WO2020105561A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Info

Publication number
WO2020105561A1
WO2020105561A1 PCT/JP2019/044925 JP2019044925W WO2020105561A1 WO 2020105561 A1 WO2020105561 A1 WO 2020105561A1 JP 2019044925 W JP2019044925 W JP 2019044925W WO 2020105561 A1 WO2020105561 A1 WO 2020105561A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
hydrogen atom
carbon atoms
crystal alignment
Prior art date
Application number
PCT/JP2019/044925
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 名木
崇明 杉山
一平 福田
橋本 淳
石川 和典
翔一朗 中原
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020558354A priority Critical patent/JP7414006B2/en
Priority to CN201980076518.4A priority patent/CN113168052A/en
Priority to KR1020217008817A priority patent/KR20210092194A/en
Publication of WO2020105561A1 publication Critical patent/WO2020105561A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained by the liquid crystal aligning agent, and a liquid crystal display device including the obtained liquid crystal aligning film.
  • a liquid crystal display element used for a liquid crystal television, a liquid crystal display, or the like is usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals.
  • the most widely used liquid crystal alignment film in the industry is to coat the surface of a film made of polyamic acid and / or polyimide imidized on the electrode substrate with a cloth such as cotton, nylon or polyester. It is produced by rubbing in the direction, so-called rubbing treatment.
  • the rubbing treatment is an industrially useful method that is simple and excellent in productivity.
  • due to the high performance, high definition, and large size of liquid crystal display elements scratches on the surface of the alignment film generated by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity have become clear.
  • a photo-alignment method which imparts liquid crystal alignment ability by irradiating polarized radiation.
  • a method utilizing a photo-isomerization reaction, a method utilizing a photo-crosslinking reaction, a method utilizing a photo-decomposition reaction, etc. have been proposed (see Non-Patent Document 1).
  • Patent Document 1 proposes to use a polyimide film having an alicyclic structure such as a cyclobutane ring in its main chain for a photo-alignment method.
  • the photo-alignment method as described above is a rubbing-less alignment treatment method, and can be produced by a simple manufacturing process industrially.
  • rubbing is performed in the liquid crystal display element of the IPS drive system or the FFS (fringe field switching) drive system. Since it can be expected to improve the contrast and viewing angle characteristics of a liquid crystal display device as compared with a liquid crystal alignment film obtained by a treatment method, it is attracting attention as a promising liquid crystal alignment treatment method.
  • the liquid crystal alignment film used for the liquid crystal display element of the IPS drive system or the FFS drive system is required to suppress afterimages due to long-term AC drive, in addition to basic properties such as excellent liquid crystal alignment and electrical properties.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that the anisotropy with respect to the alignment direction of the polymer film is smaller than that obtained by rubbing. When the anisotropy is small, a sufficient liquid crystal orientation cannot be obtained, and when a liquid crystal display device is formed, problems such as an afterimage occur.
  • Patent Document 2 as a method of enhancing the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method, a low molecular weight component generated by cutting the main chain of the polyimide by the light irradiation after the light irradiation is generated. Proposed to be removed.
  • an object of the present invention is to expand the range of the light irradiation amount (hereinafter, also referred to as an optimum irradiation amount margin) where good alignment control ability can be obtained, and to bring about a wide irradiation amount margin.
  • Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining stable and stable liquid crystal aligning ability even in the case of a large panel. That is, an object of the present invention is to provide a liquid crystal aligning agent which has a wide range of light irradiation amount in which alignment control ability is stably generated and which can efficiently obtain a high quality liquid crystal aligning film.
  • a liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained by a polymerization reaction of a tetracarboxylic acid component containing a carboxylic dianhydride and a diamine component.
  • X 1 is a structure represented by any of the following formulas (X1-1) to (X1-4).
  • X 2 is a structure represented by the following formula (X2-1) or (X2-2).
  • X 3 is an aromatic ring having 4 bonds.
  • R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom.
  • R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom.
  • R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon atom containing a fluorine atom. It is a monovalent organic group of the numbers 1 to 6 or a phenyl group.
  • the liquid crystal aligning agent of the present invention it is possible to expand the light irradiation amount margin that brings about excellent photo-alignment treatment, which has been difficult in the past, and to obtain a liquid crystal aligning film having good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in the liquid crystal display device of the IPS drive system or the FFS drive system. A liquid crystal display device of an IPS drive system or an FFS drive system having excellent afterimage characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention is, as described above, a polyimide which is an imidized product of a polyimide precursor obtained from a tetracarboxylic acid component derivative having a tetracarboxylic acid having a specific structure or a derivative thereof and a diamine component (hereinafter, a specific weight (Also referred to as coalescence).
  • the specific polymer used in the present invention is a polyimide which is an imidized product of a polyimide precursor having a specific structure.
  • the polyimide precursor is not particularly limited as long as it is a polyimide precursor that forms an imide ring by heating polyamic acid, polyamic acid ester, or the like, or by chemical imidization with a catalyst. From the viewpoint of easy progress of heating or chemical imidization, the polyimide precursor is more preferably a polyamic acid or a polyamic acid ester.
  • the imidization ratio of the polyimide is not particularly limited, but is preferably 10 to 100%, more preferably 50 to 100%, further preferably 50 to 80%.
  • each component as a raw material forming the specific polymer will be described.
  • the tetracarboxylic acid component used in the polymerization of the specific polymer of the present invention is not only a tetracarboxylic acid dianhydride, but also a derivative thereof, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid.
  • a dialkyl ester dihalide can also be used.
  • the tetracarboxylic acid component used for the polymerization of the specific polymer of the present invention includes a tetracarboxylic acid dianhydride represented by the following formula (1) or a derivative thereof and a tetracarboxylic acid dianhydride represented by the following formula (2). It contains an anhydride or a derivative thereof and an aromatic tetracarboxylic dianhydride or a derivative thereof represented by the following formula (6).
  • X 1 is a structure represented by any of the following formulas (X1-1) to (X1-4).
  • R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom.
  • R 7 to R 23 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom.
  • X 1 is preferably at least one selected from the structures represented by any of the following formulas (X1-12) to (X1-16). X1-12) is particularly preferable.
  • the content ratio of the tetracarboxylic acid dianhydride represented by the above formula (1) or its derivative is preferably 50 to 98 mol%, more preferably 60 to 93 mol% with respect to the tetracarboxylic acid component to be reacted with the diamine component. It is preferably 65 to 87 mol%, and further preferably.
  • X 2 is the structure of the following formula (X2-1) or (X2-2).
  • Formula (X2-1) is preferable for X 2 in order to suppress an afterimage due to long-term AC driving.
  • the content ratio of the tetracarboxylic acid dianhydride represented by the above formula (2) or its derivative is preferably 1 to 30 mol% and more preferably 5 to 25% with respect to 1 mol of all tetracarboxylic acid components. It is preferably 10 to 20%, and further preferably.
  • X 3 is a tetravalent organic group, has an aromatic ring having four bonds, preferably at least one benzene ring or naphthalene ring, and has four bonds on the benzene ring or naphthalene ring. It is a ring.
  • Specific examples include the structures of any of the following formulas (X3-1) to (X3-26).
  • X3 is preferably any of (X3-1), (X3-5) to (X3-11), and (X3-14) to (X3-26). More preferably, a structure in which n in (X3-1), (X3-7), (X3-8) is 1 to 4, (X3-9) to (X3-10), or (X3-14) to (X3-26) is preferable.
  • the content ratio of the aromatic tetracarboxylic acid dianhydride represented by the above formula (6) or its derivative is preferably 1 to 20 mol% with respect to 1 mol of the tetracarboxylic acid component, and 2 to 15 mol% Is more preferable, and 3 to 15 mol% is even more preferable.
  • the tetracarboxylic acid component used in the polymerization of the specific polymer of the present invention is a tetracarboxylic acid dianhydride represented by the following formula (7) or the tetracarboxylic acid dianhydride represented by the following formula (7) in addition to the above formulas (1), (2) and (6). It may contain a derivative.
  • X 4 is a tetravalent organic group other than X 1 to X 3 , but the structure thereof is not particularly limited. Specific examples include the following formulas (X4-1) to (X4-26) and tetravalent groups derived from ethylenediaminetetraacetic acid dianhydride.
  • X4 includes (X4-8) to (X4-12), (X4-17) to (X4-19), and (X4-24) to (X4-26). ..
  • the diamine component used for producing the specific polymer of the present invention is not particularly limited as long as it is a known diamine. From the viewpoint of suppressing the afterimage due to long-term AC driving, it is preferable to contain at least one diamine selected from the following formula (3), the following formula (4) and the following formula (5).
  • a 1 and A 4 are each independently a single bond, —CO—O—, —OCO—, —NRCO— (R is a hydrogen atom or a methyl group. , -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR 1 -CO-NR 2- ( R 1 and R 2 each independently represent a hydrogen atom or a methyl group), a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 of the divalent chain hydrocarbon group.
  • R represents a hydrogen atom or a methyl group
  • -NRCOO- represents a hydrogen atom or a methyl group
  • - CONR- represents a hydrogen atom or a methyl group
  • -COS- -NR 1 -CO-NR 2-
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • It represents a group (h1) substituted with a group selected from —NR— (R represents a methyl group), pyrrolidine, piperidine and piperazine.
  • some or all of the hydrogen atoms contained in the chain hydrocarbon group of A 1 and A 4 and the group (h1) may be an alkyl group having 1 to 3 carbon atoms such as a methyl group, a fluorine atom, a chlorine atom, or the like. You may substitute with a halogen atom.
  • a 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a monovalent organic group having 1 to 20 carbon atoms.
  • a 3 is a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O—, —CO—, —CO—O—, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group), -NR- (R represents a methyl group), pyrrolidine, piperidine, It represents a group (h2) substituted with a group selected from piperazine.
  • a part or all of the hydrogen atoms contained in the chain hydrocarbon group of A 3 and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, a halogen atom such as a fluorine atom or a chlorine atom.
  • a is an integer of 1 to 4, and when a is 2 or more, the structures of A 2 may be the same or different.
  • b and c are integers of 1 or 2.
  • d is an integer of 0 or 1.
  • Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include methanediyl group, ethanediyl group, n-propanediyl group, i-propanediyl group, n-butanediyl group, i-butanediyl group, sec- Examples thereof include alkanediyl groups such as butanediyl group and t-butanediyl group; alkenediyl groups such as ethenediyl group, propenediyl group and butenediyl group; alkynediyl groups such as ethynediyl group, propyndiyl group and butynediyl group.
  • the monovalent organic group having 1 to 20 carbon atoms in A 2 is, for example, a divalent chain hydrocarbon group having 1 to 20 carbon atoms in A 3 , a group (h2), or a group having 1 to 20 carbon atoms.
  • a part or all of the hydrogen atoms of the divalent chain hydrocarbon group and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, or a halogen atom such as a fluorine atom or a chlorine atom.
  • Examples of the group include a group obtained by adding one hydrogen atom to the group exemplified above.
  • formulas (3) and (4) are represented by the following formulas (DA-3-1), (DA-4-1) to (DA-4-24), (DA-5-1) to (DA-5-3) are preferable. Among them, (DA-3-1), (DA-4-1) to (DA-4-11), (DA-4-13) to (DA-4-24), (DA-5-1) To (DA-5-2) are more preferable.
  • the content of the diamine represented by the above formula (3), formula (4) or formula (5) is preferably 50 to 100 mol%, and 70 mol% to 100 mol% with respect to 1 mol of the diamine component. Is more preferable.
  • the diamine used for producing the specific polymer of the present invention preferably contains a diamine represented by the following formula (8).
  • Y 6 is a divalent organic group containing a structure represented by the following formula (9).
  • a 6's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • a 6 is preferably a hydrogen atom or a methyl group.
  • D is a t-butoxycarbonyl group.
  • divalent organic group having a structure represented by the above formula (9) examples include the following formula (J-1) or formula (J-2).
  • * 1 represents a bond to NH-A 6
  • Q 5 is a single bond,-(CH 2 ) n- (n is an integer of 1 to 20) Yes) or — (CH 2 ) n — and any —CH 2 — are not adjacent to each other —O—, —COO—, —OCO—, —NR—, —NRCO—, —CONR—, — NRCONR-, -NRCOO-, and -OCOO- are substituted groups, and R represents a hydrogen atom or a monovalent organic group.
  • Q 6 and Q 7 each independently represent a group having —H, —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 .
  • Q 8 represents a group having —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 .
  • D represents a t-butoxycarbonyl group.
  • at least one of Q 5 , Q 6 and Q 7 has a t-butoxycarbonyl group (Boc) in the group. More preferred are divalent organic groups represented by the following formulas (J-1-a) to (J-1-d) or (J-2-1).
  • the diamine used for the polymerization of the specific polymer of the present invention may contain a diamine represented by the following formula (10) in addition to the above formulas (3) to (5) and (8).
  • each A 8 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal alignment, A 8 is preferably a hydrogen atom or a methyl group.
  • Y 8 is a divalent organic group, and examples thereof include a group represented by any of the formulas (Y-1) to (Y-167) described in the pamphlet of WO2018 / 117239.
  • the polyimide precursor polyamic acid ester, polyamic acid and polyimide used in the present invention can be synthesized by a known method as described in, for example, International Publication WO 2013/157586.
  • the liquid crystal aligning agent of the present invention has a form of a solution in which a polymer component such as a specific polymer is dissolved in an organic solvent.
  • the weight average molecular weight of the specific polymer is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and further preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and further preferably 5,000 to 50,000.
  • the liquid crystal aligning agent of the present invention is a composition containing the above-mentioned specific polymer and an organic solvent, and may contain two or more specific polymers having different structures. Further, the liquid crystal aligning agent of the present invention may contain a polymer other than the specific polymer (hereinafter, also referred to as a second polymer) and various additives.
  • the ratio of the specific polymer to all the polymer components is preferably 5% by mass or more, and examples thereof include 5 to 95% by mass.
  • the second polymer examples include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth).
  • An acrylate etc. can be mentioned.
  • a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component (hereinafter, also referred to as a second polyamic acid) is preferable as the second polymer.
  • Examples of the tetracarboxylic acid component for obtaining the second polyamic acid include a tetracarboxylic dianhydride represented by the following formula (11). Two or more kinds of the tetracarboxylic dianhydride may be used.
  • A is a tetravalent organic group, preferably a C4-30 tetravalent organic group.
  • the tetracarboxylic dianhydride component for obtaining the second polyamic acid may be one type of tetracarboxylic dianhydride, or may be a combination of two or more types of tetracarboxylic dianhydride. ..
  • the diamine component for obtaining the second polyamic acid can be appropriately determined according to the purpose, and for example, a diamine represented by the following formula (12) can be used.
  • Y 9 represents a divalent organic group.
  • a 9's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 2 to 5 carbon atoms.
  • An alkynyl group is preferably a hydrogen atom or a methyl group.
  • Y 9 is preferably a divalent organic group having a tertiary nitrogen atom or a divalent organic group having —NH—CO—NH— in the molecule.
  • Specific examples of formula (12) in the case where Y 9 is a divalent organic group having a tertiary nitrogen atom include diamines having a pyrrole structure described in International Publication WO2017 / 126627, preferably the following formula (pr): The diamine represented by
  • R 1 represents a hydrogen atom, hydrogen, a fluorine atom, a cyano group, a hydroxy group, or a methyl group.
  • Each R 2 independently represents a single bond or a group “* 1-R 3 —Ph- * 2”, and R 3 is a single bond, —O—, —COO—, —OCO—, — (CH 2 ) l
  • R 3 is a single bond, —O—, —COO—, —OCO—, — (CH 2 ) l
  • * 1 represents the formula (pr ) Represents a site to be bonded to the benzene ring
  • * 2 represents a site to be bonded to the amino group in the formula (pr).
  • Ph represents a phenylene group
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents a single bond or a group “* 1-R 4 —Ph- * 2”, R 4 represents a single bond, —O—, -COO -, - OCO -, - (CH 2) l -, - O (CH 2) m O -, - CONH-, and represents a divalent organic group selected from -NHCO- (l, m is 1 Represents an integer of 5 to 5), * 1 represents a site bonded to a benzene ring in formula (pn), * 2 represents a site bonded to an amino group in formula (pn), and Ph represents a phenylene group. .N represents 1 to 3), A diamine having a carbazole structure described in International Publication WO2018 / 110354, preferably a diamine having a structure represented by the following formula (cz).
  • X is a biphenyl ring or a fluorene ring
  • Y is a benzene ring, a biphenyl ring, or a group selected from -phenyl-Z-phenyl-
  • Z is -O-, -NH-, -CH 2 -,-.
  • Y 9 is a divalent organic group having —NH—CO—NH— in the molecule
  • specific examples of the above formula (12) include the above formula (4), in which A 1 is —NH—CO— NH-, a group in which at least one of -CH 2- of a chain hydrocarbon group having 2 to 20 carbon atoms is replaced with -NH-CO-NH-, or a chain hydrocarbon group having 2 to 20 carbon atoms At least one of —CH 2 — of the group is substituted with —NH—CO—NH—, and at least one of the other —CH 2 — is —O—, —CO—, —CO—O—, —NRCO— (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-,-.
  • Examples thereof include diamine in the case of a group substituted with
  • diamines represented by the above formulas (w1) to (w2) include diamines represented by the following formulas (n3-1) to (n3-7) and the following formulas (n4-1) to (n4).
  • Examples include diamines represented by -6).
  • a diamine compound having a carboxyl group (COOH group) or a hydroxyl group (OH group) can be used.
  • 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid Mention may be made of 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid. Of these, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid and 3,5-diaminobenzoic acid are preferable.
  • diamine compounds represented by the following formulas [3b-1] to [3b-4] and diamine compounds in which these amino groups are secondary amino groups can also be used.
  • Q 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON ( CH 3 )-or N (CH 3 ) CO-, m 1 and m 2 each independently represent an integer of 0 to 4, and m 1 + m 2 represent an integer of 1 to 4, and are represented by the formula [ 3b-2], m 3 and m 4 each independently represent an integer of 1 to 5, and in the formula [3b-3], Q 2 represents a linear or branched alkylene group having 1 to 5 carbon atoms.
  • M 5 represents an integer of 1 to 5
  • Q 3 and Q 4 are each independently a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O -, - OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or N (CH 3) CO- indicates, m 6 is an integer of 1-4).
  • the diamine component for obtaining the second polyamic acid the diamine used in the specific polymer or a known diamine can be used in addition to the above, but the present invention is not limited thereto.
  • the diamine component for obtaining the second polyamic acid may be one type of diamine, or may be a combination of two or more types of diamine.
  • the molecular weight of the second polymer contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as a uniform and defect-free coating film can be formed on the substrate, and its preferable weight average molecular weight and number average molecular weight are specified. It is the same as in the case of the polymer.
  • a dielectric or conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, and improving the adhesion between the liquid crystal alignment film and the substrate.
  • crosslinkable compound examples include an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a crosslinkable compound having a substituent such as a hydroxyl group or an alkoxyl group, and a crosslinkable compound having a polymerizable unsaturated group. It is preferable to add at least one compound selected from the group consisting of: In addition, it is preferable that two or more of these substituents and polymerizable unsaturated bonds are contained in the crosslinkable compound from the viewpoint of enhancing crosslinkability.
  • crosslinkable compound examples include compounds having an epoxy group or an isocyanate group described in paragraphs [0169] to [0190] of WO 2011/132775, a compound having an oxetane group, a hydroxyl group, an alkoxyl group or a lower group.
  • crosslinkable compound More preferable specific examples of the crosslinkable compound include those represented by the following formulas (CL-1) to (CL-13), Takenate B-830, and B-882 (all of which are manufactured by Mitsui Chemicals, Inc.). ..
  • the content of the crosslinkable compound is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent, and from the viewpoint of enhancing the alignment of the liquid crystal, it is more preferable.
  • the amount is preferably 0.1 to 50 parts by mass, more preferably 1 to 50 parts by mass.
  • silane coupling agent 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -Ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine
  • the amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. , And more preferably 1 to 20 parts by mass.
  • the concentration of the polymer containing the specific polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. Above all, it is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. A particularly preferable polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved therein.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples thereof include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone and 3-methoxy-N, N-dimethylpropanamide. You may use these 1 type or in mixture of 2 or more types. Further, even if the solvent alone cannot dissolve the polymer component uniformly, it may be mixed with the above organic solvent as long as the polymer does not precipitate.
  • the liquid crystal aligning agent of the present invention may contain, in addition to the organic solvent for dissolving the polymer component, a solvent for improving coating film uniformity when the liquid crystal aligning agent is applied to the substrate.
  • a solvent a solvent having a surface tension lower than that of the above organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol.
  • 1-phenoxy-2-propanol propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, diacetone alcohol, diisobutyl ketone, dipropylene glycol monomethyl ether, diisobutylcarbi And the like. Two or more of these solvents may be used in combination. Two or more of these solvents may be used in combination. Two or more of these solvents may be used in combination. Two or more of these solvents may be used in combination. Two or more of these solvents may be used in combination. Two or more of
  • the method for producing a liquid crystal alignment film using the liquid crystal alignment agent of the present invention includes a step of applying the liquid crystal alignment agent (step (A)) and a step of baking the coating film obtained in the step (A) ( Step (B)), a step of irradiating the film obtained in step (B) with polarized ultraviolet light (step (C)), the film obtained in step (C) is 100 ° C. or higher, and It is characterized in that the step (step (D)) of firing at a temperature higher than that of B) is sequentially performed.
  • the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, or a plastic substrate such as an acrylic substrate or a polycarbonate substrate may be used. it can. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed, from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if only one substrate is used, and in this case, a material that reflects light such as aluminum can be used for the electrode.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexo printing, or inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
  • the step (B) is a step of baking the liquid crystal aligning agent applied on the substrate to form a film.
  • the solvent is evaporated or the amic acid or amic acid ester in the polymer is heated by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Imidization can be performed.
  • the drying and firing steps after applying the liquid crystal aligning agent of the present invention can be performed at any temperature and time and may be performed a plurality of times.
  • the temperature for removing the organic solvent of the liquid crystal aligning agent can be, for example, in the range of 40 to 150 ° C.
  • the firing time is not particularly limited, but examples thereof include 1 to 10 minutes or 1 to 5 minutes.
  • a step of baking at a temperature range of 190 to 250 ° C. or 200 to 240 ° C. can be performed after the step of removing the organic solvent. ..
  • the firing time is not particularly limited, but may be 5 to 40 minutes, or 5 to 30 minutes.
  • Step (C) is a step of irradiating the film obtained in step (B) with polarized ultraviolet light.
  • the ultraviolet rays ultraviolet rays having a wavelength of 200 to 400 nm are preferably used, and among them, ultraviolet rays having a wavelength of 200 to 300 nm are more preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
  • the irradiation dose of the above radiation is preferably 1 to 10,000 mJ / cm 2 . Among them, 100 to 5,000 mJ / cm 2 is preferable.
  • the liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, more preferably 20: 1 or more.
  • Step (D) is a step of firing the film obtained in step (C) at a temperature of 100 ° C. or higher and a temperature higher than that of step (B).
  • the firing temperature is not particularly limited as long as it is 100 ° C. or higher and higher than the firing temperature in the step (B), but is preferably 150 to 300 ° C., more preferably 150 to 250 ° C., further preferably 200 to 250 ° C. ..
  • the firing time is preferably 5 to 120 minutes, more preferably 5 to 60 minutes, and further preferably 5 to 30 minutes. If the thickness of the liquid crystal alignment film after firing is too thin, the reliability of the liquid crystal display element may decrease, so that the thickness is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the obtained liquid crystal alignment film can be subjected to a contact treatment using water or a solvent.
  • the solvent used in the above contact treatment is not particularly limited as long as it is a solvent that dissolves the decomposition product generated from the liquid crystal alignment film by irradiation with ultraviolet rays.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • the solvent may be one kind or a combination of two or more kinds.
  • immersion treatment or spray treatment also referred to as spray treatment
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition product generated from the liquid crystal alignment film by ultraviolet rays. Above all, it is preferable to perform the immersion treatment for 1 to 30 minutes.
  • the solvent used in the contact treatment may be heated at room temperature or heated, but is preferably 10 to 80 ° C. Above all, 20 to 50 ° C. is preferable.
  • ultrasonic treatment may be performed as necessary.
  • rinsing also referred to as rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone
  • baking either one of rinsing and baking may be performed, or both may be performed.
  • the firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, it is 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes. Of these, 1 to 10 minutes is preferable.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a lateral electric field type liquid crystal display device such as an IPS system or an FFS system, and particularly useful as a liquid crystal alignment film of an FFS system liquid crystal display device.
  • the liquid crystal display device is obtained by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention, producing a liquid crystal cell by a known method, and using the liquid crystal cell.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • a liquid crystal display element having an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion that constitutes image display may be used.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so that a desired image can be displayed.
  • an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, one substrate is overlaid with the other substrate so that their liquid crystal alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant in order to control the substrate gap, and spacers for controlling the substrate gap are also scattered on the in-plane portion where the sealant is not provided.
  • An opening that can be filled with liquid crystal from the outside is provided in part of the sealant.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing a capillary phenomenon in the atmosphere may be used.
  • the liquid crystal material either a positive type liquid crystal material or a negative type liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the manufacturing method of the present invention it is possible to suppress the afterimage caused by the long-term AC driving that occurs in the liquid crystal display element of the IPS driving method or the FFS driving method, and the brightness generated by the residual low molecular weight compound is generated. It is possible to obtain a liquid crystal alignment film which is free from problems such as points and which can be manufactured by a smaller number of steps than conventional ones.
  • CA-X-1 a compound represented by the following formula (CA-X-1) (Compound C)
  • c-1 compound represented by the following formula (c-1) (other additives)
  • LS-4668 3-glycidoxypropyltriethoxysilane (compound represented by the following (s-1))
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • the imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the integrated peak value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1- ⁇ ⁇ x / y) ⁇ 100
  • x is the proton peak integrated value derived from the NH group of amic acid
  • y is the peak integrated value of the reference proton
  • is the NH of the amic acid in the case of polyamic acid (imidization ratio is 0%). It is the ratio of the number of reference protons to one base proton.
  • the values in parentheses represent the compounding ratio (mol part) of each compound to 100 mol parts of the total amount of the tetracarboxylic acid components used in the synthesis for the tetracarboxylic acid component, and for the diamine acid component, The compounding ratio (mol part) of each compound to 100 mol parts of the total amount of diamine components used in the synthesis is shown.
  • the organic solvent the compounding ratio (parts by mass) of each organic solvent to the total amount of 100 parts by mass of the organic solvent used in the synthesis is shown.
  • a solvent composition ratio of NMP: GBL: BCS 50: 30: 20 (mass ratio), and a liquid crystal aligning agent (1) having a polymer solid content concentration of 6 mass% were obtained (see Table 2 below). No abnormalities such as turbidity and precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • the numerical values in parentheses are the blending ratio of each polymer component or compound (C) with respect to the polymer and the compound (C) with respect to 100 parts by mass in total of the polymer components used for the preparation of the liquid crystal aligning agent ( Mass part).
  • the organic solvent the compounding ratio (parts by mass) of each organic solvent to 100 parts by mass of the total amount of the organic solvent used for preparing the liquid crystal aligning agent is shown.
  • a liquid crystal cell having the configuration of the FFS mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by the CVD method is formed as a second layer on the counter electrode of the first layer.
  • the film thickness of the second-layer SiN film is 500 nm and functions as an interlayer insulating film.
  • a comb-teeth-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the second-layer SiN film to form two pixels of a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm in length and about 5 mm in width.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg” -shaped electrode elements whose central portion is bent at an internal angle of 160 °.
  • the width of each electrode element in the lateral direction is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrode that forms each pixel is configured by arranging a plurality of curved "dogleg" -shaped electrode elements in the central portion, so the shape of each pixel is not rectangular, but is similar to that of the electrode element. It has a shape that resembles a bold "dogleg" bent at a part.
  • Each pixel is divided into upper and lower parts with a central bent portion as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
  • a liquid crystal aligning agent was applied to the above-mentioned substrate with electrodes and a glass substrate having a columnar spacer having a height of 4 ⁇ m and having an ITO film formed on the back surface by spin coating. After drying on a hot plate at 80 ° C for 2 minutes, this coating film surface was irradiated with linearly polarized ultraviolet light of wavelength 254 nm with an extinction ratio of 26: 1 through a polarizing plate, and then a hot air circulation oven at 230 ° C. And was baked for 30 minutes to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm.
  • the liquid crystal alignment film formed on the electrode-attached substrate is a liquid crystal alignment film formed on the second glass substrate by performing alignment processing so that the direction that equally divides the interior angle of the pixel bend portion and the liquid crystal alignment direction are orthogonal to each other.
  • the obtained two substrates with a liquid crystal alignment film are set as one set, the sealant is printed on the substrate with the liquid crystal injection port left, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other. It was Then, the sealant was cured to prepare an empty cell having a cell gap of 4 ⁇ m.
  • Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS type liquid crystal display element. Then, the obtained liquid crystal display element was heated at 120 ° C. for 1 hour and left at 23 ° C. overnight, and then used for evaluation. ..
  • a liquid crystal display element is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal is adjusted so that the transmitted light intensity in the first region of the pixel is minimized.
  • the cell arrangement angle was adjusted, and then the rotation angle (hereinafter referred to as ⁇ ac ) required when the liquid crystal cell was rotated so that the transmitted light intensity in the second region of the pixel was minimized was obtained.
  • ⁇ ac the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity in the second region of the pixel was minimized was obtained.
  • E max and E min are 300 mJ / cm 2 or more.
  • Good The difference between E max and E min is 200 mJ / cm 2 or more and less than 300 mJ / cm 2 .
  • Poor The difference between E max and E min is less than 200 mJ / cm 2 .
  • the liquid crystal alignment films obtained from the liquid crystal alignment agents (1) to (7) used in Examples 1 to 7 of the present invention were irradiated with light of 150 to 350 mJ / cm 2 or 150 to 450 mJ / cm 2 .
  • ⁇ ac was less than 0.15 °
  • good afterimage characteristics were exhibited.
  • the liquid crystal aligning agents (R1) and (R2) used in Comparative Examples 1 and 2 have a good afterimage of ⁇ ac of less than 0.15 ° when irradiated with a light irradiation amount of 150 to 250 mJ / cm 2.
  • the liquid crystal aligning agent of the present invention makes it possible to expand the light irradiation amount margin and obtain a liquid crystal aligning film having good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in the liquid crystal display device of the IPS drive system or the FFS drive system. A liquid crystal display device of an IPS drive system or an FFS drive system having excellent afterimage characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention is useful for forming a liquid crystal aligning film in a wide variety of liquid crystal display devices such as an IPS driving system and an FFS driving system.
  • liquid crystal display devices such as an IPS driving system and an FFS driving system.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-216789 filed on Nov. 19, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Abstract

Provided are: a liquid crystal alignment agent; a liquid crystal alignment film; and a liquid crystal display device, wherein the occurrence of afterimages caused by a long-term AC drive in an IPS- or FFS-mode liquid crystal display device can be suppressed. The liquid crystal alignment agent is characterized by containing a polyimide which is an imidized product of a polyimide precursor obtained by a polymerization reaction of a diamine component and a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by formula (1) or a derivative thereof, a tetracarboxylic dianhydride represented by formula (2) or a derivative thereof, and an aromatic tetracarboxylic dianhydride represented by formula (6). The liquid crystal alignment film is obtained from the liquid crystal alignment agent. The liquid crystal display device has the liquid crystal alignment film (X1 is one among formulae (X1-1) to (X1-4), X2 is (X2-1) or (X2-2), and X3 is a tetravalent aromatic ring group).

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device
 本発明は、液晶配向剤、この液晶配向剤によって得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained by the liquid crystal aligning agent, and a liquid crystal display device including the obtained liquid crystal aligning film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性などの種々の問題が明らかとなっている。
A liquid crystal display element used for a liquid crystal television, a liquid crystal display, or the like is usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals.
Currently, the most widely used liquid crystal alignment film in the industry is to coat the surface of a film made of polyamic acid and / or polyimide imidized on the electrode substrate with a cloth such as cotton, nylon or polyester. It is produced by rubbing in the direction, so-called rubbing treatment.
The rubbing treatment is an industrially useful method that is simple and excellent in productivity. However, due to the high performance, high definition, and large size of liquid crystal display elements, scratches on the surface of the alignment film generated by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity have become clear.
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。 As an alternative method to the rubbing treatment, a photo-alignment method is known, which imparts liquid crystal alignment ability by irradiating polarized radiation. As the treatment by the photo-alignment method, a method utilizing a photo-isomerization reaction, a method utilizing a photo-crosslinking reaction, a method utilizing a photo-decomposition reaction, etc. have been proposed (see Non-Patent Document 1).
 特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
 上記のような光配向法は、ラビングレス配向処理方法として、工業的にも簡便な製造プロセスで生産できるだけでなく、IPS駆動方式やFFS(フリンジフィールドスイッチング)駆動方式の液晶表示素子においては、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるため、有望な液晶配向処理方法として注目されている。
Patent Document 1 proposes to use a polyimide film having an alicyclic structure such as a cyclobutane ring in its main chain for a photo-alignment method.
The photo-alignment method as described above is a rubbing-less alignment treatment method, and can be produced by a simple manufacturing process industrially. In addition, in the liquid crystal display element of the IPS drive system or the FFS (fringe field switching) drive system, rubbing is performed. Since it can be expected to improve the contrast and viewing angle characteristics of a liquid crystal display device as compared with a liquid crystal alignment film obtained by a treatment method, it is attracting attention as a promising liquid crystal alignment treatment method.
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、優れた液晶配向性や電気特性などの基本特性に加えて、長期交流駆動による残像の抑制が必要とされる。
 しかしながら、光配向法により得られる液晶配向膜は、ラビングによるものに比べて、高分子膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと充分な液晶配向性が得られず、液晶表示素子とした場合に、残像などの問題が発生する。これに対して、特許文献2では、光配向法により得られる液晶配向膜の異方性を高める方法として、光照射後に、光照射によって前記ポリイミドの主鎖が切断されて生成した低分子量成分を除去することが提案されている。
The liquid crystal alignment film used for the liquid crystal display element of the IPS drive system or the FFS drive system is required to suppress afterimages due to long-term AC drive, in addition to basic properties such as excellent liquid crystal alignment and electrical properties.
However, the liquid crystal alignment film obtained by the photo-alignment method has a problem that the anisotropy with respect to the alignment direction of the polymer film is smaller than that obtained by rubbing. When the anisotropy is small, a sufficient liquid crystal orientation cannot be obtained, and when a liquid crystal display device is formed, problems such as an afterimage occur. On the other hand, in Patent Document 2, as a method of enhancing the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method, a low molecular weight component generated by cutting the main chain of the polyimide by the light irradiation after the light irradiation is generated. Proposed to be removed.
日本特開平9-297313号公報Japanese Unexamined Patent Publication No. 9-297313 日本特開2011-107266号公報Japanese Patent Laid-Open No. 2011-107266
 従来、ポリイミド前駆体及びポリイミドなどの有機被膜の光配向処理を行う場合、本発明者の知見によると、光配向の効果は、用いる光の照射量に敏感であり、比較的範囲の狭い最適照射量が必要とされ、この最適範囲の照射量をはずれると、液晶配向膜の一部又は全体において配向が不完全になり、液晶の安定な配向が実現できない場合が生じることが判明した。
 そして、特に、寸法の大きなパネルを光配向法により処理する場合には、光照射量を均一に制御した光配向照射を行うことが困難になり、結果的に安定な光配向法による配向処理が困難になることを知見した。
Conventionally, when performing a photo-alignment treatment of an organic coating such as a polyimide precursor and polyimide, according to the knowledge of the present inventor, the effect of photo-alignment is sensitive to the irradiation amount of light used, and the optimum irradiation of a relatively narrow range. It has been found that the amount is required, and if the irradiation amount out of the optimum range is deviated, the alignment may be incomplete in a part or the whole of the liquid crystal alignment film, and stable alignment of the liquid crystal may not be realized.
In particular, when a large-sized panel is processed by the photo-alignment method, it becomes difficult to perform the photo-alignment irradiation in which the light irradiation amount is uniformly controlled, and as a result, the stable alignment process by the photo-alignment method is performed. I found it difficult.
 そこで、本発明の目的は、良好な配向制御能が得られる光照射量の範囲(以下、最適照射量マージンともいう。)を拡大させ、広い照射量マージンをもたらしめることにより、特に寸法の大きいパネルの場合でも、品質のよい安定した液晶配向能が得られる液晶配向剤を提供することにある。すなわち、本発明の目的は、配向制御能が安定して生じる広い光照射量の範囲を有し、高品質の液晶配向膜を効率よく得られる液晶配向剤を提供することにある。 Therefore, an object of the present invention is to expand the range of the light irradiation amount (hereinafter, also referred to as an optimum irradiation amount margin) where good alignment control ability can be obtained, and to bring about a wide irradiation amount margin. Another object of the present invention is to provide a liquid crystal aligning agent capable of obtaining stable and stable liquid crystal aligning ability even in the case of a large panel. That is, an object of the present invention is to provide a liquid crystal aligning agent which has a wide range of light irradiation amount in which alignment control ability is stably generated and which can efficiently obtain a high quality liquid crystal aligning film.
 本発明者らは、鋭意検討を重ねた結果、下記の要旨を有する液晶配向剤を含む発明により、上記の目的を達成し得ることを見出した。
 下記式(1)で表されるテトラカルボン酸二無水物若しくはその誘導体と下記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体と下記式(6)で表される芳香族テトラカルボン酸二無水物とを含有するテトラカルボン酸成分と、ジアミン成分と、の重合反応により得られるポリイミド前駆体のイミド化物であるポリイミドを含有することを特徴とする液晶配向剤。
As a result of intensive studies, the present inventors have found that the invention including a liquid crystal aligning agent having the following points can achieve the above object.
Tetracarboxylic dianhydride or its derivative represented by the following formula (1), tetracarboxylic dianhydride or its derivative represented by the following formula (2), and aromatic tetra represented by the following formula (6) A liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained by a polymerization reaction of a tetracarboxylic acid component containing a carboxylic dianhydride and a diamine component.
Figure JPOXMLDOC01-appb-C000010
 但し、Xは下記式(X1-1)~(X1-4)のいずれかで表される構造である。Xは下記式(X2-1)又は(X2-2)で表される構造である。Xは4つの結合手を有する芳香環である。
Figure JPOXMLDOC01-appb-C000010
However, X 1 is a structure represented by any of the following formulas (X1-1) to (X1-4). X 2 is a structure represented by the following formula (X2-1) or (X2-2). X 3 is an aromatic ring having 4 bonds.
Figure JPOXMLDOC01-appb-C000011
 但し、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってよいが、少なくとも一つは水素原子以外である。R~R23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。
Figure JPOXMLDOC01-appb-C000011
However, R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. Are monovalent organic groups having 1 to 6 carbon atoms or phenyl groups, which may be the same or different, but at least one is other than a hydrogen atom. R 7 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a carbon atom containing a fluorine atom. It is a monovalent organic group of the numbers 1 to 6 or a phenyl group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明の液晶配向剤により、従来困難であった優れた光配向処理をもたらす光照射量マージンの拡大が可能になり、且つ良好な残像特性を有する液晶配向膜を得ることができる。よって、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。 With the liquid crystal aligning agent of the present invention, it is possible to expand the light irradiation amount margin that brings about excellent photo-alignment treatment, which has been difficult in the past, and to obtain a liquid crystal aligning film having good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in the liquid crystal display device of the IPS drive system or the FFS drive system. A liquid crystal display device of an IPS drive system or an FFS drive system having excellent afterimage characteristics can be obtained.
 本発明の液晶配向剤は、上記のように、特定構造を有するテトラカルボン酸又はその誘導体を有するテトラカルボン酸成分誘導体とジアミン成分から得られるポリイミド前駆体のイミド化物であるポリイミド(以下、特定重合体とも称する)を含有することを特徴とする。 The liquid crystal aligning agent of the present invention is, as described above, a polyimide which is an imidized product of a polyimide precursor obtained from a tetracarboxylic acid component derivative having a tetracarboxylic acid having a specific structure or a derivative thereof and a diamine component (hereinafter, a specific weight (Also referred to as coalescence).
<特定重合体>
 本発明に用いられる特定重合体は、特定構造を有するポリイミド前駆体のイミド化物であるポリイミドである。ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステルなどの加熱、又は触媒による化学イミド化によって、イミド環を形成するポリイミド前駆体であれば、特に限定されない。加熱、又は化学イミド化が進行しやすいという観点から、ポリイミド前駆体としては、ポリアミック酸、又はポリアミック酸エステルがより好ましい。
 ポリイミドのイミド化率は、特に限定されないが、10~100%が好ましく、50~100%がより好ましく、50~80%が更に好ましい。
 以下、上記特定重合体をなす原料となる各成分について説明する。
<Specific polymer>
The specific polymer used in the present invention is a polyimide which is an imidized product of a polyimide precursor having a specific structure. The polyimide precursor is not particularly limited as long as it is a polyimide precursor that forms an imide ring by heating polyamic acid, polyamic acid ester, or the like, or by chemical imidization with a catalyst. From the viewpoint of easy progress of heating or chemical imidization, the polyimide precursor is more preferably a polyamic acid or a polyamic acid ester.
The imidization ratio of the polyimide is not particularly limited, but is preferably 10 to 100%, more preferably 50 to 100%, further preferably 50 to 80%.
Hereinafter, each component as a raw material forming the specific polymer will be described.
<テトラカルボン酸成分>
 本発明の特定重合体の重合に用いられるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライド用いることもできる。
<Tetracarboxylic acid component>
The tetracarboxylic acid component used in the polymerization of the specific polymer of the present invention is not only a tetracarboxylic acid dianhydride, but also a derivative thereof, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid. A dialkyl ester dihalide can also be used.
 本発明の特定重合体の重合に用いられるテトラカルボン酸成分は、下記式(1)で表されるテトラカルボン酸二無水物若しくはその誘導体と、下記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体と、下記式(6)で表される芳香族テトラカルボン酸二無水物若しくはその誘導体とを含有する。上記式(1)のテトラカルボン酸二無水物若しくはその誘導体を含有することで、特定重合体の光反応に必要な光照射量を低減し、高い液晶配向性を示す液晶配向膜が得られる。上記式(2)のテトラカルボン酸二無水物若しくはその誘導体と、上記式(6)のテトラカルボン酸二無水物若しくはその誘導体を含有することで、特定重合体の光反応性を調整することができ、照射量マージンの広い液晶配向膜が得られる。
Figure JPOXMLDOC01-appb-C000013
 Xは、下記式(X1-1)~(X1-4)のいずれかで表される構造である。
Figure JPOXMLDOC01-appb-C000014
 R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、少なくとも一つは水素原子以外である。R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。
The tetracarboxylic acid component used for the polymerization of the specific polymer of the present invention includes a tetracarboxylic acid dianhydride represented by the following formula (1) or a derivative thereof and a tetracarboxylic acid dianhydride represented by the following formula (2). It contains an anhydride or a derivative thereof and an aromatic tetracarboxylic dianhydride or a derivative thereof represented by the following formula (6). By containing the tetracarboxylic dianhydride of the above formula (1) or a derivative thereof, the light irradiation amount required for the photoreaction of the specific polymer is reduced, and a liquid crystal alignment film exhibiting high liquid crystal alignment is obtained. By containing the tetracarboxylic dianhydride or its derivative of the above formula (2) and the tetracarboxylic dianhydride or its derivative of the above formula (6), the photoreactivity of the specific polymer can be adjusted. As a result, a liquid crystal alignment film having a wide dose margin can be obtained.
Figure JPOXMLDOC01-appb-C000013
X 1 is a structure represented by any of the following formulas (X1-1) to (X1-4).
Figure JPOXMLDOC01-appb-C000014
R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. It is a monovalent organic group having 1 to 6 carbon atoms or a phenyl group, and at least one is other than a hydrogen atom. R 7 to R 23 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. A monovalent organic group having 1 to 6 carbon atoms or a phenyl group.
 長期交流駆動による残像の抑制するため、Xは、下記式(X1-12)~(X1-16)のいずれかで表される構造から選ばれる少なくとも1種であることが好ましく、下記式(X1-12)が特に好ましい。
Figure JPOXMLDOC01-appb-C000015
In order to suppress an afterimage due to long-term AC driving, X 1 is preferably at least one selected from the structures represented by any of the following formulas (X1-12) to (X1-16). X1-12) is particularly preferable.
Figure JPOXMLDOC01-appb-C000015
 上記式(1)で表されるテトラカルボン酸二無水物又はその誘導体の含有割合は、ジアミン成分と反応させるテトラカルボン酸成分に対して50~98モル%が好ましく、60~93モル%がより好ましく、65~87モル%が更に好ましい。 The content ratio of the tetracarboxylic acid dianhydride represented by the above formula (1) or its derivative is preferably 50 to 98 mol%, more preferably 60 to 93 mol% with respect to the tetracarboxylic acid component to be reacted with the diamine component. It is preferably 65 to 87 mol%, and further preferably.
 式(2)において、Xは下記式(X2-1)又は(X2-2)の構造である。
Figure JPOXMLDOC01-appb-C000016
 長期交流駆動による残像を抑制するため、Xは式(X2-1)が好ましい。
In the formula (2), X 2 is the structure of the following formula (X2-1) or (X2-2).
Figure JPOXMLDOC01-appb-C000016
Formula (X2-1) is preferable for X 2 in order to suppress an afterimage due to long-term AC driving.
 上記式(2)で表されるテトラカルボン酸二無水物又はその誘導体の含有割合は、全テトラカルボン酸成分1モルに対して1~30モル%であることが好ましく、5~25%がより好ましく、10~20%が更に好ましい。 The content ratio of the tetracarboxylic acid dianhydride represented by the above formula (2) or its derivative is preferably 1 to 30 mol% and more preferably 5 to 25% with respect to 1 mol of all tetracarboxylic acid components. It is preferably 10 to 20%, and further preferably.
 Xは4価の有機基であって、4つの結合手を有する芳香環、好ましくはベンゼン環又はナフタレン環を少なくとも1つ有し、ベンゼン環、又はナフタレン環上に4つの結合手を有する芳香環である。具体例を挙げるならば、下記式(X3-1)~(X3-26)のいずれかの構造が挙げられる。液晶配向性を高める場合においては、X3は、(X3-1)、(X3-5)~(X3-11)、(X3-14)~(X3-26)のいずれかが好ましい。更に好ましくは、(X3-1)、(X3-7)、(X3-8)におけるnが1~4である構造、(X3-9)~(X3-10)、又は(X3-14)~(X3-26)が好ましい。 X 3 is a tetravalent organic group, has an aromatic ring having four bonds, preferably at least one benzene ring or naphthalene ring, and has four bonds on the benzene ring or naphthalene ring. It is a ring. Specific examples include the structures of any of the following formulas (X3-1) to (X3-26). When enhancing the liquid crystal alignment, X3 is preferably any of (X3-1), (X3-5) to (X3-11), and (X3-14) to (X3-26). More preferably, a structure in which n in (X3-1), (X3-7), (X3-8) is 1 to 4, (X3-9) to (X3-10), or (X3-14) to (X3-26) is preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(6)で表される芳香族テトラカルボン酸二無水物又はその誘導体の含有割合は、テトラカルボン酸成分1モルに対して1~20モル%であることが好ましく、2~15モル%がより好ましく、3~15モル%が更に好ましい。 The content ratio of the aromatic tetracarboxylic acid dianhydride represented by the above formula (6) or its derivative is preferably 1 to 20 mol% with respect to 1 mol of the tetracarboxylic acid component, and 2 to 15 mol% Is more preferable, and 3 to 15 mol% is even more preferable.
 本発明の特定重合体の重合に用いられるテトラカルボン酸成分は、上記式(1)、(2)及び(6)以外に、下記式(7)で表されるテトラカルボン酸二無水物若しくはその誘導体を含有してもよい。
Figure JPOXMLDOC01-appb-C000020
 但し、Xは4価の有機基であり、上記X~X以外であるが、その構造は特に限定されない。具体例を挙げるならば、下記式(X4-1)~(X4-26)、エチレンジアミン四酢酸二無水物に由来する4価の基などが挙げられる。液晶配向性を高める場合においては、X4は、(X4-8)~(X4-12)、(X4-17)~(X4-19)、(X4-24)~(X4-26)が挙げられる。
The tetracarboxylic acid component used in the polymerization of the specific polymer of the present invention is a tetracarboxylic acid dianhydride represented by the following formula (7) or the tetracarboxylic acid dianhydride represented by the following formula (7) in addition to the above formulas (1), (2) and (6). It may contain a derivative.
Figure JPOXMLDOC01-appb-C000020
However, X 4 is a tetravalent organic group other than X 1 to X 3 , but the structure thereof is not particularly limited. Specific examples include the following formulas (X4-1) to (X4-26) and tetravalent groups derived from ethylenediaminetetraacetic acid dianhydride. When enhancing the liquid crystal alignment, X4 includes (X4-8) to (X4-12), (X4-17) to (X4-19), and (X4-24) to (X4-26). ..
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<ジアミン>
 本発明の特定重合体の製造に用いられるジアミン成分は、公知のジアミンであれば特に限定されない。長期交流駆動による残像の抑制の観点から、下記式(3)、下記式(4)及び下記式(5)から選ばれる少なくとも1種類のジアミンを含有することが好ましい。
<Diamine>
The diamine component used for producing the specific polymer of the present invention is not particularly limited as long as it is a known diamine. From the viewpoint of suppressing the afterimage due to long-term AC driving, it is preferable to contain at least one diamine selected from the following formula (3), the following formula (4) and the following formula (5).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式式(3)~式(5)中、A及びAは、それぞれ独立して、単結合、-CO-O-、-OCO-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、炭素数2~20の2価の鎖状炭化水素基、又は該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す。)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基(h1)を表す。尚、上記A及びAの上記鎖状炭化水素基及び基(h1)が有する水素原子の一部又は全部をメチル基などの炭素数1~3のアルキル基、フッ素原子、塩素原子等のハロゲン原子で置換してもよい。Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基である。Aは、炭素数1~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す。)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基(h2)を表す。尚、上記Aの鎖状炭化水素基及び基(h2)が有する水素原子の一部又は全部をメチル基などの炭素数1~3のアルキル基、フッ素原子、塩素原子等のハロゲン原子で置換してもよい。aは1~4の整数であり、aが2以上の場合、Aの構造は同一でも異なってもよい。b及びcは1又は2の整数である。dは0又は1の整数である。) In the formulas (3) to (5), A 1 and A 4 are each independently a single bond, —CO—O—, —OCO—, —NRCO— (R is a hydrogen atom or a methyl group. , -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR 1 -CO-NR 2- ( R 1 and R 2 each independently represent a hydrogen atom or a methyl group), a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 of the divalent chain hydrocarbon group. -Is -O-, -CO-, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group),- CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR 1 -CO-NR 2- (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), It represents a group (h1) substituted with a group selected from —NR— (R represents a methyl group), pyrrolidine, piperidine and piperazine. It should be noted that some or all of the hydrogen atoms contained in the chain hydrocarbon group of A 1 and A 4 and the group (h1) may be an alkyl group having 1 to 3 carbon atoms such as a methyl group, a fluorine atom, a chlorine atom, or the like. You may substitute with a halogen atom. A 2 is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a monovalent organic group having 1 to 20 carbon atoms. A 3 is a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O—, —CO—, —CO—O—, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS. -, -NR 1 -CO-NR 2- (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), -NR- (R represents a methyl group), pyrrolidine, piperidine, It represents a group (h2) substituted with a group selected from piperazine. In addition, a part or all of the hydrogen atoms contained in the chain hydrocarbon group of A 3 and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, a halogen atom such as a fluorine atom or a chlorine atom. You may. a is an integer of 1 to 4, and when a is 2 or more, the structures of A 2 may be the same or different. b and c are integers of 1 or 2. d is an integer of 0 or 1. )
 上記炭素数1~20の2価の鎖状炭化水素基としては、例えば、メタンジイル基、エタンジイル基、n-プロパンジイル基、i-プロパンジイル基、n-ブタンジイル基、i-ブタンジイル基、sec-ブタンジイル基、t-ブタンジイル基等のアルカンジイル基;エテンジイル基、プロペンジイル基、ブテンジイル基等のアルケンジイル基;エチンジイル基、プロピンジイル基、ブチンジイル基等のアルキンジイル基などが挙げられる。 Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include methanediyl group, ethanediyl group, n-propanediyl group, i-propanediyl group, n-butanediyl group, i-butanediyl group, sec- Examples thereof include alkanediyl groups such as butanediyl group and t-butanediyl group; alkenediyl groups such as ethenediyl group, propenediyl group and butenediyl group; alkynediyl groups such as ethynediyl group, propyndiyl group and butynediyl group.
 Aにおける炭素数1~20の1価の有機基としては、例えば上記Aの炭素数1~20の2価の鎖状炭化水素基、基(h2)、又は該炭素数1~20の2価の鎖状炭化水素基及び基(h2)が有する水素原子の一部又は全部をメチル基などの炭素数1~3のアルキル基、又は、フッ素原子、塩素原子等のハロゲン原子で置換された基として例示したものに1個の水素原子を加えた基等が挙げられる。 The monovalent organic group having 1 to 20 carbon atoms in A 2 is, for example, a divalent chain hydrocarbon group having 1 to 20 carbon atoms in A 3 , a group (h2), or a group having 1 to 20 carbon atoms. A part or all of the hydrogen atoms of the divalent chain hydrocarbon group and the group (h2) are substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, or a halogen atom such as a fluorine atom or a chlorine atom. Examples of the group include a group obtained by adding one hydrogen atom to the group exemplified above.
 長期交流駆動による残像の抑制するため、上記式(3)及び上記式(4)としては、下記式(DA-3-1)、(DA-4-1)~(DA-4-24)、(DA-5-1)~(DA-5-3)が好ましい。なかでも、(DA-3-1)、(DA-4-1)~(DA-4-11)、(DA-4-13)~(DA-4-24)、(DA-5-1)~(DA-5-2)がより好ましい。 In order to suppress an afterimage due to long-term AC driving, the following formulas (3) and (4) are represented by the following formulas (DA-3-1), (DA-4-1) to (DA-4-24), (DA-5-1) to (DA-5-3) are preferable. Among them, (DA-3-1), (DA-4-1) to (DA-4-11), (DA-4-13) to (DA-4-24), (DA-5-1) To (DA-5-2) are more preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式(3)、式(4)又は式(5)で表されるジアミンの含有量は、ジアミン成分1モルに対して、50~100モル%が好ましく、70モル%~100モル%であることがより好ましい。 The content of the diamine represented by the above formula (3), formula (4) or formula (5) is preferably 50 to 100 mol%, and 70 mol% to 100 mol% with respect to 1 mol of the diamine component. Is more preferable.
 ポリマーの溶解性が向上するという観点で、本発明の特定重合体の製造に用いられるジアミンは、下記式(8)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000031
 上記式(8)中、Yは下記式(9)で表される構造を含む2価の有機基である。Aは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。
From the viewpoint of improving the solubility of the polymer, the diamine used for producing the specific polymer of the present invention preferably contains a diamine represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000031
In the above formula (8), Y 6 is a divalent organic group containing a structure represented by the following formula (9). A 6's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal alignment, A 6 is preferably a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000032
 Dはt-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000032
D is a t-butoxycarbonyl group.
 上記記式(9)で表される構造を含む2価の有機基の具体例としては、下記式(J-1)又は式(J-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000033
Specific examples of the divalent organic group having a structure represented by the above formula (9) include the following formula (J-1) or formula (J-2).
Figure JPOXMLDOC01-appb-C000033
 上記式(J-1)及び(J-1)中、*1はNH-Aへの結合を表し、Qは単結合、-(CH-(nは1~20の整数である)、又は-(CH-の任意の-CH-がそれぞれ隣り合わない条件で-O-、-COO-、-OCO-、-NR-、-NRCO-、-CONR-、-NRCONR-、-NRCOO-、-OCOO-に置き換えられる基であり、Rは水素原子又は1価の有機基を表す。
 Q、Qはそれぞれ独立して-H、-NHD、-N(D)、-NHDを有する基、又は-N(D)を有する基を表す。Qは-NHD、-N(D)、-NHDを有する基、又は-N(D)を有する基を表す。Dはt-ブトキシカルボニル基を表す。但し、Q、Q及びQの少なくとも一つは基中に、t-ブトキシカルボニル基(Boc)を有する。より好ましくは、下記式(J-1-a)~(J-1-d)、又は(J-2-1)で表される2価の有機基である。
In the above formulas (J-1) and (J-1), * 1 represents a bond to NH-A 6 , Q 5 is a single bond,-(CH 2 ) n- (n is an integer of 1 to 20) Yes) or — (CH 2 ) n — and any —CH 2 — are not adjacent to each other —O—, —COO—, —OCO—, —NR—, —NRCO—, —CONR—, — NRCONR-, -NRCOO-, and -OCOO- are substituted groups, and R represents a hydrogen atom or a monovalent organic group.
Q 6 and Q 7 each independently represent a group having —H, —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 . Q 8 represents a group having —NHD, —N (D) 2 , —NHD, or a group having —N (D) 2 . D represents a t-butoxycarbonyl group. However, at least one of Q 5 , Q 6 and Q 7 has a t-butoxycarbonyl group (Boc) in the group. More preferred are divalent organic groups represented by the following formulas (J-1-a) to (J-1-d) or (J-2-1).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 本発明の特定重合体の重合に用いられるジアミンは、上記式(3)~(5)及び(8)以外に、下記式(10)で表されるジアミンを含んでもよい。
Figure JPOXMLDOC01-appb-C000035
 上記式(10)中、Aは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。
 Yは2価の有機基であり、WO2018/117239号パンフレットに記載の式(Y-1)~(Y-167)のいずれかで表される基等が挙げられる。
The diamine used for the polymerization of the specific polymer of the present invention may contain a diamine represented by the following formula (10) in addition to the above formulas (3) to (5) and (8).
Figure JPOXMLDOC01-appb-C000035
In the above formula (10), each A 8 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal alignment, A 8 is preferably a hydrogen atom or a methyl group.
Y 8 is a divalent organic group, and examples thereof include a group represented by any of the formulas (Y-1) to (Y-167) described in the pamphlet of WO2018 / 117239.
<ポリアミック酸エステル、ポリアミック酸及びポリイミドの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸及びポリイミドは、例えば、国際公開公報WO2013/157586に記載されるような公知の方法で合成できる。
<Method for producing polyamic acid ester, polyamic acid and polyimide>
The polyimide precursor polyamic acid ester, polyamic acid and polyimide used in the present invention can be synthesized by a known method as described in, for example, International Publication WO 2013/157586.
<液晶配向剤>
 本発明の液晶配向剤は、特定重合体などの重合体成分が有機溶媒中に溶解された溶液の形態を有する。特定重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、更に好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、更に好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention has a form of a solution in which a polymer component such as a specific polymer is dissolved in an organic solvent. The weight average molecular weight of the specific polymer is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and further preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and further preferably 5,000 to 50,000.
 本発明の液晶配向剤は、上記の特定重合体と有機溶媒とを含有する組成物であり、異なる構造の特定重合体を2種以上含有していてもよい。また、本発明の液晶配向剤は、特定重合体以外の重合体(以下、第2の重合体とも言う)や各種の添加剤、を含有していてもよい。 The liquid crystal aligning agent of the present invention is a composition containing the above-mentioned specific polymer and an organic solvent, and may contain two or more specific polymers having different structures. Further, the liquid crystal aligning agent of the present invention may contain a polymer other than the specific polymer (hereinafter, also referred to as a second polymer) and various additives.
 本発明の液晶配向剤が第2の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、その例として5~95質量%が挙げられる。 When the liquid crystal aligning agent of the present invention contains the second polymer, the ratio of the specific polymer to all the polymer components is preferably 5% by mass or more, and examples thereof include 5 to 95% by mass.
 第2の重合体としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 特に、テトラカルボン酸二無水物成分とジアミン成分とから得られるポリアミック酸(以下、第2のポリアミック酸とも言う)は第2の重合体として好ましい。
Examples of the second polymer include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth). An acrylate etc. can be mentioned.
In particular, a polyamic acid obtained from a tetracarboxylic dianhydride component and a diamine component (hereinafter, also referred to as a second polyamic acid) is preferable as the second polymer.
 第2のポリアミック酸を得るためのテトラカルボン酸成分としては、下記式(11)で表されるテトラカルボン酸二無水物を挙げることができる。該テトラカルボン酸二無水物は、2種類以上であってもよい。
Figure JPOXMLDOC01-appb-C000036
 上記式(11)中、Aは4価の有機基であり、好ましくは炭素数4~30の4価の有機基である。
Examples of the tetracarboxylic acid component for obtaining the second polyamic acid include a tetracarboxylic dianhydride represented by the following formula (11). Two or more kinds of the tetracarboxylic dianhydride may be used.
Figure JPOXMLDOC01-appb-C000036
In the above formula (11), A is a tetravalent organic group, preferably a C4-30 tetravalent organic group.
 以下に、好ましい上記Aの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000037
The preferred structures of A are shown below, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000037
 上記の構造のうち、(A-1)、(A-2)は光配向性の更なる向上という観点から好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から好ましく、(A-15)~(A-17)は、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から好ましい。第2のポリアミック酸を得るためのテトラカルボン酸二無水物成分は、一種類のテトラカルボン酸二無水物であってもよく、2種類以上のテトラカルボン酸二無水物が併用されていてもよい。 Of the above structures, (A-1) and (A-2) are preferable from the viewpoint of further improving the photo-alignment property, and (A-4) is preferable from the viewpoint of further improving the relaxation rate of accumulated charges. (A-15) to (A-17) are preferable from the viewpoint of further improving the liquid crystal orientation and the relaxation rate of accumulated charges. The tetracarboxylic dianhydride component for obtaining the second polyamic acid may be one type of tetracarboxylic dianhydride, or may be a combination of two or more types of tetracarboxylic dianhydride. ..
 第2のポリアミック酸を得るためのジアミン成分としては、目的に応じて適宜決定することができるが、例えば下記式(12)で表されるジアミンを用いることができる。
Figure JPOXMLDOC01-appb-C000038
(Yは2価の有機基を表す。Aは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。液晶配向性の観点から、Aは水素原子、又はメチル基が好ましい。)
The diamine component for obtaining the second polyamic acid can be appropriately determined according to the purpose, and for example, a diamine represented by the following formula (12) can be used.
Figure JPOXMLDOC01-appb-C000038
(Y 9 represents a divalent organic group. A 9's each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 2 to 5 carbon atoms. An alkynyl group. From the viewpoint of liquid crystal alignment, A 9 is preferably a hydrogen atom or a methyl group.)
 電気特性や緩和特性を改善する目的では、Yは3級窒素原子を有する2価の有機基、又は分子内に-NH-CO-NH-を有する2価の有機基であることが好ましい。Yが3級窒素原子を有する2価の有機基である場合における式(12)の具体例としては、国際公開公報WO2017/126627に記載のピロール構造を有するジアミン、好ましくは下式(pr)で表されるジアミンが挙げられる。 For the purpose of improving electric characteristics and relaxation characteristics, Y 9 is preferably a divalent organic group having a tertiary nitrogen atom or a divalent organic group having —NH—CO—NH— in the molecule. Specific examples of formula (12) in the case where Y 9 is a divalent organic group having a tertiary nitrogen atom include diamines having a pyrrole structure described in International Publication WO2017 / 126627, preferably the following formula (pr): The diamine represented by
Figure JPOXMLDOC01-appb-C000039
 上記式(pr)中、Rは水素原子、水素、フッ素原子、シアノ基、ヒドロキシ基、又はメチル基を表す。Rはそれぞれ独立して単結合又は基「*1-R-Ph-*2」を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*1は式(pr)中のベンゼン環と結合する部位を表し、*2は式(pr)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。
 国際公開公報WO2018/062197に記載のピロール構造を有するジアミン、好ましくは下式(pn)で表される構造を有するジアミン。
Figure JPOXMLDOC01-appb-C000039
In the formula (pr), R 1 represents a hydrogen atom, hydrogen, a fluorine atom, a cyano group, a hydroxy group, or a methyl group. Each R 2 independently represents a single bond or a group “* 1-R 3 —Ph- * 2”, and R 3 is a single bond, —O—, —COO—, —OCO—, — (CH 2 ) l Represents a divalent organic group selected from —, —O (CH 2 ) m O—, —CONH—, and —NHCO— (1 and m represent an integer of 1 to 5), and * 1 represents the formula (pr ) Represents a site to be bonded to the benzene ring, and * 2 represents a site to be bonded to the amino group in the formula (pr). Ph represents a phenylene group. n represents 1 to 3.
A diamine having a pyrrole structure described in International Publication WO2018 / 062197, preferably a diamine having a structure represented by the following formula (pn).
Figure JPOXMLDOC01-appb-C000040
(R及びRはそれぞれ独立に水素原子又はメチル基を表し、Rは単結合又は基「*1-R-Ph-*2」を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*1は式(pn)中のベンゼン環と結合する部位を表し、*2は式(pn)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。)、
 国際公開公報WO2018/110354に記載のカルバゾール構造を有するジアミン、好ましくは下式(cz)で表される構造を有するジアミン。
Figure JPOXMLDOC01-appb-C000040
(R 1 and R 2 each independently represent a hydrogen atom or a methyl group, R 3 represents a single bond or a group “* 1-R 4 —Ph- * 2”, R 4 represents a single bond, —O—, -COO -, - OCO -, - (CH 2) l -, - O (CH 2) m O -, - CONH-, and represents a divalent organic group selected from -NHCO- (l, m is 1 Represents an integer of 5 to 5), * 1 represents a site bonded to a benzene ring in formula (pn), * 2 represents a site bonded to an amino group in formula (pn), and Ph represents a phenylene group. .N represents 1 to 3),
A diamine having a carbazole structure described in International Publication WO2018 / 110354, preferably a diamine having a structure represented by the following formula (cz).
Figure JPOXMLDOC01-appb-C000041
(Rは水素原子又はメチル基を表し、Rはメチル基を表す。)、
 国際公開公報WO2015/046374の段落[0173]~[0188]に記載の窒素含有複素環を有するジアミンや特開2016-218149号公報の段落[0050]に記載の窒素含有構造を有するジアミン、下記式(BP)で表されるジアミン。
Figure JPOXMLDOC01-appb-C000041
(R 1 represents a hydrogen atom or a methyl group, and R 2 represents a methyl group),
The diamine having a nitrogen-containing heterocycle described in paragraphs [0173] to [0188] of WO2015 / 046374, the diamine having a nitrogen-containing structure described in paragraph [0050] of JP-A-2016-218149, and the following formulas: A diamine represented by (BP).
Figure JPOXMLDOC01-appb-C000042
(Xはビフェニル環又はフルオレン環であり、Yはベンゼン環、ビフェニル環、又は-フェニル-Z-フェニル-から選ばれる基であり、Zは-O-、-NH-、-CH-、-SO-、-C(CH-又はC(CF-で表される2価の基である。A及びBは水素原子又はメチル基である)、2,3-ジアミノピリジン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、5,6-ジアミノ-2,3-ジシアノピラジン、5,6-ジアミノ-2,4-ジヒドロキシピリミジン、2,4-ジアミノ-6-ジメチルアミノ-1,3,5-トリアジン、1,4-ビス(3-アミノプロピル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、2,4-ジアミノ-6-メチル-s-トリアジン、2,4-ジアミノ-1,3,5-トリアジン、4,6-ジアミノ-2-ビニル-s-トリアジン、3,5-ジアミノ-1,2,4-トリアゾール、6,9-ジアミノ-2-エトキシアクリジンラクテート、3,8-ジアミノ-6-フェニルフェナントリジン、1,4-ジアミノピペラジン、3,6-ジアミノアクリジン、ビス(4-アミノフェニル)フェニルアミン、4,4’-ジフェニルメチルアミン、4,4’-ジフェニルアミン、3,6-ジアミノカルバゾール、9-メチル-3,6-ジアミノカルバゾール、9-エチル-3,6-ジアミノカルバゾール、下記式(w1)~(w2)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000042
(X is a biphenyl ring or a fluorene ring, Y is a benzene ring, a biphenyl ring, or a group selected from -phenyl-Z-phenyl-, and Z is -O-, -NH-, -CH 2 -,-. A divalent group represented by SO 2 —, —C (CH 3 ) 2 — or C (CF 3 ) 2 —, where A and B are hydrogen atoms or methyl groups), 2,3-diaminopyridine 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 5,6-diamino-2,3-dicyanopyrazine, 5,6-diamino-2,4-dihydroxypyrimidine, 2, 4-diamino-6-dimethylamino-1,3,5-triazine, 1,4-bis (3-aminopropyl) piperazine, 4,4 '-[4,4'-propane-1,3-diylbis (piperidine -1,4-diyl)] dianiline, 2,4-diamino-6-isopropoxy-1,3,5-triazine, 2,4-diamino-6-methoxy-1,3,5-triazine, 2,4 -Diamino-6-phenyl-1,3,5-triazine, 2,4-diamino-6-methyl-s-triazine, 2,4-diamino-1,3,5-triazine, 4,6-diamino-2 -Vinyl-s-triazine, 3,5-diamino-1,2,4-triazole, 6,9-diamino-2-ethoxyacridine lactate, 3,8-diamino-6-phenylphenanthridine, 1,4- Diaminopiperazine, 3,6-diaminoacridine, bis (4-aminophenyl) phenylamine, 4,4'-diphenylmethylamine, 4,4'-diphenylamine, 3,6-diaminocarbazole, 9-methyl-3,6 Examples include -diaminocarbazole, 9-ethyl-3,6-diaminocarbazole, and diamines represented by the following formulas (w1) to (w2).
Figure JPOXMLDOC01-appb-C000043
(Spは、フェニレン、ピロリジン、ピペリジン、ピペラジン、炭素数2~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基を表す。)
Figure JPOXMLDOC01-appb-C000043
(Sp is phenylene, pyrrolidine, piperidine, piperazine, a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O—, —CO -, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group) Represents a group), —COS—, —NR— (R represents a methyl group), pyrrolidine, piperidine, and a group substituted with a group selected from piperazine.)
 Yが分子内に-NH-CO-NH-を有する2価の有機基である場合における上記式(12)の具体例としては、上記式(4)で、Aが-NH-CO-NH-であるか、炭素数2~20の鎖状炭化水素基の-CH-の少なくとも一つが-NH-CO-NH-で置換された基、又は炭素数2~20の鎖状炭化水素基の-CH-の少なくとも一つが-NH-CO-NH-で置換され、且つ、他の-CH-の少なくとも一つが-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-(Rはメチル基を表す)から選ばれる基で置換された基である場合のジアミンなどを挙げることができる。より好ましいジアミンの具体例としては、下記式(U-1)~(U-9)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000044
When Y 9 is a divalent organic group having —NH—CO—NH— in the molecule, specific examples of the above formula (12) include the above formula (4), in which A 1 is —NH—CO— NH-, a group in which at least one of -CH 2- of a chain hydrocarbon group having 2 to 20 carbon atoms is replaced with -NH-CO-NH-, or a chain hydrocarbon group having 2 to 20 carbon atoms At least one of —CH 2 — of the group is substituted with —NH—CO—NH—, and at least one of the other —CH 2 — is —O—, —CO—, —CO—O—, —NRCO— (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-,-. Examples thereof include diamine in the case of a group substituted with a group selected from NR- (R represents a methyl group). Specific examples of more preferable diamines include diamines represented by the following formulas (U-1) to (U-9).
Figure JPOXMLDOC01-appb-C000044
 上記式(w1)~(w2)で表されるジアミンの好ましい具体例としては、下記式(n3-1)~(n3-7)で表されるジアミン、下記式(n4-1)~(n4-6)で表されるジアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Preferred specific examples of the diamines represented by the above formulas (w1) to (w2) include diamines represented by the following formulas (n3-1) to (n3-7) and the following formulas (n4-1) to (n4). Examples include diamines represented by -6).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 印刷性を改善する目的では、カルボキシル基(COOH基)や水酸基(OH基)を有するジアミン化合物を用いることもできる。具体的には、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸又は3,5-ジアミノ安息香酸を挙げることができる。なかでも、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸又は3,5-ジアミノ安息香酸が好ましい。また、下記の式[3b-1]~式[3b-4]で示されるジアミン化合物及びこれらのアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。 For the purpose of improving printability, a diamine compound having a carboxyl group (COOH group) or a hydroxyl group (OH group) can be used. Specifically, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, Mention may be made of 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid. Of these, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid and 3,5-diaminobenzoic acid are preferable. Further, diamine compounds represented by the following formulas [3b-1] to [3b-4] and diamine compounds in which these amino groups are secondary amino groups can also be used.
Figure JPOXMLDOC01-appb-C000047
(式[3b-1]中、Qは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-を示し、m及びmはそれぞれ独立して、0~4の整数を示し、かつm+mは1~4の整数を示し、式[3b-2]中、m及びmはそれぞれ独立して、1~5の整数を示し、式[3b-3]中、Qは炭素数1~5の直鎖又は分岐アルキレン基を示し、mは1~5の整数を示し、式[3b-4]中、Q及びQはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-を示し、mは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000047
(In the formula [3b-1], Q 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON ( CH 3 )-or N (CH 3 ) CO-, m 1 and m 2 each independently represent an integer of 0 to 4, and m 1 + m 2 represent an integer of 1 to 4, and are represented by the formula [ 3b-2], m 3 and m 4 each independently represent an integer of 1 to 5, and in the formula [3b-3], Q 2 represents a linear or branched alkylene group having 1 to 5 carbon atoms. , M 5 represents an integer of 1 to 5, and in the formula [3b-4], Q 3 and Q 4 are each independently a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O -, - OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or N (CH 3) CO- indicates, m 6 is an integer of 1-4).
 第2のポリアミック酸を得るためのジアミン成分としては、上記以外に特定重合体で用いたジアミンや公知のジアミンを用いることができるが、本発明はこれらに限定されるものではない。第2のポリアミック酸を得るためのジアミン成分は、一種類のジアミンであってもよく、2種類以上のジアミンが併用されていてもよい。 As the diamine component for obtaining the second polyamic acid, the diamine used in the specific polymer or a known diamine can be used in addition to the above, but the present invention is not limited thereto. The diamine component for obtaining the second polyamic acid may be one type of diamine, or may be a combination of two or more types of diamine.
 本発明の液晶配向剤に含有される第2の重合体の分子量は、基板上に均一で欠陥のない塗膜が形成できる限りにおいて特に限定されず、その好ましい重量平均分子量及び数平均分子量は特定重合体の場合と同様である。 The molecular weight of the second polymer contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as a uniform and defect-free coating film can be formed on the substrate, and its preferable weight average molecular weight and number average molecular weight are specified. It is the same as in the case of the polymer.
 上記液晶配向剤に添加される各種の添加剤としては、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等が挙げられる。 As various additives to be added to the liquid crystal alignment agent, a dielectric or conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, and improving the adhesion between the liquid crystal alignment film and the substrate. A silane coupling agent for the purpose of, a cross-linkable compound for the purpose of increasing the hardness and density of the film when formed into a liquid crystal alignment film, and further for the purpose of efficiently promoting imidization of the polyamic acid during baking of the coating film. Examples thereof include imidization accelerators.
 架橋性化合物としては、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシル基若しくはアルコキシル基などの置換基を有する架橋性化合物、及び重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物を添加することが好ましい。
 なお、これらの置換基や、重合性不飽和結合は、架橋性化合物中に2個以上有することが架橋性を高める観点から好ましい。架橋性化合物の具体例としては、国際公開公報2011/132751号の段落[0169]~[0190]に記載のエポキシ基又はイソシアネート基を有する化合物、オキセタン基を有する化合物、ヒドロキシル基、アルコキシル基又は低級アルコキシアルキル基を有するアミノ樹脂、ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物、国際公開公報2012/014898号の段落[0103]~[0112]に記載のシクロカーボネート基を有する化合物、国際公開公報2015/072554号に記載のヒドロキシアルキルアミド基を有する化合物、国際公開公報2015/141598に記載のブロックイソシアネート基を有する化合物などが挙げられる。
Examples of the crosslinkable compound include an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a crosslinkable compound having a substituent such as a hydroxyl group or an alkoxyl group, and a crosslinkable compound having a polymerizable unsaturated group. It is preferable to add at least one compound selected from the group consisting of:
In addition, it is preferable that two or more of these substituents and polymerizable unsaturated bonds are contained in the crosslinkable compound from the viewpoint of enhancing crosslinkability. Specific examples of the crosslinkable compound include compounds having an epoxy group or an isocyanate group described in paragraphs [0169] to [0190] of WO 2011/132775, a compound having an oxetane group, a hydroxyl group, an alkoxyl group or a lower group. Amino resin having alkoxyalkyl group, benzene or phenolic compound having hydroxyl group or alkoxyl group, compound having cyclocarbonate group described in paragraphs [0103] to [0112] of International Publication WO 2012/014898, International Publication WO Examples thereof include compounds having a hydroxyalkylamide group described in 2015/072554 and compounds having a blocked isocyanate group described in WO 2015/141598.
 架橋性化合物のより好ましい具体例としては、下記式(CL-1)~(CL-13)、タケネートB-830、同B-882(以上いずれも三井化学社製)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000048
More preferable specific examples of the crosslinkable compound include those represented by the following formulas (CL-1) to (CL-13), Takenate B-830, and B-882 (all of which are manufactured by Mitsui Chemicals, Inc.). ..
Figure JPOXMLDOC01-appb-C000048
 架橋性化合物の含有量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、0.1~100質量部であることが好ましく、液晶の配向性を高める観点から、より好ましくは0.1~50質量部であり、更に好ましくは、1~50質量部である。 The content of the crosslinkable compound is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent, and from the viewpoint of enhancing the alignment of the liquid crystal, it is more preferable. The amount is preferably 0.1 to 50 parts by mass, more preferably 1 to 50 parts by mass.
 上記シランカップリング剤としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。これらシランカップリング剤を使用する場合は、液晶配向性を担保する観点から、液晶配向剤に含有される全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。 As the silane coupling agent, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -Ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl -1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diaza Nonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane , N-bis (oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p -Styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxy Examples include silane, tris- (trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatepropyltriethoxysilane. Be done. When using these silane coupling agents, from the viewpoint of ensuring the liquid crystal aligning property, the amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. , And more preferably 1 to 20 parts by mass.
 本発明の液晶配向剤における特定重合体を含む重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。なかでも、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The concentration of the polymer containing the specific polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. Above all, it is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. A particularly preferable polymer concentration is 2 to 8% by mass.
 本発明の液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。 The organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer component is uniformly dissolved therein. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples thereof include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone and 3-methoxy-N, N-dimethylpropanamide. You may use these 1 type or in mixture of 2 or more types. Further, even if the solvent alone cannot dissolve the polymer component uniformly, it may be mixed with the above organic solvent as long as the polymer does not precipitate.
 本発明の液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジアセトンアルコール、ジイソブチルケトン、ジプロピレングリコールモノメチルエーテル、ジイソブチルカルビノール等が挙げられる。これらの溶媒は2種上を併用してもよい。 The liquid crystal aligning agent of the present invention may contain, in addition to the organic solvent for dissolving the polymer component, a solvent for improving coating film uniformity when the liquid crystal aligning agent is applied to the substrate. As the solvent, a solvent having a surface tension lower than that of the above organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol. , 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, dipropylene glycol , 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, diacetone alcohol, diisobutyl ketone, dipropylene glycol monomethyl ether, diisobutylcarbi And the like. Two or more of these solvents may be used in combination.
<液晶配向膜の製造方法>
 本発明の液晶配向剤を用いた液晶配向膜の製造方法は、上記のように、液晶配向剤を塗布する工程(工程(A))、工程(A)で得られる塗膜を焼成する工程(工程(B))、工程(B)で得られた膜に偏光された紫外線を照射する工程(工程(C))、工程(C)で得られた膜を、100℃以上、且つ、工程(B)よりも高い温度で焼成する工程(工程(D))を順次行うことを特徴とする。
<Method for producing liquid crystal alignment film>
As described above, the method for producing a liquid crystal alignment film using the liquid crystal alignment agent of the present invention includes a step of applying the liquid crystal alignment agent (step (A)) and a step of baking the coating film obtained in the step (A) ( Step (B)), a step of irradiating the film obtained in step (B) with polarized ultraviolet light (step (C)), the film obtained in step (C) is 100 ° C. or higher, and It is characterized in that the step (step (D)) of firing at a temperature higher than that of B) is sequentially performed.
<工程(A)>
 本発明に用いられる液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板、ポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
<Process (A)>
The substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, or a plastic substrate such as an acrylic substrate or a polycarbonate substrate may be used. it can. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed, from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if only one substrate is used, and in this case, a material that reflects light such as aluminum can be used for the electrode.
The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexo printing, or inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
<工程(B)>
 工程(B)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、重合体中のアミック酸又はアミック酸エステルの熱イミド化を行うことができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の有機溶媒を除去する温度としては、例えば40~150℃の範囲で行うことができる。プロセスを短縮する観点で、40~120℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分の焼成時間が挙げられる。重合体中のアミック酸又はアミック酸エステルの熱イミド化を行う場合には、上記有機溶媒を除去する工程の後、例えば190~250℃、又は200~240℃の温度範囲で焼成する工程ができる。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
<Process (B)>
The step (B) is a step of baking the liquid crystal aligning agent applied on the substrate to form a film. After applying the liquid crystal aligning agent on the substrate, the solvent is evaporated or the amic acid or amic acid ester in the polymer is heated by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Imidization can be performed. The drying and firing steps after applying the liquid crystal aligning agent of the present invention can be performed at any temperature and time and may be performed a plurality of times. The temperature for removing the organic solvent of the liquid crystal aligning agent can be, for example, in the range of 40 to 150 ° C. From the viewpoint of shortening the process, it may be carried out at 40 to 120 ° C. The firing time is not particularly limited, but examples thereof include 1 to 10 minutes or 1 to 5 minutes. When the thermal imidization of the amic acid or amic acid ester in the polymer is performed, a step of baking at a temperature range of 190 to 250 ° C. or 200 to 240 ° C. can be performed after the step of removing the organic solvent. .. The firing time is not particularly limited, but may be 5 to 40 minutes, or 5 to 30 minutes.
<工程(C)>
 工程(C)は、工程(B)で得られた膜に偏光された紫外線を照射する工程である。紫外線としては、200~400nmの波長を有する紫外線を用いることが好ましく、なかでも、好ましくは200~300nmの波長を有する紫外線がより好ましい。液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、紫外線を照射してもよい。また、上記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
<Process (C)>
Step (C) is a step of irradiating the film obtained in step (B) with polarized ultraviolet light. As the ultraviolet rays, ultraviolet rays having a wavelength of 200 to 400 nm are preferably used, and among them, ultraviolet rays having a wavelength of 200 to 300 nm are more preferable. In order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C. The irradiation dose of the above radiation is preferably 1 to 10,000 mJ / cm 2 . Among them, 100 to 5,000 mJ / cm 2 is preferable. The liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
The higher the extinction ratio of polarized ultraviolet rays, the higher anisotropy can be imparted, which is preferable. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, more preferably 20: 1 or more.
<工程(D)>
 工程(D)は、工程(C)で得られた膜を、100℃以上、且つ、工程(B)よりも高い温度で焼成する工程である。焼成温度は、100℃以上、且つ、工程(B)での焼成温度よりも高ければ、特に限定されないが、150~300℃が好ましく、150~250℃がより好ましく、200~250℃が更に好ましい。焼成時間は、5~120分が好ましく、より好ましくは5~60分、更に好ましくは、5~30分である。
 焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Process (D)>
Step (D) is a step of firing the film obtained in step (C) at a temperature of 100 ° C. or higher and a temperature higher than that of step (B). The firing temperature is not particularly limited as long as it is 100 ° C. or higher and higher than the firing temperature in the step (B), but is preferably 150 to 300 ° C., more preferably 150 to 250 ° C., further preferably 200 to 250 ° C. .. The firing time is preferably 5 to 120 minutes, more preferably 5 to 60 minutes, and further preferably 5 to 30 minutes.
If the thickness of the liquid crystal alignment film after firing is too thin, the reliability of the liquid crystal display element may decrease, so that the thickness is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 更に、上記工程(C)又は(D)のいずれかの工程を行った後、得られた液晶配向膜を、水や溶媒を用いて、接触処理をすることもできる。
 上記接触処理に使用する溶媒としては、紫外線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。
Furthermore, after performing either of the above steps (C) or (D), the obtained liquid crystal alignment film can be subjected to a contact treatment using water or a solvent.
The solvent used in the above contact treatment is not particularly limited as long as it is a solvent that dissolves the decomposition product generated from the liquid crystal alignment film by irradiation with ultraviolet rays. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate. Among them, water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate. The solvent may be one kind or a combination of two or more kinds.
 上記の接触処理、すなわち、偏光された紫外線を照射した液晶配向膜に水や溶媒を処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、紫外線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1分~30分間浸漬処理をすることが好ましい。また、上記接触処理時の溶媒は、常温でも加温しても良いが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理などを行っても良い。 As the above-mentioned contact treatment, that is, treatment of water or solvent on the liquid crystal alignment film irradiated with polarized ultraviolet rays, immersion treatment or spray treatment (also referred to as spray treatment) can be mentioned. The treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition product generated from the liquid crystal alignment film by ultraviolet rays. Above all, it is preferable to perform the immersion treatment for 1 to 30 minutes. The solvent used in the contact treatment may be heated at room temperature or heated, but is preferably 10 to 80 ° C. Above all, 20 to 50 ° C. is preferable. In addition, from the viewpoint of solubility of the decomposed product, ultrasonic treatment may be performed as necessary.
 上記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンなどの低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行っても良い。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。 After the contact treatment, it is preferable to perform rinsing (also referred to as rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone and baking of the liquid crystal alignment film. At that time, either one of rinsing and baking may be performed, or both may be performed. The firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, it is 200 to 230 ° C. The firing time is preferably 10 seconds to 30 minutes. Of these, 1 to 10 minutes is preferable.
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
INDUSTRIAL APPLICABILITY The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a lateral electric field type liquid crystal display device such as an IPS system or an FFS system, and particularly useful as a liquid crystal alignment film of an FFS system liquid crystal display device. The liquid crystal display device is obtained by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention, producing a liquid crystal cell by a known method, and using the liquid crystal cell.
As an example of a method of manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. A liquid crystal display element having an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion that constitutes image display may be used.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes and are patterned so that a desired image can be displayed. Next, an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
Next, a liquid crystal alignment film is formed on each substrate, one substrate is overlaid with the other substrate so that their liquid crystal alignment film surfaces face each other, and the periphery is bonded with a sealant. It is preferable that a spacer is usually mixed in the sealant in order to control the substrate gap, and spacers for controlling the substrate gap are also scattered on the in-plane portion where the sealant is not provided. An opening that can be filled with liquid crystal from the outside is provided in part of the sealant. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing a capillary phenomenon in the atmosphere may be used. As the liquid crystal material, either a positive type liquid crystal material or a negative type liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
 上記のようにして、本発明の製造方法を用いることで、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像が抑制出来、低分子量化合物が残存することで発生する輝点などの不具合がなく、且つ、従来よりも少ない工程数での製造が可能な液晶配向膜を得ることができる。 As described above, by using the manufacturing method of the present invention, it is possible to suppress the afterimage caused by the long-term AC driving that occurs in the liquid crystal display element of the IPS driving method or the FFS driving method, and the brightness generated by the residual low molecular weight compound is generated. It is possible to obtain a liquid crystal alignment film which is free from problems such as points and which can be manufactured by a smaller number of steps than conventional ones.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
(ジアミン)
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The abbreviations of the compounds and the methods for measuring each property below are as follows.
(Diamine)
Figure JPOXMLDOC01-appb-C000049
(Bocは、tert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000049
(Boc represents a tert-butoxycarbonyl group.)
(テトラカルボン酸二無水物)
 CA-X-1:下記式(CA-X-1)で表される化合物
Figure JPOXMLDOC01-appb-C000050
(化合物C)
 c-1:下記式(c-1)で表される化合物
(その他の添加剤)
 LS-4668:3-グリシドキシプロピルトリエトキシシラン(下記(s-1)で表される化合物)
(Tetracarboxylic acid dianhydride)
CA-X-1: a compound represented by the following formula (CA-X-1)
Figure JPOXMLDOC01-appb-C000050
(Compound C)
c-1: compound represented by the following formula (c-1) (other additives)
LS-4668: 3-glycidoxypropyltriethoxysilane (compound represented by the following (s-1))
Figure JPOXMLDOC01-appb-C000051
(有機溶媒)
 NMP:N-メチル-2-ピロリドン、 GBL:γ-ブチロラクトン、
 BCS:ブチルセロソルブ、
Figure JPOXMLDOC01-appb-C000051
(Organic solvent)
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone,
BCS: butyl cellosolve,
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)を使用して500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用いて以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (Kusano Scientific Co., Ltd.)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixed product) 0.53 ml. Was added and ultrasonic waves were applied to completely dissolve. This solution was measured for proton NMR at 500 MHz using an NMR measuring device (JNW-ECA500, manufactured by JEOL Datum). The imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the integrated peak value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It calculated | required by the following formula using integrated value.
Imidization rate (%) = (1-α · x / y) × 100
In the above formula, x is the proton peak integrated value derived from the NH group of amic acid, y is the peak integrated value of the reference proton, and α is the NH of the amic acid in the case of polyamic acid (imidization ratio is 0%). It is the ratio of the number of reference protons to one base proton.
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-h-1を3.62g(14.8mmol)、DA-h-2を4.75g(14.8mmol)、DA-i-1を1.92g(17.8mmol)、及びDA-j-1を4.05g(11.9mmol)を秤取し、NMPを固形分濃度が12質量%になるように加えて、窒素を送りながら撹拌し溶解させた。得られた溶液を撹拌しながらCA-1-1を10.1g(45.2mmol)、CA-2-1を2.12g(8.5mmol)、及びCA-3-1を0.83g(2.8mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加えた。次いで、40℃で24時間撹拌してポリアミック酸溶液を得た。
[Synthesis of polymer]
<Synthesis example 1>
In a four-necked flask equipped with a stirrer and equipped with a nitrogen inlet tube, 3.62 g (14.8 mmol) of DA-h-1 and 4.75 g (14.8 mmol) of DA-h-2 and DA-i-1 were used. Of 1.92 g (17.8 mmol) and DA-j-1 of 4.05 g (11.9 mmol) were weighed out, and NMP was added so that the solid content concentration was 12% by mass, while feeding nitrogen. Stir to dissolve. While stirring the obtained solution, 10.1 g (45.2 mmol) of CA-1-1, 2.12 g (8.5 mmol) of CA-2-1, and 0.83 g (2 of CA-3-1) were used. .8 mmol) was added, and NMP was further added so that the solid content concentration became 15 mass%. Then, the mixture was stirred at 40 ° C. for 24 hours to obtain a polyamic acid solution.
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られた上記ポリアミック酸溶液を30.0g取り、NMPを固形分濃度が10質量%となるように加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を2.80g、及びピリジンを1.50g加えて、55℃で3時間加熱し、化学イミド化を行った。得られた反応液を反応液質量の3.5倍量のメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、メタノールで3回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド(PI-A-1)の粉末を得た。このポリイミド樹脂粉末のイミド化率は62%であった。得られたポリイミド(PI-A-1)にNMPを加え、70℃で24時間攪拌し、固形分濃度が12質量%のポリイミド(PI-A-1)の溶液を得た。 30.0 g of the obtained polyamic acid solution was placed in a 100 mL four-necked flask equipped with a stirrer and equipped with a nitrogen introduction tube, NMP was added so that the solid content concentration was 10% by mass, and the mixture was stirred for 30 minutes. 2.80 g of acetic anhydride and 1.50 g of pyridine were added to the obtained polyamic acid solution, and the mixture was heated at 55 ° C. for 3 hours to carry out chemical imidization. The obtained reaction liquid was poured into methanol in an amount 3.5 times the mass of the reaction liquid while stirring, and the deposited precipitate was collected by filtration, and subsequently washed with methanol three times. The resin powder thus obtained was dried at 60 ° C. for 12 hours to obtain a polyimide (PI-A-1) powder. The imidation ratio of this polyimide resin powder was 62%. NMP was added to the obtained polyimide (PI-A-1), and the mixture was stirred at 70 ° C. for 24 hours to obtain a polyimide (PI-A-1) solution having a solid content concentration of 12 mass%.
<合成例2~5>
 下記表1に示す、ジアミン成分、テトラカルボン酸成分、及び有機溶媒を使用し、それぞれ、合成例1と同様の手順で実施することにより、下記表1に示すポリイミド(PI-A-2)~(PI-A-4)、(R-PI-1)及びポリアミック酸(PAA-B-1)~(PAA-B-3)の溶液を得た。尚、ポリアミック酸(PAA-B-1)~(PAA-B-3)についてはLS-4668をポリアミック酸固形分に対して1質量%となるように添加した。
<Synthesis examples 2 to 5>
By using the diamine component, the tetracarboxylic acid component, and the organic solvent shown in Table 1 below in the same procedure as in Synthesis Example 1, polyimide (PI-A-2) shown in Table 1 below A solution of (PI-A-4), (R-PI-1) and polyamic acids (PAA-B-1) to (PAA-B-3) was obtained. For polyamic acids (PAA-B-1) to (PAA-B-3), LS-4668 was added so as to be 1% by mass based on the solid content of polyamic acid.
 表1中、括弧内の数値は、テトラカルボン酸成分については、合成に使用したテトラカルボン酸成分の合計量100モル部に対する各化合物の配合割合(モル部)を表し、ジアミン酸成分については、合成に使用したジアミン成分の合計量100モル部に対する各化合物の配合割合(モル部)を表す。有機溶媒については、合成に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。 In Table 1, the values in parentheses represent the compounding ratio (mol part) of each compound to 100 mol parts of the total amount of the tetracarboxylic acid components used in the synthesis for the tetracarboxylic acid component, and for the diamine acid component, The compounding ratio (mol part) of each compound to 100 mol parts of the total amount of diamine components used in the synthesis is shown. Regarding the organic solvent, the compounding ratio (parts by mass) of each organic solvent to the total amount of 100 parts by mass of the organic solvent used in the synthesis is shown.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
[液晶配向剤の調製]
<実施例1>
 合成例1で得られたポリイミド(PI-A-1)の溶液を、NMP及びBCSにより希釈し、室温で攪拌した。次いで、この得られた溶液を孔径0.5μmのフィルターでろ過することにより、溶媒組成比(NMP:BCS=80:20(質量比))、重合体固形分濃度が6質量%となる液晶配向剤(1)を得た(下記の表2参照)。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
[Preparation of liquid crystal aligning agent]
<Example 1>
The polyimide (PI-A-1) solution obtained in Synthesis Example 1 was diluted with NMP and BCS, and stirred at room temperature. Then, the obtained solution is filtered through a filter having a pore size of 0.5 μm to give a solvent composition ratio (NMP: BCS = 80: 20 (mass ratio)) and a liquid crystal alignment in which the polymer solid content concentration is 6% by mass. Agent (1) was obtained (see Table 2 below). No abnormalities such as turbidity and precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例2~4、比較例1>
 下記表2に示す、それぞれの重合体を使用した以外は、実施例1と同様に実施することにより、液晶配向剤(2)~(4)及び(R1)を得た。
<Examples 2 to 4, Comparative Example 1>
Liquid crystal aligning agents (2) to (4) and (R1) were obtained in the same manner as in Example 1 except that each polymer shown in Table 2 below was used.
<実施例5~7、比較例2>
 合成例2で得られたポリイミド(PI-A-2)の溶液及び合成例6で得られたポリアミック酸(PAA-B-1)の溶液を用いて、NMP、GBL、及びBCSにより希釈し、更に化合物(c-1)を全ての重合体100質量部に対して3質量部となるように添加し室温で攪拌した。次いで、得られた溶液を孔径0.5μmのフィルターでろ過することにより、重合体の成分比率が(PI-A-2):(PAA-B-1)=40:60(固形分換算質量比)、溶媒組成比がNMP:GBL:BCS=50:30:20(質量比)、重合体固形分濃度が6質量%となる液晶配向剤(1)を得た(下記の表2参照)。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 5 to 7, Comparative Example 2>
Using the solution of the polyimide (PI-A-2) obtained in Synthesis Example 2 and the solution of the polyamic acid (PAA-B-1) obtained in Synthesis Example 6, diluted with NMP, GBL, and BCS, Further, the compound (c-1) was added to 3 parts by mass with respect to 100 parts by mass of all the polymers, and the mixture was stirred at room temperature. Then, the obtained solution is filtered with a filter having a pore size of 0.5 μm to give a polymer component ratio of (PI-A-2) :( PAA-B-1) = 40: 60 (mass ratio in terms of solid content). ), A solvent composition ratio of NMP: GBL: BCS = 50: 30: 20 (mass ratio), and a liquid crystal aligning agent (1) having a polymer solid content concentration of 6 mass% were obtained (see Table 2 below). No abnormalities such as turbidity and precipitation were observed in this liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
 表2中、括弧内の数値は、重合体及び化合物(C)についてはそれぞれ液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体成分又は化合物(C)の配合割合(質量部)を表す。有機溶媒については、液晶配向剤の調製に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。 In Table 2, the numerical values in parentheses are the blending ratio of each polymer component or compound (C) with respect to the polymer and the compound (C) with respect to 100 parts by mass in total of the polymer components used for the preparation of the liquid crystal aligning agent ( Mass part). Regarding the organic solvent, the compounding ratio (parts by mass) of each organic solvent to 100 parts by mass of the total amount of the organic solvent used for preparing the liquid crystal aligning agent is shown.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
[液晶表示素子の作製]
 FFSモード液晶表示素子の構成を備えた液晶セルを作製する。
 始めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of liquid crystal display device]
A liquid crystal cell having the configuration of the FFS mode liquid crystal display element is manufactured.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern, which constitutes a counter electrode as a first layer, is formed. A SiN (silicon nitride) film formed by the CVD method is formed as a second layer on the counter electrode of the first layer. The film thickness of the second-layer SiN film is 500 nm and functions as an interlayer insulating film. A comb-teeth-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the second-layer SiN film to form two pixels of a first pixel and a second pixel. ing. The size of each pixel is 10 mm in length and about 5 mm in width. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が内角160°に屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg" -shaped electrode elements whose central portion is bent at an internal angle of 160 °. The width of each electrode element in the lateral direction is 3 μm, and the distance between the electrode elements is 6 μm. The pixel electrode that forms each pixel is configured by arranging a plurality of curved "dogleg" -shaped electrode elements in the central portion, so the shape of each pixel is not rectangular, but is similar to that of the electrode element. It has a shape that resembles a bold "dogleg" bent at a part. Each pixel is divided into upper and lower parts with a central bent portion as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
 次に、液晶配向剤を上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、この塗膜面に偏光板を介して消光比が26:1の直線偏光した波長254nmの紫外線を照射した後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。なお、上記電極付き基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理した。得られた2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合うようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS方式の液晶表示素子を得た。その後、得られた液晶表示素子を120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。  Next, a liquid crystal aligning agent was applied to the above-mentioned substrate with electrodes and a glass substrate having a columnar spacer having a height of 4 μm and having an ITO film formed on the back surface by spin coating. After drying on a hot plate at 80 ° C for 2 minutes, this coating film surface was irradiated with linearly polarized ultraviolet light of wavelength 254 nm with an extinction ratio of 26: 1 through a polarizing plate, and then a hot air circulation oven at 230 ° C. And was baked for 30 minutes to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm. The liquid crystal alignment film formed on the electrode-attached substrate is a liquid crystal alignment film formed on the second glass substrate by performing alignment processing so that the direction that equally divides the interior angle of the pixel bend portion and the liquid crystal alignment direction are orthogonal to each other. Was subjected to an alignment treatment so that the alignment direction of the liquid crystal on the first substrate and the alignment direction of the liquid crystal on the second substrate coincided with each other when the liquid crystal cell was manufactured. The obtained two substrates with a liquid crystal alignment film are set as one set, the sealant is printed on the substrate with the liquid crystal injection port left, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other. It was Then, the sealant was cured to prepare an empty cell having a cell gap of 4 μm. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS type liquid crystal display element. Then, the obtained liquid crystal display element was heated at 120 ° C. for 1 hour and left at 23 ° C. overnight, and then used for evaluation. ‥
[評価]
・照射量マージンの評価
 上記で得られた液晶表示素子を60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶表示素子の画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 上記の処理を行った液晶表示素子について、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。
 具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶表示素子を設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度(以下、Δacと称する)を求めた。
 このΔacが0.15°未満となる最も低い光照射量Emin(mJ/cm)と、最も高い光照射量Emax(mJ/cm)を用いて、以下の3段階の指標で評価を行った。評価結果を下記の表3に示す。
[Evaluation]
-Evaluation of irradiation dose margin The liquid crystal display device obtained above was applied with an AC voltage of ± 5 V at a frequency of 60 Hz for 120 hours under a constant temperature environment of 60 ° C. Then, the pixel electrode of the liquid crystal display element and the counter electrode were short-circuited and left at room temperature for one day.
With respect to the liquid crystal display element that has been subjected to the above-described processing, the deviation between the alignment direction of the liquid crystal in the first region and the alignment direction of the liquid crystal in the second region of the pixel when no voltage is applied was calculated as an angle.
Specifically, a liquid crystal display element is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal is adjusted so that the transmitted light intensity in the first region of the pixel is minimized. The cell arrangement angle was adjusted, and then the rotation angle (hereinafter referred to as Δ ac ) required when the liquid crystal cell was rotated so that the transmitted light intensity in the second region of the pixel was minimized was obtained.
Using the lowest light irradiation amount E min (mJ / cm 2 ) where this Δ ac is less than 0.15 ° and the highest light irradiation amount E max (mJ / cm 2 ), the following three-stage index is used. An evaluation was made. The evaluation results are shown in Table 3 below.
 優:EmaxとEminとの差が、300mJ/cm以上である。
 良:EmaxとEminとの差が、200mJ/cm以上、300mJ/cm未満である。
 不良:EmaxとEminとの差が、200mJ/cm未満である。
Excellent: The difference between E max and E min is 300 mJ / cm 2 or more.
Good: The difference between E max and E min is 200 mJ / cm 2 or more and less than 300 mJ / cm 2 .
Poor: The difference between E max and E min is less than 200 mJ / cm 2 .
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 上記のとおり、本発明の実施例1~7で用いた液晶配向剤(1)~(7)から得られる液晶配向膜は、150~350mJ/cm、又は150~450mJ/cmの光照射量を照射した際に、Δacがいずれも0.15°未満となり、良好な残像特性を示した。 一方、比較例1~2で用いた液晶配向剤(R1)~(R2)は、150~250mJ/cmの光照射量を照射した際に、Δacが0.15°未満となり良好な残像特性を示したが、350mJ/cmの光照射量を照射した際にはΔacが0.15°以上となり、良好な残像特性が得られなかった。以上から、本発明の液晶配向剤により、光照射量マージンの拡大が可能になり、且つ良好な残像特性を有する液晶配向膜を得ることができることがわかる。よって、本発明の液晶配向剤から得られる液晶配向膜は、液晶パネル製造における歩留りが高く、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。 As described above, the liquid crystal alignment films obtained from the liquid crystal alignment agents (1) to (7) used in Examples 1 to 7 of the present invention were irradiated with light of 150 to 350 mJ / cm 2 or 150 to 450 mJ / cm 2 . When the amount of irradiation was increased, Δac was less than 0.15 °, and good afterimage characteristics were exhibited. On the other hand, the liquid crystal aligning agents (R1) and (R2) used in Comparative Examples 1 and 2 have a good afterimage of Δ ac of less than 0.15 ° when irradiated with a light irradiation amount of 150 to 250 mJ / cm 2. Although the characteristics were exhibited, when the light irradiation amount of 350 mJ / cm 2 was applied, Δ ac became 0.15 ° or more, and good afterimage characteristics could not be obtained. From the above, it is understood that the liquid crystal aligning agent of the present invention makes it possible to expand the light irradiation amount margin and obtain a liquid crystal aligning film having good afterimage characteristics. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has a high yield in liquid crystal panel production, and can reduce the afterimage caused by AC drive generated in the liquid crystal display device of the IPS drive system or the FFS drive system. A liquid crystal display device of an IPS drive system or an FFS drive system having excellent afterimage characteristics can be obtained.
 本発明の液晶配向剤は、IPS駆動方式やFFS駆動方式などの広範な液晶表示素子における液晶配向膜の形成に有用である。
 なお、2018年11月19日に出願された日本特許出願2018-216789号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of the present invention is useful for forming a liquid crystal aligning film in a wide variety of liquid crystal display devices such as an IPS driving system and an FFS driving system.
In addition, the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-216789 filed on Nov. 19, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (15)

  1.  下記式(1)で表されるテトラカルボン酸二無水物若しくはその誘導体と下記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体と下記式(6)で表される芳香族テトラカルボン酸二無水物とを含有するテトラカルボン酸成分と、ジアミン成分と、の重合反応により得られるポリイミド前駆体のイミド化物であるポリイミドを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Xは下記式(X1-1)~(X1-4)のいずれかで表される構造である。Xは下記式(X2-1)又は(X2-2)で表される構造である。Xは4つの結合手を有する芳香環である。)
    Figure JPOXMLDOC01-appb-C000002
    (R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、少なくとも一つは水素原子以外である。R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。)
    Figure JPOXMLDOC01-appb-C000003
    Tetracarboxylic dianhydride or its derivative represented by the following formula (1), tetracarboxylic dianhydride or its derivative represented by the following formula (2), and aromatic tetra represented by the following formula (6) A liquid crystal aligning agent comprising a polyimide which is an imidized product of a polyimide precursor obtained by a polymerization reaction of a tetracarboxylic acid component containing a carboxylic dianhydride and a diamine component.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 is a structure represented by any of the following formulas (X1-1) to (X1-4). X 2 is a structure represented by the following formula (X2-1) or (X2-2). Yes, X 3 is an aromatic ring having 4 bonds.)
    Figure JPOXMLDOC01-appb-C000002
    (R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a fluorine atom. A monovalent organic group having 1 to 6 carbon atoms or a phenyl group, at least one of which is other than a hydrogen atom, and R 7 to R 23 each independently represent a hydrogen atom, a halogen atom, or a C 1 An alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.)
    Figure JPOXMLDOC01-appb-C000003
  2.  前記ポリイミドのイミド化率が10~100%である請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the imidization ratio of the polyimide is 10 to 100%.
  3.  前記テトラカルボン酸成分が、前記式(2)で表されるテトラカルボン酸二無水物又はその誘導体を、前記テトラカルボン酸成分に対して1~30モル%含有する請求項1又は2に記載の液晶配向剤。 The tetracarboxylic acid component according to claim 1 or 2, wherein the tetracarboxylic acid dianhydride represented by the formula (2) or a derivative thereof is contained in an amount of 1 to 30 mol% based on the tetracarboxylic acid component. Liquid crystal aligning agent.
  4.  前記テトラカルボン酸成分が、前記式(6)で表されるテトラカルボン酸二無水物又はその誘導体を、前記テトラカルボン酸成分に対して1~20モル%含有する請求項1又は2に記載の液晶配向剤。 3. The tetracarboxylic acid component according to claim 1, wherein the tetracarboxylic acid dianhydride represented by the formula (6) or a derivative thereof is contained in an amount of 1 to 20 mol% based on the tetracarboxylic acid component. Liquid crystal aligning agent.
  5.  前記式(1)において、Xが、下記式(X1-12)~(X1-16)のいずれかで表される構造から選ばれる少なくとも1種である請求項1~4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    5. The liquid crystal alignment according to claim 1, wherein in the formula (1), X 1 is at least one selected from structures represented by any of the following formulas (X1-12) to (X1-16). Agent.
    Figure JPOXMLDOC01-appb-C000004
  6.  前記式(1)におけるXが、前記式(X1-12)~(X1-16)のいずれかで表される構造から選ばれる少なくとも1種である請求項1~4に記載の液晶配向剤。 5. The liquid crystal aligning agent according to claim 1, wherein X 1 in the formula (1) is at least one selected from the structures represented by any of the formulas (X1-12) to (X1-16). ..
  7.  前記式(2)において、Xが前記式(X2-1)で表される構造である請求項1~6に記載の液晶配向剤。 7. The liquid crystal aligning agent according to claim 1, wherein in the formula (2), X 2 has a structure represented by the formula (X2-1).
  8.  前記ジアミン成分が、下記式(3)、下記式(4)及び下記式(5)のいずれかで表される構造から選ばれる少なくとも1種のジアミンを含有する請求項1~7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (A及びAは、それぞれ独立して、単結合、-CO-O-、-OCO-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、炭素数2~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す。)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基(h1)を表す。Aは、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、チオール基、ニトロ基、リン酸基、又は炭素数1~20の1価の有機基である。尚、前記A及びAの鎖状炭化水素基及び基(h1)が有する水素原子の一部又は全部を炭素数1~3のアルキル基、ハロゲン原子で置換してもよい。Aは、炭素数1~20の2価の鎖状炭化水素基、又は当該2価の鎖状炭化水素基の-CH-が、-O-、-CO-、-CO-O-、-NRCO-(Rは水素原子又はメチル基を表す。)、-NRCOO-(Rは水素原子又はメチル基を表す。)、-CONR-(Rは水素原子又はメチル基を表す。)、-COS-、-NR-CO-NR-(R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)、-NR-(Rはメチル基を表す。)、ピロリジン、ピペリジン、ピペラジンから選ばれる基で置換された基(h2)である。尚、Aの前記鎖状炭化水素基及び基(h2)が有する水素原子の一部又は全部を炭素数1~3のアルキル基、ハロゲン原子で置換してもよい。aは1~4の整数であり、aが2以上の場合、Aは同一でも異なってもよい。b及びcは、それぞれ独立して、1又は2の整数である。dは0又は1の整数である。)
    8. The liquid crystal according to claim 1, wherein the diamine component contains at least one diamine selected from the structures represented by any of the following formulas (3), (4) and (5). Alignment agent.
    Figure JPOXMLDOC01-appb-C000005
    (A 1 and A 4 are each independently a single bond, —CO—O—, —OCO—, —NRCO— (R represents a hydrogen atom or a methyl group), —NRCOO— (R is a hydrogen atom. Or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group), -COS-, -NR 1 -CO-NR 2- (R 1 and R 2 are each independently hydrogen. Represents an atom or a methyl group), a divalent chain hydrocarbon group having 2 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O—, —CO—, — CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or a methyl group) .), —COS—, —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R represents a methyl group). Represents a group (h1) substituted with a group selected from pyrrolidine, piperidine, and piperazine, A 2 represents a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a thiol group, a nitro group, a phosphoric acid group, or a carbon number. 1 to 20 monovalent organic groups, wherein the chain hydrocarbon group of A 1 and A 4 and part or all of the hydrogen atoms of the group (h1) have an alkyl group of 1 to 3 carbon atoms, A 3 may be substituted with a halogen atom, A 3 is a divalent chain hydrocarbon group having 1 to 20 carbon atoms, or —CH 2 — of the divalent chain hydrocarbon group is —O—, — CO-, -CO-O-, -NRCO- (R represents a hydrogen atom or a methyl group), -NRCOO- (R represents a hydrogen atom or a methyl group), -CONR- (R represents a hydrogen atom or A methyl group), —COS—, —NR 1 —CO—NR 2 — (R 1 and R 2 each independently represent a hydrogen atom or a methyl group), —NR— (R is a methyl group. Represents a group) and a group (h2) substituted with a group selected from pyrrolidine, piperidine and piperazine, wherein part or all of the hydrogen atoms contained in the chain hydrocarbon group of A 3 and the group (h2). May be substituted with an alkyl group having 1 to 3 carbon atoms or a halogen atom, a is an integer of 1 to 4, and when a is 2 or more, A 2 may be the same or different. , Each independently being an integer of 1 or 2. d is an integer of 0 or 1.)
  9.  前記ジアミン成分が、下記式(DA-3-1)、(DA-4-1)~(DA-4-24)、(DA-5-1)~(DA-5-3)よりなる群から選ばれる少なくとも1種のジアミンを含有する請求項1~8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The diamine component is selected from the group consisting of the following formulas (DA-3-1), (DA-4-1) to (DA-4-24), and (DA-5-1) to (DA-5-3). The liquid crystal aligning agent according to claim 1, which contains at least one diamine selected.
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  10.  下記(A)、(B)、(C)、及び(D)の工程を有する液晶配向膜の製造方法。
    工程(A):請求項1~9のいずれかに記載の液晶配向剤を塗布する工程
    工程(B):工程(A)で得られる塗膜を焼成する工程
    工程(C):工程(B)で得られた膜に偏光された紫外線を照射する工程
    工程(D):工程(C)で得られた膜を、100℃以上、且つ、工程(B)よりも高い温度で焼成する工程。
    A method for producing a liquid crystal alignment film, which includes the following steps (A), (B), (C), and (D).
    Step (A): Step of applying the liquid crystal aligning agent according to any one of claims 1 to 9 Step (B): Step of firing the coating film obtained in Step (A) Step (C): Step (B) Step (D) of irradiating the film obtained in step with polarized ultraviolet rays: a step of firing the film obtained in step (C) at a temperature of 100 ° C. or higher and higher than that in step (B).
  11.  前記工程(B)において、50℃~150℃で焼成する請求項10に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 10, wherein in the step (B), baking is performed at 50 ° C to 150 ° C.
  12.  前記工程(D)において、膜を150~300℃で焼成する請求項10又は11に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 10 or 11, wherein in the step (D), the film is baked at 150 to 300 ° C.
  13.  請求項1~9のいずれかに記載の液晶配向剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal alignment agent according to any one of claims 1 to 9.
  14.  請求項13に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 13.
  15.  横電界で液晶を駆動する請求項14に記載の液晶表示素子。 The liquid crystal display device according to claim 14, wherein the liquid crystal is driven by a horizontal electric field.
PCT/JP2019/044925 2018-11-19 2019-11-15 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device WO2020105561A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020558354A JP7414006B2 (en) 2018-11-19 2019-11-15 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201980076518.4A CN113168052A (en) 2018-11-19 2019-11-15 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020217008817A KR20210092194A (en) 2018-11-19 2019-11-15 A liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216789 2018-11-19
JP2018-216789 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105561A1 true WO2020105561A1 (en) 2020-05-28

Family

ID=70773182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044925 WO2020105561A1 (en) 2018-11-19 2019-11-15 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP7414006B2 (en)
KR (1) KR20210092194A (en)
CN (1) CN113168052A (en)
TW (1) TWI816939B (en)
WO (1) WO2020105561A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117567741B (en) * 2024-01-11 2024-04-19 武汉柔显科技股份有限公司 Polyamic acid and preparation method thereof, liquid crystal aligning agent, alignment film and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145346A (en) * 2016-02-18 2017-08-24 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018062353A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2018159733A1 (en) * 2017-03-02 2018-09-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP5654228B2 (en) 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ Liquid crystal display device and method of manufacturing liquid crystal display device
JP6252752B2 (en) 2013-04-09 2017-12-27 Jsr株式会社 Liquid crystal alignment agent
JP6278216B2 (en) * 2013-05-22 2018-02-14 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
KR102607979B1 (en) * 2015-02-06 2023-11-30 닛산 가가쿠 가부시키가이샤 Liquid crystal orienting agent, liquid crystal display element, and method for producing liquid crystal display element
JPWO2017094786A1 (en) 2015-11-30 2018-09-27 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145346A (en) * 2016-02-18 2017-08-24 Jnc株式会社 Diamine, polyamic acid or derivative thereof, liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018062353A1 (en) * 2016-09-29 2018-04-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
WO2018159733A1 (en) * 2017-03-02 2018-09-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
JP7414006B2 (en) 2024-01-16
KR20210092194A (en) 2021-07-23
JPWO2020105561A1 (en) 2021-10-07
TW202035519A (en) 2020-10-01
CN113168052A (en) 2021-07-23
TWI816939B (en) 2023-10-01

Similar Documents

Publication Publication Date Title
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014084364A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7447889B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2021177080A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018117239A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7414006B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7428145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2020158819A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2021177113A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN115968453A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7428138B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7311047B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7409375B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7469736B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024029576A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2022085674A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2021215280A1 (en) Novel diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP2024059669A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP2019101195A (en) Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886499

Country of ref document: EP

Kind code of ref document: A1