WO2018047872A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2018047872A1
WO2018047872A1 PCT/JP2017/032154 JP2017032154W WO2018047872A1 WO 2018047872 A1 WO2018047872 A1 WO 2018047872A1 JP 2017032154 W JP2017032154 W JP 2017032154W WO 2018047872 A1 WO2018047872 A1 WO 2018047872A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
alignment film
diamine
hydrocarbon group
Prior art date
Application number
PCT/JP2017/032154
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 巴
大輝 山極
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780068197.4A priority Critical patent/CN109952530B/en
Priority to JP2018538446A priority patent/JP7299556B2/en
Priority to KR1020197009730A priority patent/KR102554992B1/en
Publication of WO2018047872A1 publication Critical patent/WO2018047872A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent used in the production of a liquid crystal display element, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • the liquid crystal display element is known as a light, thin and low power display device.
  • high-definition liquid crystal display elements for mobile phones and tablet terminals which have rapidly expanded their market share, have made remarkable developments that require high display quality.
  • the liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones.
  • the width of the sealing agent used for bonding the substrates of the liquid crystal display elements narrower than in the past.
  • the position of the sealing agent is also required to be in the position in contact with the end of the liquid crystal alignment film having low adhesion to the sealing agent or on the liquid crystal alignment film.
  • water is likely to be mixed between the sealing agent and the liquid crystal alignment film, and display unevenness occurs in the vicinity of the frame of the liquid crystal display element.
  • the present invention has an object to provide a liquid crystal aligning agent that can enhance the adhesion between the sealing agent and the liquid crystal alignment film and can suppress the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions.
  • the present inventors have found a liquid crystal alignment film containing a polymer having a specific aromatic heterocycle, primary amino group, and secondary amino group in the structure. By using it, the present invention has been completed.
  • the first aspect of the present invention for achieving the above object is a liquid crystal alignment film characterized by containing a polymer having an aromatic heterocyclic ring and a primary amino group and a secondary amino group in the structure.
  • a second aspect of the present invention that achieves the above object is a film made of a fired product, in a structure in which the skeleton of the aromatic heterocyclic ring, the primary amino group, and the secondary amino group are generated by firing.
  • the liquid crystal alignment film according to the first aspect is characterized in that it is contained.
  • the third aspect of the present invention that achieves the above object is the liquid crystal according to the first or second aspect, characterized in that the aromatic heterocycle is a pyridine skeleton, a benzimidazole skeleton, or an imidazole skeleton. Alignment film.
  • the liquid crystal alignment film according to the second aspect wherein the fired product is produced at a firing temperature of 100 ° C. to 300 ° C.
  • a fifth aspect of the present invention for achieving the above object is a liquid crystal display element comprising the liquid crystal alignment film according to any one of the first to fourth aspects.
  • a sixth aspect of the present invention that achieves the above object is a liquid crystal aligning agent for obtaining a liquid crystal alignment film according to any one of the first to fourth aspects.
  • a seventh aspect of the present invention that achieves the above object is a diamine component comprising at least one diamine selected from the following component (A) and the following component (B) and a diamine containing a skeleton of the following component (C): And at least one polymer selected from polyamic acid that is a reaction product of tetracarboxylic dianhydride and polyimide that is an imidized product thereof.
  • Component (A) a diamine having at least one structure selected from the following formula (1-1) and the following formula (1-2)
  • D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring
  • D may have various substituents.
  • E is a single bond, or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring
  • F is a single bond or an ether bond (—O— )
  • m is 1 or
  • R represents a thermal leaving group
  • * represents a bond with another atom.
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one divalent element selected from the group consisting of -OCO-
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO- , —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and at least one divalent organic group selected from the group consisting of Q 2 hydrogen atom or a carbon atoms
  • X 1 is an oxygen atom or a sulfur atom
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.
  • the liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, the adhesion between the sealing agent and the liquid crystal aligning film is improved, and the occurrence of display unevenness near the frame of the liquid crystal display element can be suppressed under high temperature and high humidity conditions. Can be obtained. Therefore, the liquid crystal display element having a liquid crystal alignment film obtained by this can solve the display unevenness in the vicinity of the frame by enhancing the adhesion between the sealing agent and the liquid crystal alignment film, and can be suitably used for a large screen and high definition liquid crystal display. it can.
  • the liquid crystal alignment film of the present invention contains a polymer having an aromatic heterocycle, a primary amino group and a secondary amino group in the structure.
  • the liquid crystal alignment film of the present invention is obtained by applying a liquid crystal aligning agent on a substrate and baking it to form a polymer film (hereinafter also referred to as a film) contained in the liquid crystal aligning agent, followed by rubbing treatment or light irradiation. It is produced by performing an orientation process. In the case of vertical alignment use, it can be used as a liquid crystal alignment film without alignment treatment.
  • a liquid crystal aligning agent on a substrate and baking it to form a polymer film (hereinafter also referred to as a film) contained in the liquid crystal aligning agent, followed by rubbing treatment or light irradiation. It is produced by performing an orientation process. In the case of vertical alignment use, it can be used as a liquid crystal alignment film without alignment treatment. *
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • a substrate on which an ITO electrode for driving a liquid crystal is formed it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose. *
  • the solvent is evaporated at 100 ° C. to 300 ° C., preferably 100 ° C. to 250 ° C., more preferably 150 ° C. to 250 ° C. by a heating means such as a hot plate. (Hereinafter, this step is also referred to as a firing step). *
  • the thermal leaving group protecting the amino group in the polymer is removed by heat to generate highly reactive primary and secondary amino groups, some of which are heavy.
  • an aromatic heterocycle is generated, and as a result, the liquid crystal alignment film of the present invention is obtained. From the viewpoint of the effects of the present invention and the storage stability of the liquid crystal alignment agent From the viewpoint of sex. *
  • X 1 is an oxygen atom or a sulfur atom
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9 It is.
  • * represents a bond with another atom.
  • Examples of structures that can generate an aromatic heterocycle by performing a cyclization reaction with a primary amino group include the following structures. *
  • D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic ring, and D may have various substituents.
  • E is a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F is a single bond or an ether bond (—O -) Represents an ester bond (-OCO-, -COO-).
  • m is 1 or 0.
  • R is a structure represented by the above formula (a). *
  • the thickness of the coating film after the baking step is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm.
  • the fired film is subjected to alignment treatment by a known method such as rubbing or irradiation with polarized ultraviolet rays.
  • aromatic heterocyclic ring contained in the polymer in the liquid crystal alignment film of the present invention examples include pyrrole ring, furan ring, thiophene ring, imidazole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring.
  • 5-membered aromatic heterocycles such as isothiazole ring
  • 6-membered aromatic heterocycles such as pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring
  • quinoline isoquinoline, coumarin, indole, benzimidazole, benzofuran And other polycyclic aromatic heterocyclic compounds.
  • a pyridine ring, an imidazole ring, and a benzimidazole ring are preferable, and an imidazole ring and a benzimidazole ring are particularly preferable.
  • the aromatic heterocyclic skeleton is formed during the firing of the liquid crystal aligning film. Is preferably formed.
  • the aromatic heterocyclic ring which already exists in the polymer contained in the liquid crystal aligning agent and the aromatic heterocyclic ring formed at the time of baking may coexist.
  • the polymer contained in the liquid crystal aligning agent of the present invention and the liquid crystal alignment film obtained using the same is not particularly limited as long as it has an aromatic heterocyclic ring and a primary amino group and a secondary amino group in the structure.
  • it is at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component and a tetracarboxylic derivative component and a polyimide which is an imidized product thereof.
  • a polyimide precursor which is a reaction product of a diamine component and a tetracarboxylic derivative component and a polyimide which is an imidized product thereof.
  • a polyimide precursor which is a reaction product of a diamine component and a tetracarboxylic derivative component
  • a polyimide which is an imidized product thereof.
  • the polyimide precursor here refers to a polyamic acid or a polyamic acid ester.
  • the polymer contained in the liquid crystal alignment agent of the present invention and the liquid crystal alignment film obtained using the same is preferably at least one polymer selected from a polyimide precursor and a polyimide which is an imidized product thereof.
  • a diamine having a structure that generates an aromatic heterocycle hereinafter also referred to as a specific diamine 1
  • a diamine having an aromatic heterocycle in the structure hereinafter also referred to as a specific diamine 2
  • at least one diamine selected from the group consisting of a diamine having a structure that generates a primary amino group or a secondary amino group hereinafter also referred to as a specific diamine 3).
  • the specific diamine 1 has a structure selected from the following formulas (1-1) and (1-2).
  • D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and D has various substituents. You may do it.
  • E represents a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F Represents a single bond, an ether bond (—O—) or an ester bond (—OCO—, —COO—).
  • m is 1 or 0.
  • R represents a thermal leaving group. *
  • the substitution position of the amino group is not particularly limited, but from the viewpoint of synthesis difficulty and availability of reagents, the position of meta or para is preferable based on the amide bond, and the viewpoint of liquid crystal orientation Then, the position of para is particularly preferable. Further, even in aminobenzene having no amino group protected by a thermal leaving group, the position of meta or para is preferable when based on the amide bond, and the position of meta is preferable from the viewpoint of solubility, From the viewpoint of liquid crystal orientation, the position of para is preferable.
  • hydrogen of aminobenzene having no —NHR may be substituted with an organic group or a halogen atom such as fluorine. *
  • D in the above formula (1-1) and E in the above formula (1-2) are the same as defined above, but the details thereof are not particularly limited, and dicarboxylic acid or tetracarboxylic acid diester used as a raw material.
  • D is preferably a divalent hydrocarbon group from the viewpoint of solubility, and preferred examples include a linear alkylene group and a cyclic alkylene group, and this hydrocarbon group may have an unsaturated bond. .
  • a divalent aromatic hydrocarbon group, a heterocyclic ring, and the like are preferable. From the viewpoint of liquid crystal orientation, it is preferable that D has no substituent, but from the viewpoint of solubility, it is preferable that D be substituted with a carboxylic acid group or a fluorine atom.
  • the specific diamine 2 has the structure of the following formula (2).
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one selected from the group consisting of -OCO- A divalent organic group
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic carbonization hydrogen radicals, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 at least one divalent organic group selected from the group consisting of 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5);
  • Q 2 is a hydrogen atom or
  • the bonding position of the two amino groups (—NH 2 ) is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease of synthesizing the diamine compound, the bonding positions of the two amino groups are positions 2, 4 and 2, 5; The positions 3, 5 are particularly preferred.
  • * may be bonded to the same structure of the above formula (2), or may be bonded to the structure of the above formula (2) through another atom. *
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - is CH 2 O-, and at least one divalent organic group selected from the group consisting of -OCO- .
  • -O -, - NQ 1 - , - CONQ 1 -, - NQ 1 CO- is preferred.
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
  • X 2 is a single bond or at least one divalent organic group selected from the group consisting of an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and an aromatic hydrocarbon group. is there.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. An aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferred. *
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - ( m is from 1 5 at least one divalent organic group of selected from the group consisting of integer is), preferably a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO -, -O (CH 2 ) m- (m is an integer of 1 to 5). Most preferably, it is a single bond, —OCO—, or —OCH 2 —.
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
  • X 4 is an aromatic heterocycle. Examples and preferred structures thereof are the same as those described above.
  • X 1 , X 2 , X 3 , X 4 and n are as shown in Tables 1 to 3 below.
  • Q 1 and Q 2 are as defined above.
  • the specific diamine 3 is a diamine having a structure that generates a primary amino group or a secondary amino group, and has a structure of an amino group protected by a thermal leaving group in the structure.
  • a structure is not particularly limited, but it is preferable to contain at least one structure selected from the following structures from the viewpoint of easiness of thermal desorption.
  • X 1 is an oxygen atom or a sulfur atom
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9 It is.
  • * represents a bond with another atom.
  • X 1 represents an oxygen atom or a sulfur atom, an oxygen atom is preferable.
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, preferably 1 carbon atom. The total number of carbon atoms is 1 to 9, preferably 3 to 6.
  • * represents a bond with another atom.
  • Examples of the diamine having at least one structure selected from the above formula (a) and the above formula (b) in the structure include the following diamines.
  • “Boc” is a tert-butoxycarbonyl group. *
  • a diamine having a structure that generates a primary amino group or a secondary amino group, that is, a structure of an amino group protected by a thermal leaving group is used.
  • a diamine having an amino group that is not protected and does not participate in polymerization may be used. Such diamines are exemplified below.
  • a diamine other than the specific diamine (hereinafter also referred to as other diamine) is contained within the limit that exhibits the effects of the present invention. You may do it.
  • Such a diamine is represented by the following general formula (3).
  • Y is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y include the following formulas (Y-1) to (Y-99). *
  • n and n are each an integer of 1 to 11
  • m + n is an integer of 2 to 12
  • h is an integer of 1 to 3.
  • j is an integer of 0 to 3.
  • tetracarboxylic dianhydride used in producing a polyimide precursor preferably used as a polymer contained in the liquid crystal aligning agent of the present invention is represented by the following formula (4).
  • X is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Two or more kinds of X may be mixed in the polyimide precursor. Specific examples of X include structures of the following formula (X-1) to the following formula (X-44). *
  • polyamic acid ester when manufacturing polyamic acid ester, it can manufacture using dicarboxylic acid diester corresponding to the various structures of the tetracarboxylic dianhydride mentioned here. *
  • R 1 to R 4 in the above formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, or phenyl It is a group.
  • the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • X preferably contains a structure selected from the above formulas (X-1) to (X-14) from the viewpoint of availability of monomers.
  • the structure of X is an aliphatic group such as the above formula (X-1) to the above formula (X-7) and the above formula (X-10).
  • the structure consisting only of these is preferable, and the structure represented by the above formula (X-1) is more preferable.
  • the structure of X is more preferably the following formula (X1-1) or the following formula (X1-2). *
  • the liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned polyimide precursor or its imidized polymer (henceforth a polymer of a specific structure) was melt
  • the molecular weight of the polymer having a specific structure is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 8,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 4,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less. A particularly preferred polymer concentration is 2 to 8% by mass. *
  • the organic solvent contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer having a specific structure is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents.
  • a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are given below, but the organic solvent is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Zimechi -4-heptanol, 1,2-ethanedi
  • D 1 represents an alkyl group having 1 to 3 carbon atoms.
  • D 2 represents an alkyl group having 1 to 3 carbon atoms.
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • preferred solvent combinations include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether, and N-ethyl-2-pyrrolidone.
  • propylene glycol monobutyl ether N-methyl-2-pyrrolidone and ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether And diisopropyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether, 2,6-dimethyl-4-heptanol, N-methyl-2-pi Examples include loridone, ⁇ -butyrolactone, and dipropylene glycol dimethyl ether.
  • the kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent. *
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc.
  • Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added. *
  • an additive such as a silane coupling agent may be added to the liquid crystal aligning agent of the present invention, and other resin components may be added.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyl
  • additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the film.
  • additives are preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, and therefore the amount is more preferably 0.5 to 20 parts by mass. *
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by a known method after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment by rubbing treatment or the like. is there.
  • the method for producing a liquid crystal cell of a liquid crystal display element is not particularly limited.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably 1 ⁇ m to 30 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, with the liquid crystal alignment film surface inside.
  • a method is used in which a spacer of 2 ⁇ m to 10 ⁇ m is placed and a periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • liquid crystal display elements such as VA, TN, STN, TFT, and lateral electric field type, It can be used as a liquid crystal alignment film for ferroelectric and antiferroelectric liquid crystal display elements.
  • ⁇ Viscosity> the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)) (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • NMR nuclear magnetic resonance
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 1 In a 1 L four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 was 86.0 g (352 mmol), DA-2 was 53.4 g (95.9 mmol), and DA-3 was 76.5 g (191 mmol). Weighed out and added 1580 g of NMP and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 93.2 g (416 mmol) of CA-1 was added, and 168 g of NMP was further added, followed by stirring at 40 ° C. for 3 hours under a nitrogen atmosphere.
  • Example 2 To a 3 L Erlenmeyer flask containing a stir bar, 800 g of the polyamic acid solution (PAA-1) obtained in Example 1 was collected, 700 g of NMP, 69.7 g of acetic anhydride, and 18.0 g of pyridine were added. The mixture was stirred at room temperature for 30 minutes and then reacted at 55 ° C. for 3 hours. This reaction solution was put into 5600 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 75%.
  • Example 3 In a 50 mL Erlenmeyer flask containing a stir bar, 5.42 g of the polyamic acid solution (A-1) obtained in Example 1 and 5.41 g of the polyamic acid solution (B-1) obtained in Synthesis Example 1 were obtained. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-3).
  • Example 4 In a 50 mL Erlenmeyer flask containing a stir bar, 5.55 g of the polyimide solution (A-2) obtained in Example 2 and 5.51 g of the polyimide solution (B-2) obtained in Synthesis Example 2 were weighed. Then, the mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-4).
  • Example 5 In a 50 mL Erlenmeyer flask containing a stir bar, 5.42 g of the polyamic acid solution (B-1) obtained in Synthesis Example 1 and 5.42 g of the polyamic acid solution (B-3) obtained in Synthesis Example 3 were used. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-5).
  • Example 6 In a 50 mL Erlenmeyer flask containing a stir bar, 5.62 g of the polyamic acid solution (A-1) obtained in Example 1 and 5.52 g of the polyamic acid solution (B-4) obtained in Synthesis Example 4 were obtained. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-6).
  • bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm.
  • the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was about 3 mm.
  • the two bonded substrates were fixed with a clip and then thermally cured at 120 ° C. for 1 hour to prepare a sample for evaluating adhesiveness.
  • Example 7 to 12 The liquid crystal aligning agents (A-1) to (A-6) obtained in Examples 1 to 6 were each filtered through a 1.0 ⁇ m filter, and samples for adhesion evaluation were prepared and sealed as described above. The results of evaluating the adhesive strength are shown in Table 4.
  • the sealing adhesive strength was high and good.
  • Example 13 In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 4.30 g (17.6 mmol) of DA-1, 2.67 g (4.80 mmol) of DA-2, and 3.27 g of DA-4 ( 9.57 mmol) was weighed, 75.1 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.66 g (20.7 mmol) of CA-1 was added, 9.34 g of NMP was further added, and the mixture was stirred at 40 ° C. for 3 hours under a nitrogen atmosphere.
  • Example 14 In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 (4.30 g, 17.6 mmol), DA-2 (2.67 g, 4.80 mmol), and DA-3, 1.91 g ( 4.80 mmol) and 1.64 g (4.80 mmol) of DA-4 were weighed out, 77.1 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.66 g (20.7 mmol) of CA-1 was added, and 8.88 g of NMP was further added, followed by stirring at 40 ° C. for 3 hours under a nitrogen atmosphere.
  • a liquid crystal cell having a configuration of an FFS liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode constituting the counter electrode as the first layer is formed on the entire surface.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the film thickness of the second SiN film is 100 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film is arranged as a third layer on the second layer SiN film to form two pixels, a first pixel and a second pixel. is doing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a bow shape with a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold, bent, bent at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. *
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
  • liquid crystal aligning agents obtained in Examples and Synthesis Examples were filtered through a 1.0 ⁇ m filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm.
  • This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third layer IZO comb-teeth electrode Then, ultrasonic cleaning was performed for 1 minute in pure water for cleaning, and water droplets were removed by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board
  • a substrate with a liquid crystal alignment film was obtained.
  • One set of these two substrates with a liquid crystal alignment film is printed, and the sealant is printed on the substrate leaving the liquid crystal injection port.
  • the other substrate has the liquid crystal alignment film surface facing and the rubbing direction is antiparallel. They were pasted together.
  • the sealing agent was cured to produce an empty cell having a cell gap of 4 ⁇ m.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • was injected into this empty cell by a reduced pressure injection method was sealed to obtain an FFS liquid crystal cell.
  • the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
  • the liquid crystal cell After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated. Then, the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell. That is, the smaller the angle, the better the liquid crystal alignment.
  • Example 15 to 18 After the liquid crystal aligning agents (A-2), (A-4), (A-7) and (A-8) obtained in Examples 2, 4, 13, and 14 were each filtered through a 1.0 ⁇ m filter. Table 5 shows the results of producing a sample for evaluating adhesiveness as described above and evaluating the sealing adhesive force, and the result of the angle ⁇ of the liquid crystal cell.
  • the sealing adhesive strength was high, the angle ⁇ of the liquid crystal cell after aging was small, and the liquid crystal alignment was good.
  • the liquid crystal aligning agent of the present invention can solve the display unevenness in the vicinity of the frame by enhancing the adhesiveness between the sealing agent and the liquid crystal aligning film in a narrow frame liquid crystal display element capable of securing a large number of display surfaces. Useful.

Abstract

A liquid crystal alignment film that contains a polymer which has an aromatic heterocyclic ring, a primary amino group and a secondary amino group in the structure; and a liquid crystal aligning agent which is capable of forming this liquid crystal alignment film. It is preferable that the aromatic heterocyclic ring, the primary amino group and the secondary amino group are produced when the liquid crystal alignment film is fired; and the liquid crystal aligning agent specifically contains at least one polymer that is selected from among polyamic acids and polyimides that are imidized products of the polyamic acids, said polyamic acids being reaction products of a tetracarboxylic acid dianhydride and a diamine component that contains at least one diamine selected from among the component (A) and the component (B) described below and a diamine containing a skeleton of the component (C) described below. In the chemical formulae, the symbols are as defined in the description. Component (A): diamines having at least one structure selected from among a structure of formula (1-1) and a structure of formula (1-2) Component (B): diamines having a structure of formula (2) Component (C): diamines having at least one structure selected from among a structure of formula (a) and a structure of formula (b)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶表示素子の製造において用いられる液晶配向剤、この液晶配向剤から得られる液晶配向膜およびこの液晶配向膜を使用した液晶表示素子に関するものである。 The present invention relates to a liquid crystal aligning agent used in the production of a liquid crystal display element, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られている。近年では、急速にシェアを拡大してきた携帯電話やタブレット型端末向けの高精細液晶表示素子においても、高い表示品位が求められるほどの目覚ましい発展を遂げている。  The liquid crystal display element is known as a light, thin and low power display device. In recent years, high-definition liquid crystal display elements for mobile phones and tablet terminals, which have rapidly expanded their market share, have made remarkable developments that require high display quality. *
 液晶表示素子は、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。  The liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. *
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。さらに、上述した理由により、シール剤の位置を、シール剤との接着性が弱い液晶配向膜の端部に接した位置、あるいは液晶配向膜の上部にすることも求められている。このような場合、特に高温高湿条件下での使用では、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近に表示ムラが発生してしまう。  In recent years, liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as many display surfaces as possible, it is necessary to make the width of the sealing agent used for bonding the substrates of the liquid crystal display elements narrower than in the past. Furthermore, for the reasons described above, the position of the sealing agent is also required to be in the position in contact with the end of the liquid crystal alignment film having low adhesion to the sealing agent or on the liquid crystal alignment film. In such a case, particularly when used under high temperature and high humidity conditions, water is likely to be mixed between the sealing agent and the liquid crystal alignment film, and display unevenness occurs in the vicinity of the frame of the liquid crystal display element. *
 この問題を解決する為、特定構造の添加剤を用いる液晶配向剤が提案されている(特許文献1参照)。 In order to solve this problem, a liquid crystal aligning agent using an additive having a specific structure has been proposed (see Patent Document 1).
国際公開第2015/072554号International Publication No. 2015/072554
 しかし近年では、液晶配向膜とシール剤との更なる密着性改善が求められている。  However, in recent years, further improvement in adhesion between the liquid crystal alignment film and the sealant has been demanded. *
 このうちシール剤からの特性改善では、シール剤と液晶配向膜との密着特性と、シール剤の透湿防止特性とは、その両立が難しいことが知られており、上記観点から、液晶配向膜からの特性改善が求められている。  Among these, it is known that in improving the characteristics from the sealant, it is difficult to achieve both the adhesion property between the sealant and the liquid crystal alignment film and the moisture permeation prevention property of the sealant. There is a need to improve characteristics from *
 そこで本発明は、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制することのできる液晶配向剤を提供することを目的とする。 Therefore, the present invention has an object to provide a liquid crystal aligning agent that can enhance the adhesion between the sealing agent and the liquid crystal alignment film and can suppress the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions. And
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の芳香族複素環、1級アミノ基及び2級アミノ基を構造中に有する重合体を含有する液晶配向膜を用いることによって本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found a liquid crystal alignment film containing a polymer having a specific aromatic heterocycle, primary amino group, and secondary amino group in the structure. By using it, the present invention has been completed.
 上記目的を達成する本発明の第1の態様は、芳香族複素環と1級アミノ基及び2級アミノ基を構造中に有する重合体を含有することを特徴とする、液晶配向膜にある。 The first aspect of the present invention for achieving the above object is a liquid crystal alignment film characterized by containing a polymer having an aromatic heterocyclic ring and a primary amino group and a secondary amino group in the structure.
 上記目的を達成する本発明の第2の態様は、焼成物からなる膜であり、前記芳香族複素環の骨格と前記1級アミノ基及び前記2級アミノ基が焼成により生成された構造中に含有することを特徴とする、第1の態様の液晶配向膜にある。 A second aspect of the present invention that achieves the above object is a film made of a fired product, in a structure in which the skeleton of the aromatic heterocyclic ring, the primary amino group, and the secondary amino group are generated by firing. The liquid crystal alignment film according to the first aspect is characterized in that it is contained.
 上記目的を達成する本発明の第3の態様は、前記芳香族複素環が、ピリジン骨格、ベンズイミダゾール骨格、またはイミダゾール骨格であることを特徴とする、第1の態様または第2の態様の液晶配向膜にある。 The third aspect of the present invention that achieves the above object is the liquid crystal according to the first or second aspect, characterized in that the aromatic heterocycle is a pyridine skeleton, a benzimidazole skeleton, or an imidazole skeleton. Alignment film.
 上記目的を達成する本発明の第4の態様は、前記焼成物が、100℃~300℃の焼成温度により生成されてなることを特徴とする、第2の態様の液晶配向膜にある。 According to a fourth aspect of the present invention for achieving the above object, there is provided the liquid crystal alignment film according to the second aspect, wherein the fired product is produced at a firing temperature of 100 ° C. to 300 ° C.
 上記目的を達成する本発明の第5の態様は、第1の態様から第4の態様のいずれかの液晶配向膜を具備することを特徴とする、液晶表示素子にある。 A fifth aspect of the present invention for achieving the above object is a liquid crystal display element comprising the liquid crystal alignment film according to any one of the first to fourth aspects.
 上記目的を達成する本発明の第6の態様は、第1の態様から第4の態様のいずれかの液晶配向膜を得るための液晶配向剤にある。 A sixth aspect of the present invention that achieves the above object is a liquid crystal aligning agent for obtaining a liquid crystal alignment film according to any one of the first to fourth aspects.
 上記目的を達成する本発明の第7の態様は、下記成分(A)及び下記成分(B)から選ばれる少なくとも1種のジアミン並びに下記成分(C)の骨格を含有するジアミンを含有するジアミン成分と、テトラカルボン酸二無水物との反応物であるポリアミック酸及びそのイミド化物であるポリイミドから選ばれる少なくとも1つの重合体を含有することを特徴とする、第6の態様の液晶配向剤にある。
(A)成分:下記式(1-1)及び下記式(1-2)から選ばれる少なくとも1種の構造を有するジアミン
A seventh aspect of the present invention that achieves the above object is a diamine component comprising at least one diamine selected from the following component (A) and the following component (B) and a diamine containing a skeleton of the following component (C): And at least one polymer selected from polyamic acid that is a reaction product of tetracarboxylic dianhydride and polyimide that is an imidized product thereof. .
Component (A): a diamine having at least one structure selected from the following formula (1-1) and the following formula (1-2)
Figure JPOXMLDOC01-appb-C000004
(式中、Dは2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基または複素環を表し、Dは種々の置換基を有していてもよく、Eは単結合、または、2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基もしくは複素環であり、Fは単結合またはエーテル結合(-O-)、エステル結合(-OCO-、-COO-)を表し、mは、1または0であり、Rは熱脱離基を表し、*は、他の原子との結合を表す。)
(B)成分:下記式(2)の構造を有するジアミン
Figure JPOXMLDOC01-appb-C000004
(Wherein D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and D may have various substituents. , E is a single bond, or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F is a single bond or an ether bond (—O— ), An ester bond (—OCO—, —COO—), m is 1 or 0, R represents a thermal leaving group, and * represents a bond with another atom.)
Component (B): a diamine having the structure of the following formula (2)
Figure JPOXMLDOC01-appb-C000005
(式中、Xは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは芳香族複素環であり、*は、他の原子との結合を表す。)
(C)成分:下記式(a)及び下記式(b)から選ばれる少なくとも1種の構造を有するジアミン 
Figure JPOXMLDOC01-appb-C000005
(Wherein, X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one divalent element selected from the group consisting of -OCO- An organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO- , —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and at least one divalent organic group selected from the group consisting of Q 2 hydrogen atom or a carbon atoms is 3 alkyl group, X 4 is an aromatic heterocycle, * the other It represents a bond with the child.)
Component (C): a diamine having at least one structure selected from the following formula (a) and the following formula (b)
Figure JPOXMLDOC01-appb-C000006
(式中、Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、*は、他の原子との結合を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.)
 本発明の液晶配向剤を用いることで、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制することができる液晶配向膜を得ることができる。そのため、これにより得られる液晶配向膜を有する液晶表示素子はシール剤と液晶配向膜との接着性を高めることで額縁付近の表示ムラが解決でき、大画面で高精細の液晶ディスプレイに好適に利用できる。 By using the liquid crystal aligning agent of the present invention, the adhesion between the sealing agent and the liquid crystal aligning film is improved, and the occurrence of display unevenness near the frame of the liquid crystal display element can be suppressed under high temperature and high humidity conditions. Can be obtained. Therefore, the liquid crystal display element having a liquid crystal alignment film obtained by this can solve the display unevenness in the vicinity of the frame by enhancing the adhesion between the sealing agent and the liquid crystal alignment film, and can be suitably used for a large screen and high definition liquid crystal display. it can.
 本発明の液晶配向膜の各構成要件について、以下に詳述する。 Each constituent requirement of the liquid crystal alignment film of the present invention will be described in detail below.
<液晶配向膜>
 本発明の液晶配向膜は、芳香族複素環と、1級アミノ基及び2級アミノ基を構造中に有する重合体を含有する。 
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention contains a polymer having an aromatic heterocycle, a primary amino group and a secondary amino group in the structure.
 本発明の液晶配向膜は、液晶配向剤を基板上に塗布、焼成し、液晶配向剤中に含有される重合体の被膜(以下、被膜とも言う)を形成させた後、ラビング処理や光照射などで配向処理をして作製される。垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。  The liquid crystal alignment film of the present invention is obtained by applying a liquid crystal aligning agent on a substrate and baking it to form a polymer film (hereinafter also referred to as a film) contained in the liquid crystal aligning agent, followed by rubbing treatment or light irradiation. It is produced by performing an orientation process. In the case of vertical alignment use, it can be used as a liquid crystal alignment film without alignment treatment. *
 この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。  The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case. *
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコータ、スリットコータ、スピンナーなどがあり、目的に応じてこれらを用いてもよい。  The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose. *
 液晶配向剤を基板上に塗布した後は、ホットプレートなどの加熱手段により100℃~300℃、好ましくは100℃~250℃、より好ましくは150℃~250℃で溶媒を蒸発させて重合体被膜とする(以下、この工程を焼成工程とも言う)ことができる。  After coating the liquid crystal aligning agent on the substrate, the solvent is evaporated at 100 ° C. to 300 ° C., preferably 100 ° C. to 250 ° C., more preferably 150 ° C. to 250 ° C. by a heating means such as a hot plate. (Hereinafter, this step is also referred to as a firing step). *
 前記焼成工程において、重合体中の、アミノ基を保護している熱脱離基が熱により脱離することで、反応性の高い1級および2級アミノ基が発生し、その一部が重合体中の他の部位と環化反応を行うことによって、芳香族複素環が発生し、結果として本発明の液晶配向膜が得られることが、本発明の効果の観点及び液晶配向剤の保存安定性の観点から好ましい。  In the calcination step, the thermal leaving group protecting the amino group in the polymer is removed by heat to generate highly reactive primary and secondary amino groups, some of which are heavy. By carrying out a cyclization reaction with other sites in the coalescence, an aromatic heterocycle is generated, and as a result, the liquid crystal alignment film of the present invention is obtained. From the viewpoint of the effects of the present invention and the storage stability of the liquid crystal alignment agent From the viewpoint of sex. *
 本発明の重合体中に好ましく含有される、熱脱離基が結合したアミノ基の構造は、例えば以下のように表される。  The structure of an amino group to which a thermally leaving group is preferably contained, which is preferably contained in the polymer of the present invention, is expressed as follows, for example. *
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(a)において、Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、上記式(a)及び上記式(b)において、*は、他の原子との結合を表す。  In the above formula (a), X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9 It is. In the above formulas (a) and (b), * represents a bond with another atom.
 1級アミノ基と環化反応を行い、芳香族複素環を発生し得る構造は、例えば以下のような構造が挙げられる。  Examples of structures that can generate an aromatic heterocycle by performing a cyclization reaction with a primary amino group include the following structures. *
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、Dは2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基または複素環を表し、Dは種々の置換基を有していてもよい。また、Eは単結合、または、2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基もしくは複素環であり、Fは単結合またはエーテル結合(-O-)、エステル結合(-OCO-、-COO-)を表す。mは、1または0である。Rは、上記式(a)で表される構造である。  In the formula, D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic ring, and D may have various substituents. E is a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F is a single bond or an ether bond (—O -) Represents an ester bond (-OCO-, -COO-). m is 1 or 0. R is a structure represented by the above formula (a). *
 焼成工程後の被膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の被膜をラビング又は偏光紫外線照射などの公知の方法で配向処理する。 If the thickness of the coating film after the baking step is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 nm to 300 nm, more preferably 10 nm to 100 nm. When the liquid crystal is aligned horizontally or tilted, the fired film is subjected to alignment treatment by a known method such as rubbing or irradiation with polarized ultraviolet rays.
<芳香族複素環>
 本発明の液晶配向膜中の重合体に含有される、上記芳香族複素環の例を挙げると、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環等の五員環芳香族複素環;ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環等の六員環芳香族複素環;キノリン、イソキノリン、クマリン、インドール、ベンズイミダゾール、ベンゾフラン等の多環芳香族ヘテロ環化合物が挙げられる。 
<Aromatic heterocycle>
Examples of the aromatic heterocyclic ring contained in the polymer in the liquid crystal alignment film of the present invention include pyrrole ring, furan ring, thiophene ring, imidazole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring. 5-membered aromatic heterocycles such as isothiazole ring; 6-membered aromatic heterocycles such as pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring; quinoline, isoquinoline, coumarin, indole, benzimidazole, benzofuran And other polycyclic aromatic heterocyclic compounds.
 上記の中でも、本発明の効果をより顕著に奏する観点から、ピリジン環、イミダゾール環、ベンズイミダゾール環が好ましく、イミダゾール環、ベンズイミダゾール環が特に好ましい。  Among these, from the viewpoint of more prominently achieving the effects of the present invention, a pyridine ring, an imidazole ring, and a benzimidazole ring are preferable, and an imidazole ring and a benzimidazole ring are particularly preferable. *
 前記芳香族複素環は、前記液晶配向剤に含有される重合体中に既に存在していても本発明の効果を奏するが、上述した観点から、液晶配向膜の焼成時に、芳香族複素環骨格が形成されることが好ましい。なお、液晶配向剤に含有される重合体中に既に存在する芳香族複素環と、焼成時に形成される芳香族複素環が併存していても良い。 Even if the aromatic heterocyclic ring is already present in the polymer contained in the liquid crystal aligning agent, the effect of the present invention can be obtained. From the viewpoint described above, the aromatic heterocyclic skeleton is formed during the firing of the liquid crystal aligning film. Is preferably formed. In addition, the aromatic heterocyclic ring which already exists in the polymer contained in the liquid crystal aligning agent and the aromatic heterocyclic ring formed at the time of baking may coexist.
<重合体>
 本発明の液晶配向剤及びそれを用いて得られる液晶配向膜に含有される重合体は、芳香族複素環及び1級アミノ基及び2級アミノ基を構造中に有していれば特に限定はされないが、得られる液晶表示素子の特性及び信頼性の観点から、ジアミン成分とテトラカルボン誘導体成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体であることが好ましい。 
<Polymer>
The polymer contained in the liquid crystal aligning agent of the present invention and the liquid crystal alignment film obtained using the same is not particularly limited as long as it has an aromatic heterocyclic ring and a primary amino group and a secondary amino group in the structure. However, from the viewpoint of the characteristics and reliability of the obtained liquid crystal display element, it is at least one polymer selected from a polyimide precursor which is a reaction product of a diamine component and a tetracarboxylic derivative component and a polyimide which is an imidized product thereof. Preferably there is.
 ここで言うポリイミド前駆体とは、ポリアミック酸またはポリアミック酸エステルを指す。 The polyimide precursor here refers to a polyamic acid or a polyamic acid ester.
<ジアミン>
 本発明の液晶配向剤及びそれを用いて得られる液晶配向膜に含有される重合体としては、ポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体であることが好ましいが、その製造に用いられるジアミン成分中には、芳香族複素環を生じる構造を有するジアミン(以下、特定ジアミン1とも言う)及び芳香族複素環を構造中に有するジアミン(以下、特定ジアミン2とも言う)からなる群から選ばれる少なくとも1種のジアミン、及び、1級アミノ基又は2級アミノ基を生じる構造を有するジアミン(以下、特定ジアミン3とも言う)が用いられる。 
<Diamine>
The polymer contained in the liquid crystal alignment agent of the present invention and the liquid crystal alignment film obtained using the same is preferably at least one polymer selected from a polyimide precursor and a polyimide which is an imidized product thereof. In the diamine component used in the production, a diamine having a structure that generates an aromatic heterocycle (hereinafter also referred to as a specific diamine 1) and a diamine having an aromatic heterocycle in the structure (hereinafter also referred to as a specific diamine 2) ) And at least one diamine selected from the group consisting of a diamine having a structure that generates a primary amino group or a secondary amino group (hereinafter also referred to as a specific diamine 3).
 それぞれのジアミンについて、以下に詳述する。 Each diamine will be described in detail below.
<特定ジアミン1>
 特定ジアミン1は、以下の式(1-1)、式(1-2)から選ばれる構造を有する。 
<Specific diamine 1>
The specific diamine 1 has a structure selected from the following formulas (1-1) and (1-2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(1-1)中、Dは2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基または複素環を表し、Dは種々の置換基を有していてもよい。また、上記式(1-2)中、Eは単結合、または、2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基もしくは複素環であり、Fは単結合またはエーテル結合(-O-)、エステル結合(-OCO-、-COO-)を表す。上記式(1-1)中、mは、1または0である。上記式(1-1)及び上記式(1-2)中、Rは熱脱離基を表す。  In the above formula (1-1), D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and D has various substituents. You may do it. In the above formula (1-2), E represents a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F Represents a single bond, an ether bond (—O—) or an ester bond (—OCO—, —COO—). In the above formula (1-1), m is 1 or 0. In the above formula (1-1) and the above formula (1-2), R represents a thermal leaving group. *
 上記式(1-1)および上記式(1-2)中の*は、他の原子との結合を表す。アミノ基と結合する場合、アミノ基の置換位置は特に限定されないが、合成難易度や試薬の入手性の観点では、アミド結合を基準とすると、メタまたはパラの位置が好ましく、液晶配向性の観点ではパラの位置が特に好ましい。また熱脱離基で保護されたアミノ基を有さないアミノベンゼンにおいても、同様にアミド結合を基準としたときに、メタまたはパラの位置が好ましく、溶解性の観点ではメタの位置が好ましく、液晶配向性の観点ではパラの位置が好ましい。また、―NHRを有さないアミノベンゼンの水素は有機基やフッ素などのハロゲン原子などで置換されていても良い。  * In the above formula (1-1) and the above formula (1-2) represents a bond with another atom. In the case of bonding to an amino group, the substitution position of the amino group is not particularly limited, but from the viewpoint of synthesis difficulty and availability of reagents, the position of meta or para is preferable based on the amide bond, and the viewpoint of liquid crystal orientation Then, the position of para is particularly preferable. Further, even in aminobenzene having no amino group protected by a thermal leaving group, the position of meta or para is preferable when based on the amide bond, and the position of meta is preferable from the viewpoint of solubility, From the viewpoint of liquid crystal orientation, the position of para is preferable. In addition, hydrogen of aminobenzene having no —NHR may be substituted with an organic group or a halogen atom such as fluorine. *
 また、上記式(1-1)の*が、同じ上記式(1-1)の構造や、上記式(1-2)の構造と結合していても良く、他の原子を介して、上記式(1-1)の構造や、上記式(1-2)の構造と結合していても良い。  Further, * in the above formula (1-1) may be bonded to the same structure of the above formula (1-1) or the structure of the above formula (1-2). It may be combined with the structure of the formula (1-1) or the structure of the above formula (1-2). *
 上記式(1-1)中のD、上記式(1-2)中のEは、上記定義と同様であるが、その詳細は特に限定されず、原料として使用するジカルボン酸やテトラカルボン酸二無水物などの構造によって、構造を種々選択することが出来る。Dとしては、溶解性の観点では2価の炭化水素基などが好ましく、直鎖アルキレン基や環状アルキレン基などが好ましい例として挙げられ、この炭化水素基は不飽和結合を有していても良い。また液晶配向性や電気特性の観点では、2価の芳香族炭化水素基や複素環などが好ましい。液晶配向性の観点からはDは置換基を有さないほうが好ましいが、溶解性の観点では、水素原子がカルボン酸基やフッ素原子などで置換されているものが好ましい。 D in the above formula (1-1) and E in the above formula (1-2) are the same as defined above, but the details thereof are not particularly limited, and dicarboxylic acid or tetracarboxylic acid diester used as a raw material. Various structures can be selected depending on the structure of the anhydride or the like. D is preferably a divalent hydrocarbon group from the viewpoint of solubility, and preferred examples include a linear alkylene group and a cyclic alkylene group, and this hydrocarbon group may have an unsaturated bond. . Further, from the viewpoint of liquid crystal orientation and electrical characteristics, a divalent aromatic hydrocarbon group, a heterocyclic ring, and the like are preferable. From the viewpoint of liquid crystal orientation, it is preferable that D has no substituent, but from the viewpoint of solubility, it is preferable that D be substituted with a carboxylic acid group or a fluorine atom.
<特定ジアミン2>
 特定ジアミン2は、以下の式(2)の構造を有する。 
<Specific diamine 2>
The specific diamine 2 has the structure of the following formula (2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(2)中、Xは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは芳香族複素環である。  In the formula (2), X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one selected from the group consisting of -OCO- A divalent organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic carbonization hydrogen radicals, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 at least one divalent organic group selected from the group consisting of 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5); Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X 4 is an aromatic heterocyclic ring.
 *は、他の原子との結合を表す。アミノ基と結合する場合、二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。これらの中でも、ポリアミック酸を合成する際の反応性の観点、及びジアミン化合物を合成する際の容易性も加味すると、二つのアミノ基の結合位置が2,4の位置、2,5の位置、3,5の位置が特に好ましい。  * Represents a bond with another atom. In the case of bonding to an amino group, the bonding position of the two amino groups (—NH 2 ) is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease of synthesizing the diamine compound, the bonding positions of the two amino groups are positions 2, 4 and 2, 5; The positions 3, 5 are particularly preferred.
 また、*が、同じ上記式(2)の構造と結合していても良く、他の原子を介して、上記式(2)の構造と結合していても良い。  Further, * may be bonded to the same structure of the above formula (2), or may be bonded to the structure of the above formula (2) through another atom. *
 Xは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基である。中でも、-O-、-NQ-、-CONQ-、-NQCO-が好ましい。なお、Qは、水素原子又は炭素数1から3のアルキル基であり、好ましくは、水素原子又はメチル基である。  X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - is CH 2 O-, and at least one divalent organic group selected from the group consisting of -OCO- . Among them, -O -, - NQ 1 - , - CONQ 1 -, - NQ 1 CO- is preferred. Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
 Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基である。  X 2 is a single bond or at least one divalent organic group selected from the group consisting of an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and an aromatic hydrocarbon group. is there.
 炭素数1から20の脂肪族炭化水素基は、直鎖状でも良いし、分岐していても良い。また、不飽和結合を有していても良い。好ましくは炭素数1から10の脂肪族炭化水素基である。  The aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. An aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferred. *
 Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、好ましくは、単結合、-O-、-CONQ-、-NQCO-、-COO-、-OCO-、-O(CH-(mは1から5の整数である)である。最も好ましくは、単結合、-OCO-、又は-OCH-である。なお、Qは、水素原子又は炭素数1から3のアルキル基であり、好ましくは、水素原子又はメチル基である。  X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - ( m is from 1 5 at least one divalent organic group of selected from the group consisting of integer is), preferably a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO -, -O (CH 2 ) m- (m is an integer of 1 to 5). Most preferably, it is a single bond, —OCO—, or —OCH 2 —. Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group.
 Xは芳香族複素環である。その例示及び好ましい構造は、上記したものと同様である。  X 4 is an aromatic heterocycle. Examples and preferred structures thereof are the same as those described above.
 特に好ましいX、X、X、X及びnの組み合わせは、下記の表1から表3に示す通りである。なお、Q及びQは、上記定義と同意義である。  Particularly preferred combinations of X 1 , X 2 , X 3 , X 4 and n are as shown in Tables 1 to 3 below. Q 1 and Q 2 are as defined above.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<特定ジアミン3>
 特定ジアミン3は、1級アミノ基又は2級アミノ基を生じる構造を有するジアミンであり、熱脱離基によって保護されたアミノ基の構造を構造中に有する。そのような構造は特に限定されないが、熱脱離のしやすさ等の観点から、以下の構造から選ばれる少なくとも1種の構造を含有することが好ましい。 
<Specific diamine 3>
The specific diamine 3 is a diamine having a structure that generates a primary amino group or a secondary amino group, and has a structure of an amino group protected by a thermal leaving group in the structure. Such a structure is not particularly limited, but it is preferable to contain at least one structure selected from the following structures from the viewpoint of easiness of thermal desorption.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(a)中、Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、上記式(a)及び上記式(b)中、*は、他の原子との結合を表す。  In the above formula (a), X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9 It is. In the formula (a) and the formula (b), * represents a bond with another atom.
 上記式(a)中、Xは酸素原子又は硫黄原子であり、酸素原子が好ましい。A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数1が好ましい。なお、炭素数の合計は1~9であり、3~6が好ましい。また、上記式(a)及び上記式(b)中、*は、他の原子との結合を表す。  In the above formula (a), X 1 represents an oxygen atom or a sulfur atom, an oxygen atom is preferable. A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, preferably 1 carbon atom. The total number of carbon atoms is 1 to 9, preferably 3 to 6. In the formula (a) and the formula (b), * represents a bond with another atom.
 上記式(a)、上記式(b)から選ばれる少なくとも1種の構造を構造中に有するジアミンとしては、例えば以下の構造のジアミンが挙げられる。なお、式中の「Boc」はtert-ブトキシカルボニル基である。  Examples of the diamine having at least one structure selected from the above formula (a) and the above formula (b) in the structure include the following diamines. In the formula, “Boc” is a tert-butoxycarbonyl group. *
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<重合に関与しないアミノ基を有するジアミン>
 本発明の液晶配向膜を得る為の液晶配向剤の製造には、1級アミノ基又は2級アミノ基を生じる構造を有するジアミン、即ち、熱脱離基によって保護されたアミノ基の構造を構造中に有するジアミンが用いられるが、保護されておらず、かつ重合に関与しないアミノ基を有するジアミンを用いても構わない。そのようなジアミンは、以下に例示される。 
<Diamine having amino group not involved in polymerization>
In the production of the liquid crystal aligning agent for obtaining the liquid crystal alignment film of the present invention, a diamine having a structure that generates a primary amino group or a secondary amino group, that is, a structure of an amino group protected by a thermal leaving group is used. A diamine having an amino group that is not protected and does not participate in polymerization may be used. Such diamines are exemplified below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<その他のジアミン>
 本発明の液晶配向剤に含有される重合体として好ましく用いられるポリイミド前駆体を製造するにあたっては、本発明の効果を奏する限度において、特定ジアミン以外のジアミン(以下、その他のジアミンとも言う)を含有しても良い。そのようなジアミンは、以下の一般式(3)で表される。 
<Other diamines>
In producing a polyimide precursor preferably used as a polymer contained in the liquid crystal aligning agent of the present invention, a diamine other than the specific diamine (hereinafter also referred to as other diamine) is contained within the limit that exhibits the effects of the present invention. You may do it. Such a diamine is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(3)において、Yはジアミン由来の2価の有機基であり、その構造は特に限定されない。Yの構造の具体例を示すならば、下記の式(Y-1)~式(Y-99)が挙げられる。  In the above formula (3), Y is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y include the following formulas (Y-1) to (Y-99). *
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(Y-90)中、m、nはそれぞれ1から11の整数であり、m+nは2から12の整数であり、上記式(Y-95)中、hは1~3の整数であり、上記式(Y-92)及び上記式(Y-98)中、jは0から3の整数である。 In the above formula (Y-90), m and n are each an integer of 1 to 11, m + n is an integer of 2 to 12, and in the above formula (Y-95), h is an integer of 1 to 3. In the formula (Y-92) and the formula (Y-98), j is an integer of 0 to 3.
<テトラカルボン酸二無水物>
 本発明の液晶配向剤に含有される重合体として好ましく用いられるポリイミド前駆体を製造するにあたって用いられるテトラカルボン酸二無水物は、下記式(4)で表される。 
<Tetracarboxylic dianhydride>
The tetracarboxylic dianhydride used in producing a polyimide precursor preferably used as a polymer contained in the liquid crystal aligning agent of the present invention is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記式(4)において、Xはテトラカルボン酸誘導体由来の4価の有機基であり、その構造は特に限定されるものではない。ポリイミド前駆体中、Xは2種類以上が混在していてもよい。Xの具体例を示すならば、下記式(X-1)~下記式(X-44)の構造が挙げられる。  In the above formula (4), X is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Two or more kinds of X may be mixed in the polyimide precursor. Specific examples of X include structures of the following formula (X-1) to the following formula (X-44). *
 また、ポリアミック酸エステルを製造する場合は、ここで挙げたテトラカルボン酸二無水物の種々構造に相当するジカルボン酸ジエステルを用いて製造することが出来る。  Moreover, when manufacturing polyamic acid ester, it can manufacture using dicarboxylic acid diester corresponding to the various structures of the tetracarboxylic dianhydride mentioned here. *
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(X-1)におけるR~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、若しくは、フェニル基である。R~Rが嵩高い構造である場合、液晶配向性を低下させる可能性があるため、水素原子、メチル基、エチル基がより好ましく、水素原子、又は、メチル基が特に好ましい。  R 1 to R 4 in the above formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, or phenyl It is a group. When R 1 to R 4 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
 上記式(4)において、Xはモノマーの入手性の観点から、上記式(X-1)~上記式(X-14)から選ばれる構造を含有することが好ましい。  In the above formula (4), X preferably contains a structure selected from the above formulas (X-1) to (X-14) from the viewpoint of availability of monomers. *
 得られる液晶配向膜の信頼性をさらに高められることから、Xの構造は、上記式(X-1)~上記式(X-7)及び上記式(X-10)のような、脂肪族基のみからなる構造が好ましく、上記式(X-1)で表される構造がより好ましい。更に、良好な液晶配向性を示すため、Xの構造としては、下記式(X1-1)又は下記式(X1-2)がさらに好ましい。  Since the reliability of the obtained liquid crystal alignment film can be further improved, the structure of X is an aliphatic group such as the above formula (X-1) to the above formula (X-7) and the above formula (X-10). The structure consisting only of these is preferable, and the structure represented by the above formula (X-1) is more preferable. Furthermore, in order to show good liquid crystal alignment, the structure of X is more preferably the following formula (X1-1) or the following formula (X1-2). *
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<液晶配向剤>
 本発明の液晶配向剤は、前記したポリイミド前駆体またはそのイミド化重合体(以下、特定構造の重合体とする)が有機溶媒中に溶解された溶液の形態を有する。特定構造の重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、8,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、4,000~50,000である。 
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned polyimide precursor or its imidized polymer (henceforth a polymer of a specific structure) was melt | dissolved in the organic solvent. The molecular weight of the polymer having a specific structure is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 8,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 4,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。  The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less. A particularly preferred polymer concentration is 2 to 8% by mass. *
 本発明に用いられる液晶配向剤に含有される有機溶媒は、特定構造の重合体が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。  The organic solvent contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer having a specific structure is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer uniformly independently, if it is a range which a polymer does not precipitate, you may mix with said organic solvent. Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferably used. *
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。  Moreover, the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents. Such a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are given below, but the organic solvent is not limited to these examples. *
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~下記式[D-3]で表される溶媒などを挙げることができる。  For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Zimechi -4-heptanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3 -Butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diisopropyl ether, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol Dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl Ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 4,6-dimethyl-2-heptanone, 3-ethoxy Butyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, Ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, Propylene glycol, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, di Propylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether Ruacetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, Ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methylethyl 3-ethoxypropionate, 3-methoxypropionic acid Ethyl, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate Lactate ethyl ester, lactic acid n- propyl ester, lactate n- butyl ester, lactic acid isoamyl ester, and the like solvents represented by the following formula [D-1] ~ following formula [D-3]. *
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 上記式[D-1]中、Dは炭素数1~3のアルキル基を示し、上記式[D-2]中、Dは炭素数1~3のアルキル基を示し、上記式[D-3]中、Dは炭素数1~4のアルキル基を示す。  In the above formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms. In the above formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms. −3], D 3 represents an alkyl group having 1 to 4 carbon atoms.
 なかでも好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテルなどを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。  Among these, preferred solvent combinations include N-methyl-2-pyrrolidone, γ-butyrolactone, ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and N-ethyl-2-pyrrolidone. And propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene glycol monobutyl ether And diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, 2,6-dimethyl-4-heptanol, N-methyl-2-pi Examples include loridone, γ-butyrolactone, and dipropylene glycol dimethyl ether. The kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent. *
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。  In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc. Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added. *
 その他、本発明の液晶配向剤には、基板に対する塗膜の密着性を向上させるために、シランカップリング剤などの添加剤を加えてもよく、また、他の樹脂成分を添加してもよい。  In addition, in order to improve the adhesion of the coating film to the substrate, an additive such as a silane coupling agent may be added to the liquid crystal aligning agent of the present invention, and other resin components may be added. . *
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。  Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyltri Toxisilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10 -Triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-amino Propyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3 -Aminopropyltrime Xylsilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neo Pentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like. *
 また、本発明の液晶配向剤には、膜の機械的強度を上げるために以下のような添加物を添加してもよい。  In addition, the following additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the film. *
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 これらの添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5質量部~20質量部である。  These additives are preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, and therefore the amount is more preferably 0.5 to 20 parts by mass. *
<液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、ラビング処理などにより配向処理を行った後、既知の方法により、液晶表示素子としたものである。 
<Liquid crystal display element>
The liquid crystal display element of the present invention is a liquid crystal display element obtained by a known method after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment by rubbing treatment or the like. is there.
 液晶表示素子の液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を液晶配向膜面を内側にして、好ましくは1μm~30μm、より好ましくは2μm~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。上記のようにして本発明の液晶配向剤から得られた液晶配向膜は、優れた特性を有しているので、VA、TN、STN、TFT、横電界型等の液晶表示素子、更には、強誘電性および反強誘電性の液晶表示素子用の液晶配向膜として用いることができる。  The method for producing a liquid crystal cell of a liquid crystal display element is not particularly limited. For example, a pair of substrates on which a liquid crystal alignment film is formed is preferably 1 μm to 30 μm, more preferably 1 μm to 30 μm, with the liquid crystal alignment film surface inside. In general, a method is used in which a spacer of 2 μm to 10 μm is placed and a periphery is fixed with a sealant, and liquid crystal is injected and sealed. The method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal. Since the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention as described above has excellent characteristics, liquid crystal display elements such as VA, TN, STN, TFT, and lateral electric field type, It can be used as a liquid crystal alignment film for ferroelectric and antiferroelectric liquid crystal display elements. *
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、化合物、溶媒の略号は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
DA-1:下記構造式(DA-1)
DA-2:下記構造式(DA-2)
DA-3:下記構造式(DA-3)
DA-4:下記構造式(DA-4)
DA-5:下記構造式(DA-5)
DA-6:下記構造式(DA-6)
DA-7:下記構造式(DA-7)
DA-8:下記構造式(DA-8)
DA-9:下記構造式(DA-9)
DA-10:下記構造式(DA-10)
CA-1:下記構造式(CA-1)
CA-2:下記構造式(CA-2)
CA-3:下記構造式(CA-3)
CA-4:下記構造式(CA-4)
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples. In addition, the symbol of a compound and a solvent is as follows.
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: Butyl cellosolve DA-1: Structural formula (DA-1)
DA-2: Structural formula below (DA-2)
DA-3: Structural formula below (DA-3)
DA-4: Structural formula below (DA-4)
DA-5: Structural formula below (DA-5)
DA-6: Structural formula below (DA-6)
DA-7: Structural formula below (DA-7)
DA-8: Structural formula below (DA-8)
DA-9: Structural formula below (DA-9)
DA-10: Structural formula below (DA-10)
CA-1: Structural formula below (CA-1)
CA-2: Structural formula below (CA-2)
CA-3: Structural formula shown below (CA-3)
CA-4: Structural formula below (CA-4)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
<粘度>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<Viscosity>
In the synthesis example, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
<ポリイミドのイミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末30mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。 
<Measurement of imidation ratio of polyimide>
The imidation ratio of polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)) (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
(実施例1)
 撹拌装置及び窒素導入管付きの1Lの四つ口フラスコに、DA-1を86.0g(352mmol)、DA-2を53.4g(95.9mmol)、DA-3を76.5g(191mmol)量り取り、NMPを1580g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を93.2g(416mmol)添加し、さらにNMPを168g加え、窒素雰囲気下40℃で3時間撹拌した。さらに、CA-2を28.2g(143mmol)添加し、さらにNMPを160g加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸の溶液(PAA-1)を得た。このポリアミック酸の溶液の温度25℃における粘度は200mPa・sであった。 
(Example 1)
In a 1 L four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 was 86.0 g (352 mmol), DA-2 was 53.4 g (95.9 mmol), and DA-3 was 76.5 g (191 mmol). Weighed out and added 1580 g of NMP and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 93.2 g (416 mmol) of CA-1 was added, and 168 g of NMP was further added, followed by stirring at 40 ° C. for 3 hours under a nitrogen atmosphere. Further, 28.2 g (143 mmol) of CA-2 was added, 160 g of NMP was further added, and the mixture was stirred at 23 ° C. for 4 hours in a nitrogen atmosphere to obtain a polyamic acid solution (PAA-1). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 200 mPa · s.
 撹拌子の入った200mL三角フラスコに、このポリアミック酸の溶液(PAA-1)を30.7g分取し、NMPを9.07g、GBLを26.2g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を3.93g、およびBCSを17.4g加え、マグネチックスターラーで2時間撹拌してポリアミック酸の溶液(A-1)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 30.7 g of this polyamic acid solution (PAA-1) was taken, 9.07 g of NMP, 26.2 g of GBL, and 3-glycidoxypropyltriethoxysilane. 3.93 g of NMP solution containing 1% by mass and 17.4 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyamic acid solution (A-1).
(実施例2)
 撹拌子の入った3L三角フラスコに、実施例1で得られたポリアミック酸の溶液(PAA-1)を800g分取し、NMPを700g、無水酢酸を69.7g、ピリジンを18.0g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を5600gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、75%であった。 
(Example 2)
To a 3 L Erlenmeyer flask containing a stir bar, 800 g of the polyamic acid solution (PAA-1) obtained in Example 1 was collected, 700 g of NMP, 69.7 g of acetic anhydride, and 18.0 g of pyridine were added. The mixture was stirred at room temperature for 30 minutes and then reacted at 55 ° C. for 3 hours. This reaction solution was put into 5600 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 75%.
 撹拌子の入った300mL三角フラスコに、このポリイミドの粉末を20.4g分取し、NMPを115g加えて、50℃にて20時間攪拌して溶解させた。さらに、この溶液を撹拌子の入った100mL三角フラスコに16.3g分取し、NMPを5.49g、GBLを14.3g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を2.15g、およびBCSを9.56g加え、マグネチックスターラーで2時間撹拌して、ポリイミドの溶液(A-2)を得た。 In a 300 mL Erlenmeyer flask containing a stirring bar, 20.4 g of this polyimide powder was taken, 115 g of NMP was added, and the mixture was dissolved by stirring at 50 ° C. for 20 hours. Further, 16.3 g of this solution was taken into a 100 mL Erlenmeyer flask containing a stirring bar, and an NMP solution containing 5.49 g of NMP, 14.3 g of GBL, and 1% by mass of 3-glycidoxypropyltriethoxysilane was obtained. 2.15 g and 9.56 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyimide solution (A-2).
(合成例1)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-1を2.20g(9.00mmol)、DA-4を2.04g(5.97mmol)、DA-5を1.62g(15.0mmol)量り取り、NMPを59.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を6.32g(28.1mmol)添加し、さらにNMPを30.0g加え、窒素雰囲気下40℃で3時間撹拌してポリアミック酸の溶液(PAA-2)を得た。このポリアミック酸の溶液の温度25℃における粘度は220mPa・sであった。 
(Synthesis Example 1)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 2.20 g (9.00 mmol) of DA-1, 2.04 g (5.97 mmol) of DA-4, and 1.62 g of DA-5 ( 15.0 mmol), 59.3 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring the diamine solution under water cooling, 6.32 g (28.1 mmol) of CA-1 was added, 30.0 g of NMP was further added, and the mixture was stirred at 40 ° C. for 3 hours under a nitrogen atmosphere to obtain a polyamic acid solution ( PAA-2) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 220 mPa · s.
 撹拌子の入った200mL三角フラスコに、このポリアミック酸の溶液(PAA-2)を21.1g分取し、NMPを2.20g、GBLを15.3g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を2.30g、およびBCSを10.2g加え、マグネチックスターラーで2時間撹拌してポリアミック酸の溶液(B-1)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 21.1 g of this polyamic acid solution (PAA-2) was collected, 2.20 g of NMP, 15.3 g of GBL, and 3-glycidoxypropyltriethoxysilane. 2.30 g of NMP solution containing 1% by mass and 10.2 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 2 hours to obtain a polyamic acid solution (B-1).
(合成例2)
 撹拌子の入った500mL三角フラスコに、合成例1で得られたポリアミック酸の溶液(PAA-2)を90.0g分取し、NMPを45.0g、無水酢酸を8.14g、ピリジンを2.10g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を600gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、67%であった。 
(Synthesis Example 2)
In a 500 mL Erlenmeyer flask containing a stir bar, 90.0 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 1 was collected, 45.0 g of NMP, 8.14 g of acetic anhydride, and 2 of pyridine. .10 g was added and stirred at room temperature for 30 minutes, followed by reaction at 55 ° C. for 3 hours. This reaction solution was put into 600 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 67%.
 撹拌子の入った300mL三角フラスコに、このポリイミドの粉末を5.50g分取し、NMPを40.3g加えて、50℃にて20時間攪拌して溶解させた。さらに、この溶液を撹拌子の入った200mL三角フラスコに25.0g分取し、NMPを5.30g、GBLを20.0g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を3.00g、およびBCSを13.3g加え、マグネチックスターラーで2時間撹拌して、ポリイミドの溶液(B-2)を得た。 In a 300 mL Erlenmeyer flask containing a stirring bar, 5.50 g of this polyimide powder was taken, 40.3 g of NMP was added, and the mixture was dissolved by stirring at 50 ° C. for 20 hours. Further, 25.0 g of this solution was taken into a 200 mL Erlenmeyer flask containing a stirring bar, and an NMP solution containing 5.30 g of NMP, 20.0 g of GBL, and 1% by mass of 3-glycidoxypropyltriethoxysilane was obtained. 3.00 g and 13.3 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyimide solution (B-2).
(合成例3)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-5を0.540g(4.99mmol)、DA-6を2.12g(8.75mmol)、DA-7を0.826g(2.50mmol)、DA-8を3.80g(8.75mmol)量り取り、NMPを41.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を3.12g(12.4mmol)添加し、さらにNMPを17.8g加え、窒素雰囲気下60℃で3時間撹拌した。さらに、CA-2を2.42g(12.3mmol)添加し、さらにNMPを14.1g加え、窒素雰囲気下40℃で4時間撹拌し、ポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は115mPa・sであった。 
(Synthesis Example 3)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-5 (0.540 g, 4.99 mmol), DA-6, 2.12 g (8.75 mmol), and DA-7, 0.826 g ( 2.50 mmol), 3.80 g (8.75 mmol) of DA-8 was weighed, 41.3 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 3.12 g (12.4 mmol) of CA-3 was added, and 17.8 g of NMP was further added, followed by stirring at 60 ° C. for 3 hours in a nitrogen atmosphere. Further, 2.42 g (12.3 mmol) of CA-2 was added, and 14.1 g of NMP was further added, followed by stirring at 40 ° C. for 4 hours under a nitrogen atmosphere to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 115 mPa · s.
 撹拌子の入った200mL三角フラスコに、このポリアミック酸の溶液を20.6g分取し、NMPを10.6g、GBLを20.6g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を3.09g、およびBCSを13.7g加え、マグネチックスターラーで2時間撹拌してポリアミック酸の溶液(B-3)を得た。 In a 200 mL Erlenmeyer flask containing a stir bar, 20.6 g of this polyamic acid solution was taken, 10.6 g of NMP, 20.6 g of GBL, and NMP containing 1% by mass of 3-glycidoxypropyltriethoxysilane. 3.09 g of the solution and 13.7 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 2 hours to obtain a polyamic acid solution (B-3).
(合成例4)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-3を3.18g(8.00mmol)、DA-9を2.38g(6.00mmol)、DA-10を1.79g(6.00mmol)量り取り、NMPを66.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-4を4.25g(19.5mmol)添加し、さらにNMPを18.9g加え、窒素雰囲気下50℃で15時間撹拌し、ポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は264mPa・sであった。 
(Synthesis Example 4)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.18 g (8.00 mmol) of DA-3, 2.38 g (6.00 mmol) of DA-9, 1.79 g of DA-10 ( 6.00 mmol), 66.2 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.25 g (19.5 mmol) of CA-4 was added, 18.9 g of NMP was further added, and the mixture was stirred at 50 ° C. for 15 hours under a nitrogen atmosphere, and a polyamic acid solution was added. Obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 264 mPa · s.
 撹拌子の入った100mL三角フラスコに、このポリアミック酸の溶液を15.3g分取し、NMPを0.300g、GBLを10.3g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.54g、およびBCSを6.86g加え、マグネチックスターラーで2時間撹拌してポリアミック酸の溶液(B-4)を得た。 In a 100 mL Erlenmeyer flask containing a stir bar, 15.3 g of this polyamic acid solution was taken, NMP 0.300 g, GBL 10.3 g, and NMP containing 1% by mass of 3-glycidoxypropyltriethoxysilane. 1.54 g of the solution and 6.86 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyamic acid solution (B-4).
(実施例3)
 撹拌子を入れた50mL三角フラスコに、実施例1で得られたポリアミック酸の溶液(A-1)5.42g、合成例1で得られたポリアミック酸の溶液(B-1)を5.41g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
(Example 3)
In a 50 mL Erlenmeyer flask containing a stir bar, 5.42 g of the polyamic acid solution (A-1) obtained in Example 1 and 5.41 g of the polyamic acid solution (B-1) obtained in Synthesis Example 1 were obtained. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-3).
(実施例4)
 撹拌子を入れた50mL三角フラスコに、実施例2で得られたポリイミドの溶液(A-2)5.50g、合成例2で得られたポリイミドの溶液(B-2)を5.51g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-4)を得た。
Example 4
In a 50 mL Erlenmeyer flask containing a stir bar, 5.55 g of the polyimide solution (A-2) obtained in Example 2 and 5.51 g of the polyimide solution (B-2) obtained in Synthesis Example 2 were weighed. Then, the mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-4).
(実施例5)
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリアミック酸の溶液(B-1)5.42g、合成例3で得られたポリアミック酸の溶液(B-3)を5.42g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-5)を得た。
(Example 5)
In a 50 mL Erlenmeyer flask containing a stir bar, 5.42 g of the polyamic acid solution (B-1) obtained in Synthesis Example 1 and 5.42 g of the polyamic acid solution (B-3) obtained in Synthesis Example 3 were used. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-5).
(実施例6)
 撹拌子を入れた50mL三角フラスコに、実施例1で得られたポリアミック酸の溶液(A-1)5.62g、合成例4で得られたポリアミック酸の溶液(B-4)を5.62g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-6)を得た。
(Example 6)
In a 50 mL Erlenmeyer flask containing a stir bar, 5.62 g of the polyamic acid solution (A-1) obtained in Example 1 and 5.52 g of the polyamic acid solution (B-4) obtained in Synthesis Example 4 were obtained. Weighed out and stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-6).
<シール接着力の評価>
 実施例および合成例で得られた液晶配向剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成して膜厚100nmの塗膜を得た。このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを散布した後、シール剤(協立化学製XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が約3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、120℃で1時間熱硬化させて、接着性評価用のサンプルを作製した。 
<Evaluation of seal adhesion>
The liquid crystal aligning agents obtained in Examples and Synthesis Examples were filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 2 minutes, and then 20 ° C. at 230 ° C. A film having a thickness of 100 nm was obtained by baking for a minute. Two substrates thus obtained were prepared, 4 μm bead spacers were sprayed on the surface of the liquid crystal alignment film of one substrate, and then a sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was about 3 mm. The two bonded substrates were fixed with a clip and then thermally cured at 120 ° C. for 1 hour to prepare a sample for evaluating adhesiveness.
 次に、作製したサンプルを島津製作所製の卓上形精密万能試験機AGS-X 500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の力(N)をシール接着力として評価した。 Next, after fixing the edge of the upper and lower substrates with the tabletop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation, the prepared sample was pushed from the top of the center of the substrate, and the force when peeling (N) was evaluated as the sealing adhesive strength.
(実施例7~12)
 実施例1~6で得られた液晶配向剤(A-1)~(A-6)をそれぞれ1.0μmのフィルターで濾過した後、上記記載のように接着性評価用のサンプルを作製しシール接着力を評価した結果を表4に示す。
(Examples 7 to 12)
The liquid crystal aligning agents (A-1) to (A-6) obtained in Examples 1 to 6 were each filtered through a 1.0 μm filter, and samples for adhesion evaluation were prepared and sealed as described above. The results of evaluating the adhesive strength are shown in Table 4.
(比較例1~4)
 合成例1~4で得られた液晶配向剤(B-1)~(B-4)をそれぞれ1.0μmのフィルターで濾過した後、上記記載のように接着性評価用のサンプルを作製しシール接着力を評価した結果を表4に示す。 
(Comparative Examples 1 to 4)
After the liquid crystal aligning agents (B-1) to (B-4) obtained in Synthesis Examples 1 to 4 were filtered through a 1.0 μm filter, samples for adhesion evaluation were prepared and sealed as described above. The results of evaluating the adhesive strength are shown in Table 4.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 実施例に記載の液晶配向剤を用いた場合、シール接着力が高く良好であった。 When the liquid crystal aligning agent described in the examples was used, the sealing adhesive strength was high and good.
(実施例13)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-1を4.30g(17.6mmol)、DA-2を2.67g(4.80mmol)、DA-4を3.27g(9.57mmol)量り取り、NMPを75.1g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を4.66g(20.7mmol)添加し、さらにNMPを9.34g加え、窒素雰囲気下40℃で3時間撹拌した。さらに、CA-2を1.78g(9.08mmol)添加し、さらにNMPを8.00g加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は304mPa・sであった。
(Example 13)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 4.30 g (17.6 mmol) of DA-1, 2.67 g (4.80 mmol) of DA-2, and 3.27 g of DA-4 ( 9.57 mmol) was weighed, 75.1 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.66 g (20.7 mmol) of CA-1 was added, 9.34 g of NMP was further added, and the mixture was stirred at 40 ° C. for 3 hours under a nitrogen atmosphere. Further, 1.78 g (9.08 mmol) of CA-2 was added, and 8.00 g of NMP was further added, followed by stirring at 23 ° C. for 4 hours under a nitrogen atmosphere to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 304 mPa · s.
 撹拌子の入った500mL三角フラスコに、このポリアミック酸の溶液を90.0g分取し、NMPを79.0g、無水酢酸を7.92g、ピリジンを2.04g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を700gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、70%であった。  In a 500 mL Erlenmeyer flask containing a stir bar, 90.0 g of this polyamic acid solution was taken, 79.0 g of NMP, 7.92 g of acetic anhydride, and 2.04 g of pyridine were added, followed by stirring at room temperature for 30 minutes. , Reacted at 55 ° C. for 3 hours. This reaction solution was put into 700 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 70%. *
 撹拌子の入った200mL三角フラスコに、このポリイミドの粉末を6.07g分取し、NMPを44.5g加えて、50℃にて20時間攪拌して溶解させた。さらに、この溶液を撹拌子の入った200mL三角フラスコに20.3g分取し、NMPを4.37g、GBLを16.2g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を2.43g、およびBCSを10.8g加え、マグネチックスターラーで2時間撹拌して、ポリイミドの溶液(A-7)を得た。 In a 200 mL Erlenmeyer flask containing a stirring bar, 6.07 g of this polyimide powder was taken, 44.5 g of NMP was added, and the mixture was dissolved by stirring at 50 ° C. for 20 hours. Further, 20.3 g of this solution was taken into a 200 mL Erlenmeyer flask containing a stir bar, and an NMP solution containing 4.37 g of NMP, 16.2 g of GBL and 1% by mass of 3-glycidoxypropyltriethoxysilane was obtained. 2.43 g and 10.8 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyimide solution (A-7).
(実施例14)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-1を4.30g(17.6mmol)、DA-2を2.67g(4.80mmol)、DA-3を1.91g(4.80mmol)、DA-4を1.64g(4.80mmol)量り取り、NMPを77.1g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を4.66g(20.7mmol)添加し、さらにNMPを8.88g加え、窒素雰囲気下40℃で3時間撹拌した。さらに、CA-2を1.71g(8.69mmol)添加し、さらにNMPを8.00g加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は312mPa・sであった。 
(Example 14)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 (4.30 g, 17.6 mmol), DA-2 (2.67 g, 4.80 mmol), and DA-3, 1.91 g ( 4.80 mmol) and 1.64 g (4.80 mmol) of DA-4 were weighed out, 77.1 g of NMP was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.66 g (20.7 mmol) of CA-1 was added, and 8.88 g of NMP was further added, followed by stirring at 40 ° C. for 3 hours under a nitrogen atmosphere. Further, 1.71 g (8.69 mmol) of CA-2 was added, 8.00 g of NMP was further added, and the mixture was stirred at 23 ° C. for 4 hours under a nitrogen atmosphere to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 312 mPa · s.
 撹拌子の入った500mL三角フラスコに、このポリアミック酸の溶液を90.0g分取し、NMPを79.0g、無水酢酸を7.02g、ピリジンを1.81g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を700gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、71%であった。  In a 500 mL Erlenmeyer flask containing a stir bar, 90.0 g of this polyamic acid solution was taken, 79.0 g of NMP, 7.02 g of acetic anhydride and 1.81 g of pyridine were added, and the mixture was stirred at room temperature for 30 minutes. , Reacted at 55 ° C. for 3 hours. This reaction solution was put into 700 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 71%. *
 撹拌子の入った200mL三角フラスコに、このポリイミドの粉末を6.03g分取し、NMPを44.2g加えて、50℃にて20時間攪拌して溶解させた。さらに、この溶液を撹拌子の入った200mL三角フラスコ21.0g分取し、NMPを4.48g、GBLを16.8g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を2.52g、およびBCSを11.2g加え、マグネチックスターラーで2時間撹拌して、ポリイミドの溶液(A-8)を得た。 In a 200 mL Erlenmeyer flask containing a stirring bar, 6.03 g of this polyimide powder was taken, 44.2 g of NMP was added, and the mixture was dissolved by stirring at 50 ° C. for 20 hours. Further, 21.0 g of a 200 mL Erlenmeyer flask containing a stirring bar was taken from this solution, and 2 NMP solutions containing 4.48 g of NMP, 16.8 g of GBL and 1% by mass of 3-glycidoxypropyltriethoxysilane were obtained. .52 g and 11.2 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyimide solution (A-8).
(合成例5)
 撹拌装置及び窒素導入管付きの1Lの四つ口フラスコに、DA-1を4.30g(17.6mmol)、DA-3を5.73g(14.3mmol)量り取り、NMPを73.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を4.66g(20.7mmol)添加し、さらにNMPを9.69g加え、窒素雰囲気下40℃で3時間撹拌した。さらに、CA-2を1.50g(7.65mmol)添加し、さらにNMPを8.53g加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は290mPa・sであった。 
(Synthesis Example 5)
DA-1 (4.30 g, 17.6 mmol) and DA-3 (5.73 g, 14.3 mmol) were weighed into a 1 L four-necked flask equipped with a stirrer and a nitrogen introduction tube, and NMP (73.6 g) was added. The solution was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 4.66 g (20.7 mmol) of CA-1 was added, 9.69 g of NMP was further added, and the mixture was stirred at 40 ° C. for 3 hours under a nitrogen atmosphere. Further, 1.50 g (7.65 mmol) of CA-2 was added, 8.53 g of NMP was further added, and the mixture was stirred at 23 ° C. for 4 hours under a nitrogen atmosphere to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 290 mPa · s.
 撹拌子の入った500mL三角フラスコに、このポリアミック酸の溶液を90.0g分取し、NMPを79.0g、無水酢酸を8.16g、ピリジンを2.10g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を700gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、72%であった。  Into a 500 mL Erlenmeyer flask containing a stir bar, 90.0 g of this polyamic acid solution was taken, 79.0 g of NMP, 8.16 g of acetic anhydride and 2.10 g of pyridine were added, and the mixture was stirred at room temperature for 30 minutes. , Reacted at 55 ° C. for 3 hours. This reaction solution was put into 700 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 72%. *
 撹拌子の入った200mL三角フラスコに、このポリイミドの粉末を6.10g分取し、NMPを44.7g加えて、50℃にて20時間攪拌して溶解させた。さらに、この溶液を撹拌子の入った200mL三角フラスコに25.0g分取し、NMPを4.90g、GBLを19.8g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を3.00g、およびBCSを13.3g加え、マグネチックスターラーで2時間撹拌して、ポリイミドの溶液(B-5)を得た。 In a 200 mL Erlenmeyer flask containing a stirring bar, 6.10 g of this polyimide powder was taken, 44.7 g of NMP was added, and the mixture was dissolved by stirring at 50 ° C. for 20 hours. Further, 25.0 g of this solution was taken into a 200 mL Erlenmeyer flask containing a stirring bar, and an NMP solution containing 4.90 g of NMP, 19.8 g of GBL, and 1% by mass of 3-glycidoxypropyltriethoxysilane was obtained. 3.00 g and 13.3 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a polyimide solution (B-5).
<液晶配向性の評価>
 以下に、液晶配向性を評価するための液晶セルの作製方法を示す。 
<Evaluation of liquid crystal alignment>
A method for manufacturing a liquid crystal cell for evaluating the liquid crystal alignment will be described below.
 FFS方式の液晶表示素子の構成を備えた液晶セルを作製する。初めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、IZO電極が全面に形成されている。第1層目の対向電極の上には、第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は100nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、IZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mm、横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。  A liquid crystal cell having a configuration of an FFS liquid crystal display element is manufactured. First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode constituting the counter electrode as the first layer is formed on the entire surface. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The film thickness of the second SiN film is 100 nm and functions as an interlayer insulating film. A comb-like pixel electrode formed by patterning an IZO film is arranged as a third layer on the second layer SiN film to form two pixels, a first pixel and a second pixel. is doing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film. *
 第3層目の画素電極は、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された、櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の、くの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。  The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a bow shape with a bent central portion. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold, bent, bent at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. *
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。  When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction. *
 次に、実施例および合成例で得られた液晶配向剤を、1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にしてポリイミド膜を形成し、上記と同様の手順で、配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。  Next, the liquid crystal aligning agents obtained in Examples and Synthesis Examples were filtered through a 1.0 μm filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm. This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third layer IZO comb-teeth electrode Then, ultrasonic cleaning was performed for 1 minute in pure water for cleaning, and water droplets were removed by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board | substrate with a liquid crystal aligning film. Also, as a counter substrate, a polyimide film is formed on a glass substrate having an ITO electrode on the back surface and having a columnar spacer with a height of 4 μm in the same manner as described above. A substrate with a liquid crystal alignment film was obtained. One set of these two substrates with a liquid crystal alignment film is printed, and the sealant is printed on the substrate leaving the liquid crystal injection port. The other substrate has the liquid crystal alignment film surface facing and the rubbing direction is antiparallel. They were pasted together. Thereafter, the sealing agent was cured to produce an empty cell having a cell gap of 4 μm. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment. *
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで9VPPの交流電圧を190時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。  Using this liquid crystal cell, an alternating voltage of 9 VPP was applied for 190 hours at a frequency of 30 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. *
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。すなわち、この角度が小さいほど液晶配向性が良好である。 After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. That is, the smaller the angle, the better the liquid crystal alignment.
(実施例15~18)
 実施例2、4、13、14で得られた液晶配向剤(A-2)、(A-4)、(A-7)及び(A-8)をそれぞれ1.0μmのフィルターで濾過した後、上記記載のように接着性評価用のサンプルを作製しシール接着力を評価した結果および上記液晶セルの角度Δの結果を表5に示す。
(Examples 15 to 18)
After the liquid crystal aligning agents (A-2), (A-4), (A-7) and (A-8) obtained in Examples 2, 4, 13, and 14 were each filtered through a 1.0 μm filter. Table 5 shows the results of producing a sample for evaluating adhesiveness as described above and evaluating the sealing adhesive force, and the result of the angle Δ of the liquid crystal cell.
(比較例5)
 合成例5で得られた液晶配向剤(B-5)を1.0μmのフィルターで濾過した後、上記記載のように接着性評価用のサンプルを作製しシール接着力を評価した結果および上記液晶セルの角度Δの結果を表5に示す。 
(Comparative Example 5)
The liquid crystal aligning agent (B-5) obtained in Synthesis Example 5 was filtered through a 1.0 μm filter, a sample for evaluating adhesiveness was prepared as described above, and the results of evaluating the sealing adhesive force and the liquid crystal The results of cell angle Δ are shown in Table 5.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 実施例に記載の液晶配向剤を用いた場合、シール接着力が高く、さらにエージング後の液晶セルの角度Δが小さく液晶配向性も良好であった。 When the liquid crystal aligning agent described in the examples was used, the sealing adhesive strength was high, the angle Δ of the liquid crystal cell after aging was small, and the liquid crystal alignment was good.
 本発明の液晶配向剤は、多くの表示面を確保することが出来る狭額縁液晶表示素子において、シール剤と液晶配向膜との接着性を高めることで額縁付近の表示ムラが解決でき、産業上有用である。 The liquid crystal aligning agent of the present invention can solve the display unevenness in the vicinity of the frame by enhancing the adhesiveness between the sealing agent and the liquid crystal aligning film in a narrow frame liquid crystal display element capable of securing a large number of display surfaces. Useful.

Claims (7)

  1.  芳香族複素環と1級アミノ基及び2級アミノ基を構造中に有する重合体を含有することを特徴とする、液晶配向膜。 A liquid crystal alignment film comprising a polymer having an aromatic heterocyclic ring and a primary amino group and a secondary amino group in the structure.
  2.  焼成物からなる膜であり、前記芳香族複素環の骨格と前記1級アミノ基及び前記2級アミノ基が焼成により生成された構造中に含有することを特徴とする、請求項1に記載の液晶配向膜。 2. The film according to claim 1, wherein the film is a fired product, and the skeleton of the aromatic heterocyclic ring, the primary amino group, and the secondary amino group are contained in a structure generated by firing. Liquid crystal alignment film.
  3.  前記芳香族複素環が、ピリジン骨格、ベンズイミダゾール骨格、またはイミダゾール骨格であることを特徴とする、請求項1または請求項2に記載の液晶配向膜。 3. The liquid crystal alignment film according to claim 1, wherein the aromatic heterocyclic ring is a pyridine skeleton, a benzimidazole skeleton, or an imidazole skeleton.
  4.  前記焼成物が、100℃~300℃の焼成温度により生成されてなることを特徴とする、請求項2に記載の液晶配向膜。 3. The liquid crystal alignment film according to claim 2, wherein the fired product is produced at a firing temperature of 100 ° C. to 300 ° C.
  5.  請求項1から請求項4のいずれか1項に記載の液晶配向膜を具備することを特徴とする、液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to any one of claims 1 to 4.
  6.  請求項1から請求項4のいずれか1項に記載の液晶配向膜を得るための液晶配向剤。 A liquid crystal aligning agent for obtaining the liquid crystal aligning film according to any one of claims 1 to 4.
  7.  下記成分(A)及び下記成分(B)から選ばれる少なくとも1種のジアミン並びに下記成分(C)の骨格を含有するジアミンを含有するジアミン成分と、テトラカルボン酸二無水物との反応物であるポリアミック酸及びそのイミド化物であるポリイミドから選ばれる少なくとも1つの重合体を含有することを特徴とする、請求項6に記載の液晶配向剤。
    (A)成分:下記式(1-1)及び下記式(1-2)から選ばれる少なくとも1種の構造を有するジアミン
    Figure JPOXMLDOC01-appb-C000001
    (式中、Dは2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基または複素環を表し、Dは種々の置換基を有していてもよく、Eは単結合、または、2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基もしくは複素環であり、Fは単結合またはエーテル結合(-O-)、エステル結合(-OCO-、-COO-)を表し、mは、1または0であり、Rは熱脱離基を表し、*は、他の原子との結合を表す。)
    (B)成分:下記式(2)の構造を有するジアミン
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは芳香族複素環であり、*は、他の原子との結合を表す。)
    (C)成分:下記式(a)及び下記式(b)から選ばれる少なくとも1種の構造を有するジアミン
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、*は、他の原子との結合を表す。)
    It is a reaction product of at least one diamine selected from the following component (A) and the following component (B) and a diamine component containing a diamine containing the skeleton of the following component (C) with tetracarboxylic dianhydride. The liquid crystal aligning agent according to claim 6, comprising at least one polymer selected from polyamic acid and polyimide which is an imidized product thereof.
    Component (A): a diamine having at least one structure selected from the following formula (1-1) and the following formula (1-2)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein D represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and D may have various substituents. , E is a single bond, or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or a heterocyclic ring, and F is a single bond or an ether bond (—O— ), An ester bond (—OCO—, —COO—), m is 1 or 0, R represents a thermal leaving group, and * represents a bond with another atom.)
    Component (B): a diamine having the structure of the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one divalent element selected from the group consisting of -OCO- An organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO- , —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and at least one divalent organic group selected from the group consisting of Q 2 hydrogen atom or a carbon atoms is 3 alkyl group, X 4 is an aromatic heterocycle, * the other It represents a bond with the child.)
    Component (C): a diamine having at least one structure selected from the following formula (a) and the following formula (b)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.)
PCT/JP2017/032154 2016-09-07 2017-09-06 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2018047872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780068197.4A CN109952530B (en) 2016-09-07 2017-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2018538446A JP7299556B2 (en) 2016-09-07 2017-09-06 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR1020197009730A KR102554992B1 (en) 2016-09-07 2017-09-06 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-174665 2016-09-07
JP2016174665 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018047872A1 true WO2018047872A1 (en) 2018-03-15

Family

ID=61561395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032154 WO2018047872A1 (en) 2016-09-07 2017-09-06 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7299556B2 (en)
KR (1) KR102554992B1 (en)
CN (1) CN109952530B (en)
TW (1) TWI801351B (en)
WO (1) WO2018047872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125329A1 (en) * 2019-12-18 2021-06-24 日産化学株式会社 Radical generation film-forming composition, radical generation film, and method for manufacturing horizontal-electric-field liquid crystal cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102546812B1 (en) 2020-12-30 2023-06-23 주식회사 코밴 Affiliate terminal management method using user terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072554A1 (en) * 2013-11-15 2015-05-21 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same
WO2016104514A1 (en) * 2014-12-22 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294639B1 (en) * 1997-12-02 2001-09-25 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent
KR101435690B1 (en) * 2007-03-08 2014-09-01 제이에스알 가부시끼가이샤 Liquid crystal aligning agent and in-plane switching mode liquid crystal display
KR101514861B1 (en) * 2008-01-25 2015-04-23 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material and liquid-crystal display element made with the same
KR101796334B1 (en) * 2010-04-30 2017-11-09 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012053525A1 (en) * 2010-10-19 2012-04-26 日産化学工業株式会社 Liquid crystal aligning agent suitable for photo-alignment process, and liquid crystal alignment film using same
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI649411B (en) * 2013-02-01 2019-02-01 日產化學工業股份有限公司 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
KR102218510B1 (en) * 2013-05-23 2021-02-19 닛산 가가쿠 가부시키가이샤 Treatment agent for liquid crystal orientation, liquid crystal orientation film, and liquid crystal display device
JP6593603B2 (en) * 2014-06-25 2019-10-23 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6686298B2 (en) * 2014-08-25 2020-04-22 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072554A1 (en) * 2013-11-15 2015-05-21 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same
WO2016104514A1 (en) * 2014-12-22 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125329A1 (en) * 2019-12-18 2021-06-24 日産化学株式会社 Radical generation film-forming composition, radical generation film, and method for manufacturing horizontal-electric-field liquid crystal cell

Also Published As

Publication number Publication date
KR20190050811A (en) 2019-05-13
CN109952530A (en) 2019-06-28
TW201823306A (en) 2018-07-01
CN109952530B (en) 2022-04-19
JPWO2018047872A1 (en) 2019-06-24
TWI801351B (en) 2023-05-11
KR102554992B1 (en) 2023-07-12
JP7299556B2 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
KR102241791B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR101656541B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102241784B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20160074520A (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
WO2015050135A1 (en) Liquid crystal aligning agent for in-plate switching, liquid crystal alignment film and liquid crystal display element using same
KR20200066656A (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
KR102104154B1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI820010B (en) Manufacturing method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JP7299556B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018056238A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20210045392A (en) Liquid crystal aligning agent, its manufacturing method, liquid crystal aligning film, and liquid crystal display element
TW201920372A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2019044795A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20220151603A (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20230002449A (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2020184373A1 (en) Coating solution for forming functional polymer film, and functional polymer film
JPWO2020166623A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
TW201922853A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7428138B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2020218331A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
KR20220157403A (en) Liquid crystal aligning agent for photo-alignment method, liquid crystal aligning film, and liquid crystal display element
KR20230038512A (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
TW202035522A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device using same
WO2020105561A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009730

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848810

Country of ref document: EP

Kind code of ref document: A1