WO2018117240A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2018117240A1
WO2018117240A1 PCT/JP2017/046016 JP2017046016W WO2018117240A1 WO 2018117240 A1 WO2018117240 A1 WO 2018117240A1 JP 2017046016 W JP2017046016 W JP 2017046016W WO 2018117240 A1 WO2018117240 A1 WO 2018117240A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
group
crystal aligning
carbon atoms
Prior art date
Application number
PCT/JP2017/046016
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 国見
泰宏 宮本
祟明 杉山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020197020775A priority Critical patent/KR102593074B1/en
Priority to JP2018558080A priority patent/JP7239872B2/en
Priority to CN201780086937.7A priority patent/CN110325902B/en
Publication of WO2018117240A1 publication Critical patent/WO2018117240A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent used for manufacturing a liquid crystal display element, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • the most widely used liquid crystal alignment film in the industry is the surface of a film made of polyamic acid and / or polyimide imidized with a cloth made of cotton, nylon, polyester, etc. formed on an electrode substrate. It is manufactured by performing a so-called rubbing process that rubs in one direction.
  • the rubbing treatment of the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • the demand for higher performance, higher definition, and larger size of liquid crystal display elements is increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have become apparent.
  • a liquid crystal alignment treatment method that replaces the rubbing treatment a photo alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known.
  • Non-Patent Document 1 As liquid crystal alignment treatment by the photo-alignment method, those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, those utilizing a photodecomposition reaction, and the like have been proposed (see Non-Patent Document 1).
  • Patent Document 1 it is proposed to use a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain for the photo-alignment method.
  • the photo-alignment method as described above can impart liquid crystal alignment ability by an industrially simple manufacturing process.
  • a liquid crystal display element of an IPS driving method or a fringe field switching (hereinafter referred to as FFS) driving method a liquid crystal alignment film to which liquid crystal alignment capability is imparted by a photo-alignment method is imparted with liquid crystal alignment capability by rubbing treatment. Compared with the liquid crystal alignment film, the contrast and viewing angle characteristics of the liquid crystal display element can be improved.
  • the photo-alignment method as described above is attracting attention as a promising liquid crystal alignment method because it can improve the performance of the liquid crystal display element.
  • the liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics. It is necessary to suppress afterimages by long-term AC driving.
  • the present invention relates to a liquid crystal aligning agent capable of suppressing an afterimage due to long-term alternating current driving generated in a liquid crystal display element of an IPS driving method or an FFS driving method, a liquid crystal alignment film obtained from the liquid crystal aligning agent, and a liquid crystal display having the liquid crystal alignment film
  • a liquid crystal aligning agent capable of suppressing an afterimage due to long-term alternating current driving generated in a liquid crystal display element of an IPS driving method or an FFS driving method
  • a liquid crystal alignment film obtained from the liquid crystal aligning agent obtained from the liquid crystal aligning agent
  • a liquid crystal display having the liquid crystal alignment film An object is to provide an element.
  • the present inventors have made extensive studies, and as a result, a polyimide obtained from a tetracarboxylic acid derivative component having a tetracarboxylic acid derivative having a specific structure and a diamine component having a specific structure, Or it discovered that said objective could be achieved by using the liquid crystal aligning agent containing a polyimide precursor.
  • the present invention has the following gist.
  • a tetracarboxylic acid derivative component containing, a diamine component containing at least one diamine selected from the following formulas (3) and (4), and a polyimide precursor obtained from the polyimide that is an imidized product thereof A liquid crystal aligning agent containing at least one selected polymer.
  • X 1 is a structure selected from the following formulas (X1-1) to (X1-4), and X 2 is a structure selected from the following formulas (X2-1) to (X2-2).
  • each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different, but at least one is other than a hydrogen atom.
  • R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon containing a fluorine atom. These are monovalent organic groups having 1 to 6 or phenyl groups, which may be the same or different.
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms
  • a 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol Group, nitro group, phosphate group, or monovalent organic group having 1 to 20 carbon atoms
  • a is an integer of 1 to 4
  • b and c are each independently an integer of 1 to 2.
  • the ratio of the tetracarboxylic dianhydride represented by the formula (2) or a derivative thereof is 1 to 30 mol% with respect to 1 mol of all tetracarboxylic derivative components.
  • X 1 is at least one selected from the following formulas (X1-12) to (X1-16): Or 2. Liquid crystal aligning agent as described in.
  • X 1 is the formula (X1-12); To 3.
  • the diamine component contains at least one selected from the following formulas (DA-1) to (DA-20): To 5.
  • the liquid crystal display element drives the liquid crystal by a lateral electric field, A liquid crystal display element according to 1.
  • liquid crystal aligning agent of the present invention in addition to being excellent in basic characteristics such as liquid crystal alignment and electrical characteristics, it is possible to suppress afterimages caused by long-term alternating current driving that occur in liquid crystal display elements of IPS driving method and FFS driving method.
  • a liquid crystal alignment film that can be obtained can be obtained.
  • liquid crystal alignment film and the liquid crystal display element of the present invention in addition to being excellent in basic characteristics such as liquid crystal alignment and electrical characteristics, long-term AC driving that occurs in IPS driving and FFS driving liquid crystal display elements. Afterimage can be suppressed.
  • the liquid crystal aligning agent of the present invention contains at least one polymer (hereinafter also referred to as a specific polymer) selected from the polyimide precursor described above and a polyimide that is an imidized product thereof.
  • a specific polymer selected from the polyimide precursor described above
  • a polyimide that is an imidized product thereof a polyimide that is an imidized product thereof.
  • the tetracarboxylic acid derivative component used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also tetracarboxylic acid and tetracarboxylic acid that are tetracarboxylic acid derivatives thereof.
  • An acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound can be used.
  • the tetracarboxylic dianhydride or derivative thereof used for the polymerization of the specific polymer is at least one selected from tetracarboxylic dianhydrides or derivatives thereof represented by the following formula (1), and the following formula (2): And at least one selected from tetracarboxylic acids represented by
  • X 1 is a structure selected from the following formulas (X1-1) to (X1-4).
  • each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different, but at least one is other than a hydrogen atom.
  • R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon containing a fluorine atom. These are monovalent organic groups having 1 to 6 or phenyl groups, which may be the same or different.
  • the structure of X 1 is preferably at least one selected from structures represented by the following formulas (X1-12) to (X1-16), and the following formula (X1- 12) is particularly preferred.
  • the proportion of the tetracarboxylic dianhydride represented by the above formula (1) or a derivative thereof is preferably 50 mol% or more, more preferably 70 mol% or more with respect to 1 mol of all tetracarboxylic dianhydrides or derivatives thereof. Preferably, 80 mol% or more is more preferable.
  • X 2 is a structure selected from the following formulas (X2-1) to (X2-2).
  • X 2 is preferably a structure represented by the following formula (X2-1) from the viewpoint of suppression of afterimages caused by long-term alternating current driving.
  • the ratio of the tetracarboxylic dianhydride represented by the above formula (2) or a derivative thereof is 1 to 30 mol% with respect to 1 mol of the total tetracarboxylic dianhydride or the derivative thereof (total tetracarboxylic acid derivative component). It is preferably 10 to 30%, more preferably 10 to 20%.
  • the tetracarboxylic dianhydride and its derivative used for the polymerization of the specific polymer are the tetracarboxylic dianhydride and its derivative represented by the following formula (6). It may be used.
  • X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-9) to (X-47). From the viewpoint of easy availability of the compound, the structure of X 3 is X-17, X-25, X-26, X-27, X-28, X-32, X-35, X-37, X- 39, X-43, X-44, X-45, X-46, and X-47 are preferred. Further, from the viewpoint of obtaining a liquid crystal alignment film in which the residual charge accumulated by direct current voltage can be quickly relaxed, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure. As the structure of X 3 , X-26 X-27, X-28, X-32, X-35, and X-37 are more preferable.
  • the diamine component used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention contains at least one selected from the following formula (3) and the following formula (4).
  • a 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms
  • a 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol Group, nitro group, phosphate group, or monovalent organic group having 1 to 20 carbon atoms
  • a is an integer of 1 to 4
  • b and c are each independently an integer of 1 to 2.
  • DA-1, DA-2, DA-4, DA-5, and DA-7 are preferable.
  • the content of the diamine represented by the above formula (3) and the above formula (4) is preferably 50 to 100 mol%, more preferably 70 mol% to 100 mol%, relative to 1 mol of all diamine components. preferable.
  • the diamine used for the polymerization of the specific polymer may include a diamine represented by the following formula (7) in addition to the above formulas (3) and (4).
  • each A 3 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms, which may be the same or different.
  • a 3 is preferably a hydrogen atom or a methyl group.
  • Y 1 is a divalent organic group, and specific structures thereof are exemplified by the following formulas (Y-1) to (Y-49) and (Y-57) to (Y-168).
  • the structure represented by the following formula (8) is preferably included in the structure of Y 1 .
  • D is a t-butoxycarbonyl group.
  • Y 1 including the structure of the above formula (8) include Y-158, Y-159, Y-160, Y-161, Y-162, and Y-163.
  • the polyamic acid ester which is a polyimide precursor used in the present invention, can be synthesized by any of the following methods (1) to (3).
  • Polyamic acid ester can be synthesized by esterifying polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are synthesized by reacting in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be.
  • the concentration of the polymer in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that the polymer hardly precipitates and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
  • the organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration in the organic solvent at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained.
  • the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent mixing of outside air. .
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 moles, more preferably 2 to 2.5 moles, relative to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the organic solvent include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide and the like.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. May be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • a polyimide is produced from a polyamic acid ester
  • chemical imidation by adding a basic catalyst to the polyamic acid ester solution or a polyamic acid solution obtained by dissolving the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained.
  • the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent.
  • the molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1 mass from the point of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2 -Pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve ethyl cellosolve
  • butyl cellosolve ethyl carbitol
  • butyl carbitol ethyl carbitol
  • ethyl carbitol acetate ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol, 2- (2-Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, isoamyl lactate Ester, and the like
  • the liquid crystal aligning agent of the present invention includes a polymer other than the specific polymer, a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, the liquid crystal aligning film and the substrate.
  • An imidization accelerator for the purpose of proceeding efficiently may be added.
  • the liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an ink jet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coat method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent.
  • the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • the method of aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is preferably a photo alignment method.
  • the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, a heat treatment is performed at a temperature of 150 to 250 ° C.
  • a liquid crystal alignment ability As the radiation, ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C.
  • the radiation dose is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable.
  • the liquid crystal alignment film thus prepared can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • the solvent may be used alone or in combination of two or more.
  • Examples of the above-described contact treatment that is, treatment for bringing water or a solvent into contact with the liquid crystal alignment film irradiated with polarized radiation include immersion treatment and spray treatment (also referred to as spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation.
  • the immersion treatment is preferably performed for 1 minute to 30 minutes.
  • the solvent used in the contact treatment may be warmed at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing also referred to as rinsing
  • a low-boiling solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone
  • the firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, the temperature is 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes. Among these, 1 to 10 minutes is preferable.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film for an FFS mode liquid crystal display element.
  • the liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • the liquid crystal display element of the active matrix structure in which switching elements, such as TFT (Thin Film Transistor), were provided in each pixel part which comprises image display may be sufficient.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film that suppresses an afterimage due to AC driving and has both adhesiveness with a sealing agent and a base substrate.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • DA-1 1,2-bis (4-aminophenoxy) ethane
  • DA-2 bis (4-aminophenoxy) methane
  • DA-3 N -Tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine
  • DA-4 p-phenylenediamine
  • DA-5 See formula (DA-5) below DA-6: 4,4′-diaminodiphenylamine DA-7: 4,4′-diaminodiphenylmethane DA-8: See formula (DA-8) below CA-1: See Formula (CA-1) below CA-2:
  • the viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 ml, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C.
  • the molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn and weight average molecular weight (Mw)) was calculated as a polyethylene glycol and polyethylene oxide equivalent value.
  • GPC apparatus manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese product (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top manufactured by Polymer Laboratories
  • Mp Molecular weight
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • equation using the integrated value. Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 to 300 ° C. for 5 minutes to provide a substrate with a liquid crystal alignment film Got.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
  • the liquid crystal cell After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second region and the first region were compared to calculate a similar angle ⁇ .
  • a sample for pencil hardness evaluation was prepared as follows.
  • a liquid crystal aligning agent was applied on a 30 mm ⁇ 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm.
  • This coating surface was subjected to alignment treatment such as rubbing or irradiation with polarized ultraviolet rays to obtain a substrate with a liquid crystal alignment film.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film
  • a substrate was obtained. This substrate was measured by a pencil hardness test method (JIS K5400).
  • a sample for evaluation of adhesion was prepared as follows.
  • a liquid crystal aligning agent was applied to a 30 mm ⁇ 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm.
  • This coating surface was subjected to alignment treatment such as rubbing or irradiation with polarized ultraviolet rays to obtain a substrate with a liquid crystal alignment film.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film A substrate was obtained.
  • Two substrates thus obtained were prepared, and a 4 ⁇ m bead spacer was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm.
  • the two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation. After that, the sample substrate is fixed with the table top precision universal testing machine AGS-X500N manufactured by Shimadzu Corporation, and then the upper and lower substrate ends are fixed and then pressed from the upper center of the substrate to release the pressure (N) Was measured.
  • Example 1 Take 10.00 g of the 18% by mass polyamic acid solution (A) obtained in Synthesis Example 1 in a 100 ml Erlenmeyer flask, add 14.00 g of NMP and 6.00 g of BCS, and mix at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent. (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Example 2 Take 1.80 g of the polyimide resin powder (A) obtained in Synthesis Example 13 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (K) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Liquid crystal aligning agents (3) to (5) were obtained in the same manner as in Example 2, except that polyimide resin powders (B) to (D) were used instead of polyimide resin powder (A). .
  • Example 6> 5 50 g of the 15% by mass polyimide solution (D) obtained in Example 5 and 5.50 g of the 15% by mass polyamic acid solution (E) were placed in a 100 ml Erlenmeyer flask, 0.83 g of AD-1 and NMP were added. 4.82 g, 7.35 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Examples 7 to 8 Liquid crystal aligning agents (7) to (8) were obtained in the same manner as in Example 2 except that polyimide resin powders (E) to (F) were used instead of polyimide resin powder (A). .
  • Liquid crystal aligning agents (10) to (14) were obtained in the same manner as in Example 2 except that polyimide resin powders (G) to (K) were used instead of polyimide resin powder (A). .
  • Example 9 After the liquid crystal aligning agent (1) obtained in Example 1 is filtered through a 1.0 ⁇ m filter, the prepared substrate with electrodes and a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface are provided. It apply
  • the above-mentioned two substrates obtained as a set were printed with a sealant on the substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °,
  • the agent was cured to produce an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving.
  • the value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.20.
  • Example 10 to 16 Comparative Examples 7 to 12>
  • the liquid crystal aligning agent shown in Table 3 was used, respectively, and the same as in Example 9 except that the ultraviolet irradiation amount and the immersion solution were changed to those shown in Table 3.
  • the FFS drive liquid crystal cell was prepared by the method described above, and afterimage evaluation was performed by long-term alternating current drive.
  • Table 3 shows the value of the angle ⁇ of the liquid crystal cell after long-term AC driving in each case.
  • Example 17 After the liquid crystal aligning agent (1) is filtered through a 1.0 ⁇ m filter, spin is applied to the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface. The coating method was applied. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • the substrate was then immersed for 14 minutes on a 230 ° C. hot plate immersed in pure water for 1 minute to obtain a substrate with a liquid crystal alignment film. It was 3H as a result of measuring this board
  • Example 18 to 25 Comparative Examples 13 to 18>
  • the liquid crystal aligning agent shown in Table 4 was used, respectively, and the same as in Example 17 except that the ultraviolet irradiation amount and the immersion solution were changed to those shown in Table 4.
  • samples for pencil hardness test were respectively prepared.
  • Table 4 shows the results of evaluation of each pencil hardness test.
  • Example 26 The liquid crystal aligning agent (1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter and then applied to a 30 mm ⁇ 40 mm ITO substrate by a spin coating method. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. Using a rubbing device with a roll diameter of 120 mm, the coating surface is rubbed with rayon cloth under conditions of a roll rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.1 mm, and immersed in pure water for 1 minute. Then, it was ultrasonically cleaned and dried in a heat circulation oven at 80 ° C. to obtain a substrate with a liquid crystal alignment film.
  • Two substrates thus obtained were prepared, and a 4 ⁇ m bead spacer was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm.
  • the two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation. As a result of evaluating the adhesion, the strength at the time of peeling was 20N.
  • Examples 27 to 33, Comparative Examples 19 to 24> instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 5 was used, respectively, and the same as in Example 26, except that the ultraviolet ray irradiation amount and the immersion solution were changed to those shown in Table 5.
  • a sample for adhesion evaluation was prepared by the method described above. Table 5 shows the results of the evaluation of adhesion.
  • Example 34 Take 1.80 g of the polyimide resin powder (M) obtained in Synthesis Example 29 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (M) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Example 35 A 100 ml Erlenmeyer flask was charged with 6.00 g of a 15% by weight polyimide solution (M) obtained in the same manner as in Example 34 and 6.00 g of the 15% by weight polyamic acid solution (N) obtained in Synthesis Example 25. 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Example 36 Take 1.80 g of the polyimide resin powder (O) obtained in Synthesis Example 30 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP to a solid content concentration of 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (O) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Example 37 In a 100-ml Erlenmeyer flask, 6.00 g of a 15% by mass polyimide solution (O) obtained in the same manner as in Example 36 and 6.00 g of the 15% by mass polyamic acid solution (E) obtained in Synthesis Example 5 were taken. 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
  • Liquid crystal aligning agents (19) to (20) were obtained in the same manner as in Example 34, except that polyimide resin powders (Q) to (P) were used instead of polyimide resin powder (M). .
  • Example 9 was used except that the liquid crystal aligning agent shown in Table 3-2 was used instead of the liquid crystal aligning agent (1), and the ultraviolet irradiation amount and the immersion solution were other than those shown in Table 3-2.
  • the FFS drive liquid crystal cell was manufactured by the same method as described above, and afterimage evaluation was performed by long-term alternating current drive.
  • Table 3-2 shows the value of the angle ⁇ of the liquid crystal cell after the long-term AC driving in each case.
  • Example 46 to 51> instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 4-2 was used, and the ultraviolet irradiation amount and immersion solution were changed to those shown in Table 4-2. Samples for pencil hardness test were prepared in the same manner as in Example 17. The results of evaluating each pencil hardness test are shown in Table 4-2.
  • Examples 52 to 57> instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 5-2 was used, and the irradiation amount of ultraviolet rays and the immersion solution were changed to those shown in Table 5-2. A sample for adhesion evaluation was produced in the same manner as in Example 26. The results of the evaluation of adhesion are shown in Table 5-2.
  • the liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film having high film hardness and seal adhesion in addition to good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current driving generated in liquid crystal display elements of IPS driving method and FFS driving method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality.

Abstract

Provided is a liquid crystal alignment agent containing at least one polymer selected from among polyimide precursors and polyimides that are imidized products thereof obtained from: a tetracarboxylic acid derivative component containing at least one substance selected from among a tetracarboxylic acid dianhydride represented by formula (1) and derivatives thereof and at least one substance selected from among a tetracarboxylic acid dianhydride represented by formula (2) and derivatives thereof; and a diamine component containing at least one diamine selected from between formulas (3) and (4).

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
 本発明は、液晶表示素子の製造に用いられる液晶配向剤、該液晶配向剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent used for manufacturing a liquid crystal display element, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 液晶テレビ、液晶ディスプレイ等に用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. Currently, the most widely used liquid crystal alignment film in the industry is the surface of a film made of polyamic acid and / or polyimide imidized with a cloth made of cotton, nylon, polyester, etc. formed on an electrode substrate. It is manufactured by performing a so-called rubbing process that rubs in one direction.
 液晶配向膜の配向過程における膜面のラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性等の種々の問題が明らかとなってきている。ラビング処理に代わる液晶配向処理方法として、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、及び光分解反応を利用したもの等が提案されている(非特許文献1参照)。 The rubbing treatment of the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity. However, the demand for higher performance, higher definition, and larger size of liquid crystal display elements is increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have become apparent. As a liquid crystal alignment treatment method that replaces the rubbing treatment, a photo alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known. As liquid crystal alignment treatment by the photo-alignment method, those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, those utilizing a photodecomposition reaction, and the like have been proposed (see Non-Patent Document 1).
 また、特許文献1では、主鎖にシクロブタン環等の脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。上記のような光配向法は、工業的に簡便な製造プロセスで液晶配向能を付与することができる。それだけでなく、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子において、光配向法により液晶配向能が付与される液晶配向膜は、ラビング処理により液晶配向能が付与される液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できる。これらのように、上記のような光配向法は、液晶表示素子の性能を向上させることが可能であるため、有望な液晶配向処理方法として注目されている。IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜としては、優れた液晶配向性や電気特性等の基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像の抑制が必要とされる。 In Patent Document 1, it is proposed to use a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain for the photo-alignment method. The photo-alignment method as described above can impart liquid crystal alignment ability by an industrially simple manufacturing process. In addition, in a liquid crystal display element of an IPS driving method or a fringe field switching (hereinafter referred to as FFS) driving method, a liquid crystal alignment film to which liquid crystal alignment capability is imparted by a photo-alignment method is imparted with liquid crystal alignment capability by rubbing treatment. Compared with the liquid crystal alignment film, the contrast and viewing angle characteristics of the liquid crystal display element can be improved. As described above, the photo-alignment method as described above is attracting attention as a promising liquid crystal alignment method because it can improve the performance of the liquid crystal display element. The liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics. It is necessary to suppress afterimages by long-term AC driving.
特開平9-297313号公報JP-A-9-297313
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像を抑制できる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。 The present invention relates to a liquid crystal aligning agent capable of suppressing an afterimage due to long-term alternating current driving generated in a liquid crystal display element of an IPS driving method or an FFS driving method, a liquid crystal alignment film obtained from the liquid crystal aligning agent, and a liquid crystal display having the liquid crystal alignment film An object is to provide an element.
 本発明者らは、上記の目的達成のため、鋭意検討を重ねた結果、特定構造を有するテトラカルボン酸誘導体を有するテトラカルボン酸誘導体成分と、特定構造を有するジアミン成分と、から得られるポリイミド、又はポリイミド前駆体を含有する液晶配向剤を用いることにより、上記の目的を達成し得ることを見出した。かくして、本発明は、下記を要旨とするものである。 In order to achieve the above object, the present inventors have made extensive studies, and as a result, a polyimide obtained from a tetracarboxylic acid derivative component having a tetracarboxylic acid derivative having a specific structure and a diamine component having a specific structure, Or it discovered that said objective could be achieved by using the liquid crystal aligning agent containing a polyimide precursor. Thus, the present invention has the following gist.
 1. 下記式(1)で表されるテトラカルボン酸二無水物及びその誘導体から選ばれる少なくとも1種類と、下記式(2)で表されるテトラカルボン酸二無水物及びその誘導体から選ばれる少なくとも1種類と、を含有するテトラカルボン酸誘導体成分と、下記式(3)及び(4)から選ばれる少なくとも1種類のジアミンを含有するジアミン成分と、から得られるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する、液晶配向剤。 1. At least one selected from tetracarboxylic dianhydrides represented by the following formula (1) and derivatives thereof, and at least one selected from tetracarboxylic dianhydrides represented by the following formula (2) and derivatives thereof. And a tetracarboxylic acid derivative component containing, a diamine component containing at least one diamine selected from the following formulas (3) and (4), and a polyimide precursor obtained from the polyimide that is an imidized product thereof A liquid crystal aligning agent containing at least one selected polymer.
Figure JPOXMLDOC01-appb-C000009
 式中、Xは下記式(X1-1)~(X1-4)から選ばれる構造であり、Xは下記式(X2-1)~(X2-2)から選ばれる構造である。
Figure JPOXMLDOC01-appb-C000009
In the formula, X 1 is a structure selected from the following formulas (X1-1) to (X1-4), and X 2 is a structure selected from the following formulas (X2-1) to (X2-2).
Figure JPOXMLDOC01-appb-C000010
 式中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよいが、少なくとも一つは水素原子以外である。RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000010
In the formula, each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different, but at least one is other than a hydrogen atom. R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon containing a fluorine atom. These are monovalent organic groups having 1 to 6 or phenyl groups, which may be the same or different.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式中、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~20の2価の有機基であり、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。
Figure JPOXMLDOC01-appb-C000012
In the formula, A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms, and A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol Group, nitro group, phosphate group, or monovalent organic group having 1 to 20 carbon atoms, a is an integer of 1 to 4, and when a is 2 or more, the structure of A 1 is the same or different. Also good. b and c are each independently an integer of 1 to 2.
 2. 前記式(2)で表されるテトラカルボン酸二無水物又はその誘導体の割合が、全テトラカルボン誘導体成分1モルに対して1~30モル%である、1.に記載の液晶配向剤。 2. The ratio of the tetracarboxylic dianhydride represented by the formula (2) or a derivative thereof is 1 to 30 mol% with respect to 1 mol of all tetracarboxylic derivative components. Liquid crystal aligning agent as described in.
 3. Xの構造が下記式(X1-12)~(X1-16)から選ばれる少なくとも1種である、1.又は2.に記載の液晶配向剤。 3. 1. The structure of X 1 is at least one selected from the following formulas (X1-12) to (X1-16): Or 2. Liquid crystal aligning agent as described in.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 4. Xの構造が前記式(X1-12)である、1.から3.の何れか1つに記載の液晶配向剤。 4). The structure of X 1 is the formula (X1-12); To 3. The liquid crystal aligning agent as described in any one of these.
 5. Xの構造が前記式(X2-1)で表される、1.から4.の何れか1つに記載の液晶配向剤。 5). The structure of X 2 is represented by the formula (X2-1). To 4. The liquid crystal aligning agent as described in any one of these.
 6. ジアミン成分が下記式(DA-1)~(DA-20)から選ばれる少なくとも1種を含有する、1.から5.の何れか1項に記載の液晶配向剤。 6. The diamine component contains at least one selected from the following formulas (DA-1) to (DA-20): To 5. The liquid crystal aligning agent of any one of these.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 7. 1.から6.の何れか1つに記載の液晶配向剤から得られる、液晶配向膜。 7. 1. To 6. Liquid crystal aligning film obtained from the liquid crystal aligning agent as described in any one of these.
 8. 7.に記載の液晶配向膜を具備する、液晶表示素子。 8. 7. The liquid crystal display element which comprises the liquid crystal aligning film of description.
 9. 前記液晶表示素子が、横電界で液晶を駆動するものである、8.に記載の液晶表示素子。 9. 7. The liquid crystal display element drives the liquid crystal by a lateral electric field, A liquid crystal display element according to 1.
 本発明の液晶配向剤によれば、液晶配向性や電気特性等の基本特性に優れるのに加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像を抑制することができる液晶配向膜を得ることができる。 According to the liquid crystal aligning agent of the present invention, in addition to being excellent in basic characteristics such as liquid crystal alignment and electrical characteristics, it is possible to suppress afterimages caused by long-term alternating current driving that occur in liquid crystal display elements of IPS driving method and FFS driving method. A liquid crystal alignment film that can be obtained can be obtained.
 また、本発明の液晶配向膜及び液晶表示素子によれば、液晶配向性や電気特性等の基本特性に優れるのに加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像を抑制することができる。 Further, according to the liquid crystal alignment film and the liquid crystal display element of the present invention, in addition to being excellent in basic characteristics such as liquid crystal alignment and electrical characteristics, long-term AC driving that occurs in IPS driving and FFS driving liquid crystal display elements. Afterimage can be suppressed.
 本発明の液晶配向剤は、上述したポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、特定重合体とも称する)を含有する。以下、特定重合体をなす原料となる各成分について詳述する。 The liquid crystal aligning agent of the present invention contains at least one polymer (hereinafter also referred to as a specific polymer) selected from the polyimide precursor described above and a polyimide that is an imidized product thereof. Hereafter, each component used as the raw material which makes a specific polymer is explained in full detail.
 <テトラカルボン酸誘導体成分>
 本発明の液晶配向剤に含有される、特定重合体の重合に用いられるテトラカルボン酸誘導体成分には、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物を用いることができる。特定重合体の重合に用いられるテトラカルボン酸二無水物又はその誘導体は、下記式(1)で表されるテトラカルボン酸二無水物又はその誘導体から選ばれる少なくとも1種類と、下記式(2)で表されるテトラカルボン酸又はその誘導体から選ばれる少なくとも1種類と、を含有する。
<Tetracarboxylic acid derivative component>
The tetracarboxylic acid derivative component used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also tetracarboxylic acid and tetracarboxylic acid that are tetracarboxylic acid derivatives thereof. An acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound can be used. The tetracarboxylic dianhydride or derivative thereof used for the polymerization of the specific polymer is at least one selected from tetracarboxylic dianhydrides or derivatives thereof represented by the following formula (1), and the following formula (2): And at least one selected from tetracarboxylic acids represented by
Figure JPOXMLDOC01-appb-C000017
 式中、Xは下記式(X1-1)~(X1-4)から選ばれる構造である。
Figure JPOXMLDOC01-appb-C000017
In the formula, X 1 is a structure selected from the following formulas (X1-1) to (X1-4).
Figure JPOXMLDOC01-appb-C000018
 式中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよいが、少なくとも一つは水素原子以外である。RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000018
In the formula, each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different, but at least one is other than a hydrogen atom. R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon containing a fluorine atom. These are monovalent organic groups having 1 to 6 or phenyl groups, which may be the same or different.
 長期交流駆動による残像の抑制等の観点からは、Xの構造は下記式(X1-12)~(X1-16)で表される構造から選ばれる少なくとも1種が好ましく、下記式(X1-12)が特に好ましい。 From the viewpoint of suppressing afterimages due to long-term alternating current drive, the structure of X 1 is preferably at least one selected from structures represented by the following formulas (X1-12) to (X1-16), and the following formula (X1- 12) is particularly preferred.
Figure JPOXMLDOC01-appb-C000019
 上記式(1)で表されるテトラカルボン酸二無水物又はその誘導体の割合は、全テトラカルボン酸二無水物又はその誘導体1モルに対して50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。
Figure JPOXMLDOC01-appb-C000019
The proportion of the tetracarboxylic dianhydride represented by the above formula (1) or a derivative thereof is preferably 50 mol% or more, more preferably 70 mol% or more with respect to 1 mol of all tetracarboxylic dianhydrides or derivatives thereof. Preferably, 80 mol% or more is more preferable.
 Xは下記式(X2-1)~(X2-2)から選ばれる構造である。 X 2 is a structure selected from the following formulas (X2-1) to (X2-2).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(2)において、長期交流駆動による残像の抑制等の観点からは、Xは下記式(X2-1)で表される構造が好ましい。上記式(2)で表されるテトラカルボン酸二無水物又はその誘導体の割合は、全テトラカルボン酸二無水物又はその誘導体(全テトラカルボン酸誘導体成分)1モルに対して1~30モル%であることが好ましく、10~30%がより好ましく、10~20%がさらに好ましい。 In the above formula (2), X 2 is preferably a structure represented by the following formula (X2-1) from the viewpoint of suppression of afterimages caused by long-term alternating current driving. The ratio of the tetracarboxylic dianhydride represented by the above formula (2) or a derivative thereof is 1 to 30 mol% with respect to 1 mol of the total tetracarboxylic dianhydride or the derivative thereof (total tetracarboxylic acid derivative component). It is preferably 10 to 30%, more preferably 10 to 20%.
 特定重合体の重合に用いられるテトラカルボン酸二無水物及びその誘導体は、上記式(1)及び(2)以外に、下記式(6)で表されるテトラカルボン酸二無水物及びその誘導体を用いてもよい。 In addition to the above formulas (1) and (2), the tetracarboxylic dianhydride and its derivative used for the polymerization of the specific polymer are the tetracarboxylic dianhydride and its derivative represented by the following formula (6). It may be used.
Figure JPOXMLDOC01-appb-C000021
 式中、Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式(X-9)~(X-47)の構造が挙げられる。化合物の入手の容易性の観点から、Xの構造は、X-17、X-25、X-26、X-27、X-28、X-32、X-35、X-37、X-39、X-43、X-44、X-45、X-46、及びX-47が好ましい。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26、X-27、X-28、X-32、X-35、及びX-37がより好ましい。
Figure JPOXMLDOC01-appb-C000021
In the formula, X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-9) to (X-47). From the viewpoint of easy availability of the compound, the structure of X 3 is X-17, X-25, X-26, X-27, X-28, X-32, X-35, X-37, X- 39, X-43, X-44, X-45, X-46, and X-47 are preferred. Further, from the viewpoint of obtaining a liquid crystal alignment film in which the residual charge accumulated by direct current voltage can be quickly relaxed, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure. As the structure of X 3 , X-26 X-27, X-28, X-32, X-35, and X-37 are more preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 <ジアミン成分>
 本発明の液晶配向剤に含有される、特定重合体の重合に用いられるジアミン成分は、下記式(3)及び下記式(4)から選ばれる少なくとも1種を含有する。
<Diamine component>
The diamine component used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention contains at least one selected from the following formula (3) and the following formula (4).
Figure JPOXMLDOC01-appb-C000028
 式中、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~20の2価の有機基であり、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。
Figure JPOXMLDOC01-appb-C000028
In the formula, A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms, and A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol Group, nitro group, phosphate group, or monovalent organic group having 1 to 20 carbon atoms, a is an integer of 1 to 4, and when a is 2 or more, the structure of A 1 is the same or different. Also good. b and c are each independently an integer of 1 to 2.
 長期交流駆動による残像の抑制等の観点からは、上記式(3)及び上記式(4)の具体的構造としては、下記式(DA-1)~(DA-20)の構造が好ましい。なかでも、DA-1、DA-2、DA-4、DA-5、DA-7がより好ましい。 From the standpoint of suppressing afterimages due to long-term alternating current drive, the structures of the following formulas (DA-1) to (DA-20) are preferable as the specific structures of the above formulas (3) and (4). Of these, DA-1, DA-2, DA-4, DA-5, and DA-7 are more preferable.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(3)及び上記式(4)で表されるジアミンの含有量は、全ジアミン成分1モルに対して、50~100モル%が好ましく、70モル%~100モル%であることがより好ましい。特定重合体の重合に用いられるジアミンは、上記式(3)及び(4)以外に、下記式(7)で表されるジアミンを含んでもよい。 The content of the diamine represented by the above formula (3) and the above formula (4) is preferably 50 to 100 mol%, more preferably 70 mol% to 100 mol%, relative to 1 mol of all diamine components. preferable. The diamine used for the polymerization of the specific polymer may include a diamine represented by the following formula (7) in addition to the above formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000032
 式中、Aは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基であり、同一でも異なってもよい。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。Yは2価の有機基であり、その具体的な構造は、下記式(Y-1)~(Y-49)及び(Y-57)~(Y-168)が例示される。
Figure JPOXMLDOC01-appb-C000032
In the formula, each A 3 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms, which may be the same or different. Good. From the viewpoint of liquid crystal orientation, A 3 is preferably a hydrogen atom or a methyl group. Y 1 is a divalent organic group, and specific structures thereof are exemplified by the following formulas (Y-1) to (Y-49) and (Y-57) to (Y-168).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 ポリマーの溶解性が向上するという観点で、Yの構造中に、下記式(8)で表される構造を含むことが好ましい。 From the viewpoint of improving the solubility of the polymer, the structure represented by the following formula (8) is preferably included in the structure of Y 1 .
Figure JPOXMLDOC01-appb-C000052
 式中、Dはt-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000052
In the formula, D is a t-butoxycarbonyl group.
 上記式(8)の構造を含むYの具体例としては、Y-158、Y-159、Y-160、Y-161、Y-162、Y-163が挙げられる。 Specific examples of Y 1 including the structure of the above formula (8) include Y-158, Y-159, Y-160, Y-161, Y-162, and Y-163.
 <ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体である、ポリアミック酸エステルは、以下の(1)~(3)の何れかの方法で合成することができる。
<Method for producing polyamic acid ester>
The polyamic acid ester, which is a polyimide precursor used in the present invention, can be synthesized by any of the following methods (1) to (3).
 (1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成できる。具体的には、ポリアミック酸とエステル化剤を有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(1) When synthesizing from polyamic acid Polyamic acid ester can be synthesized by esterifying polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are synthesized by reacting in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~4モル当量がより好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, and more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる有機溶媒は、重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時における有機溶媒中の重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be. The concentration of the polymer in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that the polymer hardly precipitates and a high molecular weight product is easily obtained.
 (2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred. The organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, γ-butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
 合成時における有機溶媒中の重合体濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる有機溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。 The polymer concentration in the organic solvent at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent mixing of outside air. .
 (3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶媒の存在下で0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When a polyamic acid is synthesized from a tetracarboxylic acid diester and a diamine The polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等が使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましく、2~2.5倍モルがより好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 moles, more preferably 2 to 2.5 moles, relative to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。前記有機溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド等が挙げられる。また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましく、2.0~3.0倍モルがより好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 moles, more preferably 2 to 3 moles, relative to the diamine component from the viewpoint of easy removal and high molecular weight. Examples of the organic solvent include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide and the like. In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0-fold mol, more preferably 2.0 to 3.0-fold mol based on the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノール等が好ましい。 Among the methods for synthesizing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable. The polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
 <ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により合成することができる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. May be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノール等が好ましい。 The polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. The poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
 <ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に、塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidation by adding a basic catalyst to the polyamic acid ester solution or a polyamic acid solution obtained by dissolving the polyamic acid ester resin powder in an organic solvent is simple. . Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。 Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30倍モル、好ましくは2~20倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。 The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。 When a polyimide is produced from a polyamic acid, chemical imidization in which a catalyst is added to the polyamic acid solution obtained by the reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。 Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトン等が好ましい。 The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained. Examples of the poor solvent include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
 <液晶配向剤>
 本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent. The molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1 mass from the point of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
 本発明の液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2 -Pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種以上を併用してもよい。 The liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol, 2- (2-Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, isoamyl lactate Ester, and the like. Two or more of these solvents may be used in combination.
 本発明の液晶配向剤には、上記の他、特定重合体以外の重合体、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加してもよい。 In addition to the above, the liquid crystal aligning agent of the present invention includes a polymer other than the specific polymer, a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, the liquid crystal aligning film and the substrate. Silane coupling agent for the purpose of improving adhesion with the liquid crystal, crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and polyamic acid imidization when baking the coating film An imidization accelerator for the purpose of proceeding efficiently may be added.
 <液晶配向膜・液晶表示素子>
 液晶配向膜は、上記の液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process. In the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法等で行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコート法、スピンナー法又はスプレー法等があり、目的に応じてこれらを用いてもよい。 The application method of the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an ink jet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coat method, a spinner method, or a spray method, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 After the liquid crystal aligning agent is applied on the substrate, the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven to form a liquid crystal alignment film. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent. If the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
 本発明の液晶配向剤から得られる液晶配向膜を配向処理する方法は、光配向法が好適である。光配向法の好ましい例としては、前記液晶配向膜の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。 The method of aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is preferably a photo alignment method. As a preferred example of the photo-alignment method, the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, a heat treatment is performed at a temperature of 150 to 250 ° C. A liquid crystal alignment ability). As the radiation, ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
 また、液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、放射線を照射してもよい。また、前記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。 Further, in order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C. The radiation dose is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable. The liquid crystal alignment film thus prepared can stably align liquid crystal molecules in a certain direction. A higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
 更に、前記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理をすることもできる。上記接触処理に使用する溶媒としては、放射線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。 Furthermore, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method. The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate. Of these, water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate. The solvent may be used alone or in combination of two or more.
 上記の接触処理、すなわち、偏光された放射線を照射した液晶配向膜に水や溶媒を接触させる処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1分~30分間浸漬処理をすることが好ましい。また、前記接触処理時の溶媒は、常温でも加温してもよいが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理等を行ってもよい。 Examples of the above-described contact treatment, that is, treatment for bringing water or a solvent into contact with the liquid crystal alignment film irradiated with polarized radiation include immersion treatment and spray treatment (also referred to as spray treatment). The treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation. In particular, the immersion treatment is preferably performed for 1 minute to 30 minutes. The solvent used in the contact treatment may be warmed at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable. In addition, from the viewpoint of the solubility of the decomposition product, ultrasonic treatment or the like may be performed as necessary.
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行ってもよい。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。 After the contact treatment, it is preferable to perform rinsing (also referred to as rinsing) with a low-boiling solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone, and baking of the liquid crystal alignment film. At that time, either one of rinsing and firing, or both may be performed. The firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, the temperature is 200 to 230 ° C. The firing time is preferably 10 seconds to 30 minutes. Among these, 1 to 10 minutes is preferable.
 本発明の液晶配向膜は、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。 The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film for an FFS mode liquid crystal display element. The liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention. As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. In addition, the liquid crystal display element of the active matrix structure in which switching elements, such as TFT (Thin Film Transistor), were provided in each pixel part which comprises image display may be sufficient.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。 Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。 Next, a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided. A part of the sealant is provided with an opening that can be filled with liquid crystal from the outside. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. As the liquid crystal material, either a positive liquid crystal material or a negative liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
 上記のようにして、本発明の液晶配向剤を用いることで、交流駆動による残像を抑制し、かつ、シール剤及び下地基板との密着性を両立する液晶配向膜を得ることができる。特に、偏光された放射線を照射して得られる液晶配向膜に対して有用である。 As described above, by using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film that suppresses an afterimage due to AC driving and has both adhesiveness with a sealing agent and a base substrate. In particular, it is useful for a liquid crystal alignment film obtained by irradiating polarized radiation.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
DA-1:1,2-ビス(4-アミノフェノキシ)エタン
DA-2:ビス(4-アミノフェノキシ)メタン
DA-3:N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン
DA-4:p-フェニレンジアミン 
DA-5:下記式(DA-5)参照
DA-6:4,4’-ジアミノジフェニルアミン
DA-7:4,4’-ジアミノジフェニルメタン
DA-8:下記式(DA-8)参照
CA-1:下記式(CA-1)参照
CA-2:下記式(CA-2)参照
CA-3:下記式(CA-3)参照
CA-4:下記式(CA-4)参照
AD-1:下記式(AD-1)参照
Examples Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The following are the abbreviations of the compounds and the measurement methods of the respective properties.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve DA-1: 1,2-bis (4-aminophenoxy) ethane DA-2: bis (4-aminophenoxy) methane DA-3: N -Tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine DA-4: p-phenylenediamine
DA-5: See formula (DA-5) below DA-6: 4,4′-diaminodiphenylamine DA-7: 4,4′-diaminodiphenylmethane DA-8: See formula (DA-8) below CA-1: See Formula (CA-1) below CA-2: See Formula (CA-2) below CA-3: See Formula (CA-3) below CA-4: See Formula (CA-4) below AD-1: Formula below See (AD-1)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 [粘度]
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1ml、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 ml, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C.
 [分子量]
 分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(Mnと重量平均分子量(Mw)を算出した。
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
[Molecular weight]
The molecular weight was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn and weight average molecular weight (Mw)) was calculated as a polyethylene glycol and polyethylene oxide equivalent value.
GPC apparatus: manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese product (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。 Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
 <イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
<Measurement of imidization ratio>
20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) (0.0. 53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
 [液晶セルの作製]
 フリンジフィールドスイッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured. First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150~300℃のホットプレート上で5分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after the liquid crystal aligning agent is filtered through a 1.0 μm filter, spin coating is applied to the prepared substrate with electrodes and a glass substrate having a columnar spacer having a height of 4 μm on which an ITO film is formed on the back surface. It was applied by the method. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 to 300 ° C. for 5 minutes to provide a substrate with a liquid crystal alignment film Got. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
 [長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。 After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, in the second pixel, the second region and the first region were compared to calculate a similar angle Δ.
 [鉛筆硬度の評価]
 鉛筆硬度評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート法により塗布にて液晶配向剤を塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射等の配向処理を施し、液晶配向膜付き基板を得た。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150℃~300℃のホットプレート上で14分間加熱し、液晶配向膜付き基板を得た。この基板を鉛筆硬度試験法(JIS K5400)で測定した。
[Evaluation of pencil hardness]
A sample for pencil hardness evaluation was prepared as follows. A liquid crystal aligning agent was applied on a 30 mm × 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. This coating surface was subjected to alignment treatment such as rubbing or irradiation with polarized ultraviolet rays to obtain a substrate with a liquid crystal alignment film. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film A substrate was obtained. This substrate was measured by a pencil hardness test method (JIS K5400).
 [密着性の評価]
 密着性評価のサンプルは、以下のように作製した。30mm×40mmのITO基板に、スピンコート法により液晶配向剤を塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射等の配向処理を施し、液晶配向膜付き基板を得た。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150℃~300℃のホットプレート上で14分間加熱し、液晶配向膜付き基板を得た。
[Evaluation of adhesion]
A sample for evaluation of adhesion was prepared as follows. A liquid crystal aligning agent was applied to a 30 mm × 40 mm ITO substrate by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. This coating surface was subjected to alignment treatment such as rubbing or irradiation with polarized ultraviolet rays to obtain a substrate with a liquid crystal alignment film. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 14 minutes to provide a liquid crystal alignment film A substrate was obtained.
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学製XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃1時間熱硬化させて、密着性評価用のサンプルを作製した。その後、サンプル基板を島津製作所製の卓上形精密万能試験機AGS-X500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。 Two substrates thus obtained were prepared, and a 4 μm bead spacer was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm. The two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation. After that, the sample substrate is fixed with the table top precision universal testing machine AGS-X500N manufactured by Shimadzu Corporation, and then the upper and lower substrate ends are fixed and then pressed from the upper center of the substrate to release the pressure (N) Was measured.
 <合成例1>
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに、DA-1を2.78g(11.4mmol)、DA-2を3.50g(15.2mmol)、DA-3を3.89g(11.4mmol)を取り、NMPを46.3g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を6.64g(29.6mmol)、CA-2を1.42g(5.70mmol)添加し、更に固形分濃度が18質量%になるようにNMPを36.8g加え、40℃で24時間撹拌してポリアミック酸溶液(A)(粘度:850mPa・s)を得た。ポリアミック酸の分子量は、Mn=15500、Mw=36500であった。
<Synthesis Example 1>
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.78 g (11.4 mmol) of DA-1, 3.50 g (15.2 mmol) of DA-2, and 3.89 g of DA-3 ( 11.4 mmol), 46.3 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 6.64 g (29.6 mmol) of CA-1 and 1.42 g (5.70 mmol) of CA-2 were added, and NMP was added to a solid content concentration of 18% by mass. 0.8 g was added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid solution (A) (viscosity: 850 mPa · s). The molecular weight of the polyamic acid was Mn = 15500 and Mw = 36500.
 <合成例2~12>
 下記表1に示す、ジアミン成分、テトラカルボン酸成分、及びNMPを使用し、それぞれ、反応温度、固形分濃度、合成例1と同様に実施することにより、下記表1に示すポリアミック酸溶液(B)~(L)を得た。また、得られたポリアミック酸の粘度、及び分子量は、下記表1に示す。
<Synthesis Examples 2 to 12>
Using a diamine component, a tetracarboxylic acid component, and NMP shown in Table 1 below, and carrying out in the same manner as in the reaction temperature, solid content concentration, and Synthesis Example 1, respectively, the polyamic acid solution (B ) To (L) were obtained. Further, the viscosity and molecular weight of the obtained polyamic acid are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 <合成例13>
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに得られたポリアミック酸溶液(A)を30g取り、NMPを15.0g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を3.32g、ピリジンを0.43g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を213mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、213mlのメタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末(A)を得た。このポリイミド樹脂粉末のイミド化率は65%であり、Mn=6800、Mw=12000であった。
<Synthesis Example 13>
30 g of the polyamic acid solution (A) obtained in a 100 ml four-necked flask with a stirrer and a nitrogen inlet tube was taken, 15.0 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 3.32 g of acetic anhydride and 0.43 g of pyridine were added and heated at 55 ° C. for 3 hours to perform chemical imidization. The obtained reaction liquid was poured into 213 ml of methanol while stirring, and the deposited precipitate was collected by filtration and subsequently washed with 213 ml of methanol three times. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder (A). The imidation ratio of this polyimide resin powder was 65%, and Mn = 6800 and Mw = 12000.
 <合成例14~23>
 下記表2に示す、ポリアミック酸溶液、NMP、無水酢酸、ピリジン、及びメタノールを使用した以外は、合成例13と同様に実施することにより、下記表2に示すポリイミド樹脂粉末(B)~(K)を得た。
<Synthesis Examples 14 to 23>
Polyimide resin powders (B) to (K) shown in Table 2 below are used in the same manner as in Synthesis Example 13 except that the polyamic acid solution, NMP, acetic anhydride, pyridine, and methanol shown in Table 2 are used. )
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 <合成例24~28>
 下記表1-2に示す、ジアミン成分、テトラカルボン酸成分、及びNMPを使用し、それぞれ、反応温度、固形分濃度、合成例1と同様に実施することにより、下記表1-2に示すポリアミック酸溶液(M)~(Q)を得た。また、得られたポリアミック酸の粘度、及び分子量は、下記表1-2に示す。
<Synthesis Examples 24-28>
By using the diamine component, tetracarboxylic acid component, and NMP shown in Table 1-2 below, and carrying out in the same manner as in the reaction temperature, solid content concentration, and Synthesis Example 1, respectively, Acid solutions (M) to (Q) were obtained. Further, the viscosity and molecular weight of the obtained polyamic acid are shown in Table 1-2 below.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 <合成例29~31>
 表2に示す、ポリアミック酸溶液、NMP、無水酢酸、ピリジン、及びメタノールを使用した以外は、合成例13と同様に実施することにより、下記表2-2に示すポリイミド樹脂粉末(M)~(Q)を得た。
<Synthesis Examples 29 to 31>
Except that the polyamic acid solution, NMP, acetic anhydride, pyridine, and methanol shown in Table 2 were used, the same procedures as in Synthesis Example 13 were carried out to obtain polyimide resin powders (M) to (M) shown in Table 2-2 below. Q) was obtained.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 <実施例1>
 合成例1で得られた18質量%のポリアミック酸溶液(A)10.00gを100ml三角フラスコに取り、NMP14.00g、BCS6.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 1>
Take 10.00 g of the 18% by mass polyamic acid solution (A) obtained in Synthesis Example 1 in a 100 ml Erlenmeyer flask, add 14.00 g of NMP and 6.00 g of BCS, and mix at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent. (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例2>
 合成例13で得られたポリイミド樹脂粉末(A)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(K)を得た。このポリイミド溶液にAD-1を0.09g、NMPを2.90g、GBLを9.00g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(2)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 2>
Take 1.80 g of the polyimide resin powder (A) obtained in Synthesis Example 13 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (K) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例3~5>
 ポリイミド樹脂粉末(A)の代わりに、ポリイミド樹脂粉末(B)~(D)を用いた以外は、実施例2と同様に実施することで、液晶配向剤(3)~(5)を得た。
<Examples 3 to 5>
Liquid crystal aligning agents (3) to (5) were obtained in the same manner as in Example 2, except that polyimide resin powders (B) to (D) were used instead of polyimide resin powder (A). .
 <実施例6>
 実施例5で得られた15質量%のポリイミド溶液(D)5.50gと15質量%のポリアミック酸溶液(E)5.50gを100ml三角フラスコに取り、AD-1を0.83g、NMPを4.82g、GBLを7.35g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(6)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 6>
5. 50 g of the 15% by mass polyimide solution (D) obtained in Example 5 and 5.50 g of the 15% by mass polyamic acid solution (E) were placed in a 100 ml Erlenmeyer flask, 0.83 g of AD-1 and NMP were added. 4.82 g, 7.35 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例7~8>
 ポリイミド樹脂粉末(A)の代わりに、ポリイミド樹脂粉末(E)~(F)を用いた以外は、実施例2と同様に実施することで、液晶配向剤(7)~(8)を得た。
<Examples 7 to 8>
Liquid crystal aligning agents (7) to (8) were obtained in the same manner as in Example 2 except that polyimide resin powders (E) to (F) were used instead of polyimide resin powder (A). .
 <比較例1>
 ポリアミック酸溶液(A)の代わりに、ポリアミック酸溶液(H)を用いた以外は、実施例1と同様に実施することで、液晶配向剤(9)を得た。
<Comparative Example 1>
The liquid crystal aligning agent (9) was obtained by implementing like Example 1 except having used the polyamic acid solution (H) instead of the polyamic acid solution (A).
 <比較例2~6>
 ポリイミド樹脂粉末(A)の代わりに、ポリイミド樹脂粉末(G)~(K)を用いた以外は、実施例2と同様に実施することで、液晶配向剤(10)~(14)を得た。
<Comparative Examples 2 to 6>
Liquid crystal aligning agents (10) to (14) were obtained in the same manner as in Example 2 except that polyimide resin powders (G) to (K) were used instead of polyimide resin powder (A). .
 <実施例9>
 実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した。この基板を、純水:2-プロパノール=1/1の混合溶液に3分間浸漬させ、次いで純水に1分間浸漬させ、230℃のホットプレート上で14分間乾燥させて、液晶配向膜付き基板を得た。
<Example 9>
After the liquid crystal aligning agent (1) obtained in Example 1 is filtered through a 1.0 μm filter, the prepared substrate with electrodes and a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface are provided. It apply | coated to the glass substrate by the spin coat method. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.25 J / cm 2 of linearly polarized ultraviolet light having a extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. This substrate is immersed in a mixed solution of pure water: 2-propanol = 1/1 for 3 minutes, then immersed in pure water for 1 minute, and dried on a hot plate at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film Got.
 得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.20であった。 The above-mentioned two substrates obtained as a set were printed with a sealant on the substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °, The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.20.
 <実施例10~16、比較例7~12>
 液晶配向剤(1)の代わりに、それぞれ、表3に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表3に示したものにした以外は、実施例9と同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を、表3に示す。
<Examples 10 to 16, Comparative Examples 7 to 12>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 3 was used, respectively, and the same as in Example 9 except that the ultraviolet irradiation amount and the immersion solution were changed to those shown in Table 3. The FFS drive liquid crystal cell was prepared by the method described above, and afterimage evaluation was performed by long-term alternating current drive. Table 3 shows the value of the angle Δ of the liquid crystal cell after long-term AC driving in each case.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 <実施例17>
 上記の液晶配向剤(1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法により塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.25J/cm照射した後、純水:2-プロパノール=1/1の混合溶液に5分間浸漬させ、次いで純水に1分間浸漬させた230℃のホットプレート上で14分間加熱して、液晶配向膜付き基板を得た。この基板を鉛筆硬度試験法(JIS K5400)で測定した結果、3Hであった。
<Example 17>
After the liquid crystal aligning agent (1) is filtered through a 1.0 μm filter, spin is applied to the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface. The coating method was applied. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.25 J / cm 2 of linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate, and then mixed with a pure water: 2-propanol = 1/1 mixed solution for 5 minutes. The substrate was then immersed for 14 minutes on a 230 ° C. hot plate immersed in pure water for 1 minute to obtain a substrate with a liquid crystal alignment film. It was 3H as a result of measuring this board | substrate with the pencil hardness test method (JIS K5400).
 <実施例18~25、比較例13~18>
 液晶配向剤(1)の代わりに、それぞれ、表4に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表4に示したものにした以外は、実施例17と同様にして鉛筆硬度試験用のサンプルをそれぞれ作製した。それぞれの鉛筆硬度試験の評価を行った結果を、表4に示す。
<Examples 18 to 25, Comparative Examples 13 to 18>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 4 was used, respectively, and the same as in Example 17 except that the ultraviolet irradiation amount and the immersion solution were changed to those shown in Table 4. Thus, samples for pencil hardness test were respectively prepared. Table 4 shows the results of evaluation of each pencil hardness test.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 <実施例26>
 実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート法により塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にロール径120mmのラビング装置を用いて、ロール回転数300rpm、ロール進行速度20mm/sec、押し込み量0.1mmの条件で、レーヨン布でラビング処理して、純水に1分間浸漬させて超音波洗浄し、80℃の熱循環オーブンで乾燥させ、液晶配向膜付き基板を得た。
<Example 26>
The liquid crystal aligning agent (1) obtained in Example 1 was filtered through a 1.0 μm filter and then applied to a 30 mm × 40 mm ITO substrate by a spin coating method. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. Using a rubbing device with a roll diameter of 120 mm, the coating surface is rubbed with rayon cloth under conditions of a roll rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.1 mm, and immersed in pure water for 1 minute. Then, it was ultrasonically cleaned and dried in a heat circulation oven at 80 ° C. to obtain a substrate with a liquid crystal alignment film.
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学製XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃1時間熱硬化させて、密着性評価用のサンプルを作製した。密着性の評価を行った結果、剥離する際の強度は、20Nであった。 Two substrates thus obtained were prepared, and a 4 μm bead spacer was applied on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was 3 mm. The two substrates bonded together were fixed with a clip and then thermally cured at 150 ° C. for 1 hour to prepare a sample for adhesion evaluation. As a result of evaluating the adhesion, the strength at the time of peeling was 20N.
 <実施例27~33、比較例19~24>
 液晶配向剤(1)の代わりに、それぞれ、表5に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表5に示したものにした以外は、実施例26と同様の方法で密着性評価用のサンプルを作製した。密着性の評価を行った結果を、表5に示す。
<Examples 27 to 33, Comparative Examples 19 to 24>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 5 was used, respectively, and the same as in Example 26, except that the ultraviolet ray irradiation amount and the immersion solution were changed to those shown in Table 5. A sample for adhesion evaluation was prepared by the method described above. Table 5 shows the results of the evaluation of adhesion.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 <実施例34>
 合成例29で得られたポリイミド樹脂粉末(M)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(M)を得た。このポリイミド溶液にAD-1を0.09g、NMPを2.90g、GBLを9.00g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(15)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 34>
Take 1.80 g of the polyimide resin powder (M) obtained in Synthesis Example 29 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP so that the solid content concentration becomes 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (M) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例35>
 実施例34と同様にして得られた15質量%のポリイミド溶液(M)6.00gと合成例25で得られた15質量%のポリアミック酸溶液(N)6.00gを100ml三角フラスコに取り、AD-1を0.09g、NMPを2.90g、GBLを9.00g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(16)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 35>
A 100 ml Erlenmeyer flask was charged with 6.00 g of a 15% by weight polyimide solution (M) obtained in the same manner as in Example 34 and 6.00 g of the 15% by weight polyamic acid solution (N) obtained in Synthesis Example 25. 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例36>
 合成例30で得られたポリイミド樹脂粉末(O)1.80gを100ml三角フラスコに取り、固形分濃度が15%になるようにNMPを10.2g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(O)を得た。このポリイミド溶液にAD-1を0.09g、NMPを2.90g、GBLを9.00g、BCSを6.00g添加し、室温で3時間撹拌し、液晶配向剤(17)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 36>
Take 1.80 g of the polyimide resin powder (O) obtained in Synthesis Example 30 in a 100 ml Erlenmeyer flask, add 10.2 g of NMP to a solid content concentration of 15%, and stir at 70 ° C. for 24 hours to dissolve. A polyimide solution (O) was obtained. To this polyimide solution, 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例37>
 実施例36と同様にして得られた15質量%のポリイミド溶液(O)6.00gと合成例5で得られた15質量%のポリアミック酸溶液(E)6.00gを100ml三角フラスコに取り、AD-1を0.09g、NMPを2.90g、GBLを9.00g、BCSを6.00g添加して室温で3時間撹拌し、液晶配向剤(18)を得た。この液晶配向剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 37>
In a 100-ml Erlenmeyer flask, 6.00 g of a 15% by mass polyimide solution (O) obtained in the same manner as in Example 36 and 6.00 g of the 15% by mass polyamic acid solution (E) obtained in Synthesis Example 5 were taken. 0.09 g of AD-1, 2.90 g of NMP, 9.00 g of GBL and 6.00 g of BCS were added and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.
 <実施例38~39>
 ポリイミド樹脂粉末(M)の代わりに、ポリイミド樹脂粉末(Q)~(P)を用いた以外は、実施例34と同様に実施することで、液晶配向剤(19)~(20)を得た。
<Examples 38 to 39>
Liquid crystal aligning agents (19) to (20) were obtained in the same manner as in Example 34, except that polyimide resin powders (Q) to (P) were used instead of polyimide resin powder (M). .
 <実施例40~45>
 液晶配向剤(1)の代わりに、それぞれ、表3-2に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表3-2に示したもの以外は、実施例9と同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。それぞれにおける長期交流駆動後におけるこの液晶セルの角度Δの値を、表3-2に示す。
<Examples 40 to 45>
Example 9 was used except that the liquid crystal aligning agent shown in Table 3-2 was used instead of the liquid crystal aligning agent (1), and the ultraviolet irradiation amount and the immersion solution were other than those shown in Table 3-2. The FFS drive liquid crystal cell was manufactured by the same method as described above, and afterimage evaluation was performed by long-term alternating current drive. Table 3-2 shows the value of the angle Δ of the liquid crystal cell after the long-term AC driving in each case.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 <実施例46~51>
 液晶配向剤(1)の代わりに、それぞれ、表4-2に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表4-2に示したものにした以外は、実施例17と同様にして鉛筆硬度試験用のサンプルをそれぞれ作製した。それぞれの鉛筆硬度試験の評価を行った結果を、表4-2に示す。
<Examples 46 to 51>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 4-2 was used, and the ultraviolet irradiation amount and immersion solution were changed to those shown in Table 4-2. Samples for pencil hardness test were prepared in the same manner as in Example 17. The results of evaluating each pencil hardness test are shown in Table 4-2.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 <実施例52~57>
 液晶配向剤(1)の代わりに、それぞれ、表5-2に示した液晶配向剤を用い、また、紫外線の照射量、及び浸漬溶液を表5-2に示したものにした以外は、実施例26と同様の方法で密着性評価用のサンプルを作製した。密着性の評価を行った結果を、表5-2に示す。
<Examples 52 to 57>
Instead of the liquid crystal aligning agent (1), the liquid crystal aligning agent shown in Table 5-2 was used, and the irradiation amount of ultraviolet rays and the immersion solution were changed to those shown in Table 5-2. A sample for adhesion evaluation was produced in the same manner as in Example 26. The results of the evaluation of adhesion are shown in Table 5-2.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 本発明の液晶配向剤により、良好な残像特性に加え、高い膜硬度とシール密着性を有する液晶配向膜を得ることができる。よって、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、かつIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。そのため、高い表示品位が求められる液晶表示素子における利用が可能である。 The liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film having high film hardness and seal adhesion in addition to good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce afterimages due to alternating current driving generated in liquid crystal display elements of IPS driving method and FFS driving method, An IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality.

Claims (9)

  1.  下記式(1)で表されるテトラカルボン酸二無水物及びその誘導体から選ばれる少なくとも1種類と、下記式(2)で表されるテトラカルボン酸二無水物及びその誘導体から選ばれる少なくとも1種類と、を含有するテトラカルボン酸誘導体成分と、下記式(3)及び(4)から選ばれる少なくとも1種類のジアミンを含有するジアミン成分と、から得られるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     式中、Xは下記式(X1-1)~(X1-4)から選ばれる構造であり、Xは下記式(X2-1)~(X2-2)から選ばれる構造である。
    Figure JPOXMLDOC01-appb-C000002
     式中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよいが、少なくとも一つは水素原子以外である。RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     式中、Aは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~20の2価の有機基であり、Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcはそれぞれ独立して1~2の整数である。
    At least one selected from tetracarboxylic dianhydrides represented by the following formula (1) and derivatives thereof, and at least one selected from tetracarboxylic dianhydrides represented by the following formula (2) and derivatives thereof. And a tetracarboxylic acid derivative component containing, a diamine component containing at least one diamine selected from the following formulas (3) and (4), and a polyimide precursor obtained from the polyimide that is an imidized product thereof A liquid crystal aligning agent comprising at least one selected polymer.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, X 1 is a structure selected from the following formulas (X1-1) to (X1-4), and X 2 is a structure selected from the following formulas (X2-1) to (X2-2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula, each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and may be the same or different, but at least one is other than a hydrogen atom. R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon containing a fluorine atom. These are monovalent organic groups having 1 to 6 or phenyl groups, which may be the same or different.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    In the formula, A 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 20 carbon atoms, and A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol A nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms, a is an integer of 1 to 4, and when a is 2 or more, the structure of A 1 is the same or different. Also good. b and c are each independently an integer of 1 to 2.
  2.  前記式(2)で表されるテトラカルボン酸二無水物又はその誘導体の割合が、全テトラカルボン誘導体成分1モルに対して1~30モル%であることを特徴とする請求項1に記載の液晶配向剤。 2. The ratio of the tetracarboxylic dianhydride represented by the formula (2) or a derivative thereof is 1 to 30 mol% with respect to 1 mol of all tetracarboxylic derivative components. Liquid crystal aligning agent.
  3.  Xの構造が下記式(X1-12)~(X1-16)から選ばれる少なくとも1種であることを特徴とする請求項1又は請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    3. The liquid crystal aligning agent according to claim 1, wherein the structure of X 1 is at least one selected from the following formulas (X1-12) to (X1-16).
    Figure JPOXMLDOC01-appb-C000005
  4.  Xの構造が前記式(X1-12)であることを特徴とする請求項1から請求項3の何れか1項に記載の液晶配向剤。 4. The liquid crystal aligning agent according to claim 1, wherein the structure of X 1 is the formula (X1-12).
  5.  Xの構造が前記式(X2-1)で表されることを特徴とする請求項1から請求項4の何れか1項に記載の液晶配向剤。 5. The liquid crystal aligning agent according to claim 1, wherein the structure of X 2 is represented by the formula (X2-1).
  6.  ジアミン成分が下記式(DA-1)~(DA-20)から選ばれる少なくとも1種を含有することを特徴とする請求項1から請求項5の何れか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the diamine component contains at least one selected from the following formulas (DA-1) to (DA-20).
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
  7.  請求項1から請求項6の何れか1項に記載の液晶配向剤から得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 6.
  8.  請求項7に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 7.
  9.  前記液晶表示素子が、横電界で液晶を駆動するものであることを特徴とする請求項8に記載の液晶表示素子。 The liquid crystal display element according to claim 8, wherein the liquid crystal display element is for driving a liquid crystal by a horizontal electric field.
PCT/JP2017/046016 2016-12-21 2017-12-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2018117240A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197020775A KR102593074B1 (en) 2016-12-21 2017-12-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2018558080A JP7239872B2 (en) 2016-12-21 2017-12-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201780086937.7A CN110325902B (en) 2016-12-21 2017-12-21 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-247886 2016-12-21
JP2016247886 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117240A1 true WO2018117240A1 (en) 2018-06-28

Family

ID=62627554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046016 WO2018117240A1 (en) 2016-12-21 2017-12-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7239872B2 (en)
KR (1) KR102593074B1 (en)
CN (1) CN110325902B (en)
TW (1) TWI820011B (en)
WO (1) WO2018117240A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263761A (en) * 2017-08-23 2020-06-09 日产化学株式会社 Novel polymer and diamine compound
CN112703447A (en) * 2018-09-14 2021-04-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, method for producing diamine, and polymer
JP7375759B2 (en) 2018-08-20 2023-11-08 日産化学株式会社 Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724757A (en) * 2021-08-25 2023-03-03 臻鼎科技股份有限公司 Diamine monomer compound, preparation method thereof, resin, flexible film and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287136A (en) * 2001-03-28 2002-10-03 Minolta Co Ltd Reflective liquid crystal display element
JP2014219656A (en) * 2013-04-09 2014-11-20 Jsr株式会社 Liquid crystal aligning agent
JP2015215462A (en) * 2014-05-09 2015-12-03 Jsr株式会社 Liquid crystal display device and manufacturing method of the same
CN106190176A (en) * 2015-05-26 2016-12-07 捷恩智株式会社 Light orientation aligning agent for liquid crystal, liquid crystal orientation film and use its liquid crystal display cells and lateral electric-field type liquid crystal display cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP6354759B2 (en) * 2013-07-24 2018-07-11 日産化学工業株式会社 Liquid crystal alignment agent and liquid crystal alignment film using the same
CN105593753B (en) * 2013-10-01 2019-05-07 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and the liquid crystal expression element for having used it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287136A (en) * 2001-03-28 2002-10-03 Minolta Co Ltd Reflective liquid crystal display element
JP2014219656A (en) * 2013-04-09 2014-11-20 Jsr株式会社 Liquid crystal aligning agent
JP2015215462A (en) * 2014-05-09 2015-12-03 Jsr株式会社 Liquid crystal display device and manufacturing method of the same
CN106190176A (en) * 2015-05-26 2016-12-07 捷恩智株式会社 Light orientation aligning agent for liquid crystal, liquid crystal orientation film and use its liquid crystal display cells and lateral electric-field type liquid crystal display cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263761A (en) * 2017-08-23 2020-06-09 日产化学株式会社 Novel polymer and diamine compound
CN111263761B (en) * 2017-08-23 2022-11-04 日产化学株式会社 Novel polymer and diamine compound
JP7375759B2 (en) 2018-08-20 2023-11-08 日産化学株式会社 Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
CN112703447A (en) * 2018-09-14 2021-04-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, method for producing diamine, and polymer

Also Published As

Publication number Publication date
KR102593074B1 (en) 2023-10-23
CN110325902B (en) 2022-08-30
TWI820011B (en) 2023-11-01
JP7239872B2 (en) 2023-03-15
CN110325902A (en) 2019-10-11
JPWO2018117240A1 (en) 2019-10-31
KR20190095405A (en) 2019-08-14
TW201840644A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP2019194720A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal alignment element
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060360A1 (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
JP7239872B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JP7078033B2 (en) Polymer and liquid crystal alignment agent using it
JP6217648B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI825031B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display elements using the same
JP6460342B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
WO2020040089A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
WO2020040091A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
JP2019101196A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7193783B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2019101195A (en) Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197020775

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17884224

Country of ref document: EP

Kind code of ref document: A1