WO2020040091A1 - Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2020040091A1
WO2020040091A1 PCT/JP2019/032288 JP2019032288W WO2020040091A1 WO 2020040091 A1 WO2020040091 A1 WO 2020040091A1 JP 2019032288 W JP2019032288 W JP 2019032288W WO 2020040091 A1 WO2020040091 A1 WO 2020040091A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
formula
diamine
Prior art date
Application number
PCT/JP2019/032288
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 名木
崇明 杉山
一平 福田
翔一朗 中原
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020538378A priority Critical patent/JP7375759B2/en
Priority to KR1020217003793A priority patent/KR20210045393A/en
Priority to CN201980054991.2A priority patent/CN112585528A/en
Publication of WO2020040091A1 publication Critical patent/WO2020040091A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent, a method for producing the same, a liquid crystal alignment film obtained therefrom, and a liquid crystal display device including the obtained liquid crystal alignment film.
  • a liquid crystal display element used for a liquid crystal television, a liquid crystal display, or the like usually has a liquid crystal alignment film for controlling an alignment state of liquid crystal provided in the element.
  • the most widely used liquid crystal alignment film in the industry is to coat the surface of a film made of polyamic acid and / or polyimide obtained by imidizing the same with a cloth of cotton, nylon, polyester or the like. It is manufactured by performing a process of rubbing in a direction, a so-called rubbing process.
  • Rubbing treatment is a simple and industrially useful method with excellent productivity.
  • a photo-alignment method for imparting liquid crystal alignment ability by irradiating polarized ultraviolet light is known.
  • the liquid crystal alignment treatment by the photo-alignment method those using a photoisomerization reaction, those using a photocrosslinking reaction, those using a photolysis reaction, and the like have been proposed.
  • Patent Document 1 proposes using a polyimide film having an alicyclic structure such as a cyclobutane ring in a main chain for a photo-alignment method.
  • the obtained liquid crystal alignment film can be expected to improve the contrast and the viewing angle characteristics of a liquid crystal display element of an IPS driving method or a fringe field switching (hereinafter, FFS) driving method, as compared with the rubbing treatment method. Therefore, it attracted attention as a promising liquid crystal alignment treatment method.
  • FFS fringe field switching
  • the liquid crystal alignment film used for the IPS drive type or FFS drive type liquid crystal display element has not only basic characteristics such as excellent liquid crystal alignment and electrical characteristics but also an alignment regulating force for suppressing an afterimage generated by long-term driving.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that the alignment control force is weaker than the liquid crystal alignment film obtained by the rubbing treatment.
  • the low molecular weight component generated by photolysis is considered to be a cause of lowering the alignment regulating force, and the low molecular weight component is removed by heat treatment or cleaning treatment.
  • Patent Document 2 A method has been proposed (Patent Document 2).
  • the irradiation amount of light is a factor that affects the energy cost and the production speed.
  • the liquid crystal aligning agent provides good afterimage characteristics, the afterimage characteristics become insufficient when the light irradiation amount is reduced.
  • an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining good afterimage characteristics even when the light irradiation amount in the alignment treatment by the optical alignment method is reduced, and obtaining a stable liquid crystal aligning ability of good quality, and its production. It is an object of the present invention to provide a method, a liquid crystal alignment film obtained therefrom, and a liquid crystal display device provided with the obtained liquid crystal alignment film.
  • a liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained from a polycondensation reaction with a diamine component containing a second diamine.
  • X 1 is a structure represented by the following formula (X1-1) or (Xl-2).
  • R 3 to R 12 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl having 2 to 6 carbon atoms.
  • a 2 is independently a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms.
  • a group, a is an integer of 0 to 4, when a 2 there are multiple structures of a 2 may be the same or different.
  • the liquid crystal aligning agent of the present invention makes it possible to greatly reduce the amount of light irradiation, and to obtain a liquid crystal aligning film having good afterimage characteristics. Further, the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention has a high yield in manufacturing a liquid crystal panel, and can reduce an afterimage due to AC driving generated in a liquid crystal display element of an IPS drive system or an FFS drive system. A liquid crystal display device of the IPS drive system or the FFS drive system having excellent afterimage characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention comprises a tetracarboxylic acid component containing a tetracarboxylic dianhydride having a specific structure or a derivative thereof (hereinafter, also referred to as a tetracarboxylic acid component) and a diamine having two specific structures. It is characterized by containing a polyimide (hereinafter, also referred to as a specific polymer), which is an imidized product of a polyimide precursor obtained from a polycondensation reaction with a contained diamine component (hereinafter, also referred to as a diamine component).
  • a polyimide hereinafter, also referred to as a specific polymer
  • the specific polymer used in the present invention is a polyimide which is an imidized product of a polyimide precursor having a specific structure.
  • the polyimide precursor is not particularly limited as long as it is a polyimide precursor that forms an imide ring by heating or chemically imidizing with a catalyst.
  • a polyamic acid or a polyamic acid ester is preferable from the viewpoint that imidization by heating or chemical imidization easily proceeds.
  • the imidation ratio of the polyimide is not particularly limited, but is preferably 10 to 100%, more preferably 50 to 100%, and further preferably 50 to 80%.
  • each component as a raw material for obtaining the specific polymer will be described in detail.
  • the tetracarboxylic acid component used in the polymerization of the specific polymer used in the liquid crystal alignment agent of the present invention includes not only tetracarboxylic dianhydride, but also derivatives thereof such as tetracarboxylic acid, tetracarboxylic dihalide, and tetracarboxylic acid. Dialkyl esters or tetracarboxylic acid dialkyl ester dihalides can also be used.
  • the above tetracarboxylic dianhydride or its derivative is preferably represented by the following formula (1).
  • X 1 is a structure represented by the following formula (X1-1) or (Xl-2).
  • R 3 to R 12 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and a fluorine atom.
  • at least one of R 3 to R 6 is a group other than a hydrogen atom in the above definition.
  • X 1 is preferably the above formula (X1-1), more preferably at least one selected from the following formulas (X1-1-1) to (X1-1-5), The following formula (X1-1-1) is particularly preferred.
  • the tetracarboxylic dianhydride represented by the formula (1) or a derivative thereof may be used as a mixture of two or more.
  • the use ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (1) is preferably at least 50 mol%, more preferably at least 70 mol%, based on 1 mol of all the tetracarboxylic acid components used in the specific polymer. Is more preferable, and 80 mol% or more is further preferable.
  • the tetracarboxylic acid component used for the polymerization of the specific polymer according to the present invention may be represented by the following formula (2) in addition to the tetracarboxylic dianhydride represented by the above formula (1) or a derivative thereof. It is more preferable to contain a tetracarboxylic dianhydride or a derivative thereof, from the viewpoints of suppression of luminescent spots due to decomposition products and liquid crystal alignment.
  • X 2 is selected from the following formulas (X2-1) ⁇ (X2-6).
  • X 2 is preferably the above formula (X2-1), (X2-5), or (X2-6), and particularly preferably the formula (X2-1).
  • the tetracarboxylic dianhydrides represented by the formula (2) and derivatives thereof may be used as a mixture of two or more.
  • the use ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (2) is preferably 1 to 30 mol%, preferably 10 to 30 mol%, per 1 mol of all the tetracarboxylic acid components used in the specific polymer. % Is more preferable, and 10 to 20% is still more preferable.
  • the tetracarboxylic dianhydride and its derivative used for the polymerization of the specific polymer according to the present invention may contain a tetracarboxylic dianhydride other than the above formulas (1) and (2) or a derivative thereof. Good.
  • the diamine component used in the polymerization of the specific polymer used in the liquid crystal aligning agent of the present invention includes at least one first diamine selected from diamines represented by the following formula (3) and a first diamine represented by the following formula (4). And at least one second diamine selected from the diamines represented.
  • a 2 is a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms, a is an integer of 0 to 4, When a plurality of A 2 are present, the structures of A 2 may be the same or different.
  • the content of the first diamine represented by the formula (3) is preferably from 10 to 50 mol%, more preferably from 10 to 30 mol%, based on all diamine components used in the specific polymer.
  • the content of the second diamine represented by the formula (4) is preferably from 10 to 50 mol%, more preferably from 10 to 40 mol%, based on all diamine components used in the specific polymer.
  • the diamine used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention may include a diamine other than the above formulas (3) and (4) (hereinafter, also referred to as other diamines). Examples of other diamines are shown below, but the present invention is not limited thereto.
  • 1,2-bis (4-aminophenoxy) ethane from the viewpoint of liquid crystal alignment.
  • the content of 1,2-bis (4-aminophenoxy) ethane is more preferably from 10 to 40 mol% based on all diamine components used in the specific polymer.
  • the specific polymer component tends to be unevenly distributed near the surface layer of the liquid crystal alignment film when a polymer other than the specific polymer is contained in the liquid crystal alignment agent of the present invention.
  • Y 1 is a divalent organic group having the structure of the following formula (6).
  • D represents a protecting group which is eliminated by heating and is replaced by a hydrogen atom
  • * represents a connection point with another structure.
  • the preferred structure of D includes a t-butoxycarbonyl group.
  • Preferred specific examples of the diamine represented by the formula (5) are shown below, but it should not be construed that the invention is limited thereto. Boc in the following structure represents a t-butoxycarbonyl group.
  • the preferable content is 5 to 30 mol% of the diamine represented by the formula (5) based on all diamine components used for the specific polymer.
  • the polyamic acid ester and the polyamic acid which are the polyimide precursors used in the present invention, and the polyimide which is an imidized product of these polyimide precursors can be synthesized by a known method.
  • One example is the method described in WO2013 / 157586.
  • the molecular weight of the specific polymer is not particularly limited as long as a good coating can be formed.
  • the weight average molecular weight (Mw) is preferably from 2,000 to 500,000, more preferably from 5,000 to 300,000, and still more preferably from 10,000 to 100,000.
  • the number average molecular weight (Mn) is preferably from 1,000 to 250,000, more preferably from 2,500 to 150,000, and still more preferably from 5,000 to 50,000. 000.
  • the liquid crystal aligning agent of the present invention is a composition containing the above specific polymer and an organic solvent, and may contain two or more kinds of specific polymers having different structures. Further, the liquid crystal alignment agent of the present invention may contain a polymer other than the specific polymer (hereinafter, also referred to as a second polymer) and various additives. When the liquid crystal aligning agent of the present invention contains the second polymer, the ratio of the specific polymer to all polymer components is preferably 5% by mass or more, and an example thereof is 5 to 95% by mass.
  • polyamic acid polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) Acrylate and the like
  • a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component (hereinafter, also referred to as a second polyamic acid) is preferable as the second polymer.
  • Examples of the tetracarboxylic dianhydride component for obtaining the second polyamic acid include a compound represented by the following formula (7).
  • A is a tetravalent organic group, preferably a tetravalent organic group having 4 to 30 carbon atoms.
  • preferred structures of A are shown, but the present invention is not limited thereto.
  • (A-1) and (A-2) are preferable from the viewpoint of further improving photo-alignment
  • (A-4) is preferable from the viewpoint of improving the relaxation rate of accumulated charge
  • (A-4) is preferable.
  • -15) to (A-17) are preferable from the viewpoints of further improving the liquid crystal alignment and improving the relaxation rate of accumulated charge.
  • the tetracarboxylic dianhydride component for obtaining the second polyamic acid two or more kinds of tetracarboxylic dianhydrides may be used in combination.
  • Examples of the diamine component for obtaining the second polyamic acid include a diamine represented by the formula (3), a diamine represented by the formula (4), and other diamines exemplified above. . It is preferable to use at least one of the diamines represented by the following formula (8) from the viewpoint of improving the relaxation rate of the accumulated charge.
  • the diamine component for obtaining the second polyamic acid two or more diamines may be used in combination.
  • Y 2 is a divalent organic group having a nitrogen atom bonded to an aromatic group or having a nitrogen-containing aromatic heterocycle. Preferred structures of Y 2 are shown below, but the invention is not limited thereto.
  • the molecular weight of the second polyamic acid is not particularly limited.
  • the Mw is 2,000 to 500,000, preferably 5,000 to 300,000, more preferably 10,000 to 100,000.
  • Mn is 1,000 to 250,000, preferably 2,500 to 150,000, and more preferably 5,000 to 50,000.
  • the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but is 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film. Is preferable, and from the viewpoint of storage stability of the solution, the content is preferably 10% by mass or less. A particularly preferred concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples thereof include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, and 3-methoxy-N, N-dimethylpropanamide. These may be used alone or in combination of two or more. In addition, even if the solvent alone cannot dissolve the polymer component uniformly, it may be mixed with the above organic solvent as long as the polymer is not precipitated.
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent a solvent having a lower surface tension than the above-mentioned organic solvent is generally used.
  • Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • 1-phenoxy-2-propanol propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2- (2-ethoxypropoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isobutyl lactate Glycol ester and the like.
  • solvents may be used in combination of two or more.
  • the liquid crystal aligning agent of the present invention includes a dielectric or conductive substance for changing electric properties such as a dielectric constant and conductivity of the liquid crystal alignment film, and a purpose of improving adhesion between the liquid crystal alignment film and the substrate.
  • An accelerator or the like may be added.
  • Step (A) a step of applying the liquid crystal aligning agent of the present invention onto a substrate.
  • Step (B) a step of heating the applied liquid crystal aligning agent at a temperature at which thermal imidization does not substantially proceed to obtain a film.
  • Step (C) a step of irradiating the film obtained in step (B) with polarized ultraviolet light.
  • Step (D) a step of baking the film obtained in step (C) at a temperature of 100 ° C. or higher and higher than that of step (B).
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a substrate having high transparency, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate and a silicon nitride substrate.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used if only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
  • the method of applying the liquid crystal aligning agent is not particularly limited, but a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method and the like, and these may be used according to the purpose.
  • Step (B) is a step of heating the liquid crystal aligning agent applied on the substrate under the condition that thermal imidization does not substantially proceed to form a film.
  • the solvent is evaporated by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven to form a film.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven to form a film.
  • any temperature and time can be selected as long as the organic solvent contained in the liquid crystal aligning agent can be removed under the condition that thermal imidization does not substantially proceed.
  • heating at 50 to 150 ° C. for 1 to 10 minutes is preferable to sufficiently remove the contained solvent, and heating at 50 to 120 ° C. for 1 to 5 minutes is more preferable.
  • Step (C) is a step of irradiating polarized ultraviolet light to the film obtained in step (B).
  • the ultraviolet rays those having a wavelength of 200 to 400 nm are preferable, and those having a wavelength of 200 to 300 nm are more preferable.
  • the substrate coated with the liquid crystal alignment agent may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
  • the irradiation amount of the ultraviolet ray is, for example, 1 to 2,000 mJ / cm 2 , preferably 10 to 1,000 mJ / cm 2 , and more preferably 100 to 600 mJ / cm 2 .
  • the polarized ultraviolet light has a higher extinction ratio because higher anisotropy can be imparted thereto.
  • the extinction ratio of the linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • Step (D) is a step of baking the film irradiated with the ultraviolet light in step (C). Specifically, this is a step of firing at a temperature of 100 ° C. or higher and higher than the temperature heated in step (B).
  • the firing temperature is not particularly limited as long as it is 100 ° C. or higher and higher than the heating temperature in step (B), but is preferably 150 to 300 ° C., more preferably 150 to 250 ° C., and further preferably 200 to 250 ° C. .
  • the firing time is preferably from 5 to 120 minutes, more preferably from 5 to 60 minutes, even more preferably from 5 to 30 minutes. If the thickness of the liquid crystal alignment film after firing is too small, the reliability of the liquid crystal display element may be reduced. Therefore, the thickness is preferably from 5 to 300 nm, more preferably from 10 to 200 nm.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a liquid crystal display device of a lateral electric field type such as an IPS type or an FFS type, and is particularly useful as a liquid crystal alignment film of an FFS type liquid crystal display device.
  • the liquid crystal display element is manufactured by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, manufacturing a liquid crystal cell by a known method, and using the liquid crystal cell.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion forming an image display may be used.
  • a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion forming an image display
  • a transparent glass substrate is prepared, and a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes, and are patterned so that a desired image can be displayed.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrodes.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, and the other substrate is superimposed on one substrate so that the surfaces of the liquid crystal alignment films face each other, and the periphery is bonded with a sealant.
  • a spacer is mixed in the sealant in order to control the gap between the substrates.
  • spacers for controlling the gap between the substrates are sprayed on the in-plane portion where the sealant is not provided.
  • Part of the sealant is provided with an opening through which liquid crystal can be filled from the outside.
  • a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing a capillary phenomenon in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to surfaces of the two substrates opposite to the liquid crystal layer.
  • liquid crystal alignment agent of the present invention an afterimage due to long-term AC driving generated in a liquid crystal display device of an IPS drive system or an FFS drive system can be suppressed, and the brightness generated by the remaining low molecular weight compound can be suppressed. It is possible to obtain a liquid crystal alignment film which has no problems such as points and can be manufactured in a smaller number of steps than in the related art.
  • Boc represents a t-butoxycarbonyl group.
  • GPC apparatus Shodex (GPC-101), Column: Shodex (KD803, KD805 in series), Column temperature: 50 ° C., Eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystals (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min.
  • Standard sample TSK standard polyethylene oxide (weight average molecular weight (Mw)) manufactured by Tosoh Corporation about 900,000, 150,000, 100,000, 30,000) and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight ( Mp) about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight
  • the solution was subjected to proton NMR measurement at 500 MHz using an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum).
  • JNW-ECA500 JNW-ECA500
  • the imidation ratio is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton.
  • the liquid crystal cell for the fringe field switching (FFS) mode has a FOP (Finger on Plate) electrode layer formed on the surface, which includes a planar common electrode, an insulating layer, and a comb-shaped pixel electrode.
  • FOP Finger on Plate
  • the above-mentioned pixel electrode has a comb-like shape in which a plurality of electrode elements having a width of 3 ⁇ m and having a central portion bent at an inner angle of 160 ° are arranged in parallel at intervals of 6 ⁇ m, and one pixel includes: A first region and a second region are provided on a line connecting the bent portions of the plurality of electrode elements.
  • the liquid crystal alignment film formed on the first glass substrate is subjected to an alignment process so that the direction that equally divides the internal angle of the pixel bent portion is orthogonal to the liquid crystal alignment direction, and the liquid crystal alignment film formed on the second glass substrate is formed.
  • the film is subjected to an alignment treatment such that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate match.
  • a liquid crystal aligning agent filtered through a filter having a pore size of 1.0 ⁇ m was applied to each surface of the above-mentioned pair of glass substrates by spin coating, and dried on a hot plate at 80 ° C. for 2 minutes. After that, the coating film surface is irradiated with a predetermined amount of ultraviolet light having a wavelength of 254 nm, which is linearly polarized light having an extinction ratio of 26: 1, through a polarizing plate, and then baked in a hot air circulating oven at 230 ° C. for 30 minutes. A substrate with an alignment film was obtained.
  • a sealant was printed on one of the pair of glass substrates provided with a liquid crystal alignment film, the other substrate was bonded so that the liquid crystal alignment film surfaces faced, and the sealant was cured to produce an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck
  • a liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the backlight is turned on, and the liquid crystal cell is set so that the transmitted light intensity in the first region of the pixel is minimized.
  • the rotation angle required when the liquid crystal cell was rotated such that the transmitted light intensity in the second region of the pixel was minimized was determined. It can be said that the residual image characteristics by the long-term AC driving are better as the value of the rotation angle is smaller.
  • the value of the angle ⁇ of the liquid crystal cell was 0.1 ° or less, it was evaluated as “good”.
  • a polyimide resin powder was obtained.
  • 3.60 g of the obtained polyimide resin powder was placed in a 100-ml Erlenmeyer flask, 26.4 g of NMP was added so that the solid concentration became 12%, and the mixture was stirred at 70 ° C. for 24 hours to dissolve the polyimide solution (A-1-).
  • PI polyimide solution (A-1-).
  • Table 2 the concentration (% by mass) under the imidization conditions represents the concentration of the polymer in the solution in the imidization reaction.
  • Example 1 50 g of 4.0 g of the 12% by weight polyimide solution (A-1-PI) obtained in Synthesis Example 7 and 4.8 g of the 15% by weight polyamic acid solution (B-1) obtained in Synthesis Example 5
  • a liquid crystal aligning agent (1) (see Table 3 below). No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the solution was a uniform solution.
  • a / B indicates the mass% ratio of the polyimide solution / polyamic acid solution
  • the solid content ratio (mass%) indicates the content ratio of the polymer in the liquid crystal aligning agent.
  • Example 1 Liquid crystal alignment agents (2) to (5) were obtained in the same manner as in Example 1 except that the polyamic acid solution and the polyimide solution shown in Table 3 below were used. No abnormality such as turbidity or precipitation was observed in these liquid crystal aligning agents, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 11 The afterimage characteristics were evaluated in accordance with the above-mentioned "afterimage evaluation by long-term AC drive". That is, after the liquid crystal aligning agent (1) obtained in Example 1 was filtered through a filter having a pore size of 1.0 ⁇ m, the prepared electrode-coated substrate and a 4 ⁇ m-high columnar column having an ITO film formed on the back surface were prepared. It was applied to a glass substrate having a spacer by spin coating. After drying on a hot plate at 80 ° C.
  • the coated surface is irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes.
  • a substrate with a liquid crystal alignment film was obtained.
  • a pair of the obtained two substrates was used as a set, a sealant was printed on the substrates, and another substrate was bonded so that the liquid crystal alignment films faced each other so that the alignment direction was 0 °.
  • the agent was cured to produce an empty cell.
  • Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and an afterimage was evaluated by long-term AC driving.
  • the value (°) of the angle ⁇ of the liquid crystal cell after the long-term AC driving is as shown in Table 4 below, that is, the angle ⁇ of the liquid crystal cell when the irradiation amount of the ultraviolet light is 0.15 J / cm 2.
  • Example 12 to 14 and Comparative Example 11 In Examples 12 to 14 and Comparative Example 11 in place of the liquid crystal aligning agent (1), each of the liquid crystal aligning agents shown in Table 4 below was used. A cell was fabricated, and an afterimage was evaluated by long-term AC driving. Table 4 shows the value (°) of the angle ⁇ of the liquid crystal cell after long-term AC driving for each of the irradiation amounts of the ultraviolet rays for Examples 12 to 14 and Comparative Example 11.
  • the liquid crystal alignment agent of the present invention is useful for forming a liquid crystal alignment film in a wide range of liquid crystal display devices such as an IPS drive system and an FFS drive system.
  • liquid crystal display devices such as an IPS drive system and an FFS drive system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A liquid crystal alignment agent is provided which, even when reducing the light irradiation amount in alignment treatment by the photo-alignment method, enables obtaining excellent afterimage characteristics in an IPS-driven or FFS-driven liquid crystal display element; a production method of the liquid crystal alignment agent, a liquid crystal alignment film obtained therefrom, and a liquid crystal display element provided therewith are also provided. This liquid crystal alignment agent contains a polyimide, which is the imidized product of a polyimide precursor obtained from a polycondensation reaction of: a tetracarboxylic acid component that contains tetracarboxylic dianhydride represented by formula (1), or a derivative thereof; and a diamine component that contains a first diamine represented by formula (3) and a second diamine represented by formula (4). (X1 is a structure represented by formula (X1-1) or (X1-2).) (R3-R12 are independently a hydrogen atom, a halogen atom, an alkyl group of 1-6 carbons, an alkenyl group of 2-6 carbons, an alkynyl group of 2-6 carbons, a monovalent organic group of 1-6 carbons containing a fluorine atom, or a phenyl group, but at least one of R3-R6 is a group in the aforementioned definition other than a hydrogen atom.) (The A2's are independently a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group of 1-20 carbons, a is an integer 0-4, if there are multiple A2's, then the structure of the A2's may be the same or different.)

Description

液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子Liquid crystal alignment agent, method for producing the same, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、その製造方法、それから得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a method for producing the same, a liquid crystal alignment film obtained therefrom, and a liquid crystal display device including the obtained liquid crystal alignment film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る処理、所謂ラビング処理を行うことで作製されている。 (4) A liquid crystal display element used for a liquid crystal television, a liquid crystal display, or the like usually has a liquid crystal alignment film for controlling an alignment state of liquid crystal provided in the element. At present, the most widely used liquid crystal alignment film in the industry is to coat the surface of a film made of polyamic acid and / or polyimide obtained by imidizing the same with a cloth of cotton, nylon, polyester or the like. It is manufactured by performing a process of rubbing in a direction, a so-called rubbing process.
 ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理の面内不均一性など種々の問題が明らかとなっている。ラビング処理に代わる方法としては、偏光された紫外線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている。 Rubbing treatment is a simple and industrially useful method with excellent productivity. However, with the high performance, high definition, and large size of the liquid crystal display device, scratches and dust on the surface of the alignment film generated by the rubbing process, the effects of mechanical force and static electricity, and the surface of the alignment process Various problems such as internal non-uniformity have been clarified. As an alternative to the rubbing treatment, a photo-alignment method for imparting liquid crystal alignment ability by irradiating polarized ultraviolet light is known. As the liquid crystal alignment treatment by the photo-alignment method, those using a photoisomerization reaction, those using a photocrosslinking reaction, those using a photolysis reaction, and the like have been proposed.
 特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。この光配向法は、ラビング処理法と比べて、得られた液晶配向膜が、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子のコントラストや視野角特性の向上が期待できるため、有望な液晶配向処理方法として注目された。 Patent Document 1 proposes using a polyimide film having an alicyclic structure such as a cyclobutane ring in a main chain for a photo-alignment method. In this optical alignment method, the obtained liquid crystal alignment film can be expected to improve the contrast and the viewing angle characteristics of a liquid crystal display element of an IPS driving method or a fringe field switching (hereinafter, FFS) driving method, as compared with the rubbing treatment method. Therefore, it attracted attention as a promising liquid crystal alignment treatment method.
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、優れた液晶配向性や電気特性などの基本特性に加えて、長期駆動によって発生する残像を抑制する為の配向規制力が必要とされるが、光配向法により得られる液晶配向膜は、ラビング処理により得られる液晶配向膜と比べて配向規制力が弱いという課題があった。そして、光分解反応を利用して得られる液晶配向膜においては、光分解によって生成する低分子量成分が配向規制力を低下させる原因となるとして、この低分子量成分を加熱処理や洗浄処理により除去する方法が提案されている(特許文献2)。 The liquid crystal alignment film used for the IPS drive type or FFS drive type liquid crystal display element has not only basic characteristics such as excellent liquid crystal alignment and electrical characteristics but also an alignment regulating force for suppressing an afterimage generated by long-term driving. However, the liquid crystal alignment film obtained by the photo-alignment method has a problem that the alignment control force is weaker than the liquid crystal alignment film obtained by the rubbing treatment. In the liquid crystal alignment film obtained by utilizing the photodecomposition reaction, the low molecular weight component generated by photolysis is considered to be a cause of lowering the alignment regulating force, and the low molecular weight component is removed by heat treatment or cleaning treatment. A method has been proposed (Patent Document 2).
 しかしながら、液晶表示素子の製造において、上記のようにして低分子量成分を除去するためには、加熱処理工程や洗浄処理工程を追加する必要がある為、液晶表示素子の製造工程の増加につながっていた。これに対して、少ない工程数でも長期駆動による残像を抑制することができ、低分子量成分が原因で発生する不具合がない液晶配向膜の製造方法が提案されている(特許文献3)。 However, in the production of the liquid crystal display element, it is necessary to add a heat treatment step and a cleaning treatment step in order to remove the low molecular weight components as described above, which leads to an increase in the production steps of the liquid crystal display element. Was. On the other hand, a method of manufacturing a liquid crystal alignment film has been proposed in which afterimages due to long-term driving can be suppressed even with a small number of steps, and there is no problem caused by low molecular weight components (Patent Document 3).
日本特開平9-297313号公報Japanese Patent Application Laid-Open No. 9-297313 日本特開2011-107266号公報Japanese Patent Application Laid-Open No. 2011-107266 WO2018/117239WO2018 / 117239
 光配向法により配向処理を行う場合、光の照射量はエネルギーコストや生産スピードに影響を与える因子となるので、少ない照射量で配向処理できることは好ましい。しかし、良好な残像特性が得られる液晶配向剤であっても光照射量を低減させた場合には残像特性が不足するという問題があった。 (4) When the alignment treatment is performed by the photo-alignment method, the irradiation amount of light is a factor that affects the energy cost and the production speed. However, there is a problem that even if the liquid crystal aligning agent provides good afterimage characteristics, the afterimage characteristics become insufficient when the light irradiation amount is reduced.
 そこで、本発明の目的は、光配向法による配向処理における光照射量を低減させても良好な残像特性を得ることができ、品質のよい安定した液晶配向能が得られる液晶配向剤、その製造方法、それから得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子を提供することにある。 Accordingly, an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining good afterimage characteristics even when the light irradiation amount in the alignment treatment by the optical alignment method is reduced, and obtaining a stable liquid crystal aligning ability of good quality, and its production. It is an object of the present invention to provide a method, a liquid crystal alignment film obtained therefrom, and a liquid crystal display device provided with the obtained liquid crystal alignment film.
 本発明者らは、上記の目的達成のため、鋭意検討を重ねた結果、下記要旨の発明により、上記の目的を達成し得ることを見出した。
 下記式(1)で表されるテトラカルボン酸二無水物若しくはその誘導体を含有するテトラカルボン酸成分と、下記式(3)で表される第1のジアミンと、下記式(4)で表される第2のジアミンとを含むジアミン成分との重縮合反応から得られるポリイミド前駆体のイミド化物であるポリイミド、を含有する液晶配向剤。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by the invention having the following gist.
A tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula (1) or a derivative thereof, a first diamine represented by the following formula (3), and a first diamine represented by the following formula (4) A liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained from a polycondensation reaction with a diamine component containing a second diamine.
Figure JPOXMLDOC01-appb-C000009
 但し、式(1)中、Xは下記式(X1-1)又は(X1-2)で表される構造である。
Figure JPOXMLDOC01-appb-C000009
In the formula (1), X 1 is a structure represented by the following formula (X1-1) or (Xl-2).
Figure JPOXMLDOC01-appb-C000010
 但し、式(X1-1)、(X1-2)中、R~R12は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であるが、R~Rの少なくとも一つは上記定義中の水素原子以外の基である。
Figure JPOXMLDOC01-appb-C000010
However, in the formulas (X1-1) and (X1-2), R 3 to R 12 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl having 2 to 6 carbon atoms. A alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, wherein at least one of R 3 to R 6 is hydrogen as defined above. It is a group other than an atom.
Figure JPOXMLDOC01-appb-C000011
 但し、式(3)、(4)中、Aは、それぞれ独立してハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは0~4の整数であり、Aが複数存在する場合、Aの構造は同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000011
In the formulas (3) and (4), A 2 is independently a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms. a group, a is an integer of 0 to 4, when a 2 there are multiple structures of a 2 may be the same or different.
 本発明の液晶配向剤により、光照射量の大幅な低減が可能になり、且つ良好な残像特性を有する液晶配向膜を得ることができる。また、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。 (4) The liquid crystal aligning agent of the present invention makes it possible to greatly reduce the amount of light irradiation, and to obtain a liquid crystal aligning film having good afterimage characteristics. Further, the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention has a high yield in manufacturing a liquid crystal panel, and can reduce an afterimage due to AC driving generated in a liquid crystal display element of an IPS drive system or an FFS drive system. A liquid crystal display device of the IPS drive system or the FFS drive system having excellent afterimage characteristics can be obtained.
 本発明の液晶配向剤は、特定構造を有するテトラカルボン酸二無水物若しくはその誘導体を含有するテトラカルボン酸成分(以下、テトラカルボン酸成分ともいう。)と、2種類の特定構造を有するジアミンを含有するジアミン成分(以下、ジアミン成分ともいう。)との重縮合反応から得られるポリイミド前駆体のイミド化物であるポリイミド(以下、特定重合体とも称する。)を含有することを特徴とする。 The liquid crystal aligning agent of the present invention comprises a tetracarboxylic acid component containing a tetracarboxylic dianhydride having a specific structure or a derivative thereof (hereinafter, also referred to as a tetracarboxylic acid component) and a diamine having two specific structures. It is characterized by containing a polyimide (hereinafter, also referred to as a specific polymer), which is an imidized product of a polyimide precursor obtained from a polycondensation reaction with a contained diamine component (hereinafter, also referred to as a diamine component).
<特定重合体>
 本発明に用いられる特定重合体は、特定構造を有するポリイミド前駆体のイミド化物であるポリイミドである。ポリイミド前駆体としては、加熱又は触媒による化学イミド化によって、イミド環を形成するポリイミド前駆体であれば、特に限定されない。加熱によるイミド化、又は化学イミド化が進行しやすいという観点から、ポリイミド前駆体としては、ポリアミック酸、またはポリアミック酸エステルが好ましい。
<Specific polymer>
The specific polymer used in the present invention is a polyimide which is an imidized product of a polyimide precursor having a specific structure. The polyimide precursor is not particularly limited as long as it is a polyimide precursor that forms an imide ring by heating or chemically imidizing with a catalyst. As the polyimide precursor, a polyamic acid or a polyamic acid ester is preferable from the viewpoint that imidization by heating or chemical imidization easily proceeds.
 ポリイミドのイミド化率は、特に限定されないが、10~100%が好ましく、50~100%がより好ましく、50~80%がさらに好ましい。
 以下、上記特定重合体を得るための原料となる各成分について詳述する。
The imidation ratio of the polyimide is not particularly limited, but is preferably 10 to 100%, more preferably 50 to 100%, and further preferably 50 to 80%.
Hereinafter, each component as a raw material for obtaining the specific polymer will be described in detail.
<テトラカルボン酸成分>
 本発明の液晶配向剤で使用する特定重合体の重合に用いられるテトラカルボン酸成分としては、テトラカルボン酸二無水物だけでなく、その誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる。
<Tetracarboxylic acid component>
The tetracarboxylic acid component used in the polymerization of the specific polymer used in the liquid crystal alignment agent of the present invention includes not only tetracarboxylic dianhydride, but also derivatives thereof such as tetracarboxylic acid, tetracarboxylic dihalide, and tetracarboxylic acid. Dialkyl esters or tetracarboxylic acid dialkyl ester dihalides can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、下記式(1)で表されるものが好ましい。 The above tetracarboxylic dianhydride or its derivative is preferably represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000012
 但し、Xは下記式(X1-1)又は(X1-2)で表される構造である。
Figure JPOXMLDOC01-appb-C000012
However, X 1 is a structure represented by the following formula (X1-1) or (Xl-2).
Figure JPOXMLDOC01-appb-C000013
 但し、R~R12はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。なお、R~Rの少なくとも一つは上記定義中の水素原子以外の基である。
Figure JPOXMLDOC01-appb-C000013
However, R 3 to R 12 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and a fluorine atom. A monovalent organic group having 1 to 6 carbon atoms, or a phenyl group. In addition, at least one of R 3 to R 6 is a group other than a hydrogen atom in the above definition.
 Xは、液晶配向性の観点から、上記式(X1-1)が好ましく、下記式(X1-1-1)~(X1-1-5)から選ばれる少なくとも1種であるとより好ましく、下記式(X1-1-1)が特に好ましい。式(1)で表されるテトラカルボン酸二無水物又はその誘導体は2種以上を混合して用いてもよい。 From the viewpoint of liquid crystal alignment, X 1 is preferably the above formula (X1-1), more preferably at least one selected from the following formulas (X1-1-1) to (X1-1-5), The following formula (X1-1-1) is particularly preferred. The tetracarboxylic dianhydride represented by the formula (1) or a derivative thereof may be used as a mixture of two or more.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(1)で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、特定重合体に用いられる全テトラカルボン酸成分1モルに対して50モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。 The use ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (1) is preferably at least 50 mol%, more preferably at least 70 mol%, based on 1 mol of all the tetracarboxylic acid components used in the specific polymer. Is more preferable, and 80 mol% or more is further preferable.
 また、本発明に記載の特定重合体の重合に用いられるテトラカルボン酸成分は、上記式(1)で表されるテトラカルボン酸二無水物又はその誘導体に加えて、下記式(2)で表されるテトラカルボン酸二無水物又はその誘導体を含む場合、分解物による輝点の抑制や液晶配向性の観点からより好ましい。 Further, the tetracarboxylic acid component used for the polymerization of the specific polymer according to the present invention may be represented by the following formula (2) in addition to the tetracarboxylic dianhydride represented by the above formula (1) or a derivative thereof. It is more preferable to contain a tetracarboxylic dianhydride or a derivative thereof, from the viewpoints of suppression of luminescent spots due to decomposition products and liquid crystal alignment.
Figure JPOXMLDOC01-appb-C000015
 但し、Xは下記式(X2-1)~(X2-6)から選ばれる。
Figure JPOXMLDOC01-appb-C000015
However, X 2 is selected from the following formulas (X2-1) ~ (X2-6).
Figure JPOXMLDOC01-appb-C000016
 なかでも、Xは上記式(X2-1)、(X2-5)、又は(X2-6)が好ましく、式(X2-1)が特に好ましい。式(2)で表されるテトラカルボン酸二無水物及びその誘導体は2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000016
Among them, X 2 is preferably the above formula (X2-1), (X2-5), or (X2-6), and particularly preferably the formula (X2-1). The tetracarboxylic dianhydrides represented by the formula (2) and derivatives thereof may be used as a mixture of two or more.
 上記式(2)で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、特定重合体に用いられる全テトラカルボン酸成分1モルに対して1~30モル%が好ましく、10~30%がより好ましく、10~20%がさらに好ましい。 The use ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (2) is preferably 1 to 30 mol%, preferably 10 to 30 mol%, per 1 mol of all the tetracarboxylic acid components used in the specific polymer. % Is more preferable, and 10 to 20% is still more preferable.
 本発明に記載の特定重合体の重合に用いられるテトラカルボン酸二無水物及びその誘導体は、上記式(1)、(2)以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。 The tetracarboxylic dianhydride and its derivative used for the polymerization of the specific polymer according to the present invention may contain a tetracarboxylic dianhydride other than the above formulas (1) and (2) or a derivative thereof. Good.
<ジアミン>
 本発明の液晶配向剤で使用する特定重合体の重合に用いられるジアミン成分は、下記式(3)で表されるジアミンから選ばれる少なくとも1種の第1のジアミンと、下記式(4)で表されるジアミンから選ばれる少なくとも1種の第2のジアミンとを含む。
<Diamine>
The diamine component used in the polymerization of the specific polymer used in the liquid crystal aligning agent of the present invention includes at least one first diamine selected from diamines represented by the following formula (3) and a first diamine represented by the following formula (4). And at least one second diamine selected from the diamines represented.
Figure JPOXMLDOC01-appb-C000017
 但し、Aは、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは0~4の整数であり、Aが複数存在する場合、Aの構造は同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000017
Wherein A 2 is a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms, a is an integer of 0 to 4, When a plurality of A 2 are present, the structures of A 2 may be the same or different.
 式(3)で表される第1のジアミンの好ましい具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000018
 式(3)で表される第1のジアミンの含有量は、特定重合体に用いられる全ジアミン成分に対して、10~50モル%が好ましく、より好ましくは10~30モル%である。
Preferred specific examples of the first diamine represented by the formula (3) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000018
The content of the first diamine represented by the formula (3) is preferably from 10 to 50 mol%, more preferably from 10 to 30 mol%, based on all diamine components used in the specific polymer.
 式(4)で表される第2のジアミンの好ましい具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000019
 式(4)で表される第2のジアミンの含有量は、特定重合体に用いられる全ジアミン成分に対して、10~50モル%が好ましく、より好ましくは10~40モル%である。
Preferred specific examples of the second diamine represented by the formula (4) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
The content of the second diamine represented by the formula (4) is preferably from 10 to 50 mol%, more preferably from 10 to 40 mol%, based on all diamine components used in the specific polymer.
 本発明の液晶配向剤に含有される特定重合体の重合に用いられるジアミンは、上記式(3)及び(4)以外のジアミン(以下、その他のジアミンともいう)を含んでいてもよい。
 以下にその他のジアミンの一例を挙げるが、本発明はこれらに限定されるものではない。
The diamine used for the polymerization of the specific polymer contained in the liquid crystal aligning agent of the present invention may include a diamine other than the above formulas (3) and (4) (hereinafter, also referred to as other diamines).
Examples of other diamines are shown below, but the present invention is not limited thereto.
 m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、ジ(2-(4-アミノフェノキシ)エチル)エーテル、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェネチル)ウレアなど。 m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, 3,5-diaminobenzoic acid, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,2-bis (4-aminophenoxy) Ethane, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,3-bis (4-aminophenoxy) Lopan, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 4- (2- (4- Aminophenoxy) ethoxy) -3-fluoroaniline, di (2- (4-aminophenoxy) ethyl) ether, 4-amino-4 ′-(2- (4-aminophenoxy) ethoxy) biphenyl, 2,2′- Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7- Diaminonaphthalene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hex Safluoropropane, 2,2'-bis (4-aminophenyl) propane, 1,3-bis (4-aminophenethyl) urea and the like.
 上記のなかでも、液晶配向性の観点から1,2-ビス(4-アミノフェノキシ)エタンを含むことは好ましい。1,2-ビス(4-アミノフェノキシ)エタンの含有量は、特定重合体に用いられる全ジアミン成分に対して10~40モル%であるとより好ましい。 か Among the above, it is preferable to include 1,2-bis (4-aminophenoxy) ethane from the viewpoint of liquid crystal alignment. The content of 1,2-bis (4-aminophenoxy) ethane is more preferably from 10 to 40 mol% based on all diamine components used in the specific polymer.
 また、ポリイミドの溶媒溶解性の向上や、本発明の液晶配向剤に特定重合体以外の重合体を含有させた際に特定重合体成分が液晶配向膜の表層付近に偏在しやすくなるという観点から、その他のジアミンとして下記式(5)で表されるジアミンの少なくとも1種を用いることは好ましい。
Figure JPOXMLDOC01-appb-C000020
 但し、Yは下記式(6)の構造を含有する2価の有機基である。
In addition, from the viewpoint of improving the solvent solubility of polyimide, the specific polymer component tends to be unevenly distributed near the surface layer of the liquid crystal alignment film when a polymer other than the specific polymer is contained in the liquid crystal alignment agent of the present invention. It is preferable to use at least one diamine represented by the following formula (5) as another diamine.
Figure JPOXMLDOC01-appb-C000020
Here, Y 1 is a divalent organic group having the structure of the following formula (6).
Figure JPOXMLDOC01-appb-C000021
 但し、Dは加熱によって脱離し水素原子に置き換わる保護基を表し、*は他の構造との接続箇所を表す。Dの好ましい構造としては、t-ブトキシカルボニル基が挙げられる。
 以下に、式(5)で表されるジアミンの好ましい具体例を挙げるが、これらに限定されるものではない。なお、下記構造におけるBocはt-ブトキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000021
Here, D represents a protecting group which is eliminated by heating and is replaced by a hydrogen atom, and * represents a connection point with another structure. The preferred structure of D includes a t-butoxycarbonyl group.
Preferred specific examples of the diamine represented by the formula (5) are shown below, but it should not be construed that the invention is limited thereto. Boc in the following structure represents a t-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(5)で表されるジアミンを用いる場合の好ましい含有量は、特定重合体に用いられる全ジアミン成分に対して、式(5)で表されるジアミンが5~30モル%である。 好 ま し い When the diamine represented by the formula (5) is used, the preferable content is 5 to 30 mol% of the diamine represented by the formula (5) based on all diamine components used for the specific polymer.
<ポリアミック酸エステル、ポリアミック酸及びポリイミドの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸、及びこれらポリイミド前駆体のイミド化物であるポリイミドは、公知の方法で合成できる。その一例としては、WO2013/157586に記載される方法が挙げられる。
 特定重合体の分子量は、良好な塗膜が形成できる限りにおいて特に限定されない。例えば重量平均分子量(Mwともいう。)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量(Mnともいう。)は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Method for producing polyamic acid ester, polyamic acid and polyimide>
The polyamic acid ester and the polyamic acid which are the polyimide precursors used in the present invention, and the polyimide which is an imidized product of these polyimide precursors can be synthesized by a known method. One example is the method described in WO2013 / 157586.
The molecular weight of the specific polymer is not particularly limited as long as a good coating can be formed. For example, the weight average molecular weight (Mw) is preferably from 2,000 to 500,000, more preferably from 5,000 to 300,000, and still more preferably from 10,000 to 100,000. The number average molecular weight (Mn) is preferably from 1,000 to 250,000, more preferably from 2,500 to 150,000, and still more preferably from 5,000 to 50,000. 000.
<液晶配向剤>
 本発明の液晶配向剤は、上記の特定重合体と有機溶媒とを含有する組成物であり、異なる構造の特定重合体を2種以上含有していてもよい。また、本発明の液晶配向剤は、特定重合体以外の重合体(以下、第2の重合体とも言う)や各種の添加剤を含有していてもよい。
 本発明の液晶配向剤が第2の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上であることが好ましく、その一例として5~95質量%が挙げられる。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention is a composition containing the above specific polymer and an organic solvent, and may contain two or more kinds of specific polymers having different structures. Further, the liquid crystal alignment agent of the present invention may contain a polymer other than the specific polymer (hereinafter, also referred to as a second polymer) and various additives.
When the liquid crystal aligning agent of the present invention contains the second polymer, the ratio of the specific polymer to all polymer components is preferably 5% by mass or more, and an example thereof is 5 to 95% by mass.
 第2の重合体としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 特に、テトラカルボン酸二無水物成分とジアミン成分とから得られるポリアミック酸(以下、第2のポリアミック酸とも言う)は第2の重合体として好ましい。
As the second polymer, polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) Acrylate and the like can be mentioned.
In particular, a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component (hereinafter, also referred to as a second polyamic acid) is preferable as the second polymer.
 第2のポリアミック酸を得るためのテトラカルボン酸二無水物成分としては、下記式(7)で表される化合物を挙げることができる。 テ ト ラ Examples of the tetracarboxylic dianhydride component for obtaining the second polyamic acid include a compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000023
 但し、式(7)中、Aは4価の有機基であり、好ましくは炭素数4~30の4価の有機基である。以下に、好ましいAの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
However, in the formula (7), A is a tetravalent organic group, preferably a tetravalent organic group having 4 to 30 carbon atoms. Hereinafter, preferred structures of A are shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記の構造のうち、(A-1)、(A-2)は光配向性の更なる向上という観点から好ましく、(A-4)は蓄積電荷の緩和速度の向上という観点から好ましく、(A-15)~(A-17)などは、液晶配向性の更なる向上と蓄積電荷の緩和速度の向上という観点から好ましい。第2のポリアミック酸を得るためのテトラカルボン酸二無水物成分は、2種類以上のテトラカルボン酸二無水物が併用されていてもよい。 Of the above structures, (A-1) and (A-2) are preferable from the viewpoint of further improving photo-alignment, (A-4) is preferable from the viewpoint of improving the relaxation rate of accumulated charge, and (A-4) is preferable. -15) to (A-17) are preferable from the viewpoints of further improving the liquid crystal alignment and improving the relaxation rate of accumulated charge. As the tetracarboxylic dianhydride component for obtaining the second polyamic acid, two or more kinds of tetracarboxylic dianhydrides may be used in combination.
 第2のポリアミック酸を得るためのジアミン成分としては、前記式(3)で表されるジアミン、前記式(4)で表されるジアミン、前記で例示したその他のジアミン、などを挙げることができる。
 また、蓄積電荷の緩和速度の向上という観点から下記式(8)で表されるジアミンの少なくとも1種を用いることは好ましい。第2のポリアミック酸を得るためのジアミン成分は、2種類以上のジアミンが併用されていてもよい。
Examples of the diamine component for obtaining the second polyamic acid include a diamine represented by the formula (3), a diamine represented by the formula (4), and other diamines exemplified above. .
It is preferable to use at least one of the diamines represented by the following formula (8) from the viewpoint of improving the relaxation rate of the accumulated charge. As the diamine component for obtaining the second polyamic acid, two or more diamines may be used in combination.
Figure JPOXMLDOC01-appb-C000026
 式(8)中、Yは芳香族基に結合する窒素原子を有するか又は含窒素芳香族複素環を有する2価の有機基である。
 以下に、好ましいYの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
In the formula (8), Y 2 is a divalent organic group having a nitrogen atom bonded to an aromatic group or having a nitrogen-containing aromatic heterocycle.
Preferred structures of Y 2 are shown below, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 第2のポリアミック酸の分子量は特に限定されないが、例えば、Mwが2,000~500,000、好ましくは5,000~300,000、より好ましくは、10,000~100,000である。また、Mnが1,000~250,000、好ましくは、2,500~150,000、より好ましくは、5,000~50,000である。 分子 The molecular weight of the second polyamic acid is not particularly limited. For example, the Mw is 2,000 to 500,000, preferably 5,000 to 300,000, more preferably 10,000 to 100,000. Further, Mn is 1,000 to 250,000, preferably 2,500 to 150,000, and more preferably 5,000 to 50,000.
 本発明の液晶配向剤における重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but is 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film. Is preferable, and from the viewpoint of storage stability of the solution, the content is preferably 10% by mass or less. A particularly preferred concentration of the polymer is 2 to 8% by mass.
 本発明の液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。 有機 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples thereof include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, and 3-methoxy-N, N-dimethylpropanamide. These may be used alone or in combination of two or more. In addition, even if the solvent alone cannot dissolve the polymer component uniformly, it may be mixed with the above organic solvent as long as the polymer is not precipitated.
 本発明の液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。 液晶 The liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component. As such a solvent, a solvent having a lower surface tension than the above-mentioned organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol. , 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2- (2-ethoxypropoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isobutyl lactate Glycol ester and the like. These solvents may be used in combination of two or more.
 本発明の液晶配向剤には、上記の他、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 In addition to the above, the liquid crystal aligning agent of the present invention includes a dielectric or conductive substance for changing electric properties such as a dielectric constant and conductivity of the liquid crystal alignment film, and a purpose of improving adhesion between the liquid crystal alignment film and the substrate. A silane coupling agent, a cross-linkable compound for the purpose of increasing the hardness and compactness of the liquid crystal alignment film, and an imidization for the purpose of efficiently progressing the imidization of polyamic acid when firing the coating film. An accelerator or the like may be added.
<液晶配向膜の製造方法>
 本発明の液晶配向剤を用いた液晶配向膜の製造方法は特に限定されないが、以下に示す、工程(A)~(D)によって製造することで、本発明の液晶配向剤が有する優れた特性をより効果的に発揮することができる。
 工程(A):本発明の液晶配向剤を基板上に塗布する工程。
 工程(B):塗布した液晶配向剤を熱イミド化が実質的に進行しない温度で加熱して膜を得る工程。
 工程(C):工程(B)で得られた膜に偏光された紫外線を照射する工程。
 工程(D):工程(C)で得られた膜を、100℃以上、且つ、工程(B)よりも高い温度で焼成する工程。
<Production method of liquid crystal alignment film>
The method for producing a liquid crystal alignment film using the liquid crystal alignment agent of the present invention is not particularly limited, but the excellent properties possessed by the liquid crystal alignment agent of the present invention are produced by the following steps (A) to (D). Can be exhibited more effectively.
Step (A): a step of applying the liquid crystal aligning agent of the present invention onto a substrate.
Step (B): a step of heating the applied liquid crystal aligning agent at a temperature at which thermal imidization does not substantially proceed to obtain a film.
Step (C): a step of irradiating the film obtained in step (B) with polarized ultraviolet light.
Step (D): a step of baking the film obtained in step (C) at a temperature of 100 ° C. or higher and higher than that of step (B).
 以下、(A)~(D)の各工程をより詳細に説明する。
<工程(A)>
 本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
Hereinafter, each of the steps (A) to (D) will be described in more detail.
<Step (A)>
The substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a substrate having high transparency, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate and a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of simplification of the process. In the case of a reflection type liquid crystal display device, an opaque material such as a silicon wafer can be used if only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
The method of applying the liquid crystal aligning agent is not particularly limited, but a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method and the like, and these may be used according to the purpose.
<工程(B)>
 工程(B)は、基板上に塗布した液晶配向剤を、熱イミド化が実質的に進行しない条件で加熱し、膜を形成する工程である。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて膜とする。この工程では、熱イミド化が実質的に進行しない条件で液晶配向剤が含有する有機溶媒を除去できれば、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~150℃で1~10分加熱することが好ましく、50~120℃で1~5分加熱することがより好ましい。
<Step (B)>
Step (B) is a step of heating the liquid crystal aligning agent applied on the substrate under the condition that thermal imidization does not substantially proceed to form a film. After the liquid crystal aligning agent is applied on the substrate, the solvent is evaporated by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven to form a film. In this step, any temperature and time can be selected as long as the organic solvent contained in the liquid crystal aligning agent can be removed under the condition that thermal imidization does not substantially proceed. Usually, heating at 50 to 150 ° C. for 1 to 10 minutes is preferable to sufficiently remove the contained solvent, and heating at 50 to 120 ° C. for 1 to 5 minutes is more preferable.
<工程(C)>
 工程(C)は、工程(B)で得られた膜に偏光された紫外線を照射する工程である。紫外線としては、200~400nmの波長を有するものが好ましく、なかでも、200~300nmの波長を有するものがより好ましい。液晶配向性を改善するために、液晶配向剤が塗膜された基板を50~250℃で加熱しながら、紫外線を照射してもよい。前記紫外線の照射量としては、例えば1~2,000mJ/cmであり、好ましくは10~1,000mJ/cmであり、より好ましくは100~600mJ/cmである。また、偏光された紫外線は消光比が高いほど、より高い異方性が付与できるため好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
<Step (C)>
Step (C) is a step of irradiating polarized ultraviolet light to the film obtained in step (B). As the ultraviolet rays, those having a wavelength of 200 to 400 nm are preferable, and those having a wavelength of 200 to 300 nm are more preferable. In order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment agent may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C. The irradiation amount of the ultraviolet ray is, for example, 1 to 2,000 mJ / cm 2 , preferably 10 to 1,000 mJ / cm 2 , and more preferably 100 to 600 mJ / cm 2 . Further, it is preferable that the polarized ultraviolet light has a higher extinction ratio because higher anisotropy can be imparted thereto. Specifically, the extinction ratio of the linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
 <工程(D)>
 工程(D)は、工程(C)で紫外線を照射した膜を焼成する工程である。具体的には、100℃以上、かつ、工程(B)で加熱した温度よりも高い温度で焼成する工程である。焼成温度は、100℃以上、かつ、工程(B)での加熱温度よりも高ければ、特に限定されないが、150~300℃が好ましく、150~250℃がより好ましく、200~250℃がさらに好ましい。焼成時間は、5~120分が好ましく、より好ましくは5~60分、更に好ましくは、5~30分である。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (D)>
Step (D) is a step of baking the film irradiated with the ultraviolet light in step (C). Specifically, this is a step of firing at a temperature of 100 ° C. or higher and higher than the temperature heated in step (B). The firing temperature is not particularly limited as long as it is 100 ° C. or higher and higher than the heating temperature in step (B), but is preferably 150 to 300 ° C., more preferably 150 to 250 ° C., and further preferably 200 to 250 ° C. . The firing time is preferably from 5 to 120 minutes, more preferably from 5 to 60 minutes, even more preferably from 5 to 30 minutes. If the thickness of the liquid crystal alignment film after firing is too small, the reliability of the liquid crystal display element may be reduced. Therefore, the thickness is preferably from 5 to 300 nm, more preferably from 10 to 200 nm.
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して作製される。 The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a liquid crystal display device of a lateral electric field type such as an IPS type or an FFS type, and is particularly useful as a liquid crystal alignment film of an FFS type liquid crystal display device. The liquid crystal display element is manufactured by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, manufacturing a liquid crystal cell by a known method, and using the liquid crystal cell.
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。 (4) As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion forming an image display may be used.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。 Specifically, a transparent glass substrate is prepared, and a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes, and are patterned so that a desired image can be displayed. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrodes. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておくことが好ましい。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。 (4) Next, a liquid crystal alignment film is formed on each substrate, and the other substrate is superimposed on one substrate so that the surfaces of the liquid crystal alignment films face each other, and the periphery is bonded with a sealant. Usually, it is preferable that a spacer is mixed in the sealant in order to control the gap between the substrates. Further, it is preferable that spacers for controlling the gap between the substrates are sprayed on the in-plane portion where the sealant is not provided. Part of the sealant is provided with an opening through which liquid crystal can be filled from the outside. Next, a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing a capillary phenomenon in the atmosphere may be used. As the liquid crystal material, either a positive liquid crystal material or a negative liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to surfaces of the two substrates opposite to the liquid crystal layer.
 上記のようにして、本発明の液晶配向剤によれば、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像が抑制出来、低分子量化合物が残存することで発生する輝点などの不具合がなく、且つ、従来よりも少ない工程数での製造が可能な液晶配向膜を得ることができる。 As described above, according to the liquid crystal alignment agent of the present invention, an afterimage due to long-term AC driving generated in a liquid crystal display device of an IPS drive system or an FFS drive system can be suppressed, and the brightness generated by the remaining low molecular weight compound can be suppressed. It is possible to obtain a liquid crystal alignment film which has no problems such as points and can be manufactured in a smaller number of steps than in the related art.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定して解釈されるものではない。
 以下における化合物の略号及び各特性の測定方法は、次のとおりである。なお、下記における数値及び単位は、特に言及しない限り、いずれも、質量基準である。
 NMP:N-メチル-2-ピロリドン、 GBL:γ―ブチロラクトン、
 BCS:ブチルセロソルブ、
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not construed as being limited thereto.
The abbreviations of the compounds and the methods for measuring the respective properties are as follows. Note that all numerical values and units in the following are based on mass unless otherwise specified.
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: butyl cellosolve,
Figure JPOXMLDOC01-appb-C000028
 但し、上記式中、Bocは、t-ブトキシカルボニル基を表わす。
Figure JPOXMLDOC01-appb-C000028
However, in the above formula, Boc represents a t-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[粘度]
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The measurement was performed using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34 ′, R24) and a temperature of 25 ° C.
[分子量]
 GPC(常温ゲル浸透クロマトグラフィー)装置を使用して測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として、Mn及びMwを算出した。
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw))約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2つのサンプルを別々に測定した。
[Molecular weight]
The measurement was performed using a GPC (normal temperature gel permeation chromatography) apparatus, and Mn and Mw were calculated in terms of polyethylene glycol and polyethylene oxide.
GPC apparatus: Shodex (GPC-101), Column: Shodex (KD803, KD805 in series), Column temperature: 50 ° C., Eluent: N, N-dimethylformamide (lithium bromide-water as an additive) 30 mmol / L of hydrate (LiBr.H 2 O), 30 mmol / L of phosphoric acid / anhydrous crystals (o-phosphoric acid), 10 ml / L of tetrahydrofuran (THF), flow rate: 1.0 ml / min. Standard sample: TSK standard polyethylene oxide (weight average molecular weight (Mw)) manufactured by Tosoh Corporation about 900,000, 150,000, 100,000, 30,000) and polyethylene glycol manufactured by Polymer Laboratory (peak top molecular weight ( Mp) about 12,000, 4,000, 1,000). For the measurement, in order to avoid overlapping peaks, a sample in which four types of 900,000, 100,000, 12,000, and 1,000 were mixed and three types of 150,000, 30,000, and 4,000 were used. Two samples of the mixed sample were measured separately.
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式中、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidation ratio>
20 mg of the polyimide powder is placed in an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Science Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, a mixture of 0.05% TMS (tetramethylsilane)) (0.1%) 53 ml) and sonicated to dissolve completely. The solution was subjected to proton NMR measurement at 500 MHz using an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidation ratio is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton. The peak integrated value of this proton and the proton peak derived from the NH group of the amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm are determined. It was determined by the following equation using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100
In the above formula, x is the integrated value of the proton peak derived from the NH group of the amic acid, y is the integrated value of the peak of the reference proton, α is the NH of the amic acid in the case of polyamic acid (imidation ratio is 0%). This is the ratio of the number of reference protons to one group proton.
[FFS駆動液晶セルの構成]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ4μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
 なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。
[Configuration of FFS driving liquid crystal cell]
The liquid crystal cell for the fringe field switching (FFS) mode has a FOP (Finger on Plate) electrode layer formed on the surface, which includes a planar common electrode, an insulating layer, and a comb-shaped pixel electrode. One set of the first glass substrate and the second glass substrate having a columnar spacer having a height of 4 μm on the front surface and an ITO film formed on the back surface for antistatic were formed. The above-mentioned pixel electrode has a comb-like shape in which a plurality of electrode elements having a width of 3 μm and having a central portion bent at an inner angle of 160 ° are arranged in parallel at intervals of 6 μm, and one pixel includes: A first region and a second region are provided on a line connecting the bent portions of the plurality of electrode elements.
Note that the liquid crystal alignment film formed on the first glass substrate is subjected to an alignment process so that the direction that equally divides the internal angle of the pixel bent portion is orthogonal to the liquid crystal alignment direction, and the liquid crystal alignment film formed on the second glass substrate is formed. When the liquid crystal cell is manufactured, the film is subjected to an alignment treatment such that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate match.
 上記一組のガラス基板のそれぞれの表面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し80℃のホットプレート上で2分間乾燥させた。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を所定量照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
 次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。
A liquid crystal aligning agent filtered through a filter having a pore size of 1.0 μm was applied to each surface of the above-mentioned pair of glass substrates by spin coating, and dried on a hot plate at 80 ° C. for 2 minutes. After that, the coating film surface is irradiated with a predetermined amount of ultraviolet light having a wavelength of 254 nm, which is linearly polarized light having an extinction ratio of 26: 1, through a polarizing plate, and then baked in a hot air circulating oven at 230 ° C. for 30 minutes. A substrate with an alignment film was obtained.
Next, a sealant was printed on one of the pair of glass substrates provided with a liquid crystal alignment film, the other substrate was bonded so that the liquid crystal alignment film surfaces faced, and the sealant was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour, left overnight, and then evaluated for afterimage characteristics.
[長期交流駆動による残像評価]
 上記で作製したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。
 具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。
 長期交流駆動による残像特性は、この回転角度の値が小さいほど良好であると言える。液晶セルの角度Δの値が0.1°以下の場合には「良好」と評価した。
[Afterimage evaluation by long-term AC drive]
An AC voltage of ± 5 V at a frequency of 60 Hz was applied to the FFS-driven liquid crystal cell manufactured above under a constant temperature environment of 60 ° C. for 120 hours. Thereafter, the pixel electrode of the liquid crystal cell and the counter electrode were short-circuited and left at room temperature for one day.
With respect to the liquid crystal cell subjected to the above processing, the deviation between the alignment direction of the liquid crystal in the first region and the alignment direction of the liquid crystal in the second region of the pixel in a state where no voltage was applied was calculated as an angle.
Specifically, a liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the backlight is turned on, and the liquid crystal cell is set so that the transmitted light intensity in the first region of the pixel is minimized. Was adjusted, and then the rotation angle required when the liquid crystal cell was rotated such that the transmitted light intensity in the second region of the pixel was minimized was determined.
It can be said that the residual image characteristics by the long-term AC driving are better as the value of the rotation angle is smaller. When the value of the angle Δ of the liquid crystal cell was 0.1 ° or less, it was evaluated as “good”.
 以下、ポリアミック酸及びポリイミドの合成例を示す。
<合成例1>
 撹拌装置付き及び窒素導入管付きの300mL四つ口フラスコに、DA-1を5.86g(24.0mmol)、DA-2を1.73g(16.0mmol)、DA-3を5.53g(24.0mmol)及びDA-4を3.79g(16.0mmol)を量り取り、NMPを197.2g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を14.88g(66.4mmol)、及びCA-2を3.00g(12.0mmol)添加し、40℃で24時間撹拌してポリアミック酸溶液(A-1)(粘度:425mPa・s)を得た。ポリアミック酸のMnは11000であり、Mwは29000であった。
Hereinafter, synthesis examples of polyamic acid and polyimide will be described.
<Synthesis example 1>
In a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.86 g (24.0 mmol) of DA-1, 1.73 g (16.0 mmol) of DA-2, and 5.53 g of DA-3 ( 24.0 mmol) and 3.79 g (16.0 mmol) of DA-4 were weighed, and 197.2 g of NMP was added, and the mixture was stirred and dissolved while supplying nitrogen. While stirring the diamine solution, 14.88 g (66.4 mmol) of CA-1 and 3.00 g (12.0 mmol) of CA-2 were added, and the mixture was stirred at 40 ° C. for 24 hours, and the polyamic acid solution (A- 1) (viscosity: 425 mPa · s) was obtained. Mn of the polyamic acid was 11,000 and Mw was 29000.
<合成例2~6>
 下記表1に示す、ジアミン成分、テトラカルボン酸成分、及びNMPを使用し、かつ反応温度で実施したほかは合成例1と同様に実施することにより、下記表1に示すポリアミック酸溶液(A-2)~(A-4)、(B-1)、及び(B-2)を得た。得られたポリアミック酸の粘度及びMn/Mwを下記表1に示す。
 なお、合成例1~6で得られるポリアミック酸溶液におけるポリアミック酸の濃度はいずれも、15質量%であった。
<Synthesis Examples 2 to 6>
Except that the diamine component, the tetracarboxylic acid component, and NMP shown in Table 1 below were used and the reaction was carried out at the reaction temperature, the reaction was carried out in the same manner as in Synthesis Example 1 to obtain a polyamic acid solution (A- 2) to (A-4), (B-1) and (B-2) were obtained. The viscosity and Mn / Mw of the obtained polyamic acid are shown in Table 1 below.
The polyamic acid concentrations in the polyamic acid solutions obtained in Synthesis Examples 1 to 6 were all 15% by mass.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<合成例7>
 撹拌装置付き及び窒素導入管付きの300mL四つ口フラスコに得られたポリアミック酸溶液(A-1)を100g取り、NMPを50g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を17.60g及びピリジンを5.50g加えて、50℃で3時間加熱し、化学イミド化を行った。
 得られた反応液を600mlのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、同様の操作を2回実施することで樹脂粉末を洗浄した後、60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂粉末のイミド化率は73%であり、Mn=12600、Mw=33900であった。得られたポリイミド樹脂粉末3.60gを100ml三角フラスコに取り、固形分濃度が12%になるようにNMPを26.4g加え、70℃で24時間撹拌し溶解させてポリイミド溶液(A-1-PI)を得た(下記の表2参照)。
 なお、表2中、イミド化条件における濃度(質量%)は、イミド化反応における溶液中の重合体濃度を表す。
<Synthesis Example 7>
100 g of the obtained polyamic acid solution (A-1) was placed in a 300 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 50 g of NMP was added, and the mixture was stirred for 30 minutes. 17.60 g of acetic anhydride and 5.50 g of pyridine were added to the obtained polyamic acid solution, and the mixture was heated at 50 ° C. for 3 hours to perform chemical imidization.
The obtained reaction solution was poured into 600 ml of methanol with stirring, the deposited precipitate was collected by filtration, and the same operation was performed twice to wash the resin powder, followed by drying at 60 ° C. for 12 hours. Thus, a polyimide resin powder was obtained. The imidation ratio of this polyimide resin powder was 73%, Mn = 12600, Mw = 33900. 3.60 g of the obtained polyimide resin powder was placed in a 100-ml Erlenmeyer flask, 26.4 g of NMP was added so that the solid concentration became 12%, and the mixture was stirred at 70 ° C. for 24 hours to dissolve the polyimide solution (A-1-). PI) was obtained (see Table 2 below).
In Table 2, the concentration (% by mass) under the imidization conditions represents the concentration of the polymer in the solution in the imidization reaction.
<合成例8~10>
 下記表2に示す、無水酢酸及びピリジンを使用したほかは合成例7と同様に化学イミド化操作を実施することにより、下記表2に示すポリイミド溶液(A-2-PI)~(A-4-PI)、を得た。得られたポリイミドのイミド化率、及びMn/Mwを下記表2に示す。
<Synthesis Examples 8 to 10>
A polyimide solution (A-2-PI) to (A-4) shown in Table 2 below was obtained by performing a chemical imidization operation in the same manner as in Synthesis Example 7 except that acetic anhydride and pyridine shown in Table 2 below were used. -PI). The imidation ratio and Mn / Mw of the obtained polyimide are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
<実施例1>
 合成例7で得られた12質量%のポリイミド溶液(A-1―PI)を4.0g及び合成例5で得られた15質量%のポリアミック酸溶液(B-1)4.8gを50ml三角フラスコに取り、NMP3.24g、GBL3.96g及びBCS4.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た(下記の表3参照)。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 なお、表3中、A/Bは、ポリイミド溶液/ポリアミック酸溶液の質量%比率を示し、また、固形分比率(質量%)は、液晶配向剤中における重合体の含有比率を示す。
<Example 1>
50 g of 4.0 g of the 12% by weight polyimide solution (A-1-PI) obtained in Synthesis Example 7 and 4.8 g of the 15% by weight polyamic acid solution (B-1) obtained in Synthesis Example 5 In a flask, 3.24 g of NMP, 3.96 g of GBL and 4.00 g of BCS were added and mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (1) (see Table 3 below). No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the solution was a uniform solution.
In Table 3, A / B indicates the mass% ratio of the polyimide solution / polyamic acid solution, and the solid content ratio (mass%) indicates the content ratio of the polymer in the liquid crystal aligning agent.
<実施例2~4、比較例1>
 下記表3に示す、ポリアミック酸溶液及びポリイミド溶液を使用した以外は、実施例1と同様に実施することにより、液晶配向剤(2)~(5)を得た。これらの液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 2 to 4, Comparative Example 1>
Liquid crystal alignment agents (2) to (5) were obtained in the same manner as in Example 1 except that the polyamic acid solution and the polyimide solution shown in Table 3 below were used. No abnormality such as turbidity or precipitation was observed in these liquid crystal aligning agents, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
<実施例11>
 上記した[長期交流駆動による残像評価]に従って残像特性を評価した。すなわち、実施例1で得られた液晶配向剤(1)を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させ、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成させて、液晶配向膜付き基板を得た。
 得られた上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。
 長期交流駆動後におけるこの液晶セルの角度Δの値(°)は、下記の表4に示すとおりである、すなわち、上記紫外線の照射量が、0.15J/cmでの液晶セルの角度Δの値は、0.08°であり、0.20J/cmでの液晶セルの角度Δの値は、0.09°であり、0.25J/cmでの液晶セルの角度Δの値は、0.09°であった。いずれも、角度Δの最小値が0.10°未満であることから、液晶配向剤(1)によれば良好な液晶配向性が得られた。
<Example 11>
The afterimage characteristics were evaluated in accordance with the above-mentioned "afterimage evaluation by long-term AC drive". That is, after the liquid crystal aligning agent (1) obtained in Example 1 was filtered through a filter having a pore size of 1.0 μm, the prepared electrode-coated substrate and a 4 μm-high columnar column having an ITO film formed on the back surface were prepared. It was applied to a glass substrate having a spacer by spin coating. After drying on a hot plate at 80 ° C. for 5 minutes, the coated surface is irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm having an extinction ratio of 26: 1 through a polarizing plate, and then baked in a hot air circulation oven at 230 ° C. for 30 minutes. Thus, a substrate with a liquid crystal alignment film was obtained.
A pair of the obtained two substrates was used as a set, a sealant was printed on the substrates, and another substrate was bonded so that the liquid crystal alignment films faced each other so that the alignment direction was 0 °. The agent was cured to produce an empty cell. Liquid crystal MLC-3019 (manufactured by Merck) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and left overnight, and an afterimage was evaluated by long-term AC driving.
The value (°) of the angle Δ of the liquid crystal cell after the long-term AC driving is as shown in Table 4 below, that is, the angle Δ of the liquid crystal cell when the irradiation amount of the ultraviolet light is 0.15 J / cm 2. Is 0.08 °, the value of the angle Δ of the liquid crystal cell at 0.20 J / cm 2 is 0.09 °, and the value of the angle Δ of the liquid crystal cell at 0.25 J / cm 2 Was 0.09 °. In each case, since the minimum value of the angle Δ was less than 0.10 °, good liquid crystal alignment was obtained by using the liquid crystal alignment agent (1).
<実施例12~14及び比較例11>
 液晶配向剤(1)の代わりに、実施例12~14及び比較例11では、下記表4に示したそれぞれの液晶配向剤を用いた以外は、実施例11と全く同様の方法でFFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。
 実施例12~14及び比較例11のそれぞれについて、異なる紫外線の照射量ごとの長期交流駆動後における液晶セルの角度Δの値(°)を表4に示す。
<Examples 12 to 14 and Comparative Example 11>
In Examples 12 to 14 and Comparative Example 11 in place of the liquid crystal aligning agent (1), each of the liquid crystal aligning agents shown in Table 4 below was used. A cell was fabricated, and an afterimage was evaluated by long-term AC driving.
Table 4 shows the value (°) of the angle Δ of the liquid crystal cell after long-term AC driving for each of the irradiation amounts of the ultraviolet rays for Examples 12 to 14 and Comparative Example 11.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表4に示すように、実施例11~14では、角度Δ(deg.)も0.1°以下を与えるための紫外線照射量が200mJ/cm以下という少ない偏光紫外線照射量で角度Δが最良となる。かかる良好な残像特性であることから、液晶表示素子の生産時間短縮に優れることがわかる。 As shown in Table 4, in Examples 11 to 14, the angle Δ (deg.) Is best when the polarized ultraviolet ray irradiation amount is as small as 200 mJ / cm 2 or less so that the angle Δ (deg.) Is 0.1 ° or less. Becomes It can be seen that such good afterimage characteristics are excellent in shortening the production time of the liquid crystal display device.
 本発明の液晶配向剤は、IPS駆動方式やFFS駆動方式などの広範な液晶表示素子における液晶配向膜の形成に有用である。
 なお、2018年8月20日に出願された日本特許出願2018-154228号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment agent of the present invention is useful for forming a liquid crystal alignment film in a wide range of liquid crystal display devices such as an IPS drive system and an FFS drive system.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-154228 filed on Aug. 20, 2018 are cited herein as the disclosure of the specification of the present invention. , Is to take in.

Claims (13)

  1.  下記式(1)で表されるテトラカルボン酸二無水物若しくはその誘導体を含有するテトラカルボン酸成分と、下記式(3)で表される第1のジアミンと、下記式(4)で表される第2のジアミンとを含むジアミン成分との重縮合反応から得られるポリイミド前駆体のイミド化物であるポリイミド、を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (但し、Xは下記式(X1-1)又は(X1-2)で表される構造である。)
    Figure JPOXMLDOC01-appb-C000002
    (但し、R~R12は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であるが、R~Rの少なくとも一つは上記定義中の水素原子以外の基である。)
    Figure JPOXMLDOC01-appb-C000003
    (但し、Aは、それぞれ独立してハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基であり、aは0~4の整数であり、Aが複数存在する場合、Aの構造は同一でも異なってもよい。)
    A tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula (1) or a derivative thereof, a first diamine represented by the following formula (3), and a first diamine represented by the following formula (4) A liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained from a polycondensation reaction with a diamine component containing a second diamine.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X 1 is a structure represented by the following formula (X1-1) or (Xl-2).)
    Figure JPOXMLDOC01-appb-C000002
    (However, R 3 to R 12 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a fluorine atom Which is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, wherein at least one of R 3 to R 6 is a group other than a hydrogen atom as defined above.)
    Figure JPOXMLDOC01-appb-C000003
    (However, A 2 is independently a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphate group, or a monovalent organic group having 1 to 20 carbon atoms, and a is 0 to 4 of an integer, if a 2 there are multiple structures of a 2 may be the same or different.)
  2.  前記式(1)におけるXが、下式(X1-1-1)~(X1-1-5)から選ばれる少なくとも1種である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    2. The liquid crystal aligning agent according to claim 1, wherein X 1 in the formula (1) is at least one selected from the following formulas (X1-1-1) to (X1-1-5).
    Figure JPOXMLDOC01-appb-C000004
  3.  前記式(3)で表される第1のジアミンが、下式で表されるジアミンである請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    The liquid crystal aligning agent according to claim 1, wherein the first diamine represented by the formula (3) is a diamine represented by the following formula.
    Figure JPOXMLDOC01-appb-C000005
  4.  前記式(4)で表される第1のジアミンが、下式で表されるジアミンである請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    4. The liquid crystal aligning agent according to claim 1, wherein the first diamine represented by the formula (4) is a diamine represented by the following formula.
    Figure JPOXMLDOC01-appb-C000006
  5.  前記式(3)で表される第1のジアミンが、前記ジアミン成分に対して、10~50モル%含有される請求項1~4のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the first diamine represented by the formula (3) is contained in an amount of 10 to 50 mol% based on the diamine component.
  6.  前記式(4)で表される第2のジアミンが、前記ジアミン成分に対して、10~50モル%含有される請求項1~5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the second diamine represented by the formula (4) is contained in an amount of 10 to 50 mol% based on the diamine component.
  7.  前記テトラカルボン酸成分が、さらに下記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体を含有する請求項1~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
     (但し、Xは下記式(X2-1)~(X2-6)から選ばれる構造である。)
    Figure JPOXMLDOC01-appb-C000008
    7. The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic acid component further contains a tetracarboxylic dianhydride represented by the following formula (2) or a derivative thereof.
    Figure JPOXMLDOC01-appb-C000007
    (However, X 2 is a structure selected from the following formulas (X2-1) to (X2-6).)
    Figure JPOXMLDOC01-appb-C000008
  8.  前記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体が、テトラカルボン酸成分に対して、1~30モル%含有される請求項7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 7, wherein the tetracarboxylic dianhydride represented by the formula (2) or a derivative thereof is contained in an amount of 1 to 30 mol% based on the tetracarboxylic acid component.
  9.  請求項1~8のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。 (8) A liquid crystal alignment film obtained by using the liquid crystal alignment agent according to any one of (1) to (8).
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 9.
  11.  下記工程(A)、工程(B)、工程(C)及び工程(D)の工程を有する液晶配向膜の製造方法。
     工程(A):請求項1~8のいずれか1項に記載の液晶配向剤を基板上に塗布する工程。
     工程(B):塗布した液晶配向剤を熱イミド化が実質的に進行しない条件で加熱して膜を得る工程。
     工程(C):工程(B)で得られた膜に偏光された紫外線を照射する工程。
     工程(D):工程(C)で得られた膜を、100℃以上、且つ、工程(B)よりも高い温度で焼成する工程。
    A method for producing a liquid crystal alignment film, comprising the following steps (A), (B), (C) and (D).
    Step (A): a step of applying the liquid crystal aligning agent according to any one of claims 1 to 8 on a substrate.
    Step (B): a step of heating the applied liquid crystal alignment agent under conditions under which thermal imidization does not substantially proceed to obtain a film.
    Step (C): a step of irradiating the film obtained in step (B) with polarized ultraviolet light.
    Step (D): a step of baking the film obtained in step (C) at a temperature of 100 ° C. or higher and higher than that of step (B).
  12.  上記工程(B)において、50℃~150℃で加熱する請求項11に記載の液晶配向膜の製造方法。 12. The method for producing a liquid crystal alignment film according to claim 11, wherein in the step (B), heating is performed at 50 ° C. to 150 ° C.
  13.  上記工程(D)において、前記膜を150~300℃で焼成する請求項11又は12に記載の液晶配向膜の製造方法。 13. The method for producing a liquid crystal alignment film according to claim 11, wherein in the step (D), the film is fired at 150 to 300 ° C.
PCT/JP2019/032288 2018-08-20 2019-08-19 Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element WO2020040091A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020538378A JP7375759B2 (en) 2018-08-20 2019-08-19 Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
KR1020217003793A KR20210045393A (en) 2018-08-20 2019-08-19 Liquid crystal aligning agent, its manufacturing method, liquid crystal aligning film, and liquid crystal display element
CN201980054991.2A CN112585528A (en) 2018-08-20 2019-08-19 Liquid crystal aligning agent, method for producing same, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-154228 2018-08-20
JP2018154228 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020040091A1 true WO2020040091A1 (en) 2020-02-27

Family

ID=69593114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032288 WO2020040091A1 (en) 2018-08-20 2019-08-19 Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7375759B2 (en)
KR (1) KR20210045393A (en)
CN (1) CN112585528A (en)
TW (1) TWI826504B (en)
WO (1) WO2020040091A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956475B (en) * 2021-11-05 2022-07-29 深圳市道尔顿电子材料有限公司 Polyimide liquid crystal aligning agent chelated with metal ions, liquid crystal alignment film and preparation method of liquid crystal alignment film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072729A (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN107880902A (en) * 2016-09-30 2018-04-06 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display assembly
WO2018117239A1 (en) * 2016-12-21 2018-06-28 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2019003188A (en) * 2017-06-13 2019-01-10 奇美實業股▲分▼有限公司 Production method of liquid crystal alignment film and liquid crystal display element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP5654228B2 (en) 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ Liquid crystal display device and method of manufacturing liquid crystal display device
JP6056187B2 (en) * 2012-05-09 2017-01-11 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
WO2017057854A1 (en) * 2015-10-02 2017-04-06 주식회사 엘지화학 Method for producing photoalignment layer
JP7239872B2 (en) * 2016-12-21 2023-03-15 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072729A (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN107880902A (en) * 2016-09-30 2018-04-06 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display assembly
WO2018117239A1 (en) * 2016-12-21 2018-06-28 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2019003188A (en) * 2017-06-13 2019-01-10 奇美實業股▲分▼有限公司 Production method of liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
JP7375759B2 (en) 2023-11-08
TWI826504B (en) 2023-12-21
KR20210045393A (en) 2021-04-26
TW202024185A (en) 2020-07-01
CN112585528A (en) 2021-03-30
JPWO2020040091A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP5870487B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7392646B2 (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
CN107077032B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
KR20190082293A (en) A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
TWI820011B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN110475805B (en) Polymer and liquid crystal aligning agent using same
JP7375759B2 (en) Liquid crystal alignment agent, manufacturing method thereof, liquid crystal alignment film, and liquid crystal display element
CN104969123B (en) Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display element
WO2019065646A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2013146589A1 (en) Liquid crystal display element and manufacturing method thereof
TW202144552A (en) Liquid crystal alignment agent, liquid crystal alignment film, method for manufacturing liquid crystal alignment film, and liquid crystal device capable of obtaining a liquid crystal device that exhibits a low pretilt angle even when using a negative type liquid crystal, hardly produces an afterimage, has a high voltage retention rate, and is excellent in reliability
JP2019101196A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7193783B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP2019101195A (en) Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JP2018040979A (en) Production method of liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2016010084A1 (en) Liquid crystal aligning agent for optical alignment, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852850

Country of ref document: EP

Kind code of ref document: A1