で用いる略語は、以下の通りである。 
The present invention will be described in more detail with reference to the following examples, but is not limited thereto.
Abbreviations used in Synthesis Examples, Examples 1 to 15 and Comparative Examples 1 to 5 are as follows.
 <テトラカルボン酸成分>
 (特定テトラカルボン酸二無水物)
 A1:下記の式[A1]で示されるテトラカルボン酸二無水物 
<Tetracarboxylic acid component>
(Specific tetracarboxylic dianhydride)
A1: Tetracarboxylic dianhydride represented by the following formula [A1]
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 (その他テトラカルボン酸二無水物)
 A2:1,2,3,4-シクロブタンテトラカルボン酸二無水物(下記の式[A2]で示されるテトラカルボン酸二無水物)
 A3:ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物(下記の式[A3]で示されるテトラカルボン酸二無水物)
 A4:下記の式[A4]で示されるテトラカルボン酸二無水物
 A5:下記の式[A5]で示されるテトラカルボン酸二無水物 
(Other tetracarboxylic dianhydrides)
A2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A2])
A3: Bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride (tetracarboxylic dianhydride represented by the following formula [A3])
A4: Tetracarboxylic dianhydride represented by the following formula [A4] A5: Tetracarboxylic dianhydride represented by the following formula [A5]
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 <ジアミン成分>
 (側鎖ジアミン化合物)
 B1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(下記の式[B1]で示されるジアミン化合物)
 B2:1,3-ジアミノ-5-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(下記の式[B2]で示されるジアミン化合物)
 B3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン(下記の式[B3]で示されるジアミン化合物)
 B4:1,3-ジアミノ-5-{4-〔4-(トランス-4-n-ペンチルシクロヘキシル)シクロヘキシル〕フェノキシメチル}ベンゼン(下記の式[B4]で示されるジアミン化合物)
 B5:下記の式[B5]で示される特定側鎖型ジアミン化合物 
<Diamine component>
(Side-chain diamine compound)
B1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (diamine compound represented by the following formula [B1])
B2: 1,3-diamino-5- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (diamine compound represented by the following formula [B2])
B3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene (diamine compound represented by the following formula [B3])
B4: 1,3-diamino-5- {4- [4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxymethyl} benzene (diamine compound represented by the following formula [B4])
B5: Specific side chain type diamine compound represented by the following formula [B5]
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 (その他ジアミン化合物)
 C1:m-フェニレンジアミン(下記の式[C1]で示されるジアミン化合物)
 C2:p-フェニレンジアミン(下記の式[C2]で示されるジアミン化合物)
 C3:3,5-ジアミノ安息香酸(下記の式[C3]で示されるジアミン化合物)
 C4:下記の式[C4]で示されるジアミン化合物
 C5:下記の式[C5]で示されるジアミン化合物
 C6:1,3-ジアミノ-4-オクタデシルオキシベンゼン(下記の式[C6]で示されるジアミン化合物) 
(Other diamine compounds)
C1: m-phenylenediamine (diamine compound represented by the following formula [C1])
C2: p-phenylenediamine (diamine compound represented by the following formula [C2])
C3: 3,5-diaminobenzoic acid (diamine compound represented by the following formula [C3])
C4: Diamine compound represented by the following formula [C4] C5: Diamine compound represented by the following formula [C5] C6: 1,3-diamino-4-octadecyloxybenzene (diamine represented by the following formula [C6] Compound)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 <架橋性化合物>
 D1:YH-434L(東都化成製)(エポキシ系架橋性化合物)
 D2:OXT-221(東亜合成製)(オキセタン系架橋性化合物)
 D3:下記の式で示される架橋性化合物(ヒドロキシル化フェノール系架橋性化合物) 
<Crosslinkable compound>
D1: YH-434L (manufactured by Tohto Kasei) (epoxy crosslinking compound)
D2: OXT-221 (manufactured by Toa Gosei) (oxetane-based crosslinkable compound)
D3: Crosslinkable compound represented by the following formula (hydroxylated phenol-based crosslinkable compound)
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 <有機溶媒>
 (極性溶媒)
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 G-BL:γ-ブチロラクトン 
<Organic solvent>
(Polar solvent)
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone G-BL: γ-butyrolactone
 (その他の有機溶媒)
 BCS:2-ブトキシエタノール
 PB:プロピレングリコールモノブチルエーテル 
(Other organic solvents)
BCS: 2-butoxyethanol PB: Propylene glycol monobutyl ether
 <ポリイミド前駆体およびポリイミドの分子量測定>
 合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000、および1,000)(ポリマーラボラトリー社製)。 
<Measurement of molecular weight of polyimide precursor and polyimide>
The molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide monohydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory).
 <ポリイミドのイミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100 
<Measurement of imidation ratio of polyimide>
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。  In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
 合成例1~15のポリアミド酸およびポリイミドを表1に示す。  The polyamic acids and polyimides of Synthesis Examples 1 to 15 are shown in Table 1.
 <合成例1>
 A1(3.44g,16.2mmol)、B1(3.70g,9.73mmol)、C1(2.45g,22.7mmol)をNMP(28.1g)中で混合し、40℃で5時間反応させた後、A2(3.18g,16.2mmol)とNMP(23.0g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液(A)を得た。このポリアミド酸の数平均分子量は11,500、重量平均分子量は38,600であった。 
<Synthesis Example 1>
A1 (3.44 g, 16.2 mmol), B1 (3.70 g, 9.73 mmol) and C1 (2.45 g, 22.7 mmol) were mixed in NMP (28.1 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.18 g, 16.2 mmol) and NMP (23.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (A) having a solid content concentration of 20.0% by mass. Obtained. The number average molecular weight of this polyamic acid was 11,500, and the weight average molecular weight was 38,600.
 <合成例2>
 合成例1で得られた固形分濃度が20.0質量%のポリアミド酸溶液(A)(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.33g)、ピリジン(1.21g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は10,980、重量平均分子量は33,200であった。 
<Synthesis Example 2>
After adding NMP to the polyamic acid solution (A) (15.0 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 1 and diluting to 6% by mass, acetic anhydride (2 .33 g) and pyridine (1.21 g) were added and reacted at 40 ° C. for 3 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 52%, the number average molecular weight was 10,980, and the weight average molecular weight was 33,200.
 <合成例3>
 A1(3.31g,15.6mmol)、B1(3.56g,9.36mmol)、C4(2.67g,21.8mmol)をNMP(27.7g)中で混合し、40℃で5時間反応させた後、A2(3.06g,15.6mmol)とNMP(22.7g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 3>
A1 (3.31 g, 15.6 mmol), B1 (3.56 g, 9.36 mmol) and C4 (2.67 g, 21.8 mmol) were mixed in NMP (27.7 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.06 g, 15.6 mmol) and NMP (22.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(20.5g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.32g)、ピリジン(1.21g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は72%であり、数平均分子量は11,800、重量平均分子量は32,400であった。  After adding NMP to the obtained polyamic acid solution (20.5 g) and diluting to 6% by mass, acetic anhydride (2.32 g) and pyridine (1.21 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 72%, the number average molecular weight was 11,800, and the weight average molecular weight was 32,400.
 <合成例4>
 A1(2.59g,12.2mmol)、B3(3.70g,8.56mmol)、C2(1.72g,15.9mmol)をNMP(24.4g)中で混合し、40℃で5時間反応させた後、A3(3.06g,12.2mmol)とNMP(19.9g)を加え、50℃で5時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 4>
A1 (2.59 g, 12.2 mmol), B3 (3.70 g, 8.56 mmol) and C2 (1.72 g, 15.9 mmol) were mixed in NMP (24.4 g) and reacted at 40 ° C. for 5 hours. After that, A3 (3.06 g, 12.2 mmol) and NMP (19.9 g) were added and reacted at 50 ° C. for 5 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.03g)、ピリジン(1.04g)を加え、40℃で3.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は51%であり、数平均分子量は12,100、重量平均分子量は35,200であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.03 g) and pyridine (1.04 g) were added as imidization catalysts, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 51%, the number average molecular weight was 12,100, and the weight average molecular weight was 35,200.
 <合成例5>
 A1(1.98g,9.35mmol)、B2(4.61g,9.35mmol)、C3(2.13g,14.0mmol)をNMP(25.2g)中で混合し、40℃で5時間反応させた後、A2(2.75g,14.0mmol)とNMP(20.7g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 5>
A1 (1.98 g, 9.35 mmol), B2 (4.61 g, 9.35 mmol) and C3 (2.13 g, 14.0 mmol) were mixed in NMP (25.2 g) and reacted at 40 ° C. for 5 hours. After that, A2 (2.75 g, 14.0 mmol) and NMP (20.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.1g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.04g)、ピリジン(1.05g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は13,000、重量平均分子量は34,200であった。  After adding NMP to the obtained polyamic acid solution (15.1 g) and diluting to 6% by mass, acetic anhydride (2.04 g) and pyridine (1.05 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 70%, the number average molecular weight was 13,000, and the weight average molecular weight was 34,200.
 <合成例6>
 A1(1.34g,6.29mmol)、B4(2.81g,6.29mmol)、C4(1.79g,14.7mmol)をNMP(19.4g)中で混合し、40℃で5時間反応させた後、A2(2.88g,14.7mmol)とNMP(15.9g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 6>
A1 (1.34 g, 6.29 mmol), B4 (2.81 g, 6.29 mmol) and C4 (1.79 g, 14.7 mmol) were mixed in NMP (19.4 g) and reacted at 40 ° C. for 5 hours. After that, A2 (2.88 g, 14.7 mmol) and NMP (15.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(1.01g)、ピリジン(0.79g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は14,200、重量平均分子量は35,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (1.01 g) and pyridine (0.79 g) were added as an imidization catalyst, and 1 at 40 ° C. The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide was 52%, the number average molecular weight was 14,200, and the weight average molecular weight was 35,100.
 <合成例7>
 A1(1.40g,6.60mmol)、B5(3.79g,7.70mmol)、C3(1.84g,12.1mmol)をNMP(22.1g)中で混合し、40℃で5時間反応させた後、A2(3.02g,15.4mmol)とNMP(18.1g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 7>
A1 (1.40 g, 6.60 mmol), B5 (3.79 g, 7.70 mmol) and C3 (1.84 g, 12.1 mmol) were mixed in NMP (22.1 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.02 g, 15.4 mmol) and NMP (18.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.01g)、ピリジン(1.04g)を加え、40℃で2.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(G)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は10,800、重量平均分子量は31,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.01 g) and pyridine (1.04 g) were added as imidization catalysts, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (G). The imidation ratio of this polyimide was 53%, the number average molecular weight was 10,800, and the weight average molecular weight was 31,100.
 <合成例8>
 A1(2.54g,12.0mmol)、B1(4.56g,12.0mmol)、C2(1.94g,18.0mmol)をNMP(28.7g)中で混合し、40℃で5時間反応させた後、A4(4.03g,18.0mmol)とNMP(28.7g)を加え、40℃で8時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液(H)を得た。このポリアミド酸の数平均分子量は12,900、重量平均分子量は36,300であった。 
<Synthesis Example 8>
A1 (2.54 g, 12.0 mmol), B1 (4.56 g, 12.0 mmol) and C2 (1.94 g, 18.0 mmol) were mixed in NMP (28.7 g) and reacted at 40 ° C. for 5 hours. After that, A4 (4.03 g, 18.0 mmol) and NMP (28.7 g) were added and reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution (H) having a solid content concentration of 20.0% by mass. It was. The number average molecular weight of this polyamic acid was 12,900, and the weight average molecular weight was 36,300.
 <合成例9>
 A1(3.22g,15.2mmol)、B5(4.99g,10.1mmol)、C5(5.51g,40.5mmol)をNMP(40.0g)中で混合し、40℃で5時間反応させた後、A4(7.94g,35.4mmol)とNMP(32.7g)を加え、40℃で時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 9>
A1 (3.22 g, 15.2 mmol), B5 (4.99 g, 10.1 mmol) and C5 (5.51 g, 40.5 mmol) were mixed in NMP (40.0 g) and reacted at 40 ° C. for 5 hours. After that, A4 (7.94 g, 35.4 mmol) and NMP (32.7 g) were added and reacted at 40 ° C. for a time to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.15g)、ピリジン(1.11g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(I)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は12,200、重量平均分子量は33,700であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.15 g) and pyridine (1.11 g) were added as an imidization catalyst, and 1 at 40 ° C. The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (I). The imidation ratio of this polyimide was 50%, the number average molecular weight was 12,200, and the weight average molecular weight was 33,700.
 <合成例10>
 A1(2.98g,14.1mmol)、B3(6.08g,14.1mmol)、C4(4.00g,32.8mmol)をNMP(50.4g)中で混合し、40℃で5時間反応させた後、A5(9.84g,32.8mmol)とNMP(41.2g)を加え、40℃で8時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 10>
A1 (2.98 g, 14.1 mmol), B3 (6.08 g, 14.1 mmol) and C4 (4.00 g, 32.8 mmol) were mixed in NMP (50.4 g) and reacted at 40 ° C. for 5 hours. After that, A5 (9.84 g, 32.8 mmol) and NMP (41.2 g) were added and reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(1.88g)、ピリジン(1.00g)を加え、40℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(J)を得た。このポリイミドのイミド化率は74%であり、数平均分子量は11,500、重量平均分子量は35,600であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (1.88 g) and pyridine (1.00 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (J). The imidation ratio of this polyimide was 74%, the number average molecular weight was 11,500, and the weight average molecular weight was 35,600.
 <合成例11>
 A1(3.40g,16.0mmol)、C6(3.62g,9.61mmol)、C1(2.42g,22.4mmol)をNMP(19.8g)中で混合し、40℃で5時間反応させた後、A2(3.14g,16.0mmol)とNMP(16.2g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液(K)を得た。このポリアミド酸の数平均分子量は12,100、重量平均分子量は32,000であった。 
<Synthesis Example 11>
A1 (3.40 g, 16.0 mmol), C6 (3.62 g, 9.61 mmol), C1 (2.42 g, 22.4 mmol) were mixed in NMP (19.8 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.14 g, 16.0 mmol) and NMP (16.2 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (K) having a solid content concentration of 20.0 mass%. It was. The number average molecular weight of this polyamic acid was 12,100, and the weight average molecular weight was 32,000.
 <合成例12>
 A1(3.30g,15.6mmol)、C6(3.51g,9.33mmol)、C4(2.66g,21.8mmol)をNMP(19.8g)中で混合し、40℃で5時間反応させた後、A2(3.05g,15.6mmol)とNMP(16.2g)を加え、40℃で6時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 12>
A1 (3.30 g, 15.6 mmol), C6 (3.51 g, 9.33 mmol), C4 (2.66 g, 21.8 mmol) were mixed in NMP (19.8 g) and reacted at 40 ° C. for 5 hours. After that, A2 (3.05 g, 15.6 mmol) and NMP (16.2 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.28g)、ピリジン(1.17g)を加え、40℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は12,000、重量平均分子量は29,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.28 g) and pyridine (1.17 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide was 73%, the number average molecular weight was 12,000, and the weight average molecular weight was 29,100.
 <合成例13>
 A2(3.53g,18.0mmol)、B1(2.05g,5.40mmol)、C1(1.36g,12.6mmol)をNMP(30.1g)中で混合し、40℃で8時間反応させ、固形分濃度が20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 13>
A2 (3.53 g, 18.0 mmol), B1 (2.05 g, 5.40 mmol) and C1 (1.36 g, 12.6 mmol) were mixed in NMP (30.1 g) and reacted at 40 ° C. for 8 hours. Thus, a polyamic acid solution having a solid content concentration of 20.0% by mass was obtained.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(1.59g)、ピリジン(0.74g)を加え、40℃で2.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(M)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は14,700、重量平均分子量は40,100であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (1.59 g) and pyridine (0.74 g) were added as an imidization catalyst, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (M). The imidation ratio of this polyimide was 50%, the number average molecular weight was 14,700, and the weight average molecular weight was 40,100.
 <合成例14>
 A3(1.51g,6.05mmol)、B4(2.70g,6.05mmol)、C4(1.73g,14.1mmol)をNMP(19.2g)中で混合し、80℃で5時間反応させた後、A2(2.77g,14.1mmol)とNMP(19.2g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 14>
A3 (1.51 g, 6.05 mmol), B4 (2.70 g, 6.05 mmol) and C4 (1.73 g, 14.1 mmol) were mixed in NMP (19.2 g) and reacted at 80 ° C. for 5 hours. After that, A2 (2.77 g, 14.1 mmol) and NMP (19.2 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.15g)、ピリジン(1.11g)を加え、40℃で2.5時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(N)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は13,800、重量平均分子量は37,700であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (2.15 g) and pyridine (1.11 g) were added as imidization catalysts, The reaction was allowed for 5 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (N). The imidation ratio of this polyimide was 53%, the number average molecular weight was 13,800, and the weight average molecular weight was 37,700.
 <合成例15>
 A3(3.43g,13.7mmol)、B3(4.15g,9.60mmol)、C2(1.93g,17.8mmol)をNMP(26.8g)中で混合し、80℃で5時間反応させた後、A2(2.69g,13.7mmol)とNMP(22.0g)を加え、40℃で6時間反応させ、固形分濃度が、20.0質量%のポリアミド酸溶液を得た。 
<Synthesis Example 15>
A3 (3.43 g, 13.7 mmol), B3 (4.15 g, 9.60 mmol), C2 (1.93 g, 17.8 mmol) were mixed in NMP (26.8 g) and reacted at 80 ° C. for 5 hours. After that, A2 (2.69 g, 13.7 mmol) and NMP (22.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a solid content concentration of 20.0 mass%.
 得られたポリアミド酸溶液(15.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(3.57g)、ピリジン(1.66g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(O)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は15,600、重量平均分子量は32,700であった。  After adding NMP to the obtained polyamic acid solution (15.0 g) and diluting to 6% by mass, acetic anhydride (3.57 g) and pyridine (1.66 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (O). The imidation ratio of this polyimide was 52%, the number average molecular weight was 15,600, and the weight average molecular weight was 32,700.
 <実施例1>
 合成例1で得られた固形分濃度20.0質量%のポリアミド酸溶液(A)(9.03g)、NMP(8.91g)およびBCS(12.0g)を、25℃にて6時間混合して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 1>
The polyamic acid solution (A) (9.03 g), NMP (8.91 g) and BCS (12.0 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 1 were mixed at 25 ° C. for 6 hours. As a result, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例2>
 合成例2で得られたポリイミド粉末(B)(1.80g)、NMP(2.72g)、NEP(9.03g)およびBCS(16.5g)を、25℃にて8時間混合して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 2>
The polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (2.72 g), NEP (9.03 g) and BCS (16.5 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例3>
 合成例3で得られたポリイミド粉末(C)(1.80g)、NEP(13.2g)、BCS(7.50g)およびPB(7.53g)を、25℃にて8時間混合して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 3>
The polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NEP (13.2 g), BCS (7.50 g) and PB (7.53 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例4>
 合成例4で得られたポリイミド粉末(D)(1.81g)、NMP(7.41g)、NEP(9.10g)、BCS(6.00g)およびPB(6.04g)を、25℃にて8時間混合して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 4>
The polyimide powder (D) (1.81 g), NMP (7.41 g), NEP (9.10 g), BCS (6.00 g) and PB (6.04 g) obtained in Synthesis Example 4 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例5>
 合成例5で得られたポリイミド粉末(E)(1.79g)、NMP(4.20g)、NEP(11.9g)およびPB(11.9g)を、25℃にて8時間混合して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 5>
The polyimide powder (E) obtained in Synthesis Example 5 (1.79 g), NMP (4.20 g), NEP (11.9 g) and PB (11.9 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (5) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例6>
 合成例6で得られたポリイミド粉末(F)(1.80g)、NEP(7.20g)、G-BL(9.06g)およびBCS(12.0g)を、25℃にて8時間混合して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 6>
The polyimide powder (F) obtained in Synthesis Example 6 (1.80 g), NEP (7.20 g), G-BL (9.06 g) and BCS (12.0 g) were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (6) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例7>
 合成例7で得られたポリイミド粉末(G)(1.80g)、NEP(13.2g)、G-BL(6.02g)、BCS(6.01g)およびPB(3.00g)を、25℃にて8時間混合して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 7>
Polyimide powder (G) (1.80 g), NEP (13.2 g), G-BL (6.02 g), BCS (6.01 g) and PB (3.00 g) obtained in Synthesis Example 7 By mixing at 8 ° C. for 8 hours, a liquid crystal aligning agent (7) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例8>
 合成例8で得られた固形分濃度20.0質量%のポリアミド酸溶液(H)(9.00g)、G-BL(9.00g)、BCS(6.04g)およびPB(6.00g)を、25℃にて6時間混合して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 8>
Polyamic acid solution (H) (9.00 g), G-BL (9.00 g), BCS (6.04 g) and PB (6.00 g) having a solid content concentration of 20.0% by mass obtained in Synthesis Example 8 Were mixed at 25 ° C. for 6 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例9>
 合成例9で得られたポリイミド粉末(I)(1.80g)、NMP(14.7g)およびBCS(13.5g)を、25℃にて8時間混合して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 9>
The polyimide powder (I) (1.80 g), NMP (14.7 g), and BCS (13.5 g) obtained in Synthesis Example 9 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (9). Got. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例10>
 合成例10で得られたポリイミド粉末(J)(1.80g)、NMP(1.22g)、NEP(12.0g)、BCS(9.01g)およびPB(6.00g)を、25℃にて8時間混合して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 10>
The polyimide powder (J) (1.80 g), NMP (1.22 g), NEP (12.0 g), BCS (9.01 g) and PB (6.00 g) obtained in Synthesis Example 10 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例11>
 合成例2で得られたポリイミド粉末(B)(1.80g)、NMP(1.23g)、NEP(12.0g)、BCS(9.02g)、PB(6.03g)およびD1(0.05g)を、25℃にて8時間混合して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 11>
Polyimide powder (B) obtained in Synthesis Example 2 (1.80 g), NMP (1.23 g), NEP (12.0 g), BCS (9.02 g), PB (6.03 g) and D1 (0.0. 05 g) was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例12>
 合成例3で得られたポリイミド粉末(C)(1.80g)、G-BL(19.2g)、BCS(9.01g)およびD2(0.05g)を、25℃にて8時間混合して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 12>
The polyimide powder (C) (1.80 g), G-BL (19.2 g), BCS (9.01 g) and D2 (0.05 g) obtained in Synthesis Example 3 were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (12) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例13>
 合成例3で得られたポリイミド粉末(C)(1.80g)、NMP(8.70g)、G-BL(9.00g)、BCS(9.01g)、PB(9.00g)およびD3(0.05g)を、25℃にて8時間混合して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 13>
Polyimide powder (C) obtained in Synthesis Example 3 (1.80 g), NMP (8.70 g), G-BL (9.00 g), BCS (9.01 g), PB (9.00 g) and D3 ( 0.05 g) was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例14>
 合成例2で得られたポリイミド粉末(B)(1.05g)、NMP(2.00g)、G-BL(9.02g)、BCS(9.02g)およびPB(9.02g)を、25℃にて8時間混合して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 14>
Polyimide powder (B) obtained in Synthesis Example 2 (1.05 g), NMP (2.00 g), G-BL (9.02 g), BCS (9.02 g) and PB (9.02 g) The liquid crystal aligning agent (14) was obtained by mixing at 0 ° C. for 8 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <実施例15>
 合成例3で得られたポリイミド粉末(C)(1.06g)、NMP(5.01g)、NEP(9.10g)、BCS(7.60g)およびPB(7.60g)を、25℃にて8時間混合して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Example 15>
The polyimide powder (C) (1.06 g), NMP (5.01 g), NEP (9.10 g), BCS (7.60 g) and PB (7.60 g) obtained in Synthesis Example 3 were cooled to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <比較例1>
 合成例11で得られた固形分濃度19.9質量%のポリアミド酸溶液(K)(9.03g)、NMP(9.30g)およびBCS(12.2g)を、25℃にて6時間混合して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Comparative Example 1>
The polyamic acid solution (K) (9.03 g), NMP (9.30 g) and BCS (12.2 g) having a solid content concentration of 19.9% by mass obtained in Synthesis Example 11 were mixed at 25 ° C. for 6 hours. Thus, a liquid crystal aligning agent (16) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <比較例2>
 合成例12で得られたポリイミド粉末(L)(1.80g)、NEP(13.2g)、BCS(7.52g)およびPB(7.50g)を、25℃にて8時間混合して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Comparative example 2>
The polyimide powder (L) obtained in Synthesis Example 12 (1.80 g), NEP (13.2 g), BCS (7.52 g) and PB (7.50 g) were mixed at 25 ° C. for 8 hours, A liquid crystal aligning agent (17) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <比較例3>
 合成例13で得られたポリイミド粉末(M)(1.80g)、NMP(2.71g)NEP(9.00g)およびBCS(16.5g)を、25℃にて8時間混合して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Comparative Example 3>
The polyimide powder (M) obtained in Synthesis Example 13 (1.80 g), NMP (2.71 g) NEP (9.00 g) and BCS (16.5 g) were mixed at 25 ° C. for 8 hours to obtain a liquid crystal. An alignment agent (18) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <比較例4>
 合成例14で得られたポリイミド粉末(N)(1.80g)、NEP(7.25g)、G-BL(9.06g)およびBCS(12.0g)を、25℃にて8時間混合して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Comparative example 4>
The polyimide powder (N) (1.80 g), NEP (7.25 g), G-BL (9.06 g) and BCS (12.0 g) obtained in Synthesis Example 14 were mixed at 25 ° C. for 8 hours. Thus, a liquid crystal aligning agent (19) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 <比較例5>
 合成例15で得られたポリイミド粉末(O)(1.80g)、NMP(7.19g)、NEP(9.00g)、BCS(6.00g)およびPB(5.99g)を、25℃にて8時間混合して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。 
<Comparative Example 5>
The polyimide powder (O) (1.80 g), NMP (7.19 g), NEP (9.00 g), BCS (6.00 g) and PB (5.99 g) obtained in Synthesis Example 15 were heated to 25 ° C. For 8 hours to obtain a liquid crystal aligning agent (20). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
 実施例1~15および比較例1~5で得られた液晶配向処理剤を用い、「液晶セルの作製(通常セル)」、「プレチルト角の熱耐性の評価(通常セル)」、「電気特性(電圧保持率)の評価(通常セル)」、「液晶セルの作製およびモノマーの分散性の評価(PSAセル)」を行った。その条件は、下記のとおりである。  Using the liquid crystal aligning agents obtained in Examples 1 to 15 and Comparative Examples 1 to 5, “Preparation of liquid crystal cell (normal cell)”, “Evaluation of heat resistance of pretilt angle (normal cell)”, “Electrical properties (Evaluation of (voltage holding ratio) (normal cell) ”and“ Production of liquid crystal cell and evaluation of dispersibility of monomer (PSA cell) ” The conditions are as follows.
 <液晶セルの作製およびプレチルト角(垂直配向性)の熱耐性の評価(通常セル)>
 実施例1~15および比較例1~5で得られた液晶配向処理剤を、30×40mmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて230℃で30分間加熱処理をして膜厚100nmの液晶配向膜(ポリイミド膜)付きの基板を得た。 
<Production of liquid crystal cell and evaluation of heat resistance of pretilt angle (vertical alignment) (normal cell)>
The liquid crystal alignment treatment agents obtained in Examples 1 to 15 and Comparative Examples 1 to 5 were spin-coated on the ITO surface of the substrate with 30 × 40 mm ITO electrode, and heat-cleaning clean at 80 ° C. for 5 minutes on a hot plate. A heat treatment was performed at 230 ° C. for 30 minutes in an oven to obtain a substrate with a liquid crystal alignment film (polyimide film) having a thickness of 100 nm.
 得られたポリイミド膜面を、ロール径120mmのラビング装置を用いて、ロール回転数300rpm、ロール進行速度20mm/sec、押し込み量0.2mmの条件で、レーヨン布でラビング処理して、液晶配向膜付き基板を得た。  The obtained polyimide film surface was rubbed with a rayon cloth using a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.2 mm, and a liquid crystal alignment film An attached substrate was obtained.
 このラビング処理後の液晶配向膜付き基板を2枚用意し、液晶配向膜面を内側にして40μmのスペーサーを挟み、ラビング方向が逆向きになるようにして組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、アンチパラレル配向のネマティック液晶セルを得た。  Two substrates with a liquid crystal alignment film after the rubbing treatment are prepared, the liquid crystal alignment film surface is inside, a 40 μm spacer is sandwiched, the rubbing directions are reversed, and the surroundings are bonded with a sealant. An empty cell was produced. Liquid crystal MLC-2003 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel aligned nematic liquid crystal cell.
 上記で作製した液晶セルのプレチルト角を測定した。またこの液晶セルを、熱循環型オーブン中にて120℃で24時間加熱した後、プレチルト角を測定した。なお、チルト測定装置(ELSICON社製 モデルPAS-301)を用いて行った。結果を表2に示す。  The pretilt angle of the liquid crystal cell produced above was measured. The liquid crystal cell was heated in a heat circulation oven at 120 ° C. for 24 hours, and then the pretilt angle was measured. The tilt measurement device (ELSICON model PAS-301) was used. The results are shown in Table 2.
 <液晶セルの作製および電気特性の評価(通常セル)>
 実施例1~5、比較例3及び5で得られた液晶配向処理剤を、30×40mmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて230℃で30分間加熱処理をして膜厚100nmのポリイミド液晶配向膜付きの基板を得た。 
<Production of liquid crystal cell and evaluation of electrical characteristics (normal cell)>
The liquid crystal alignment treatment agents obtained in Examples 1 to 5 and Comparative Examples 3 and 5 were spin-coated on the ITO surface of the substrate with 30 × 40 mm ITO electrode, and heat-cleaning clean at 80 ° C. for 5 minutes on a hot plate. The substrate was heat-treated at 230 ° C. for 30 minutes in an oven to obtain a substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm.
 得られた液晶配向膜付きの基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン製)を注入し、注入口を封止して、ネマティック液晶セルを得た。  Two substrates with the obtained liquid crystal alignment film were prepared, combined with a liquid crystal alignment film surface on the inside with a 6 μm spacer in between, and the periphery was adhered with a sealant to produce an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a nematic liquid crystal cell.
 上記で作製した液晶セルに、80℃の温度下で1Vの電圧を60μm印加し、16.67ms後、および50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、測定は、VHR-1電圧保持率測定装置(東陽テクニカ製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:16.67ms又は50msの設定で行った。電圧保持率の測定が終了した液晶セルに、365nm換算で50J/cmの紫外線を照射した後、上記と同様の条件にて、電圧保持率の測定を行った。なお、紫外線照射は、卓上型UV硬化装置(HCT3B28HEX-1)(センライト製(SEN LIGHT CORPORATION))を用いて行った。結果を表3に示す。  A voltage of 1 V is applied to the liquid crystal cell produced above at a temperature of 80 ° C. at 60 μm, the voltage after 16.67 ms and 50 ms is measured, and the voltage holding ratio (VHR) indicates how much the voltage can be maintained. As calculated. The measurement was performed using a VHR-1 voltage holding ratio measuring device (manufactured by Toyo Technica) with settings of Voltage: ± 1 V, Pulse Width: 60 μs, Frame Period: 16.67 ms or 50 ms. The liquid crystal cell for which the measurement of the voltage holding ratio was completed was irradiated with 50 J / cm 2 of ultraviolet rays in terms of 365 nm, and then the voltage holding ratio was measured under the same conditions as described above. The ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (manufactured by SEN LIGHT CORPORATION). The results are shown in Table 3.
 <液晶セルの作製およびモノマー分散性の評価(PSAセル)>
 実施例1~8、実施例12~15および比較例1~5で得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、モノマー分散性の評価(PSAセル)を行った。この溶液を、純水およびイソプロピルアルコール(IPA)にて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間加熱処理をして膜厚が100nmのポリイミド塗膜を得た。塗膜面を純水にて洗浄した後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。 
<Production of liquid crystal cell and evaluation of monomer dispersibility (PSA cell)>
The liquid crystal alignment treatment agents obtained in Examples 1 to 8, Examples 12 to 15 and Comparative Examples 1 to 5 were pressure filtered through a membrane filter having a pore diameter of 1 μm and stored at −15 ° C. for 48 hours. The monomer dispersibility was evaluated (PSA cell). This solution was washed with pure water and isopropyl alcohol (IPA) at the center with a 10 × 10 mm ITO electrode substrate with a pattern interval of 20 μm (length 40 mm × width 30 mm, thickness 0.7 mm) and 10 × 40 mm at the center. Spin coating on the ITO surface of the substrate with ITO electrode (length 40mm x width 30mm, thickness 0.7mm) and heat treatment at 100 ° C for 5 minutes on a hot plate to obtain a polyimide coating film with a film thickness of 100nm It was. After the coated surface was washed with pure water, it was heat-treated at 100 ° C. for 15 minutes in a heat circulation type clean oven to obtain a substrate with a liquid crystal alignment film.
 この液晶配向膜付き基板の液晶配向膜面上に、4μmのスペーサーを固着させ、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)に、下記の式で示される重合性化合物(モノマーともいわれる)(1)を、ネマティック液晶(MLC-6608)の100質量%に対して重合性化合物(1)を0.7質量%混合した液晶を1点滴下し、パネルを張り合わせて、シール剤で周囲を接着してモノマー分散性評価用の液晶セルを得た。  A spacer of 4 μm is fixed on the liquid crystal alignment film surface of the substrate with the liquid crystal alignment film, and a nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) has a polymerizable compound (also referred to as a monomer) represented by the following formula. ) (1) was added dropwise at 1 point to a liquid crystal prepared by mixing 0.7% by weight of the polymerizable compound (1) with respect to 100% by weight of the nematic liquid crystal (MLC-6608). Were bonded to obtain a liquid crystal cell for monomer dispersibility evaluation.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 液晶セル中に存在するモノマーが存在する箇所は抵抗が低下するため、得られた液晶セルに交流5Vの電圧を印加することで、液晶セル内のモノマーの分散領域は黒く表示される。電圧印加の際に発生する黒表示の円の大きさを測定することで、モノマーの分散性が評価できる。電圧印加の際に発生する黒表示の円の直径の測定した結果を表2に示す。  Since the resistance of the portion where the monomer present in the liquid crystal cell is present decreases, the dispersion region of the monomer in the liquid crystal cell is displayed in black by applying an AC voltage of 5 V to the obtained liquid crystal cell. The dispersibility of the monomer can be evaluated by measuring the size of a black display circle generated when a voltage is applied. Table 2 shows the measurement results of the diameters of the black display circles generated when the voltage is applied.
 また、実施例9~11で得られた液晶配向処理剤について、重合性化合物(1)のかわりに重合性化合物(2)を用いた以外は、上記と同様にして、モノマーの分散性の評価を行った。  Further, for the liquid crystal alignment treatment agents obtained in Examples 9 to 11, evaluation of monomer dispersibility was performed in the same manner as above except that the polymerizable compound (2) was used instead of the polymerizable compound (1). Went.
 <液晶配向処理剤のインクジェット塗布性の評価>
 本発明の実施例14で得られた液晶配向処理剤(14)及び実施例15で得られた液晶配向処理剤(15)を細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水およびIPAにて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。この結果、いずれの実施例とも、得られた液晶配向膜上に、はじきやピンホールは見られず、均一に塗布された液晶配向膜が得られた。 
<Evaluation of inkjet coating property of liquid crystal aligning agent>
The liquid crystal aligning agent (14) obtained in Example 14 of the present invention and the liquid crystal aligning agent (15) obtained in Example 15 were pressure filtered through a membrane filter having a pore size of 1 μm, and evaluation of ink jet coatability was performed. Went. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA, the application area is 70 × 70 mm, the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, and the application speed is 40 mm / Second, the time from application to temporary drying was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes. As a result, in any of the examples, no repelling or pinholes were observed on the obtained liquid crystal alignment film, and a uniformly applied liquid crystal alignment film was obtained.
 上記の結果からわかるように、実施例1~実施例15の液晶配向処理剤から得られた液晶配向膜は、比較例1~比較例5の液晶配向処理剤から得られた液晶配向膜に比べて、モノマーの分散が広い。したがって、実施例1~15は、疎水性が高く、配向ムラが少ないと言える。なお、実施例3とB1の代わりにC6を用いた以外は実施例3と同様である比較例2とを比較すると、実施例3はモノマーの分散性が非常に広いと言える。また、液晶配向性の評価において、実施例1~実施例15の液晶配向処理剤から得られた液晶配向膜は、比較例1~比較例5の液晶配向処理剤から得られた液晶配向膜に比べて、プレチルト角の加熱前後での変化が小さく、プレチルト角の耐熱性に優れているといえる。  As can be seen from the above results, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 1 to 15 were compared with the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 1 to 5. The monomer dispersion is wide. Therefore, it can be said that Examples 1 to 15 have high hydrophobicity and little alignment unevenness. In addition, comparing Example 3 and Comparative Example 2 which is the same as Example 3 except that C6 was used instead of B1, it can be said that Example 3 has a very wide dispersibility of the monomer. In the evaluation of the liquid crystal alignment properties, the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 1 to 15 were changed to the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Comparative Examples 1 to 5. In comparison, the change in the pretilt angle before and after heating is small, and it can be said that the heat resistance of the pretilt angle is excellent.
 そして、特定テトラカルボン酸二無水物を含まない比較例3~比較例5または特定側鎖型ジアミン化合物を含まない比較例1、比較例2は、モノマーの拡がりが狭く、プレチルト角の耐熱性も悪かった。  In Comparative Examples 3 to 5 that do not contain the specific tetracarboxylic dianhydride, or in Comparative Examples 1 and 2 that do not contain the specific side chain diamine compound, the monomer spread is narrow and the heat resistance of the pretilt angle is also low. It was bad.
 また、表3からわかるように、実施例の液晶配向処理剤から得られた液晶セルは、紫外線に曝された後であっても、電圧保持率の低下が小さい。具体的には、例えば、実施例1とA1とを用いない以外は実施例1と同様の構成である比較例3との比較、または、実施例4とA1の代わりにA3を用いた以外は実施例4と同様である比較例5との比較である。このように、本発明の液晶配向処理剤を用いることにより、電圧保持率が光耐性に優れている液晶表示素子とすることができる。これは、本発明の液晶配向処理剤は[1]で示されるテトラカルボン酸二無水物を原料とする重合体(ポリイミドやポリイミド前駆体)を含有するため、液晶配向膜を形成する際の焼成において、[1]で示されるテトラカルボン酸二無水物に由来する構造が重合体を架橋等することにより重合体分子間でもイミド化が生じるため、電圧保持率が光耐性に優れているものと推測される。  Also, as can be seen from Table 3, the liquid crystal cell obtained from the liquid crystal aligning agent of the example has a small decrease in voltage holding ratio even after being exposed to ultraviolet rays. Specifically, for example, except that Example 1 and A1 are not used, a comparison with Comparative Example 3 having the same configuration as Example 1 or A3 is used instead of Examples 4 and A1 This is a comparison with Comparative Example 5, which is the same as Example 4. Thus, by using the liquid-crystal aligning agent of this invention, it can be set as the liquid crystal display element which is excellent in the light holding resistance in voltage retention. This is because the liquid crystal aligning agent of the present invention contains a polymer (polyimide or polyimide precursor) using the tetracarboxylic dianhydride shown in [1] as a raw material, and thus firing when forming a liquid crystal alignment film. In the above, since the structure derived from the tetracarboxylic dianhydride represented by [1] crosslinks the polymer to cause imidization between the polymer molecules, the voltage holding ratio is excellent in light resistance. Guessed.
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
 本発明の液晶配向処理剤は、配向ムラが改善され、且つプレチルト角の耐熱性に優れた液晶配向膜を得ることができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。  The liquid crystal alignment treatment agent of the present invention can provide a liquid crystal alignment film with improved alignment unevenness and excellent heat resistance at a pretilt angle. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.

Claims (12)

  1.  下記の式[1]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と下記の式[2]で示される側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す)。
    A polyimide precursor obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] with a diamine component containing a diamine compound having a side chain represented by the following formula [2] The liquid crystal aligning agent characterized by including the body and at least 1 type of polymer chosen from the polyimide obtained by imidating this polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In formula [2], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms May be substituted with an alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom , Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic groups, an alkyl group having 1 to 3 carbon atoms, having 1 to 3 carbon atoms May be substituted with an alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 represents a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
  2.  前記テトラカルボン酸成分は、下記の式[3]で示されるテトラカルボン酸無水物を含むことを特徴とする請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (式[3]中、Zは下記の式[3a]~式[3j]から選ばれる少なくとも1種の4価の基である)。
    Figure JPOXMLDOC01-appb-C000004
    (式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい)。
    The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic acid component includes a tetracarboxylic acid anhydride represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000003
    (In Formula [3], Z 1 is at least one tetravalent group selected from Formula [3a] to Formula [3j] below).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [3a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [3g], Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
  3.  液晶配向処理剤中の溶媒として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンを含有することを特徴とする請求項1または請求項2に記載の液晶配向処理剤。  3. The liquid crystal aligning agent according to claim 1 or 2, which contains N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone as a solvent in the liquid crystal aligning agent. .
  4.  液晶配向処理剤中の溶媒として、下記の式[D-1]~式[D-3]で示される溶媒から選ばれる溶媒を含有することを特徴とする請求項1~請求項3のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000005
    (式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す)。 
    4. The solvent according to claim 1, further comprising a solvent selected from the solvents represented by the following formulas [D-1] to [D-3] as a solvent in the liquid crystal aligning agent. The liquid crystal aligning agent according to one item.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 ], D 3 represents an alkyl group having 1 to 4 carbon atoms).
  5.  請求項1~請求項4に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。  A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to claim 1.
  6.  請求項1~請求項4に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。  A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to claim 1.
  7.  請求項5または請求項6に記載の液晶配向膜を有することを特徴とする液晶表示素子。  A liquid crystal display element comprising the liquid crystal alignment film according to claim 5.
  8.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項5または請求項6に記載の液晶配向膜。  A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 7. The liquid crystal alignment film according to claim 5, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween.
  9.  請求項8に記載の液晶配向膜を有することを特徴とする液晶表示素子。  A liquid crystal display element comprising the liquid crystal alignment film according to claim 8.
  10.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項5または請求項6に記載の液晶配向膜。  A liquid crystal layer comprising a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; 7. The liquid crystal alignment film according to claim 5, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable group while applying a voltage therebetween.
  11.  請求項10に記載の液晶配向膜を有することを特徴とする液晶表示素子。  A liquid crystal display element comprising the liquid crystal alignment film according to claim 10.
  12.  下記の式[1]で示されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と下記の式[2]で示される側鎖を有するジアミン化合物を含むジアミン成分とを反応させて得られるポリイミド前駆体および該ポリイミド前駆体をイミド化して得られるポリイミドから選ばれる少なくとも1種からなることを特徴とする重合体。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す)。 
    A polyimide precursor obtained by reacting a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula [1] with a diamine component containing a diamine compound having a side chain represented by the following formula [2] And a polymer comprising at least one selected from polyimides obtained by imidizing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (In formula [2], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms May be substituted with an alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom , Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic groups, an alkyl group having 1 to 3 carbon atoms, having 1 to 3 carbon atoms May be substituted with an alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 represents a carbon number An alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
PCT/JP2014/054766 2013-02-28 2014-02-26 Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element WO2014133042A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157026351A KR102184058B1 (en) 2013-02-28 2014-02-26 Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN201480024175.4A CN105164579B (en) 2013-02-28 2014-02-26 Polymer, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
JP2015502996A JP6368955B2 (en) 2013-02-28 2014-02-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013039876 2013-02-28
JP2013-039876 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133042A1 true WO2014133042A1 (en) 2014-09-04

Family

ID=51428302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054766 WO2014133042A1 (en) 2013-02-28 2014-02-26 Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP6368955B2 (en)
KR (1) KR102184058B1 (en)
CN (1) CN105164579B (en)
TW (1) TWI620791B (en)
WO (1) WO2014133042A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533259A (en) * 2015-03-04 2018-01-02 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
WO2018124167A1 (en) * 2016-12-28 2018-07-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN112005164A (en) * 2018-03-30 2020-11-27 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548025B1 (en) * 2016-12-28 2023-06-26 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2018230617A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film
CN110869842B (en) * 2017-07-14 2022-06-03 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7256472B2 (en) * 2017-10-25 2023-04-12 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7317939B2 (en) * 2019-03-07 2023-07-31 富士フイルム株式会社 Polarizing element and image display device
TW202140619A (en) * 2019-09-24 2021-11-01 日商日產化學股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2022067054A (en) * 2020-10-19 2022-05-02 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and manufacturing method for liquid crystal element
CN117510845B (en) * 2023-11-08 2024-06-25 波米科技有限公司 Liquid crystal aligning agent with high pretilt angle and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131751A (en) * 2000-10-25 2002-05-09 Hitachi Chemical Dupont Microsystems Ltd Composition for liquid crystal aligning film, liquid crystal aligning film, liquid crystal holding substrate, liquid crystal display and horizontal electric field liquid crystal display
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113241B2 (en) 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP5282869B2 (en) 2008-04-30 2013-09-04 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101115058B1 (en) * 2008-07-09 2012-02-13 주식회사 엘지화학 Block copolymer of Polyimide and polyamic acid, methode for its production, photosensitive resin composition comprising the Block copolymer and protective film provided thereof.
JP5884258B2 (en) * 2009-09-18 2016-03-15 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
KR101734600B1 (en) * 2009-11-09 2017-05-11 제이엔씨 주식회사 Liquid crystal display element, liquid crystal composition, aligning agent, and method for producing liquid crystal display element
JP5630451B2 (en) * 2011-02-23 2014-11-26 信越化学工業株式会社 Adhesive composition and adhesive dry film
TWI534178B (en) * 2011-03-31 2016-05-21 Nissan Chemical Ind Ltd Liquid crystal aligning agent and liquid crystal alignment film using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131751A (en) * 2000-10-25 2002-05-09 Hitachi Chemical Dupont Microsystems Ltd Composition for liquid crystal aligning film, liquid crystal aligning film, liquid crystal holding substrate, liquid crystal display and horizontal electric field liquid crystal display
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533259A (en) * 2015-03-04 2018-01-02 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
WO2018124167A1 (en) * 2016-12-28 2018-07-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018124167A1 (en) * 2016-12-28 2019-10-31 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP7298156B2 (en) 2016-12-28 2023-06-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN112005164A (en) * 2018-03-30 2020-11-27 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN112005164B (en) * 2018-03-30 2023-09-12 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JP6368955B2 (en) 2018-08-08
KR102184058B1 (en) 2020-11-27
TWI620791B (en) 2018-04-11
JP6504377B2 (en) 2019-04-24
CN105164579A (en) 2015-12-16
TW201500462A (en) 2015-01-01
KR20150122210A (en) 2015-10-30
JPWO2014133042A1 (en) 2017-02-02
JP2018087343A (en) 2018-06-07
CN105164579B (en) 2018-03-09

Similar Documents

Publication Publication Date Title
JP6414145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6504377B2 (en) Polymer
JP5713009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013125595A1 (en) Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6299977B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013115387A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
KR20170072223A (en) Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6264577B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2016076412A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024175.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026351

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14757599

Country of ref document: EP

Kind code of ref document: A1