WO2011010619A1 - Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent - Google Patents

Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent Download PDF

Info

Publication number
WO2011010619A1
WO2011010619A1 PCT/JP2010/062109 JP2010062109W WO2011010619A1 WO 2011010619 A1 WO2011010619 A1 WO 2011010619A1 JP 2010062109 W JP2010062109 W JP 2010062109W WO 2011010619 A1 WO2011010619 A1 WO 2011010619A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polyamic acid
diamine compound
diamine
polyimide
Prior art date
Application number
PCT/JP2010/062109
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
悟志 南
雅章 片山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011523647A priority Critical patent/JP5729299B2/en
Priority to CN201080043007.1A priority patent/CN102574811B/en
Priority to KR1020177026552A priority patent/KR102073458B1/en
Publication of WO2011010619A1 publication Critical patent/WO2011010619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/12Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a novel diamine compound useful as a raw material for a polymer used in a liquid crystal alignment film, a polyamic acid and a polyimide obtained using the same, and a liquid crystal alignment treatment agent. Furthermore, it is related with the liquid crystal display element which has a liquid crystal aligning film obtained from the said liquid-crystal aligning agent.
  • a liquid crystal alignment treatment agent (also referred to as a liquid crystal alignment agent) mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied to a glass substrate and fired.
  • a so-called polyimide-based liquid crystal alignment film is mainly used.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
  • the liquid crystal alignment film used has a high voltage holding ratio and a direct current voltage has been applied due to demands for suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon.
  • the characteristic that the residual charge at the time is small and / or the residual charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
  • a liquid crystal aligning agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid was used as a short time until the afterimage generated by direct current voltage disappears.
  • a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material for example, see Patent Document 1.
  • a compound containing one carboxylic acid group in the molecule In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amine group in the molecule (for example, a patent Document 3) is known.
  • liquid crystal alignment film to be used has to be more reliable than conventional liquid crystal alignment films.
  • the electrical characteristics of the liquid crystal alignment film are not only good in initial characteristics but also, for example, at a high temperature for a long time. There is a need to maintain good properties even after exposure.
  • An object of the present invention is to provide a liquid crystal alignment treatment agent capable of obtaining a liquid crystal alignment film having a high voltage holding ratio and capable of quickly relieving residual charges accumulated by a DC voltage even after being exposed to a high temperature for a long time. It is in providing the diamine compound which can be used as a raw material of the polyamic acid and / or polyimide (henceforth also referred to as a polymer). Furthermore, an object of the present invention is to provide a liquid crystal alignment film having a high voltage holding ratio and capable of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage are quickly relaxed even after being exposed to a high temperature for a long time. It is an object of the present invention to provide a liquid crystal display device with high reliability that can withstand a long-term use in a treating agent and a severe use environment.
  • X 1 represents —CO— or —CONH—
  • X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom
  • X 3 represents 1 to 5 carbon atoms
  • It represents a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms, which may be substituted with 5 alkyl groups.
  • the diamine component contains 0.01 to 99 mol of a diamine compound having a carboxyl group in the molecule with respect to 1 mol of the diamine according to any one of (1) to (3) above.
  • the polyamic acid according to the above (6) or (7), wherein the diamine compound having a carboxyl group in the molecule is a diamine represented by the following formula [2], or a polyimide obtained by imidizing the polyamic acid .
  • X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.
  • (11) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to (9) or (10).
  • (12) A liquid crystal display device having the liquid crystal alignment film according to (11).
  • the diamine compound of the present invention is a novel diamine containing a specific structure containing a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the side chain (hereinafter also referred to as a specific diamine compound). And can be obtained by a relatively simple method.
  • the 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the specific diamine compound functions as an electron hopping site depending on the conjugated structure thereof, so that the polyamic acid and / or the specific acid using the specific diamine compound and / or
  • the liquid crystal alignment film obtained from the polyimide polymer imidized with the polyamic acid can promote the movement of electric charge in the liquid crystal alignment film, has a high voltage holding ratio, and is exposed to a high temperature for a long time. Even in such a case, the residual charge accumulated by the DC voltage can be relaxed quickly.
  • a liquid crystal display element having a liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polyamic acid and / or a polyimide polymer using the diamine compound of the present invention is excellent in reliability and has a large screen. Therefore, it can be suitably used for high-definition liquid crystal televisions.
  • the specific diamine compound of the present invention is represented by the following formula [1].
  • X 1 represents —CO— or —CONH—
  • X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom
  • X 3 represents 1 to 5 carbon atoms.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease of synthesizing the diamine compound, the bonding positions of the two amino groups are positions 2, 4 and 2, 5 , 3, 5 are particularly preferred. In the formula [1], X 1 is —CO— or —CONH—.
  • X 2 is an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom.
  • the alkylene group may be linear or branched.
  • the alkylene group preferably has 1 to 3 carbon atoms.
  • X 2 is a non-aromatic heterocyclic ring containing a nitrogen atom
  • examples include a pyrrolidine ring, a piperidine ring, a piperazine ring, a pyrazolidine ring, a quinuclidine ring, and an imidazolidine ring.
  • a non-aromatic heterocyclic ring having a 5-membered ring or a 6-membered ring is preferable because good alignment can be obtained when a liquid crystal alignment film is used.
  • the non-aromatic heterocycle contains two nitrogen atoms
  • ionic impurities in the liquid crystal are adsorbed at the liquid crystal alignment film interface, and the liquid crystal display device has good electrical characteristics. It is desirable to keep.
  • a piperazine ring is particularly preferable as the non-aromatic heterocyclic ring containing a nitrogen atom.
  • X 3 is a 5-membered or 6-membered aromatic heterocyclic ring containing two nitrogen atoms, which may be substituted with an alkyl group having 1 to 5 carbon atoms.
  • 5-membered or 6-membered aromatic heterocycles containing two nitrogen atoms include imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring and pyridazine ring. Among them, imidazole ring and pyrazine A ring or a pyrimidine ring is preferred.
  • the aromatic heterocycle in X 3 is substituted with an alkyl group, the alkyl group preferably has 1 to 3 carbon atoms.
  • the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the formula [3], further reducing the nitro group of the dinitro compound and converting it to an amino group.
  • a dinitro compound represented by the formula [3] There is no particular limitation on the method for reducing the dinitro compound, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in an alcohol-based solvent.
  • X 1 , X 2 , and X 3 in the formula [ 3 ] have the same definition as in the formula [1].
  • Dinitro compound represented by the formula [3] via the X 1 against dinitrobenzene -X 2 -X 3 can be obtained by a method of attaching, for example, X 1 is an amide bond (-CONH- ), A method of reacting dinitrobenzene chloride with an amino compound containing X 2 and X 3 in the presence of alkali.
  • X 1 is a reverse amide bond (—HNCO—)
  • a method of reacting an amino group-containing nitrobenzene and an acid chloride containing X 2 and X 3 in the presence of an alkali can be mentioned.
  • Examples of the dinitrobenzene acid chloride include 3,5-dinitrobenzoic acid chloride, 3,5-dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 3,5-dinitrobenzyl chloride, and 2,4-dinitrobenzyl chloride.
  • Examples of the amino group-containing nitrobenzene include 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline and the like. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
  • the polymer of the present invention is a polyamic acid obtained by reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing this polyamic acid. Any of these polyamic acids and polyimides are useful as a polymer for obtaining a liquid crystal alignment film.
  • the liquid crystal alignment film obtained using the polymer of the present invention has a higher voltage holding ratio as the content ratio of the specific diamine compound in the diamine component increases, and even after being exposed to a high temperature for a long time, The residual charge accumulated by the DC voltage is alleviated faster.
  • the diamine component is the specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more. Although 100 mol% of the diamine component may be a specific diamine compound, the specific diamine compound is preferably 80 mol% or less of the diamine component, more preferably, from the viewpoint of uniform coatability when applying the liquid crystal aligning agent. It is 40 mol% or less.
  • ⁇ Diamine compound having a carboxyl group in the molecule when a diamine compound having a carboxyl group in the molecule is used together with the specific diamine compound as the diamine component, an aromatic heterocyclic ring having two nitrogen atoms of the specific diamine compound is present in the molecule.
  • the carboxyl group of the diamine compound having a carboxyl group is linked with an electrostatic interaction such as salt formation or hydrogen bond, charge transfer occurs between the carboxyl group and the nitrogen-containing aromatic heterocycle. Therefore, the charge transferred to the nitrogen-containing aromatic heterocyclic moiety can efficiently move within and between the molecules of the copolymer, and as a result, the liquid crystal alignment treatment agent obtained in this case is a liquid crystal alignment film.
  • the voltage holding ratio is high, and even after being exposed to a high temperature for a long time, there is an effect that the residual charge accumulated by the DC voltage is relaxed and faster.
  • the specific structure of the diamine compound having a carboxyl group in the molecule is not particularly limited, but a compound represented by the formula [2] is preferable.
  • X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4. If the formula [2] is specifically shown, the structures of the following formulas [3] to [7] can be mentioned.
  • m1 is an integer of 1 to 4
  • X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, — CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , -COO-, -OCO-, -CON (CH 3 )-, or -N (CH 3 ) CO-
  • m2 and m3 are each an integer of 0 to 4
  • m2 + m3 is an integer of 1 to 4
  • m4 and m5 are each an integer of 1 to 5
  • X 7 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m6
  • X 8 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3 2 -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH2 -, - COO -, - OCO -, - CON (CH 3 ) — or —N (CH 3 ) CO—, and m7 represents an integer of 1 to 4.
  • X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, or —
  • X 8 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—, wherein m7 is an integer of 1 to 2.
  • diamine compound represented by the formulas [3] to [7] include the compounds of the following formulas [8] to [18].
  • X 9 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO.
  • X 10 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O —, —OCH 2 —, —COO—, or —OCO—.
  • examples of the diamine side chain include diamine compounds having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a cyclic substituent composed thereof.
  • Specific examples of the diamine compound include diamine compounds represented by the following formulas [DA1] to [DA26].
  • R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 5 represents 1 carbon atom.
  • R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 — or —CH 2 —, wherein R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group. is there.
  • diaminosiloxane represented by the following formula [DA27] and the like are also included.
  • m is an integer of 1 to 10.
  • Other diamine compounds may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
  • tetracarboxylic dianhydride The tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited.
  • the preferable specific example is given below.
  • the tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
  • a known synthesis method can be used.
  • tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction between the tetracarboxylic dianhydride and the diamine component is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the produced polyamic acid dissolves. Specific examples are given below.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • the tetracarboxylic dianhydride or diamine component consists of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polymerization reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability when forming the coating film, and the uniformity of the coating film.
  • the weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a polymer component for forming a polymer film is dissolved in a solvent.
  • the polymer component includes at least one polymer of the polymer of the present invention described above.
  • the content of the polymer component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass in the liquid crystal aligning agent.
  • all of the above polymer components may be the polymer of the present invention, and may contain other polymers as long as the effects of the present invention are not impaired.
  • the content thereof is preferably 0.05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 1 part by mass of the polymer of the present invention. It is.
  • the other polymer examples include a polyamic acid obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with a tetracarboxylic dianhydride component, or a polyimide obtained by imidizing the polyamic acid.
  • the solvent used in the liquid crystal aligning agent of the present invention is preferably an organic solvent that dissolves the polymer component, and specific examples thereof are given below.
  • the liquid crystal aligning agent of this invention may contain components other than the above.
  • examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • examples of the solvent that improves the uniformity of the film thickness and the surface smoothness include poor solvents that have low solubility in the polymer component in the liquid crystal aligning agent. Specific examples of the poor solvent include the following.
  • the poor solvent may be used alone or in combination.
  • the poor solvent is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate, and the solvent is evaporated to form a coating film. Can do. If the thickness of the coating film formed after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread a spacer on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure, or a method in which the substrate is attached to the surface after the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and the like is sealed.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • the molecular weight of polyimide in the synthesis example was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex. .
  • GPC normal temperature gel permeation chromatography
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture). The solution was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • JNW-ECA500 JNW-ECA500
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 4 BODA (3.24 g, 13.0 mmol), p-PDA (0.65 g, 6.01 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (0) .68 g, 2.62 mmol) were mixed in NMP (14.5 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (11.9 g) were added.
  • the polyamic acid solution (A) (concentration: 24.8% by mass) was obtained by reacting at 6 ° C. for 6 hours.
  • the number average molecular weight of this polyamic acid was 22,800, and the weight average molecular weight was 53,900.
  • NMP was added to the polyamic acid solution (A) (20.0 g) obtained in Example 4 to dilute the polyamic acid concentration to 6% by mass, and then acetic anhydride (2.65 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours.
  • This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration.
  • This deposit was wash
  • Example 6 BODA (3.25 g, 13.0 mmol), DBA (0.52 g, 3.42 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (1.36 g) , 5.24 mmol) in NMP (15.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (12.7 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution (C) (concentration: 24.8% by mass). The number average molecular weight of this polyamic acid was 24,100, and the weight average molecular weight was 55,500.
  • C polyamic acid solution
  • Example 7 After adding NMP to the polyamic acid solution (C) (20.1 g) obtained in Example 6 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.66 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • Example 8 BODA (3.15 g, 12.6 mmol), p-PDA (1.01 g, 9.34 mmol), AP18 (1.25 g, 3.32 mmol), and the diamine compound (7) obtained in Example 2 (1) .10 g, 4.28 mmol) were mixed in NMP (8.35 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (6.83 g) were added. The polyamic acid solution was obtained by reacting at 6 ° C. for 6 hours. The number average molecular weight of this polyamic acid was 21,500, and the weight average molecular weight was 52,400.
  • Example 9 BODA (3.22 g, 12.9 mmol), DBA (0.79 g, 5.19 mmol), PCH7DAB (3.22 g, 8.46 mmol), and the diamine compound (7) obtained in Example 2 (0.92 g) , 3.58 mmol) in NMP (13.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (11.0 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution.
  • the number average molecular weight of this polyamic acid was 23,700, and the weight average molecular weight was 54,000.
  • Example 10 ⁇ Example 10> BODA (2.97 g, 11.9 mmol), p-PDA (0.70 g, 6.47 mmol), PCH7DAB (3.06 g, 8.04 mmol), and the diamine compound (10) obtained in Example 3 (0 .51 g, 1.71 mmol) were mixed in NMP (12.6 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (10.3 g) were added. The reaction was carried out at 6 ° C. for 6 hours to obtain a polyamic acid solution (G) (concentration: 26.1% by mass). The number average molecular weight of this polyamic acid was 21,200, and the weight average molecular weight was 52,100.
  • G polyamic acid solution
  • Example 11 After adding NMP to the polyamic acid solution (G) (20.0 g) obtained in Example 10 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.67 g) and pyridine ( 2.05 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (360 ml), and the resulting precipitate was filtered off. This deposit was wash
  • Tables 3 and 4 collectively show reaction conditions (moles of each component) and imidation ratios of Examples 4 to 11 and Synthesis Examples 3 to 6 (synthesis of polyamic acid and polyimide).
  • Example 12 NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [A] (10.0 g) obtained in Example 4, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment.
  • Agent [1] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • [Production of liquid crystal cell] The liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3 cm ⁇ 4 cm (vertical ⁇ horizontal) ITO electrodes, and baked in a hot air circulation oven at 80 ° C. for 5 minutes and 210 ° C. for 1 hour. A polyimide coating film having a thickness of 100 nm was prepared.
  • This substrate with a liquid crystal alignment film is subjected to a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
  • a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
  • Two substrates with this liquid crystal alignment film were prepared, and a 6 ⁇ m bead spacer was sprayed on the surface of one liquid crystal alignment film, and then a sealant was printed thereon.
  • the other prepared substrate was bonded so that the liquid crystal alignment film surface was on the inside and the rubbing direction was reversed, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-6608 (manufactured by Merck Japan Ltd.) was injected into this empty cell by a reduced pressure injection method to obtain an antiparallel aligned nematic liquid crystal cell.
  • [Evaluation of voltage holding ratio] A voltage of 4 V is applied to the liquid crystal cell obtained above at a temperature of 80 ° C. for 60 ⁇ s, the voltage after 16.67 ms and 1667 ms is measured, and the voltage holding ratio (%) As calculated. The results are shown in Table 5.
  • [Evaluation of relaxation of residual charge] A DC voltage of 10 V was applied to the liquid crystal cell after measuring the voltage holding ratio for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds.
  • liquid crystal aligning agents obtained in the following Examples 13 to 19 and Comparative Examples 1 to 4, as in Example 12, liquid crystal cells were prepared using these liquid crystal aligning agents, and each liquid crystal The cell was evaluated. The results are summarized in Table 5 and Table 6.
  • Example 13 NMP (36.3 g) was added to the polyimide powder [B] (5.1 g) obtained in Example 5, and dissolved by stirring at 70 ° C. for 40 hours. NMP (18.1 g) and BCS (25.6 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [2]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • Example 14 NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [C] (10.0 g) obtained in Example 6, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [3] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • Example 15 NMP (30.3 g) was added to the polyimide powder [D] (5.0 g) obtained in Example 7 and dissolved by stirring at 70 ° C. for 40 hours. NMP (14.8g) and BCS (33.8g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • NMP 33.0 g was added to the polyimide powder [E] (5.1 g) obtained in Example 8, and dissolved by stirring at 70 ° C. for 40 hours.
  • Example 17 NMP (34.5 g) was added to the polyimide powder [F] (5.2 g) obtained in Example 9, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (30.3g) were added to this solution, and the liquid-crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • Example 18 NMP (15.6 g) and BCS (17.1 g) were added to the polyamic acid solution [G] (10.0 g) obtained in Example 10, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [7] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • Example 19 NMP (35.5 g) was added to the polyimide powder [H] (5.0 g) obtained in Example 11, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • NMP (34.5 g) was added to the polyimide powder [L] (4.5 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours.
  • NMP (17.2g) and BCS (18.8g) were added to this solution, and the liquid-crystal aligning agent [12] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
  • the liquid crystal aligning agent containing the diamine compound of the present invention has a high voltage holding ratio when it is formed into a liquid crystal alignment film, and alleviates charges accumulated by direct current voltage even after being exposed to a high temperature for a long time. Can be obtained. Furthermore, a highly reliable liquid crystal display element that can withstand long-term use in a severe use environment can be provided. As a result, it is useful for TN elements, STN elements, TFT liquid crystal elements, and liquid crystal display elements of vertical alignment type and horizontal alignment type (IPS).
  • IPS vertical alignment type and horizontal alignment type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a novel diamine compound useful as a raw material for a polyamic acid and/or polyimide. The polyamic acid or polyimide prepared using the diamine compound can constitute a liquid crystal aligning agent capable of forming a liquid crystal alignment film which has a high voltage holding ratio and which, even after long-time exposure to high temperature, achieves quick relaxation of a residual charge accumulated by DC voltage. Specifically provided are a novel dimaine compound represented by general formula [1], and a liquid crystal aligning agent which contains a polyamic acid and/or polyimide prepared using the diamine compound. In general formula [1], X1 is –CO- or –CONH-; X2 is a C1-5 alkylene group or a nitrogen-containing nonaromatic heterocycle; and X3 is a five- or six-membered aromatic heterocycle which contains two nitrogen atoms and which may be substituted with a C1-5 alkyl group.

Description

ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
 本発明は、液晶配向膜に使用する重合体の原料として有用である新規なジアミン化合物、それを用いて得られるポリアミド酸及びポリイミド、並びに液晶配向処理剤に関する。さらには、前記液晶配向処理剤から得られる液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a novel diamine compound useful as a raw material for a polymer used in a liquid crystal alignment film, a polyamic acid and a polyimide obtained using the same, and a liquid crystal alignment treatment agent. Furthermore, it is related with the liquid crystal display element which has a liquid crystal aligning film obtained from the said liquid-crystal aligning agent.
 現在、液晶表示素子の液晶配向膜としては、ポリアミド酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向処理剤(液晶配向剤とも云う)をガラス基板等に塗布し焼成した、いわゆるポリイミド系の液晶配向膜が主として用いられている。 Currently, as a liquid crystal alignment film of a liquid crystal display element, a liquid crystal alignment treatment agent (also referred to as a liquid crystal alignment agent) mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied to a glass substrate and fired. A so-called polyimide-based liquid crystal alignment film is mainly used.
 液晶配向膜は、液晶の配向状態を制御する目的で使用されるものである。しかしながら、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、使用される液晶配向膜においても電圧保持率が高いことや、直流電圧を印加した際の残留電荷が少ない、及び/又は直流電圧により蓄積した残留電荷の緩和が早いといった特性が次第に重要となっていた。 The liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal. However, as the liquid crystal display elements have become higher in definition, the liquid crystal alignment film used has a high voltage holding ratio and a direct current voltage has been applied due to demands for suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon. The characteristic that the residual charge at the time is small and / or the residual charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
 ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば特許文献2参照)などが知られている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やそのイミド化重合体などに加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミン基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば特許文献3参照)が知られている。 In a polyimide-based liquid crystal alignment film, a liquid crystal aligning agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid was used as a short time until the afterimage generated by direct current voltage disappears. There are known ones (for example, see Patent Document 1) and those using a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material (for example, see Patent Document 2). In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amine group in the molecule (for example, a patent Document 3) is known.
 しかしながら、近年では大画面で高精細の液晶テレビが広く実用化されており、このような用途における液晶表示素子では、それまでの文字や静止画を主として表示するディスプレイ用途と比較して、残像に対する要求はより厳しくなり、かつ過酷な使用環境での長期使用に耐えうる特性が要求されている。従って、使用される液晶配向膜は従来よりも信頼性の高いものが必要となってきており、液晶配向膜の電気特性に関しても、初期特性が良好なだけでなく、例えば、高温下に長時間曝された後であっても、良好な特性を維持することが求められている。 However, in recent years, large-screen, high-definition liquid crystal televisions have been widely put into practical use, and liquid crystal display elements in such applications are more effective against afterimages than conventional displays that mainly display characters and still images. The requirements are becoming stricter, and characteristics that can withstand long-term use in harsh usage environments are required. Therefore, the liquid crystal alignment film to be used has to be more reliable than conventional liquid crystal alignment films. The electrical characteristics of the liquid crystal alignment film are not only good in initial characteristics but also, for example, at a high temperature for a long time. There is a need to maintain good properties even after exposure.
特開平9-316200号公報JP-A-9-316200 特開平10-104633号公報JP-A-10-104633 特開平8-76128号公報JP-A-8-76128
 本発明の目的は、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる液晶配向処理剤を形成するポリアミド酸及び/又はポリイミド(以下、重合体ともいう)の原料として使用可能なジアミン化合物を提供することにある。
 さらに、本発明の目的は、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる液晶配向処理剤、及び過酷な使用環境での長期使用に耐えうる信頼性の高い液晶表示素子を提供することにある。
An object of the present invention is to provide a liquid crystal alignment treatment agent capable of obtaining a liquid crystal alignment film having a high voltage holding ratio and capable of quickly relieving residual charges accumulated by a DC voltage even after being exposed to a high temperature for a long time. It is in providing the diamine compound which can be used as a raw material of the polyamic acid and / or polyimide (henceforth also referred to as a polymer).
Furthermore, an object of the present invention is to provide a liquid crystal alignment film having a high voltage holding ratio and capable of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage are quickly relaxed even after being exposed to a high temperature for a long time. It is an object of the present invention to provide a liquid crystal display device with high reliability that can withstand a long-term use in a treating agent and a severe use environment.
 本発明者は、上記の目的を達成するべく鋭意研究を進めたところ、特定の新規な構造を有するジアミン化合物を見出し、該ジアミン化合物を用いて得られる重合体を含む液晶配向処理剤が上記の目的を達成することを見出した。本発明はかかる知見に基づくもので、以下の要旨を有する。
(1)下記式[1]のジアミン化合物。
As a result of diligent research to achieve the above object, the present inventor has found a diamine compound having a specific novel structure, and a liquid crystal aligning agent containing a polymer obtained by using the diamine compound has the above-described properties. Found to achieve the purpose. The present invention is based on such knowledge and has the following gist.
(1) A diamine compound of the following formula [1].
Figure JPOXMLDOC01-appb-C000003
(式中、Xは-CO-、-CONH-を表し、Xは炭素数1~5のアルキレン基、又は窒素原子を含有する非芳香族複素環を表し、Xは炭素数1~5のアルキル基で置換されていてもよい、窒素原子を2つ含有する5員環又は6員環の芳香族複素環を表す。)
(2)前記芳香族複素環が、イミダゾール環、ピラジン環、又はピリミジン環である上記(1)に記載のジアミン化合物。
(3)前記窒素原子を含有する非芳香族複素環が、ピペラジン環である上記(1)又は(2)に記載のジアミン化合物。
(4)上記(1)~(3)のいずれかに記載のジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(5)前記ジアミン成分中に、上記(1)~(3)のいずれかに記載のジアミン化合物が1~80モル%含まれる上記(4)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(6)前記ジアミン成分中に、分子内にカルボキシル基を含有するジアミン化合物が含まれる上記(4)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(7)前記ジアミン成分中に、上記(1)~(3)のいずれかに記載のジアミンの1モルに対して、分子内にカルボキシル基を有するジアミン化合物が、0.01~99モル含まれる上記(6)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(8)前記分子内にカルボキシル基を有するジアミン化合物が、下記の式[2]で表されるジアミンである上記(6)又は(7)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
Figure JPOXMLDOC01-appb-C000003
(Wherein X 1 represents —CO— or —CONH—, X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom, and X 3 represents 1 to 5 carbon atoms) It represents a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms, which may be substituted with 5 alkyl groups.
(2) The diamine compound according to (1), wherein the aromatic heterocyclic ring is an imidazole ring, a pyrazine ring, or a pyrimidine ring.
(3) The diamine compound according to (1) or (2), wherein the non-aromatic heterocycle containing the nitrogen atom is a piperazine ring.
(4) Polyamic acid obtained by reacting the diamine component containing the diamine compound according to any one of (1) to (3) above and a tetracarboxylic dianhydride component, or a polyimide obtained by imidizing the polyamic acid .
(5) The polyamic acid according to (4) or the imidized polyamic acid according to (4) above, wherein 1 to 80 mol% of the diamine compound according to any one of (1) to (3) is contained in the diamine component Polyimide.
(6) The polyamic acid according to (4) or a polyimide obtained by imidizing the polyamic acid, wherein the diamine component contains a diamine compound containing a carboxyl group in the molecule.
(7) The diamine component contains 0.01 to 99 mol of a diamine compound having a carboxyl group in the molecule with respect to 1 mol of the diamine according to any one of (1) to (3) above. The polyamic acid as described in said (6) or the polyimide which imidized this polyamic acid.
(8) The polyamic acid according to the above (6) or (7), wherein the diamine compound having a carboxyl group in the molecule is a diamine represented by the following formula [2], or a polyimide obtained by imidizing the polyamic acid .
Figure JPOXMLDOC01-appb-C000004

(式[2]中、Xは炭素数6~30の芳香族環を有する有機基であり、nは1~4の整数である。)
(9)上記(4)~(8)のいずれかに記載のポリアミド酸及び該ポリアミド酸をイミド化したポリイミドのうち少なくとも一方と、溶媒とを含有する液晶配向処理剤。
(10)前記溶媒中の5~80質量%が貧溶媒である上記(9)に記載の液晶配向処理剤。
(11)上記(9)又は(10)に記載の液晶配向処理剤から得られる液晶配向膜。
(12)上記(11)に記載の液晶配向膜を有する液晶表示素子。
Figure JPOXMLDOC01-appb-C000004

(In the formula [2], X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.)
(9) A liquid crystal aligning agent containing at least one of the polyamic acid according to any one of (4) to (8) and a polyimide obtained by imidizing the polyamic acid, and a solvent.
(10) The liquid crystal aligning agent according to the above (9), wherein 5 to 80% by mass in the solvent is a poor solvent.
(11) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to (9) or (10).
(12) A liquid crystal display device having the liquid crystal alignment film according to (11).
 本発明のジアミン化合物は、窒素原子を2つ含有する5員環又は6員環の芳香族複素環を含む特定構造を側鎖に含む新規なジアミン(以下、特定ジアミン化合物と称することもある)であり、比較的簡便な方法で得ることができる。該特定ジアミン化合物における窒素原子を2つ含有する5員環又は6員環の芳香族複素環は、その共役構造により電子のホッピングサイトとして機能するので、特定ジアミン化合物を使用したポリアミド酸及び/又は該ポリアミド酸をイミド化したポリイミド重合体から得られる液晶配向膜は、液晶配向膜中の電荷の移動を促進させることができ、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が速いという特性を有することができる。
 かくして、本発明の本発明のジアミン化合物を使用したポリアミド酸及び/又はポリイミド重合体を含む液晶配向処理剤から得られる液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビ等に好適に使用できる。
The diamine compound of the present invention is a novel diamine containing a specific structure containing a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the side chain (hereinafter also referred to as a specific diamine compound). And can be obtained by a relatively simple method. The 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the specific diamine compound functions as an electron hopping site depending on the conjugated structure thereof, so that the polyamic acid and / or the specific acid using the specific diamine compound and / or The liquid crystal alignment film obtained from the polyimide polymer imidized with the polyamic acid can promote the movement of electric charge in the liquid crystal alignment film, has a high voltage holding ratio, and is exposed to a high temperature for a long time. Even in such a case, the residual charge accumulated by the DC voltage can be relaxed quickly.
Thus, a liquid crystal display element having a liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polyamic acid and / or a polyimide polymer using the diamine compound of the present invention is excellent in reliability and has a large screen. Therefore, it can be suitably used for high-definition liquid crystal televisions.
 <特定ジアミン化合物>
 本発明の特定ジアミン化合物は、下記の式[1]で表される。
<Specific diamine compound>
The specific diamine compound of the present invention is represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000005
 式中、Xは-CO-又は-CONH-を表し、Xは炭素数1~5のアルキレン基、又は窒素原子を含有する非芳香族複素環を表し、Xは炭素数1~5のアルキル基で置換されていてもよい、窒素原子を2つ含有する5員環又は6員環の芳香族複素環を表す。
Figure JPOXMLDOC01-appb-C000005
In the formula, X 1 represents —CO— or —CONH—, X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom, and X 3 represents 1 to 5 carbon atoms. Represents a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms, which may be substituted with an alkyl group.
 式[1]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。これらのなかでも、ポリアミド酸を合成する際の反応性の観点、及びジアミン化合物を合成する際の容易性も加味すると、二つのアミノ基の結合位置が2,4の位置、2,5の位置、3,5の位置が特に好ましい。
 式[1]中、Xは-CO-又は-CONH-である。
 式[1]中、Xは炭素数1~5のアルキレン基、又は窒素原子を含有する非芳香族複素環である。
 Xが炭素数1~5のアルキレン基である場合は、該アルキレン基は直鎖状でもよいし、分岐していてもよい。特に、アルキレン基の炭素数は1~3が好ましい。
The bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease of synthesizing the diamine compound, the bonding positions of the two amino groups are positions 2, 4 and 2, 5 , 3, 5 are particularly preferred.
In the formula [1], X 1 is —CO— or —CONH—.
In the formula [1], X 2 is an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom.
When X 2 is an alkylene group having 1 to 5 carbon atoms, the alkylene group may be linear or branched. In particular, the alkylene group preferably has 1 to 3 carbon atoms.
 また、Xが窒素原子を含有する非芳香族複素環である場合は、例としては、ピロリジン環、ピペリジン環、ピペラジン環、ピラゾリジン環、キヌクリジン環、イミダゾリジン環が挙げられる。特に、非芳香族複素環が5員環又は6員環のものは、液晶配向膜とした場合に良好な配向性が得られるので好ましい。また、非芳香族複素環が窒素原子を2つ含有する場合は、液晶表示素子とした場合に、液晶配向膜界面において液晶中のイオン性不純物を吸着し、液晶表示素子の良好な電気特性を保つので望ましい。以上の観点より、窒素原子を含有する非芳香族複素環としては、ピペラジン環がとりわけ好ましい。
 Xは、X中の窒素原子又は前記窒素原子に隣接する原子、好ましくは炭素原子と結合していると、液晶表示素子において直流電圧により蓄積する残留電荷の緩和を早くする効果を奏し易いため好ましい。
Further, when X 2 is a non-aromatic heterocyclic ring containing a nitrogen atom, examples include a pyrrolidine ring, a piperidine ring, a piperazine ring, a pyrazolidine ring, a quinuclidine ring, and an imidazolidine ring. In particular, a non-aromatic heterocyclic ring having a 5-membered ring or a 6-membered ring is preferable because good alignment can be obtained when a liquid crystal alignment film is used. In addition, when the non-aromatic heterocycle contains two nitrogen atoms, when a liquid crystal display device is used, ionic impurities in the liquid crystal are adsorbed at the liquid crystal alignment film interface, and the liquid crystal display device has good electrical characteristics. It is desirable to keep. From the above viewpoint, a piperazine ring is particularly preferable as the non-aromatic heterocyclic ring containing a nitrogen atom.
When X 2 is bonded to a nitrogen atom in X 3 or an atom adjacent to the nitrogen atom, preferably a carbon atom, it is easy to achieve an effect of accelerating the relaxation of residual charges accumulated by a DC voltage in a liquid crystal display element. Therefore, it is preferable.
 式[1]中、Xは炭素数1~5のアルキル基で置換されていてもよい、窒素原子を2つ含有する5員環又は6員環の芳香族複素環である。窒素原子を2つ含有する5員環又は6員環の芳香族複素環の例としては、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環が挙げられるが、なかでも、イミダゾール環、ピラジン環、またはピリミジン環が好ましい。Xにおける芳香族複素環がアルキル基で置換されている場合、そのアルキル基の炭素数は1~3が好ましい。 In the formula [1], X 3 is a 5-membered or 6-membered aromatic heterocyclic ring containing two nitrogen atoms, which may be substituted with an alkyl group having 1 to 5 carbon atoms. Examples of 5-membered or 6-membered aromatic heterocycles containing two nitrogen atoms include imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring and pyridazine ring. Among them, imidazole ring and pyrazine A ring or a pyrimidine ring is preferred. When the aromatic heterocycle in X 3 is substituted with an alkyl group, the alkyl group preferably has 1 to 3 carbon atoms.
 上記式[1]におけるX、X、及びXの好ましい具体的組み合わせは、下記の表1及び表2に示す通りである。 Preferred specific combinations of X 1 , X 2 and X 3 in the above formula [1] are as shown in Table 1 and Table 2 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<特定ジアミン化合物の合成方法>
 本発明の式[1]で表される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては以下の方法が挙げられる。
<Method for synthesizing specific diamine compound>
Although the method of manufacturing the specific diamine compound represented by Formula [1] of this invention is not specifically limited, The following method is mentioned as a preferable method.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の特定ジアミン化合物は、式[3]で表されるジニトロ化合物を合成し、さらにジニトロ化合物の有するニトロ基を還元してアミノ基に変換することで得られる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒中、水素ガス、ヒドラジン、塩化水素などによって行う方法がある。式[3]中のX、X、及びXは、式[1]の定義と同義である。 The specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the formula [3], further reducing the nitro group of the dinitro compound and converting it to an amino group. There is no particular limitation on the method for reducing the dinitro compound, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in an alcohol-based solvent. X 1 , X 2 , and X 3 in the formula [ 3 ] have the same definition as in the formula [1].
 式[3]で表されるジニトロ化合物は、ジニトロベンゼンに対してXを介して-X-Xを結合させる方法などで得ることができ、例えば、Xがアミド結合(-CONH-)の場合には、ジニトロベンゼン酸クロリドと、X及びXを含むアミノ化合物とをアルカリ存在下で反応させる方法が挙げられる。また、Xが逆アミド結合(-HNCO-)の場合には、アミノ基含有ニトロベンゼンと、X及びXを含む酸クロリドとをアルカリ存在下で反応させる方法が挙げられる。 Dinitro compound represented by the formula [3], via the X 1 against dinitrobenzene -X 2 -X 3 can be obtained by a method of attaching, for example, X 1 is an amide bond (-CONH- ), A method of reacting dinitrobenzene chloride with an amino compound containing X 2 and X 3 in the presence of alkali. In addition, when X 1 is a reverse amide bond (—HNCO—), a method of reacting an amino group-containing nitrobenzene and an acid chloride containing X 2 and X 3 in the presence of an alkali can be mentioned.
 上記のジニトロベンゼン酸クロリドとしては、3,5-ジニトロ安息香酸クロリド、3,5-ジニトロ安息香酸、2,4-ジニトロ安息香酸クロリド、3,5-ジニトロベンジルクロリド、2,4-ジニトロベンジルクロリド、また、アミノ基含有ニトロベンゼンとしては、2,4-ジニトロアニリン、3,5-ジニトロアニリン、2,6-ジニトロアニリンなどが挙げられる。原料の入手性、反応の点を考慮して、一種又は複数種を選択して用いることができる。 Examples of the dinitrobenzene acid chloride include 3,5-dinitrobenzoic acid chloride, 3,5-dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 3,5-dinitrobenzyl chloride, and 2,4-dinitrobenzyl chloride. Examples of the amino group-containing nitrobenzene include 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline and the like. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
<重合体>
 本発明の重合体は、特定ジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及びこのポリアミド酸を脱水閉環させて得られるポリイミドである。これらのポリアミド酸及びポリイミドのいずれもが、液晶配向膜を得るための重合体として有用である。
 本発明の重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早くなる。
 上記した特性を高める目的では、ジアミン成分の1モル%以上が特定ジアミン化合物であることが好ましい。更には、ジアミン成分の5モル%以上が特定ジアミン化合物であることが好ましく、より好ましくは10モル%以上である。
 ジアミン成分の100モル%が特定ジアミン化合物であってもよいが、液晶配向処理剤を塗布する際の均一塗布性の観点から、特定ジアミン化合物はジアミン成分の80モル%以下が好ましく、より好ましくは40モル%以下である。
<Polymer>
The polymer of the present invention is a polyamic acid obtained by reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing this polyamic acid. Any of these polyamic acids and polyimides are useful as a polymer for obtaining a liquid crystal alignment film.
The liquid crystal alignment film obtained using the polymer of the present invention has a higher voltage holding ratio as the content ratio of the specific diamine compound in the diamine component increases, and even after being exposed to a high temperature for a long time, The residual charge accumulated by the DC voltage is alleviated faster.
For the purpose of enhancing the above properties, it is preferable that 1 mol% or more of the diamine component is the specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more.
Although 100 mol% of the diamine component may be a specific diamine compound, the specific diamine compound is preferably 80 mol% or less of the diamine component, more preferably, from the viewpoint of uniform coatability when applying the liquid crystal aligning agent. It is 40 mol% or less.
<分子内にカルボキシル基を有するジアミン化合物>
 本発明において、ジアミン成分として、特定ジアミン化合物とともに、分子内にカルボキシル基を有するジアミン化合物を使用した場合には、上記特定ジアミン化合物の有する窒素原子を2つ有する芳香族複素環が、分子内にカルボキシル基を有するジアミン化合物の有するカルボキシル基と、塩形成や水素結合といった静電的相互作用で結ばれることにより、カルボキシル基と窒素含有芳香族複素環との間で電荷の移動が起こる。そのため、窒素含有芳香族複素環部位に移動した電荷は、効率的に共重合体の分子内、分子間を移動でき、その結果、この場合に得られる液晶配向処理剤は、液晶配向膜にした際、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和さらに速いという効果を奏する。
<Diamine compound having a carboxyl group in the molecule>
In the present invention, when a diamine compound having a carboxyl group in the molecule is used together with the specific diamine compound as the diamine component, an aromatic heterocyclic ring having two nitrogen atoms of the specific diamine compound is present in the molecule. When the carboxyl group of the diamine compound having a carboxyl group is linked with an electrostatic interaction such as salt formation or hydrogen bond, charge transfer occurs between the carboxyl group and the nitrogen-containing aromatic heterocycle. Therefore, the charge transferred to the nitrogen-containing aromatic heterocyclic moiety can efficiently move within and between the molecules of the copolymer, and as a result, the liquid crystal alignment treatment agent obtained in this case is a liquid crystal alignment film. In this case, the voltage holding ratio is high, and even after being exposed to a high temperature for a long time, there is an effect that the residual charge accumulated by the DC voltage is relaxed and faster.
 分子内にカルボキシル基を有するジアミン化合物は、その具体的構造について特に限定されないが、式[2]で表される化合物が好ましい The specific structure of the diamine compound having a carboxyl group in the molecule is not particularly limited, but a compound represented by the formula [2] is preferable.
Figure JPOXMLDOC01-appb-C000009

 式[2]中、Xは炭素数6~30の芳香族環を有する有機基であり、nは1~4の整数である。
 式[2]を具体的に示すとすれば、下記の式[3]~[7]の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000009

In the formula [2], X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.
If the formula [2] is specifically shown, the structures of the following formulas [3] to [7] can be mentioned.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式[3]中、m1は1~4の整数であり、式[4]中、Xは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH2-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、m2及びm3はそれぞれ0~4の整数であり、かつm2+m3は1~4の整数を示し、式[5]中、m4及びm5はそれぞれ1~5の整数であり、式[6]中、Xは炭素数1~5の直鎖又は分岐アルキル基であり、m6は1~5の整数であり、式[7]中、Xは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH2-、-COO-、-OCO-、-CON(CH)-、又は-N(CH)CO-であり、m7は1~4の整数を示す。 In the formula [3], m1 is an integer of 1 to 4, and in the formula [4], X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, — CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , -COO-, -OCO-, -CON (CH 3 )-, or -N (CH 3 ) CO-, m2 and m3 are each an integer of 0 to 4, and m2 + m3 is an integer of 1 to 4 In the formula [5], m4 and m5 are each an integer of 1 to 5, and in the formula [6], X 7 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m6 is 1 to 5. 5 is an integer, wherein [7], X 8 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3 2 -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH2 -, - COO -, - OCO -, - CON (CH 3 ) — or —N (CH 3 ) CO—, and m7 represents an integer of 1 to 4.
 式[3]~式[7]の構造において、好ましくは、式[3]中、m1が1~2の整数である構造、式[4]中、Xが単結合、-CH-、-C-、-C(CH-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、又は-OCO-であり、m2及びm3は共に1の整数である構造、式[7]中、Xは単結合、-CH-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH2-、-COO-、又は-OCO-であり、m7は1~2の整数である構造である。 In the structure of the formula [3] to the formula [7], a structure in which m1 is an integer of 1 to 2 in the formula [3], in the formula [4], X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, or — A structure in which both m2 and m3 are integers of 1, and in formula [7], X 8 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—, wherein m7 is an integer of 1 to 2.
 式[3]~式[7]で表されるジアミン化合物の具体例として、下記の式[8]~式[18]の化合物を挙げることができる。 Specific examples of the diamine compound represented by the formulas [3] to [7] include the compounds of the following formulas [8] to [18].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式[17]中、Xは単結合、-CH-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、又は-OCO-であり、式[18]中、X10は単結合、-CH-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、又は-OCO-である。 In the formula [17], X 9 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO. In formula [18], X 10 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O —, —OCH 2 —, —COO—, or —OCO—.
[その他のジアミン化合物]
 本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物、及び上記分子内にカルボキシル基を有するジアミン化合物に加えて、その他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
[Other diamine compounds]
In the present invention, as long as the effects of the present invention are not impaired, in addition to the specific diamine compound and the diamine compound having a carboxyl group in the molecule, other diamine compounds can be used in combination as a diamine component. Specific examples are given below.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシ-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、3,3'-ジフルオロ-4,4'-ビフェニル、3,3'-トリフルオロメチル-4,4'-ジアミノビフェニル、3,4'-ジアミノビフェニル、3,3'-ジアミノビフェニル、2,2'-ジアミノビフェニル、2,3'-ジアミノビフェニル、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、2,2'-ジアミノジフェニルメタン、2,3'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、2,2'-ジアミノジフェニルエーテル、2,3'-ジアミノジフェニルエーテル、4,4'-スルホニルジアニリン、3,3'-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4'-チオジアニリン、3,3'-チオジアニリン、4,4'-ジアミノジフェニルアミン、3,3'-ジアミノジフェニルアミン、3,4'-ジアミノジフェニルアミン、2,2'-ジアミノジフェニルアミン、2,3'-ジアミノジフェニルアミン、N-メチル(4,4'-ジアミノジフェニル)アミン、N-メチル(3,3'-ジアミノジフェニル)アミン、N-メチル(3,4'-ジアミノジフェニル)アミン、N-メチル(2,2'-ジアミノジフェニル)アミン、N-メチル(2,3'-ジアミノジフェニル)アミン、4,4'-ジアミノベンゾフェノン、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2'-ジアミノベンゾフェノン、2,3'-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4'-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4'-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4'-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3'-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3'-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N'-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N'-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N'-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N'-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N'-ビス(4-アミノフェニル)テレフタルアミド、N,N'-ビス(3-アミノフェニル)テレフタルアミド、N,N'-ビス(4-アミノフェニル)イソフタルアミド、N,N'-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4'-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2'-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2'-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2'-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2'-ビス(4-アミノフェニル)プロパン、2,2'-ビス(3-アミノフェニル)プロパン、2,2'-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン。ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどが挙げられる。 p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoro Methyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) Nyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3,3′-diaminodiphenylamine, 3,4′- Diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3 '-Diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diamy Benzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-amino) Phenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl- 4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) Benzene, 4,4 '-[1,4-phenylenebis (methylene)] dianiline, 4,4'-[1,3-phenylenebis (methylene)] dianiline, 3,4 '-[1,4-phenylenebis (Methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1, 3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [( 4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) ) Isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phenylene) bis (4- Aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenyl) Enylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-amino) Phenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2, 2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-aminophenyl) Hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hex Safluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) Butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3- Aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, , 10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12 -(3-Aminophenoxy) dodecane. Bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and the like.
 また、ジアミン側鎖として、アルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、及びそれらからなる環状置換基を有するジアミン化合物を挙げることができる。該ジアミン化合物の具体例としては、下記の式[DA1]~式[DA26]で表されるジアミン化合物を挙げることができる。 Further, examples of the diamine side chain include diamine compounds having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a cyclic substituent composed thereof. Specific examples of the diamine compound include diamine compounds represented by the following formulas [DA1] to [DA26].
Figure JPOXMLDOC01-appb-C000013
 式[DA1]~式[DA5]中、Rは、炭素数1以上22以下のアルキル基又はフッ素含有アルキル基である。
Figure JPOXMLDOC01-appb-C000013
In the formulas [DA1] to [DA5], R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式[DA6]~式[DA9]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1以上22以下のアルキル基又はフッ素含有アルキル基を示す。 In the formulas [DA6] to [DA9], R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. , R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式[DA10]及び式[DA11]中、Rは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。 In Formula [DA10] and Formula [DA11], R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 5 represents 1 carbon atom. These are an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 22 or less.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式[DA12]~式[DA14]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。 In the formulas [DA12] to [DA14], R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 — or —CH 2 —, wherein R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式[DA15]及び式[DA16]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。 In Formula [DA15] and Formula [DA16], R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group. is there.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 加えて、下記の式[DA27]で示されるジアミノシロキサンなども挙げられる。
Figure JPOXMLDOC01-appb-C000020
In addition, diaminosiloxane represented by the following formula [DA27] and the like are also included.
Figure JPOXMLDOC01-appb-C000021
(式[DA27]中、mは、1~10の整数である。)
 その他のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Figure JPOXMLDOC01-appb-C000021
(In the formula [DA27], m is an integer of 1 to 10.)
Other diamine compounds may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
<テトラカルボン酸二無水物>
 本発明のポリアミド酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その好ましい具体例を以下に挙げる。
 ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3,3',4-ビフェニルテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸二無水物、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、オキシジフタルテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロへキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸二無水物、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。
<Tetracarboxylic dianhydride>
The tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited. The preferable specific example is given below.
Pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,5,6-anthracene tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic Acid dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3 3,3- Oxafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4, 5-pyridinetetracarboxylic dianhydride, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,4,9 , 10-perylenetetracarboxylic dianhydride, 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, oxydiphthaltetracarboxylic dianhydride, 1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cycloheptanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetra Carboxylic dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, 3,4-dicarboxy-1,2,3 4-tetrahydro-1-naphthalene succinic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, bicyclo [4,3,0] nonane-2, 4,7,9- Tracarboxylic dianhydride, bicyclo [4,4,0] decane-2,4,7,9-tetracarboxylic dianhydride, bicyclo [4,4,0] decane-2,4,8,10- Tetracarboxylic dianhydride, tricyclo [6.3.0.0 <2,6>] undecane-3,5,9,11-tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic Acid dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydraphthalene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2 ] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid Acid dianhydride, tetracyclo [6,2,1,1,0,2,7] Dodeca-4,5,9,10-tetracarboxylic dianhydride, 3,5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic dianhydride, 1,2,4,5-cyclohexanetetra Examples thereof include carboxylic dianhydrides.
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用することができる。
 テトラカルボン酸二無水物とジアミン成分との反応により、本発明のポリアミド酸を得るにあたっては、公知の合成手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミン成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
The tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
In obtaining the polyamic acid of the present invention by reaction of tetracarboxylic dianhydride and a diamine component, a known synthesis method can be used. In general, tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. The reaction between the tetracarboxylic dianhydride and the diamine component is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
The organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the produced polyamic acid dissolves. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether , Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether , 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n -Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, Methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid Propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
In addition, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
When the tetracarboxylic dianhydride and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. In addition, when the tetracarboxylic dianhydride or diamine component consists of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重合反応と同様に、このモル比が1.0に近いほど生成するポリアミド酸の分子量は大きくなる。
 本発明のポリイミドは、前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
In the polyamic acid polymerization reaction, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polymerization reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0.
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリアミド酸の触媒イミド化は、ポリアミド酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、なかでもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリアミド酸又はポリイミドの反応溶液から、生成したポリアミド酸又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When the produced polyamic acid or polyimide is recovered from the polyamic acid or polyimide reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の液晶配向処理剤に含有されるポリアミド酸及びポリイミドの分子量は、そこから得られる塗膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability when forming the coating film, and the uniformity of the coating film. The weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、高分子被膜を形成するための高分子成分が溶媒中に溶解した溶液である。ここで、前記の高分子成分には、上記した本発明の重合体の少なくとも一種の重合体が含まれる。その際、高分子成分の含有量は、液晶配向処理剤中、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a polymer component for forming a polymer film is dissolved in a solvent. Here, the polymer component includes at least one polymer of the polymer of the present invention described above. In this case, the content of the polymer component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass in the liquid crystal aligning agent.
 本発明において、前記の高分子成分は全てが本発明の重合体であってもよく、本発明の効果を損なわない限りにおいて他の重合体を含有してもよい。高分子成分が他の重合体を含有する場合、その含有量は本発明の重合体の1質量部に対して、0.05~4質量部が好ましく、より好ましくは0.1~3質量部である。 In the present invention, all of the above polymer components may be the polymer of the present invention, and may contain other polymers as long as the effects of the present invention are not impaired. When the polymer component contains another polymer, the content thereof is preferably 0.05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 1 part by mass of the polymer of the present invention. It is.
 上記他の重合体は、例えば、テトラカルボン酸ニ無水物成分と反応させるジアミン成分としては、上記特定ジアミン化合物以外のジアミン化合物を使用して得られるポリアミド酸又は該ポリアミド酸をイミド化したポリイミドなどが挙げられる。
 本発明の液晶配向処理剤に用いる溶媒は、高分子成分を溶解させる有機溶媒が好ましく、その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
Examples of the other polymer include a polyamic acid obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with a tetracarboxylic dianhydride component, or a polyimide obtained by imidizing the polyamic acid. Is mentioned.
The solvent used in the liquid crystal aligning agent of the present invention is preferably an organic solvent that dissolves the polymer component, and specific examples thereof are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4 -Hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination.
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。その例としては、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物などである。
 膜厚の均一性や表面平滑性を向上させる溶媒としては、液晶配向処理剤中の高分子成分に対する溶解性が小さい貧溶媒が挙げられる。貧溶媒の具体例としては次のものが挙げられる。
The liquid crystal aligning agent of this invention may contain components other than the above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
Examples of the solvent that improves the uniformity of the film thickness and the surface smoothness include poor solvents that have low solubility in the polymer component in the liquid crystal aligning agent. Specific examples of the poor solvent include the following.
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。 For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dip Pyrene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octa , Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol Low 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester Examples include solvents having surface tension.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、貧溶媒は、液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
These poor solvents may be used alone or in combination. When the poor solvent as described above is used, the poor solvent is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される高分子成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N',N',-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N',-テトラグリシジル-4、4'-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向処理剤に含有される高分子成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、若しくはアクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50℃~300℃、好ましくは80℃~250℃で行い、溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate, and the solvent is evaporated to form a coating film. Can do. If the thickness of the coating film formed after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げると、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
As an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread a spacer on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure, or a method in which the substrate is attached to the surface after the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and the like is sealed. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明の解釈はこれらの実施例に限定されるものではない。
[ジアミン化合物の合成]
<実施例1>
 ジアミン化合物(4)の合成
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the interpretation of the present invention is not limited to these examples.
[Synthesis of diamine compound]
<Example 1>
Synthesis of diamine compound (4)
Figure JPOXMLDOC01-appb-C000022
 化合物(2)(57.00g,455mmol)、及びトリエチルアミン(46.08g,455mmol)のテトラヒドロフラン(1000g)溶液を10℃以下に冷却し、化合物(1)(100.00g,434mmol)のテトラヒドロフラン(500g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応の終了を確認後、蒸留水(9L)中に反応液を注いだ後、析出した固体をろ過、水洗後、2-プロパノール(200g)で分散洗浄し、化合物(3)を得た(得量:120.6g,得率:89%)。
 1H-NMR(H核磁気共鳴分光)(400MHz,DMSO-d6,δ(ppm)):9.21(1H,t),9.05(2H,d),8.97(1H,t),7.66(1H,s),7.22(1H,s),6.90(1H,s),4.05(2H,t),3.31(2H,q),2.01(2H,tt).
Figure JPOXMLDOC01-appb-C000022
A solution of compound (2) (57.00 g, 455 mmol) and triethylamine (46.08 g, 455 mmol) in tetrahydrofuran (1000 g) was cooled to 10 ° C. or lower, and compound (1) (100.00 g, 434 mmol) in tetrahydrofuran (500 g) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (high performance liquid chromatograph), the reaction solution was poured into distilled water (9 L), the precipitated solid was filtered, washed with water, dispersed and washed with 2-propanol (200 g), Compound (3) was obtained (yield: 120.6 g, yield: 89%).
1 H-NMR ( 1 H nuclear magnetic resonance spectroscopy) (400 MHz, DMSO-d6, δ (ppm)): 9.21 (1H, t), 9.05 (2H, d), 8.97 (1H, t), 7.66 (1H, s), 7.22 (1H, s), 6.90 (1H, s), 4.05 (2H, t), 3.31 (2H, q), 2.01 (2H, tt).
 次いで、化合物(3)(100.00g,313mmol)、5%パラジウムカーボン(含水型,10.00g,10wt%)、及びN,N-ジメチルホルムアミド(2000g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、窒素置換した後、活性炭(10.00g)を加え、23℃で1時間撹拌した。その後、触媒及び活性炭をろ過により除き、ろ液を留去し、粗結晶を得た。この粗結晶に2-プロパノール(300g)を加え、23℃で30分撹拌した。ろ過、乾燥を行い、ジアミン化合物(4)を得た(得量:76.3g,得率:94%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.05(1H,t),7.62(1H,t),
  7.16(1H,t),6.85(1H,t),6.16(2H,d),5.89(1H,t),4.82(4H,broad),
  3.94(2H,t),3.43(2H,q),1.85(2H,tt).
Next, a mixture of compound (3) (100.00 g, 313 mmol), 5% palladium carbon (hydrous type, 10.00 g, 10 wt%) and N, N-dimethylformamide (2000 g) was added in the presence of hydrogen. Stir at 23 ° C. After completion of the reaction, the atmosphere was replaced with nitrogen, activated carbon (10.00 g) was added, and the mixture was stirred at 23 ° C. for 1 hour. Thereafter, the catalyst and activated carbon were removed by filtration, and the filtrate was distilled off to obtain crude crystals. 2-Propanol (300 g) was added to the crude crystals, and the mixture was stirred at 23 ° C. for 30 minutes. Filtration and drying were performed to obtain a diamine compound (4) (yield: 76.3 g, yield: 94%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 8.05 (1H, t), 7.62 (1H, t),
7.16 (1H, t), 6.85 (1H, t), 6.16 (2H, d), 5.89 (1H, t), 4.82 (4H, broad),
3.94 (2H, t), 3.43 (2H, q), 1.85 (2H, tt).
<実施例2>
 ジアミン化合物(7)の合成
<Example 2>
Synthesis of diamine compound (7)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物(5)(24.00g,195mmol)、及びトリエチルアミン(19.72g,195mmol)のテトラヒドロフラン(500g)溶液を10℃以下に冷却し、化合物(1)(42.80g、186mmol)のテトラヒドロフラン(142g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(3.9L)中に反応液を注いだ後、析出した固体をろ過、水洗後、2-プロパノール(240g)で分散洗浄し、化合物(6)を得た(得量:51.3g,得率:87%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.87(1H,broad),9.10(2H,d),
  8.97(1H,t),8.57(1H,d),8.50(1H,t),4.65(2H,s),2.84(3H,s). 
A solution of compound (5) (24.00 g, 195 mmol) and triethylamine (19.72 g, 195 mmol) in tetrahydrofuran (500 g) was cooled to 10 ° C. or lower, and compound (1) (42.80 g, 186 mmol) in tetrahydrofuran (142 g) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (3.9 L), and the precipitated solid was filtered, washed with water, dispersed and washed with 2-propanol (240 g), and compound (6) (Yield: 51.3 g, yield: 87%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 9.87 (1H, broad), 9.10 (2H, d),
8.97 (1H, t), 8.57 (1H, d), 8.50 (1H, t), 4.65 (2H, s), 2.84 (3H, s).
 次いで、化合物(6)(45.00g,142mmol)、5%パラジウムカーボン(含水品,4.5g,10wt%)、及び1,4-ジオキサン(675g)/DMF(200g)の混合物を、水素存在下にて、70℃で攪拌した。反応終了後、窒素置換した後、活性炭(4.5g)を加え、70℃で1時間撹拌した。その後、触媒及び活性炭をろ過により除き、ろ液を留去し、粗結晶を得た。得られた粗物を2-プロパノール(100g)で分散洗浄することにより、ジアミン化合物(7)を得た(得量:33.7g,得率:92%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.60(1H,t),8.42(1H,m),
  8.38(1H,d),6.22(2H,d),5.92(1H,t),4.84(4H,s),4.43(2H,d),  2.43(3H,s). 
Next, a mixture of compound (6) (45.00 g, 142 mmol), 5% palladium carbon (hydrated product, 4.5 g, 10 wt%), and 1,4-dioxane (675 g) / DMF (200 g) was added in the presence of hydrogen. Under stirring at 70 ° C. After completion of the reaction, the atmosphere was replaced with nitrogen, activated carbon (4.5 g) was added, and the mixture was stirred at 70 ° C. for 1 hour. Thereafter, the catalyst and activated carbon were removed by filtration, and the filtrate was distilled off to obtain crude crystals. The obtained crude product was dispersed and washed with 2-propanol (100 g) to obtain a diamine compound (7) (yield: 33.7 g, yield: 92%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.60 (1H, t), 8.42 (1H, m),
8.38 (1H, d), 6.22 (2H, d), 5.92 (1H, t), 4.84 (4H, s), 4.43 (2H, d), 2.43 (3H, s).
<実施例3>
 ジアミン化合物(10)の合成
<Example 3>
Synthesis of diamine compound (10)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物(8)(24.00g,146mmol)、及びトリエチルアミン(14.79g,146mmol)のテトラヒドロフラン(332g)溶液を10℃以下に冷却し、化合物(1)(32.10g、139mmol)のテトラヒドロフラン(100g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(3.9L)中に反応液を注いだ後、析出した固体をろ過、水洗後、2-プロパノール(200g)で分散洗浄し、化合物(9)を得た(得量:47.6g,得率:95%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.88(1H,t),8.70(2H,d),8.40(2H,t),6.68(1H,t),3.9(2H,broad),3.75(4H,broad),3.42(2H,broad).
A solution of compound (8) (24.00 g, 146 mmol) and triethylamine (14.79 g, 146 mmol) in tetrahydrofuran (332 g) was cooled to 10 ° C. or lower, and compound (1) (32.10 g, 139 mmol) in tetrahydrofuran (100 g). ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (3.9 L), the precipitated solid was filtered, washed with water, dispersed and washed with 2-propanol (200 g), and compound (9) (Yield: 47.6 g, yield: 95%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 8.88 (1H, t), 8.70 (2H, d), 8.40 (2H, t), 6.68 (1H, t), 3.9 (2H, broad ), 3.75 (4H, broad), 3.42 (2H, broad).
 次いで、化合物(9)(40.00g,112mmol)、5%パラジウムカーボン(含水品、4.0g,10wt%)、及びDMF(800g)の混合物を、水素存在下にて、70℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、粗物を得た。得られた粗物を2-プロパノール(12g)で分散洗浄し、ジアミン化合物(10)を得た(得量:1.7g,得率:68%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.35(2H,d),6.63(1H,t),5.82(1H,t),5.75(2H,d),4.86(4H,s),3.70(4H,broad),3.49(4H,broad).
Next, a mixture of compound (9) (40.00 g, 112 mmol), 5% palladium carbon (hydrated product, 4.0 g, 10 wt%), and DMF (800 g) was stirred at 70 ° C. in the presence of hydrogen. . After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with 2-propanol (12 g) to obtain a diamine compound (10) (amount obtained: 1.7 g, yield: 68%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 8.35 (2H, d), 6.63 (1H, t), 5.82 (1H, t), 5.75 (2H, d), 4.86 (4H, s ), 3.70 (4H, broad), 3.49 (4H, broad).
<合成例1>
 ジアミン化合物(13)の合成
<Synthesis Example 1>
Synthesis of diamine compound (13)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物(11)(15.22g,142mmol)、及びトリエチルアミン(15.09g,149mmol)のテトラヒドロフラン(150g)溶液を10℃以下に冷却し、化合物(1)(31.1g,135mmol)のテトラヒドロフラン(50g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(1L)中に反応液を注いだ後、析出した固体をろ過し、水洗した。その後、固体をエタノール(300g)で分散洗浄し、化合物(12)を得た(得量:36.92g,得率:90%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.75(1H,broad),9.10(2H,s),
  8.97-8.92(1H,m),7.40-7.22(5H,m),4.59-4.52(2H,m).
A solution of compound (11) (15.22 g, 142 mmol) and triethylamine (15.09 g, 149 mmol) in tetrahydrofuran (150 g) was cooled to 10 ° C. or lower, and compound (1) (31.1 g, 135 mmol) in tetrahydrofuran (50 g) ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (1 L), and then the precipitated solid was filtered and washed with water. Thereafter, the solid was dispersed and washed with ethanol (300 g) to obtain a compound (12) (amount: 36.92 g, yield: 90%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 9.75 (1H, broad), 9.10 (2H, s),
8.97-8.92 (1H, m), 7.40-7.22 (5H, m), 4.59-4.52 (2H, m).
 次いで、化合物(12)(36.00g,119mmol)、5%パラジウムカーボン(含水型,3.6g,10wt%)、及び1,4-ジオキサン(300g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、粗物を得た。得られた粗物をメタノール(200g)で再結晶し、ジアミン化合物(13)を得た(得量:21.5g,得率:72%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.55(1H,broad),7.34-7.17(5H,m),6.28(2H,s),6.98-6.94(1H,m),4.85-4.74(4H,broad),4.42-4.35(2H,m).
Next, a mixture of compound (12) (36.00 g, 119 mmol), 5% palladium carbon (hydrous type, 3.6 g, 10 wt%), and 1,4-dioxane (300 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was recrystallized from methanol (200 g) to obtain a diamine compound (13) (amount: 21.5 g, yield: 72%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 8.55 (1H, broad), 7.34-7.17 (5H, m), 6.28 (2H, s), 6.98-6.94 (1H, m), 4.85 -4.74 (4H, broad), 4.42-4.35 (2H, m).
<合成例2>
 ジアミン化合物(16)の合成
<Synthesis Example 2>
Synthesis of diamine compound (16)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物(14)(23.45g,190mmol)、及びトリエチルアミン(19.23g,277mmol)のテトラヒドロフラン(230g)溶液を10℃以下に冷却し、化合物(1)(41.68g,180mmol)のテトラヒドロフラン(110g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応の終了を確認後、蒸留水(1.5L)中に反応液を注いだ後、析出した固体をろ過し、水洗した。その後、固体をエタノール(380g)で分散洗浄し、化合物(15)を得た(得量:50.82g,得率:89%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.76(1H,t),9.09-9.02(2H,m),
  8.99-8.93(1H,m),8.50(1H,broad),7.64-7.60(1H,m),7.36-7.32(1H,m),7.20-7.14(1H,m),4.57(2H,s),3.35(2H,s).
A solution of compound (14) (23.45 g, 190 mmol) and triethylamine (19.23 g, 277 mmol) in tetrahydrofuran (230 g) was cooled to 10 ° C. or lower, and compound (1) (41.68 g, 180 mmol) in tetrahydrofuran (110 g) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (high performance liquid chromatograph), the reaction solution was poured into distilled water (1.5 L), and then the precipitated solid was filtered and washed with water. Thereafter, the solid was dispersed and washed with ethanol (380 g) to obtain compound (15) (amount: 50.82 g, yield: 89%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 9.76 (1H, t), 9.09-9.02 (2H, m),
8.99-8.93 (1H, m), 8.50 (1H, broad), 7.64-7.60 (1H, m), 7.36-7.32 (1H, m), 7.20-7.14 (1H, m), 4.57 (2H, s), 3.35 (2H, s).
 次いで、化合物(15)(48.00g,151mmol)、5%パラジウムカーボン(含水型,4.8g,10wt%)、及び1,4-ジオキサン(490g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、粗物を得た。得られた粗物をエタノール(300g)で分散洗浄し、ジアミン化合物(16)を得た(得量:27.20g,得率:70%)。
 1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.64(1H,t),8.50(1H,d),
  8.44(1H,d),7.67(1H,d),7.34(1H,q),6.23(2H,d),5.94(1H,s),  4.87(4H,s),4.39(2H,d).
Next, a mixture of compound (15) (48.00 g, 151 mmol), 5% palladium carbon (hydrous type, 4.8 g, 10 wt%), and 1,4-dioxane (490 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with ethanol (300 g) to obtain a diamine compound (16) (amount obtained: 27.20 g, yield: 70%).
1 H-NMR (400 MHz, DMSO-d6, δ (ppm)): 8.64 (1H, t), 8.50 (1H, d),
8.44 (1H, d), 7.67 (1H, d), 7.34 (1H, q), 6.23 (2H, d), 5.94 (1H, s), 4.87 (4H, s), 4.39 (2H, d).
[ポリアミド酸及びポリイミドの合成]
 以下に使用したテトラカルボン酸二無水物などの化合物の略号を示した。
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
[Synthesis of polyamic acid and polyimide]
Abbreviations of compounds such as tetracarboxylic dianhydride used are shown below.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000027
(ジアミン化合物)
DBA:3,5-ジアミノ安息香酸
 p-PDA:p-フェニレンジアミン
 AP18::1,3-ジアミノ-4-オクタデシルオキシベンゼン
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
Figure JPOXMLDOC01-appb-C000027
(Diamine compound)
DBA: 3,5-diaminobenzoic acid p-PDA: p-phenylenediamine AP18 :: 1,3-diamino-4-octadecyloxybenzene PCH7DAB: 1,3-diamino-4- [4- (trans-4-n -Heptylcyclohexyl) phenoxy] benzene
Figure JPOXMLDOC01-appb-C000028
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
Figure JPOXMLDOC01-appb-C000028
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
<ポリイミドの分子量測定>
 合成例におけるポリイミドの分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<Measurement of molecular weight of polyimide>
The molecular weight of polyimide in the synthesis example was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex. .
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
<イミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
The imidation ratio of polyimide in the synthesis example was measured as follows.
Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture). The solution was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<実施例4>
 BODA(3.24g,13.0mmol)、p-PDA(0.65g,6.01mmol)、PCH7DAB(3.30g,8.67mmol)、及び実施例1で得られたジアミン化合物(4)(0.68g,2.62mmol)をNMP(14.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(11.9g)を加え、40℃で6時間反応させてポリアミド酸溶液(A)(濃度:24.8質量%)を得た。このポリアミド酸の数平均分子量は22,800、重量平均分子量は53,900であった。
<Example 4>
BODA (3.24 g, 13.0 mmol), p-PDA (0.65 g, 6.01 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (0) .68 g, 2.62 mmol) were mixed in NMP (14.5 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (11.9 g) were added. The polyamic acid solution (A) (concentration: 24.8% by mass) was obtained by reacting at 6 ° C. for 6 hours. The number average molecular weight of this polyamic acid was 22,800, and the weight average molecular weight was 53,900.
<実施例5>
 実施例4で得たポリアミド酸溶液(A)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,800、重量平均分子量は49,500であった。
<Example 5>
NMP was added to the polyamic acid solution (A) (20.0 g) obtained in Example 4 to dilute the polyamic acid concentration to 6% by mass, and then acetic anhydride (2.65 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,800, and the weight average molecular weight was 49,500.
<実施例6>
 BODA(3.25g,13.0mmol)、DBA(0.52g,3.42mmol)、PCH7DAB(3.30g,8.67mmol)、及び実施例1で得られたジアミン化合物(4)(1.36g,5.24mmol)をNMP(15.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(12.7g)を加え、40℃で6時間反応させポリアミド酸溶液(C)(濃度:24.8質量%)を得た。このポリアミド酸の数平均分子量は24,100、重量平均分子量は55,500であった。
<Example 6>
BODA (3.25 g, 13.0 mmol), DBA (0.52 g, 3.42 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (1.36 g) , 5.24 mmol) in NMP (15.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (12.7 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution (C) (concentration: 24.8% by mass). The number average molecular weight of this polyamic acid was 24,100, and the weight average molecular weight was 55,500.
<実施例7>
 実施例6で得たポリアミド酸溶液(C)(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.66g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は19,900、重量平均分子量は51,500であった。
<Example 7>
After adding NMP to the polyamic acid solution (C) (20.1 g) obtained in Example 6 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.66 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 40%, the number average molecular weight was 19,900, and the weight average molecular weight was 51,500.
<実施例8>
 BODA(3.15g,12.6mmol)、p-PDA(1.01g,9.34mmol)、AP18(1.25g,3.32mmol)、及び実施例2で得られたジアミン化合物(7)(1.10g,4.28mmol)をNMP(8.35g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(6.83g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。このポリアミド酸の数平均分子量は21,500、重量平均分子量は52,400であった。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,100、重量平均分子量は48,700であった。
<Example 8>
BODA (3.15 g, 12.6 mmol), p-PDA (1.01 g, 9.34 mmol), AP18 (1.25 g, 3.32 mmol), and the diamine compound (7) obtained in Example 2 (1) .10 g, 4.28 mmol) were mixed in NMP (8.35 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (6.83 g) were added. The polyamic acid solution was obtained by reacting at 6 ° C. for 6 hours. The number average molecular weight of this polyamic acid was 21,500, and the weight average molecular weight was 52,400.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.65 g) and pyridine (2.07 g) were added as imidization catalysts. And reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,100, and the weight average molecular weight was 48,700.
<実施例9>
 BODA(3.22g,12.9mmol)、DBA(0.79g,5.19mmol)、PCH7DAB(3.22g,8.46mmol)、及び実施例2で得られたジアミン化合物(7)(0.92g,3.58mmol)をNMP(13.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(11.0g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。このポリアミド酸の数平均分子量は23,700、重量平均分子量は54,000であった。
 得られたポリアミド酸溶液(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は19,900、重量平均分子量は49,800であった。
<Example 9>
BODA (3.22 g, 12.9 mmol), DBA (0.79 g, 5.19 mmol), PCH7DAB (3.22 g, 8.46 mmol), and the diamine compound (7) obtained in Example 2 (0.92 g) , 3.58 mmol) in NMP (13.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (11.0 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution. The number average molecular weight of this polyamic acid was 23,700, and the weight average molecular weight was 54,000.
After adding NMP to the obtained polyamic acid solution (20.1 g) and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.65 g) and pyridine (2.07 g) were added as imidization catalysts. And reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide was 40%, the number average molecular weight was 19,900, and the weight average molecular weight was 49,800.
<実施例10>
 BODA(2.97g,11.9mmol)、p-PDA(0.70g,6.47mmol)、PCH7DAB(3.06g,8.04mmol)、及び実施例3で得られたジアミン化合物(10)(0.51g,1.71mmol)をNMP(12.6g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(10.3g)を加え、40℃で6時間反応させポリアミド酸溶液(G)(濃度:26.1質量%)を得た。このポリアミド酸の数平均分子量は21,200、重量平均分子量は52,100であった。
<Example 10>
BODA (2.97 g, 11.9 mmol), p-PDA (0.70 g, 6.47 mmol), PCH7DAB (3.06 g, 8.04 mmol), and the diamine compound (10) obtained in Example 3 (0 .51 g, 1.71 mmol) were mixed in NMP (12.6 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (10.3 g) were added. The reaction was carried out at 6 ° C. for 6 hours to obtain a polyamic acid solution (G) (concentration: 26.1% by mass). The number average molecular weight of this polyamic acid was 21,200, and the weight average molecular weight was 52,100.
<実施例11>
 実施例10で得たポリアミド酸溶液(G)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.67g)、及びピリジン(2.05g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(360ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,100、重量平均分子量は48,500であった。
<Example 11>
After adding NMP to the polyamic acid solution (G) (20.0 g) obtained in Example 10 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.67 g) and pyridine ( 2.05 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (360 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,100, and the weight average molecular weight was 48,500.
<合成例3>
 BODA(3.22g,12.9mmol)、p-PDA(0.65g,6.00mmol)、PCH7DAB(3.26g,8.57mmol)、及び合成例1で得られたジアミン化合物(13)(0.62g,2.56mmol)をNMP(15.2g)中で混合し、80℃で5時間反応させた後、CBDA(0.84g,4.28mmol)とNMP(11.1g)を加え、40℃で6時間反応させポリアミド酸溶液(I)(濃度:24.6質量%)を得た。このポリアミド酸の数平均分子量は22,100、重量平均分子量は53,200であった。
<Synthesis Example 3>
BODA (3.22 g, 12.9 mmol), p-PDA (0.65 g, 6.00 mmol), PCH7DAB (3.26 g, 8.57 mmol), and the diamine compound (13) (0) obtained in Synthesis Example 1 (0 .62 g, 2.56 mmol) was mixed in NMP (15.2 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.84 g, 4.28 mmol) and NMP (11.1 g) were added. The reaction was carried out at 6 ° C. for 6 hours to obtain a polyamic acid solution (I) (concentration: 24.6% by mass). The number average molecular weight of this polyamic acid was 22,100, and the weight average molecular weight was 53,200.
<合成例4>
 合成例3で得たポリアミド酸溶液(I)(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.68g)、及びピリジン(2.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(J)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は18,400、重量平均分子量は49,100であった。
<Synthesis Example 4>
After adding NMP to the polyamic acid solution (I) (20.1 g) obtained in Synthesis Example 3 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.68 g) and pyridine ( 2.04 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (J). The imidation ratio of this polyimide was 41%, the number average molecular weight was 18,400, and the weight average molecular weight was 49,100.
<合成例5>
 BODA(3.29g,13.2mmol)、p-PDA(0.67g,6.14mmol)、PCH7DAB(3.34g,8.77mmol)、及び合成例2で得られたジアミン化合物(16)(0.68g,2.79mmol)をNMP(15.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.86g,4.39mmol)とNMP(11.5g)を加え、40℃で6時間反応させポリアミド酸溶液(K)(濃度:25.0質量%)を得た。このポリアミド酸の数平均分子量は22,600、重量平均分子量は54,900であった。
<Synthesis Example 5>
BODA (3.29 g, 13.2 mmol), p-PDA (0.67 g, 6.14 mmol), PCH7DAB (3.34 g, 8.77 mmol), and the diamine compound (16) obtained in Synthesis Example 2 (0 .68 g, 2.79 mmol) were mixed in NMP (15.0 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.86 g, 4.39 mmol) and NMP (11.5 g) were added. The reaction was carried out at 0 ° C. for 6 hours to obtain a polyamic acid solution (K) (concentration: 25.0% by mass). The number average molecular weight of this polyamic acid was 22,600, and the weight average molecular weight was 54,900.
<合成例6>
 合成例5で得たポリアミド酸溶液(K)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.08g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,900、重量平均分子量は49,200であった。
<Synthesis Example 6>
After adding NMP to the polyamic acid solution (K) (20.0 g) obtained in Synthesis Example 5 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.65 g) and pyridine ( 2.08 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,900, and the weight average molecular weight was 49,200.
 実施例4~11、及び合成例3~6(ポリアミド酸及びポリイミドの合成)の反応条件(各成分のmol)及びイミド化率を、まとめて表3と表4に示す。 Tables 3 and 4 collectively show reaction conditions (moles of each component) and imidation ratios of Examples 4 to 11 and Synthesis Examples 3 to 6 (synthesis of polyamic acid and polyimide).
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
[液晶配向処理剤の調製・評価]
Figure JPOXMLDOC01-appb-T000030
[Preparation and evaluation of liquid crystal aligning agent]
<実施例12>
 実施例4で得られたポリアミド酸溶液[A](10.0g)にNMP(10.2g)、及びBCS(20.0g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[1]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
[液晶セルの作製]
 上記で得た液晶配向処理剤[1]を3cm×4cm(縦×横)ITO電極付き基板のITO面にスピンコートし、80℃で5分間、210℃の熱風循環式オーブンで1時間焼成を行い、膜厚100nmのポリイミド塗膜を作製した。
<Example 12>
NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [A] (10.0 g) obtained in Example 4, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [1] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
[Production of liquid crystal cell]
The liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3 cm × 4 cm (vertical × horizontal) ITO electrodes, and baked in a hot air circulation oven at 80 ° C. for 5 minutes and 210 ° C. for 1 hour. A polyimide coating film having a thickness of 100 nm was prepared.
 この液晶配向膜付き基板を、ロール径120mm、レーヨン布のラビング装置にて、回転数300rpm、ロール進行速度20mm/sec、押し込み量0.3mmの条件にてラビング処理をし、液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。用意したもう1枚の基板を、液晶配向膜面を内側にし、ラビング方向が逆向きになるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、アンチパラレル配向のネマチック液晶セルを得た。
[電圧保持率の評価]
 上記で得られた液晶セルに、80℃の温度下で4Vの電圧を60μs印加し、16.67ms後及び1667ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(%)として計算した。結果は、表5に示す。
[残留電荷の緩和の評価]
 電圧保持率測定後の液晶セルに、直流電圧10Vを30分印加し、1秒間短絡させた後、液晶セル内に発生している電位を1800秒間測定した。そして、50秒後及び1000秒後の残留電荷(V)を測定した。なお、測定には東陽テクニカ社製6254型液晶物性評価装置を用いた。結果は、表6に示す。
[高温放置後の評価]
 残留電荷測定後の液晶セルを、100℃に設定した高温槽に7日間放置した後、電圧保持率及び残留電荷の測定を行った。結果は、後述する表5及び表6に示す。
This substrate with a liquid crystal alignment film is subjected to a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm. Got.
Two substrates with this liquid crystal alignment film were prepared, and a 6 μm bead spacer was sprayed on the surface of one liquid crystal alignment film, and then a sealant was printed thereon. The other prepared substrate was bonded so that the liquid crystal alignment film surface was on the inside and the rubbing direction was reversed, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (manufactured by Merck Japan Ltd.) was injected into this empty cell by a reduced pressure injection method to obtain an antiparallel aligned nematic liquid crystal cell.
[Evaluation of voltage holding ratio]
A voltage of 4 V is applied to the liquid crystal cell obtained above at a temperature of 80 ° C. for 60 μs, the voltage after 16.67 ms and 1667 ms is measured, and the voltage holding ratio (%) As calculated. The results are shown in Table 5.
[Evaluation of relaxation of residual charge]
A DC voltage of 10 V was applied to the liquid crystal cell after measuring the voltage holding ratio for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds. Then, the residual charge (V) after 50 seconds and after 1000 seconds was measured. For measurement, a 6254 type liquid crystal property evaluation apparatus manufactured by Toyo Technica Co., Ltd. was used. The results are shown in Table 6.
[Evaluation after leaving at high temperature]
After the residual charge measurement, the liquid crystal cell was left in a high-temperature bath set at 100 ° C. for 7 days, and then the voltage holding ratio and the residual charge were measured. The results are shown in Table 5 and Table 6 described later.
 以下の実施例13~19、及び比較例1~4で得られる液晶配向処理剤についても、実施例12と同様に、これらの液晶配向処理剤を使用して液晶セルの作製し、さらに各液晶セルの評価を行った。それらの結果をまとめて表5及び表6に示す。 With respect to the liquid crystal aligning agents obtained in the following Examples 13 to 19 and Comparative Examples 1 to 4, as in Example 12, liquid crystal cells were prepared using these liquid crystal aligning agents, and each liquid crystal The cell was evaluated. The results are summarized in Table 5 and Table 6.
<実施例13>
 実施例5で得られたポリイミド粉末[B](5.1g)にNMP(36.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(18.1g)、及びBCS(25.6g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[2]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 13>
NMP (36.3 g) was added to the polyimide powder [B] (5.1 g) obtained in Example 5, and dissolved by stirring at 70 ° C. for 40 hours. NMP (18.1 g) and BCS (25.6 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [2]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例14>
 実施例6で得られたポリアミド酸溶液[C](10.0g)にNMP(10.2g)、及びBCS(20.0g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[3]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 14>
NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [C] (10.0 g) obtained in Example 6, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [3] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例15>
 実施例7で得られたポリイミド粉末[D](5.0g)にNMP(30.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(14.8g)、及びBCS(33.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[4]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 15>
NMP (30.3 g) was added to the polyimide powder [D] (5.0 g) obtained in Example 7 and dissolved by stirring at 70 ° C. for 40 hours. NMP (14.8g) and BCS (33.8g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例16>
 実施例8で得られたポリイミド粉末[E](5.1g)にNMP(33.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.1g)、及びBCS(29.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[5]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 16>
NMP (33.0 g) was added to the polyimide powder [E] (5.1 g) obtained in Example 8, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.1g) and BCS (29.8g) were added to this solution, and the liquid-crystal aligning agent [5] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例17>
 実施例9で得られたポリイミド粉末[F](5.2g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(16.5g)、及びBCS(30.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[6]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 17>
NMP (34.5 g) was added to the polyimide powder [F] (5.2 g) obtained in Example 9, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (30.3g) were added to this solution, and the liquid-crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例18>
 実施例10で得られたポリアミド酸溶液[G](10.0g)にNMP(15.6g)、及びBCS(17.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[7]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 18>
NMP (15.6 g) and BCS (17.1 g) were added to the polyamic acid solution [G] (10.0 g) obtained in Example 10, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [7] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<実施例19>
 実施例11で得られたポリイミド粉末[H](5.0g)にNMP(35.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.8g)、及びBCS(25.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[8]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Example 19>
NMP (35.5 g) was added to the polyimide powder [H] (5.0 g) obtained in Example 11, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<比較例1>
 合成例3で得られたポリアミド酸溶液[I](10.0g)にNMP(18.8g)、及びBCS(12.2g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[9]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Comparative Example 1>
NMP (18.8 g) and BCS (12.2 g) were added to the polyamic acid solution [I] (10.0 g) obtained in Synthesis Example 3, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal alignment treatment. Agent [9] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<比較例2>
 合成例4で得られたポリイミド粉末[J](4.7g)にNMP(38.6g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(19.4g)、及びBCS(15.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[10]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Comparative Example 2>
NMP (38.6 g) was added to the polyimide powder [J] (4.7 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 40 hours. NMP (19.4g) and BCS (15.8g) were added to this solution, and the liquid-crystal aligning agent [10] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<比較例3>
 合成例5で得られたポリアミド酸溶液[K](10.4g)にNMP(17.5g)、及びBCS(15.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[11]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された
<Comparative Example 3>
NMP (17.5 g) and BCS (15.3 g) were added to the polyamic acid solution [K] (10.4 g) obtained in Synthesis Example 5, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [11] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
<比較例4>
 合成例6で得られたポリイミド粉末[L](4.5g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.2g)、及びBCS(18.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[12]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
<Comparative Example 4>
NMP (34.5 g) was added to the polyimide powder [L] (4.5 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.2g) and BCS (18.8g) were added to this solution, and the liquid-crystal aligning agent [12] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 本発明のジアミン化合物を含有する液晶配向処理剤は、液晶配向膜にした際、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する電荷の緩和が速い液晶配向膜が得られる。更には過酷な使用環境での長期使用に耐えうる信頼性の高い液晶表示素子を提供することができる。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型や水平配向型(IPS)の液晶表示素子などに有用である。
 なお、2009年7月21日に出願された日本特許出願2009-170396号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent containing the diamine compound of the present invention has a high voltage holding ratio when it is formed into a liquid crystal alignment film, and alleviates charges accumulated by direct current voltage even after being exposed to a high temperature for a long time. Can be obtained. Furthermore, a highly reliable liquid crystal display element that can withstand long-term use in a severe use environment can be provided. As a result, it is useful for TN elements, STN elements, TFT liquid crystal elements, and liquid crystal display elements of vertical alignment type and horizontal alignment type (IPS).
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2009-170396 filed on July 21, 2009 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (12)

  1.  下記式[1]のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは-CO-又は-CONH-を表し、Xは炭素数1~5のアルキレン基、又は窒素原子を含有する非芳香族複素環を表し、Xは炭素数1~5のアルキル基で置換されていてもよい、窒素原子を2つ含有する5員環又は6員環の芳香族複素環を表す。)
    A diamine compound of the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 represents —CO— or —CONH—, X 2 represents an alkylene group having 1 to 5 carbon atoms, or a non-aromatic heterocyclic ring containing a nitrogen atom, and X 3 represents 1 to 5 carbon atoms) It represents a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms, which may be substituted with 5 alkyl groups.
  2.  前記芳香族複素環が、イミダゾール環、ピラジン環、又はピリミジン環である請求項1に記載のジアミン化合物。 The diamine compound according to claim 1, wherein the aromatic heterocycle is an imidazole ring, a pyrazine ring, or a pyrimidine ring.
  3.  前記窒素原子を含有する非芳香族複素環が、ピペラジン環である請求項1又は2に記載のジアミン化合物。 The diamine compound according to claim 1 or 2, wherein the non-aromatic heterocyclic ring containing a nitrogen atom is a piperazine ring.
  4.  請求項1~3のいずれかに記載のジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。 A polyamic acid obtained by reacting the diamine component containing the diamine compound according to any one of claims 1 to 3 with a tetracarboxylic dianhydride component or a polyimide obtained by imidizing the polyamic acid.
  5.  前記ジアミン成分中に、請求項1~3のいずれかに記載のジアミン化合物が1~80モル%含まれる請求項4に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。 The polyamic acid according to claim 4 or a polyimide obtained by imidizing the polyamic acid, wherein the diamine component contains 1 to 80 mol% of the diamine compound according to any one of claims 1 to 3.
  6.  前記ジアミン成分中に、分子内にカルボキシル基を含有するジアミン化合物が含まれる請求項4に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。 The polyamic acid according to claim 4 or a polyimide obtained by imidizing the polyamic acid, wherein the diamine component contains a diamine compound containing a carboxyl group in the molecule.
  7.  前記ジアミン成分中に、請求項1~3のいずれかに記載のジアミン化合物の1モルに対して、分子内にカルボキシル基を有するジアミン化合物が、0.01~99モル含まれる請求項6に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。 The diamine component contains 0.01 to 99 mol of a diamine compound having a carboxyl group in the molecule with respect to 1 mol of the diamine compound according to any one of claims 1 to 3. Or a polyimide obtained by imidizing the polyamic acid.
  8.  前記分子内にカルボキシル基を有するジアミン化合物が、下記の式[2]で表されるジアミンである請求項6又は7に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Xは炭素数6~30の芳香族環を有する有機基であり、nは1~4の整数である。)
    The polyamic acid according to claim 6 or 7, wherein the diamine compound having a carboxyl group in the molecule is a diamine represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [2], X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.)
  9.  請求項4~8のいずれかに記載のポリアミド酸及び該ポリアミド酸をイミド化したポリイミドのうち少なくとも一方と、溶媒とを含有する液晶配向処理剤。 A liquid crystal aligning agent comprising at least one of the polyamic acid according to any one of claims 4 to 8 and a polyimide obtained by imidizing the polyamic acid, and a solvent.
  10.  前記溶媒中の5~80質量%が貧溶媒である請求項9に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 9, wherein 5 to 80% by mass of the solvent is a poor solvent.
  11.  請求項9又は10に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to claim 9 or 10.
  12.  請求項11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 11.
PCT/JP2010/062109 2009-07-21 2010-07-16 Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent WO2011010619A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011523647A JP5729299B2 (en) 2009-07-21 2010-07-16 Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
CN201080043007.1A CN102574811B (en) 2009-07-21 2010-07-16 Diamine compound, polyamic acid, polyimide and aligning agent for liquid crystal
KR1020177026552A KR102073458B1 (en) 2009-07-21 2010-07-16 Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-170396 2009-07-21
JP2009170396 2009-07-21

Publications (1)

Publication Number Publication Date
WO2011010619A1 true WO2011010619A1 (en) 2011-01-27

Family

ID=43499092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062109 WO2011010619A1 (en) 2009-07-21 2010-07-16 Diamine compound, polyamic acid, polyimide, and liquid crystal aligning agent

Country Status (5)

Country Link
JP (1) JP5729299B2 (en)
KR (2) KR102073458B1 (en)
CN (1) CN102574811B (en)
TW (1) TWI477478B (en)
WO (1) WO2011010619A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085891A (en) * 2009-09-16 2011-04-28 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2012027429A (en) * 2010-07-21 2012-02-09 Daxin Material Corp Aromatic diamine compound, polyamic acid and polyimide prepared using the same and liquid crystal aligning agent
WO2012121257A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121259A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN102732262A (en) * 2011-04-14 2012-10-17 达兴材料股份有限公司 Liquid crystal aligning agent
WO2012157982A2 (en) * 2011-05-18 2012-11-22 주식회사 동진쎄미켐 Diamine compound, method for preparing same, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2012165355A1 (en) * 2011-05-27 2012-12-06 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016079288A (en) * 2014-10-16 2016-05-16 日産化学工業株式会社 Polymer, liquid crystal orientation agent, liquid crystal orientation membrane and liquid crystal display element
US10696845B2 (en) * 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
US10954340B2 (en) 2015-08-07 2021-03-23 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition
KR20220046514A (en) 2019-08-08 2022-04-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558096B (en) * 2010-12-30 2015-01-21 达兴材料股份有限公司 Aromatic diamine compound, polyamic acid and polyimide prepared from aromatic diamine compound, and liquid crystal aligning agent
JP5633714B2 (en) * 2011-07-14 2014-12-03 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI508998B (en) * 2012-10-03 2015-11-21 Chi Mei Corp Liquid crystal aligning agent and its application
TWI494347B (en) * 2012-12-25 2015-08-01 Taiwan Textile Res Inst Dinitro monomer, diamine monomer, polyimide and modified polyimide
JP6627595B2 (en) * 2015-06-11 2020-01-08 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film for photo alignment, liquid crystal alignment film, and liquid crystal display device using the same
KR20180063294A (en) * 2015-10-07 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
TWI687457B (en) * 2016-08-24 2020-03-11 奇美實業股份有限公司 Liquid crystal alignment agent and use thereof
US20200041849A1 (en) * 2016-10-07 2020-02-06 Sharp Kabushiki Kaisha Liquid crystal aligning agent for tft substrate and method for fabricating liquid crystal display panel
CN114958393B (en) * 2022-06-16 2023-09-05 长沙道尔顿电子材料有限公司 Polyamic acid liquid crystal orientation agent with nitrogen-containing aromatic ring structure, liquid crystal orientation film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876128A (en) * 1994-09-08 1996-03-22 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH09316200A (en) * 1996-05-31 1997-12-09 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JPH10104633A (en) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
WO2004048462A1 (en) * 2002-11-28 2004-06-10 Jsr Corporation Photocuring resin composition, medical device using same and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444690B2 (en) * 2007-12-06 2014-03-19 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101737122B1 (en) * 2008-01-25 2017-05-17 닛산 가가쿠 고교 가부시키 가이샤 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876128A (en) * 1994-09-08 1996-03-22 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH09316200A (en) * 1996-05-31 1997-12-09 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JPH10104633A (en) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
WO2004048462A1 (en) * 2002-11-28 2004-06-10 Jsr Corporation Photocuring resin composition, medical device using same and method for manufacturing same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085891A (en) * 2009-09-16 2011-04-28 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2012027429A (en) * 2010-07-21 2012-02-09 Daxin Material Corp Aromatic diamine compound, polyamic acid and polyimide prepared using the same and liquid crystal aligning agent
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5904121B2 (en) * 2010-07-26 2016-04-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN103502312A (en) * 2011-03-07 2014-01-08 日产化学工业株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2012121259A1 (en) * 2011-03-07 2014-07-17 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR101878522B1 (en) * 2011-03-07 2018-07-13 닛산 가가쿠 고교 가부시키 가이샤 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6075286B2 (en) * 2011-03-07 2017-02-08 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) * 2011-03-07 2016-10-05 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121257A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN103502312B (en) * 2011-03-07 2015-07-29 日产化学工业株式会社 Composition, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display device
CN103492462A (en) * 2011-03-07 2014-01-01 日产化学工业株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121259A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2012121257A1 (en) * 2011-03-07 2014-07-17 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN102732262B (en) * 2011-04-14 2014-07-23 达兴材料股份有限公司 Liquid crystal aligning agent
CN102732262A (en) * 2011-04-14 2012-10-17 达兴材料股份有限公司 Liquid crystal aligning agent
JP2012226293A (en) * 2011-04-14 2012-11-15 Daxin Material Corp Liquid crystal aligning agent
WO2012157982A3 (en) * 2011-05-18 2013-01-24 주식회사 동진쎄미켐 Diamine compound, method for preparing same, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2012157982A2 (en) * 2011-05-18 2012-11-22 주식회사 동진쎄미켐 Diamine compound, method for preparing same, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2012165355A1 (en) * 2011-05-27 2012-12-06 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013108854A1 (en) * 2012-01-18 2015-05-11 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016079288A (en) * 2014-10-16 2016-05-16 日産化学工業株式会社 Polymer, liquid crystal orientation agent, liquid crystal orientation membrane and liquid crystal display element
US10696845B2 (en) * 2015-03-27 2020-06-30 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive resin composition
US10954340B2 (en) 2015-08-07 2021-03-23 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition
KR20220046514A (en) 2019-08-08 2022-04-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same

Also Published As

Publication number Publication date
KR20170110172A (en) 2017-10-10
TWI477478B (en) 2015-03-21
JP5729299B2 (en) 2015-06-03
KR20120037493A (en) 2012-04-19
CN102574811A (en) 2012-07-11
JPWO2011010619A1 (en) 2012-12-27
CN102574811B (en) 2015-09-09
KR102073458B1 (en) 2020-02-04
TW201118062A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5729299B2 (en) Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP5177150B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5240207B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5382372B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5663876B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5651953B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JPWO2014208609A1 (en) The liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
WO2013108854A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20090076944A (en) Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
WO2013146890A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5614412B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043007.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004340

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10802239

Country of ref document: EP

Kind code of ref document: A1