WO2018062353A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device Download PDF

Info

Publication number
WO2018062353A1
WO2018062353A1 PCT/JP2017/035120 JP2017035120W WO2018062353A1 WO 2018062353 A1 WO2018062353 A1 WO 2018062353A1 JP 2017035120 W JP2017035120 W JP 2017035120W WO 2018062353 A1 WO2018062353 A1 WO 2018062353A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
crystal aligning
solvent
Prior art date
Application number
PCT/JP2017/035120
Other languages
French (fr)
Japanese (ja)
Inventor
淳彦 萬代
泰宏 宮本
石川 和典
柱永 李
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780073610.6A priority Critical patent/CN110023826B/en
Priority to KR1020227036843A priority patent/KR20220147158A/en
Priority to JP2018542833A priority patent/JP7063270B2/en
Priority to KR1020197012038A priority patent/KR20190060803A/en
Publication of WO2018062353A1 publication Critical patent/WO2018062353A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a liquid crystal aligning agent that is suitable for inkjet coating and has an increased resin component ratio while maintaining a low viscosity, and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
  • liquid crystal alignment film As the liquid crystal alignment film, a so-called polyimide-based liquid crystal alignment film, which is obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a soluble polyimide solution, is widely used.
  • a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a soluble polyimide solution
  • spin coating, dip coating, flexographic printing, and the like are generally known as methods for forming such a liquid crystal alignment film. Actually, there are many applications by flexographic printing.
  • an inkjet method has attracted attention as a new method for applying a liquid crystal alignment film without using a printing plate.
  • the ink jet method is a method in which fine droplets are dropped on a substrate and a film is formed by wetting and spreading of the liquid. Not only the printing plate is not used, but also the printing pattern can be set freely, so that the manufacturing process of the liquid crystal display element can be simplified. In addition, there is an advantage that the waste of the coating liquid is reduced because the film formation on the dummy substrate which is necessary for flexographic printing is not necessary.
  • the inkjet method is expected to reduce the cost of liquid crystal panels and improve production efficiency.
  • the liquid crystal alignment film formed by the ink jet method is required to have small film thickness unevenness inside the coating surface and high film forming accuracy in the periphery of the coating.
  • a liquid crystal alignment film formed by an ink-jet method has a trade-off relationship between the uniformity of the film thickness in the coating surface and the film forming accuracy in the periphery of the coating.
  • a material with high in-plane uniformity has poor dimensional stability in the periphery of the coating, and the film protrudes from the set dimensions.
  • the material in which the coating peripheral part is a straight line has poor uniformity in the coated surface.
  • Patent Document 1 Patent Document 2, Patent Document 3
  • Patent Document 2 Patent Document 3
  • Patent Document 3 Patent Document 3
  • a contact hole (hereinafter also referred to as C / H) is formed on the TFT substrate in order to connect the lower layer wiring and the upper layer wiring.
  • C / H a contact hole
  • the spread of the liquid tends to be hindered during the application of the liquid crystal aligning agent due to the influence of the wiring structure and C / H.
  • unevenness in the film thickness of the alignment film such as dot-like unevenness and streaky unevenness, occurs around the C / H and other portions, and the display of the liquid crystal display element may become uneven.
  • the liquid crystal aligning agent used in the ink jet method is required to have low viscosity in order to stably discharge the aligning agent from the ink jet nozzle, and accordingly, the resin component ratio in the liquid crystal aligning agent is set to be small.
  • the resin component ratio in the liquid crystal aligning agent is set to be small.
  • the present invention can suppress poor application of the alignment film due to the influence of the wiring structure and C / H, can suppress defects in which the display of the liquid crystal display element is non-uniform, and
  • An object of the present invention is to provide a liquid crystal aligning agent in which the resin component ratio is increased while lowering the viscosity of the liquid crystal aligning agent, and a liquid crystal alignment film using the same.
  • the gist of the present invention is as described below.
  • the liquid crystal aligning agent characterized by including the solvent component containing the solvent of the following A group, the solvent of B group, and isobutyl ketone.
  • Group A At least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone and 1,3-dimethylimidazolidinone
  • Group B Butyl cellosolve, 1-butoxy -At least one solvent selected from the group consisting of 2-propanol, 2-butoxy-1-propanol and dipropylene glycol dimethyl ether;
  • a polyimide-based liquid crystal aligning agent having a high resin component ratio and a liquid crystal aligning film using the same can be provided.
  • the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor and a polyimide which is an imidized product thereof, a polymer containing a protecting group that is eliminated by heat, a solvent of the above group A, And a solvent component containing isobutyl ketone and a group B solvent.
  • the solvent contained in the liquid crystal aligning agent of this invention contains the solvent which belongs to the said A, B, and C group.
  • the solvent belonging to Group A is at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, and 1,3-dimethylimidazolidinone. These solvents dissolve the polymer in the liquid crystal aligning agent.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and ⁇ -butyrolactone are preferable, and N-methyl-2-pyrrolidone and ⁇ -butyrolactone are more preferable.
  • the amount of the solvent belonging to Group A is preferably 20% by mass to 90% by mass and more preferably 30% by mass to 85% by mass with respect to the total mass of the liquid crystal aligning agent. More preferably, it is 50 mass% to 85 mass% or less.
  • the solvent belonging to Group B is at least one solvent selected from the group consisting of butyl cellosolve, 1-butoxy-2-propanol, 2-butoxy-1-propanol, and dipropylene glycol dimethyl ether.
  • This solvent is a solvent that contributes to improving the application uniformity of the liquid crystal aligning agent and lowering the viscosity.
  • butyl cellosolve, 1-butoxy-2-propanol and dipropylene glycol dimethyl ether are preferably contained, and 1-butoxy-2-propanol is particularly preferred.
  • 1-butoxy-2-propanol usually contains several isomers including 2-butoxy-1-propanol as isomers, and is usually used in that state.
  • the amount of the solvent belonging to the group B is preferably 1% by mass to 50% by mass and more preferably 10% by mass to 50% by mass with respect to the total mass of the liquid crystal aligning agent. More preferably, the content is 10% by mass to 30% by mass.
  • the amount of the diisobutyl ketone contained in the liquid crystal aligning agent of the present invention is preferably 1% by mass to 20% by mass and more preferably 5% by mass to 20% by mass with respect to the total mass of the liquid crystal aligning agent.
  • the polymer contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor that is a reaction product of a tetracarboxylic acid derivative component and a diamine component, and a polyimide that is an imidized product thereof, It is a polymer containing a protecting group that replaces a hydrogen atom by heat.
  • the diamine component used in the liquid crystal aligning agent of the present invention includes a diamine (hereinafter, also referred to as a specific diamine) that contains a protective group that is eliminated by heat in the structure.
  • the structure of the protecting group is not particularly limited as long as it is a functional group that can be removed by heating.
  • this protecting group A is preferably not desorbed at room temperature, preferably a protecting group desorbed by heat of 80 ° C. or more, more preferably 100 ° C. This is a protecting group which is eliminated by heat.
  • it is preferably a protective group that is eliminated by heat of 300 ° C. or less, more preferably 250 ° C.
  • the following protecting groups can be removed by heat, and more preferably, the protecting group can be removed by heat at 200 ° C. or less.
  • the specific diamine preferably used in the present invention contains the following structure.
  • X 1 is an oxygen atom or a sulfur atom
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.
  • X 1 is an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • a 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, preferably 1 carbon atom. The total number of carbon atoms is 1 to 9, preferably 3 to 6. * Represents a bond with another atom.
  • Examples of the diamine having the formula (a) in the structure include diamines having the following structure.
  • “Boc” is a tert-butoxycarbonyl group.
  • the amount of the specific diamine used in the liquid crystal aligning agent of the present invention is preferably 10 mol% to 50 mol% in the total diamine component, more preferably 10 mol to 40%.
  • the diamine component used in the liquid crystal aligning agent of the present invention can contain other diamines as long as the effects of the present invention are exhibited in addition to the diamines described above.
  • the structure of other diamines is not particularly limited, and can be generalized by, for example, the following formula (2).
  • a 1 and A 2 in the above formula (2) are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. . From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • An example of the structure of Y 1 is as follows.
  • n is an integer of 1 to 6.
  • n is an integer from 1 to 6.
  • ⁇ Vertical alignment diamine diamine having a specific side chain structure>
  • the present invention is used as a VA liquid crystal aligning agent, it is preferable to prepare a polymer using a diamine having a specific side chain structure that exhibits a vertical alignment ability.
  • the diamine having the specific side chain structure has at least one side chain structure selected from the group represented by the following formulas [S1] to [S3].
  • diamine having a specific side chain structure there is a diamine having a specific side chain structure represented by the following formula [S1].
  • X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, — CON (CH 3 ) —, —NH—, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 — is represented.
  • the plurality of a1 are each independently an integer of 1 to 15
  • the plurality of A 1 are each independently an oxygen atom or —COO—
  • m 1 is 1 to 2.
  • X 1 and X 2 are each independently a single bond or — (CH 2 ) a — (a is an integer of 1 to 15) from the viewpoint of availability of raw materials and ease of synthesis. , —O—, —CH 2 O— or —COO— are preferred, a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or — COO- is more preferred.
  • G 1 and G 2 are each independently selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms. Represents a divalent cyclic group.
  • Arbitrary hydrogen atoms on the cyclic group include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m and n are each independently an integer of 0 to 3, and the sum of m and n is 1 to 4.
  • R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 1 may be substituted with fluorine.
  • examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, naphthalene and the like.
  • examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • R 1 is the same as in the above formula [S1].
  • X p is — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or —OCO— is represented.
  • a 1 represents an oxygen atom or —COO— * (a bond marked with “*” binds to (CH 2 ) a2 ).
  • a 2 represents an oxygen atom or * —COO— (the bond with “*” is bonded to (CH 2 ) a2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10.
  • Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • diamine having a specific side chain structure there is a diamine having a specific side chain structure represented by the following formula [S2].
  • X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or —OCO—.
  • X 3 is preferably —CONH—, —NHCO—, —O—, —CH 2 O—, —COO— or —OCO— from the viewpoint of the liquid crystal orientation of the liquid crystal aligning agent.
  • R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 2 may be substituted with fluorine.
  • R 2 is preferably an alkyl having 3 to 20 carbon atoms or an alkoxyalkyl having 2 to 20 carbon atoms from the viewpoint of the liquid crystal alignment property of the liquid crystal aligning agent.
  • diamine having a specific side chain structure there is a diamine having a specific side chain structure represented by the following formula [S3].
  • R 3 represents a structure having a steroid skeleton.
  • the steroid skeleton here has a skeleton represented by the following formula (st) in which three six-membered rings and one five-membered ring are bonded.
  • X represents the above formula [X1] or [X2].
  • Col represents at least one selected from the group consisting of the above formulas [Col1] to [Col4], and G represents the above formula [G1] or [G2].
  • * Represents a site bonded to another group.
  • Examples of preferable combinations of X, Col and G in the above formula [S3-x] include the following. That is, a combination of [X1] and [Col1] and [G1], a combination of [X1] and [Col1] and [G2], a combination of [X1], [Col2] and [G1], and [X1] and [Col2] ] And [G2], [X1] and [Col3] and [G2], [X1] and [Col4] and [G2], [X1] and [Col3] and [G1] Combination of [X1] and [Col4] and [G1], combination of [X2] and [Col1] and [G2], combination of [X2] and [Col2] and [G2], [X2] and [Col2] and [G1], [X2], [Col3] and [G2], [X2], [Col4] and [G2], [X2], [Col1] and [G1], [X2] ], [Col4] and
  • a typical example of a steroid skeleton is cholesterol (a combination of [Col1] and [G2] in the above formula [S3-x]), but a steroid skeleton that does not contain cholesterol can also be used.
  • examples of the diamine having a steroid skeleton include cholestanyl 3,5-diaminobenzoate, and the like, but a diamine component which does not include a diamine having a cholesterol skeleton is also possible.
  • what does not contain an amide in the connection position of a diamine and a side chain can also be utilized as a diamine which has a specific side chain structure.
  • a liquid crystal alignment film or a liquid crystal display element capable of ensuring a high voltage holding ratio over a long period of time. It is possible to provide a liquid crystal aligning agent capable of obtaining
  • the diamine having a side chain structure represented by the above formulas [S1] to [S3] is represented by the following formula [1-S1]-[1-S3], respectively.
  • ⁇ Vertical alignment diamine diamine having a two-side chain characteristic side chain structure>
  • a polymer can be prepared using a two-side chain type diamine having two specific side chain structures with vertical alignment.
  • the bilateral diamine which may be contained as a diamine component is represented, for example by following formula [1].
  • X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, It represents a divalent organic group consisting of —SO 2 — or any combination thereof.
  • X is preferably a single bond, —O—, —NH—, —O— (CH 2 ) m —O—.
  • Examples of “any combination thereof” include —O— (CH 2 ) m —O—, —O—C (CH 3 ) 2 —, —CO— (CH 2 ) m —, —NH— (CH 2) m -, - SO 2 - (CH 2) m -, - CONH- (CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) m -OCO- , etc.
  • m is an integer of 1 to 8.
  • two Y's independently represent the structure of the following formula [1-1].
  • Y 1 and Y 3 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2. O—, —COO— or —OCO— is represented.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • Y 1 or Y 3 is a single bond or — (CH 2 ) a —
  • Y 2 is a single bond.
  • Y 1 is —O—, —CH 2 O—, —COO— or —OCO—
  • / or Y 3 is —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a single bond or — (CH 2 ) b —.
  • Y 4 represents a divalent group having 17 to 51 carbon atoms having at least one divalent cyclic group or steroid skeleton selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • the optional hydrogen atom forming the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • the optional hydrogen atom forming the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. And at least one selected from the group consisting of a group and a fluorine-containing alkoxy group having 1 to 18 carbon atoms.
  • n is an integer of 0-4.
  • the two-side chain diamine having a side chain structure represented by the above formulas [S1] to [S3] is represented by the following formula [2-S1]-[2-S3], respectively.
  • Y may be in the meta position or in the ortho position from the position of X, but is preferably in the ortho position. That is, the formula [1] is preferably the following formula [1 ′].
  • the position of the two amino groups may be any position on the benzene ring, but in the following formulas [1] -a1 to [1] -a3 The represented position is preferable, and the following formula [1] -a1 is more preferable.
  • X is the same as in the above formula [1].
  • the following formulas [1] -a1 to [1] -a3 are for explaining the positions of the two amino groups, and the Y notation represented in the above formula [1] is omitted.
  • the above formula [1] is selected from the following formulas [1] -a1-1 to [1] -a3-2
  • the structure represented by the following formula [1] -a1-1 is more preferable.
  • X and Y are the same as those in the formula [1].
  • examples of the formula [1-1] include the following formulas [1-1] -1 to [1-1] -22, but are not limited thereto. Among these, as examples of the above formula [1-1], the following formulas [1-1] -1 to [1-1] -4, [1-1] -8 or [1-1] -10 are preferable. .
  • * represents the bonding position with the phenyl group in the above formulas [1], [1 '] and [1] -a1 to [1] -a3.
  • the diamine component contains a two-side chain diamine having a predetermined structure
  • a liquid crystal alignment film in which the ability to align the liquid crystal vertically is hardly lowered even when exposed to excessive heating.
  • the liquid crystal alignment film is difficult to reduce the ability to align the liquid crystal vertically. That is, the liquid crystal aligning agent from which the liquid crystal aligning film excellent in the said various characteristics can be provided because a diamine component contains this 2 side chain diamine.
  • diamines having photoreactive side chains diamines having photoreactive side chains.
  • a polymer is prepared using a diamine having a photoreactive side chain for the purpose of increasing the reactivity of the polymerizable compound contained in the liquid crystal. You can also.
  • the diamine component of this embodiment may contain a diamine having a photoreactive side chain as another diamine. When the diamine component contains a diamine having a photoreactive side chain, the photoreactive side chain can be introduced into the specific polymer or other polymers.
  • diamine having a photoreactive side chain examples include, but are not limited to, those represented by the following formula [VIII] or [IX].
  • the position of the two amino groups (—NH 2 ) may be any position on the benzene ring, for example, on the benzene ring with respect to the linking group of the side chain. 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions, 3, 4 positions or 3, 5 positions. From the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferred. Considering the ease of synthesis of the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • R 8 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) — or —N (CH 3 ) CO— is represented.
  • R 8 is preferably a single bond, —O—, —COO—, —NHCO— or —CONH—.
  • R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom.
  • —CH 2 — of the alkylene group may be optionally substituted with —CF 2 — or —CH ⁇ CH—, and when any of the following groups is not adjacent to each other, these groups are substituted: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocyclic or heterocyclic ring.
  • the divalent carbocycle or heterocycle can be specifically exemplified by the following formula (1a), but is not limited thereto.
  • R 9 can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
  • R 10 represents a photoreactive group selected from the group consisting of the following formula (1b).
  • R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
  • Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH— or —CO—.
  • Y 2 represents an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring.
  • One or a plurality of hydrogen atoms in the alkylene group, divalent carbocyclic ring or heterocyclic ring herein may be substituted with a fluorine atom or an organic group.
  • —CH 2 — when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO— or a single bond.
  • Y 4 represents a cinnamoyl group.
  • Y 5 represents a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle.
  • One or a plurality of hydrogen atoms in the alkylene group, divalent carbocyclic ring or heterocyclic ring herein may be substituted with a fluorine atom or an organic group.
  • Y 5 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 6 represents a photopolymerizable group such as an acryl group or a methacryl group.
  • diamine having a photoreactive side chain represented by the above formula [VIII] or [IX] include the following formula (1c), but are not limited thereto.
  • X 9 and X 10 each independently represent a single bond, —O—, —COO—, —NHCO— or —NH—.
  • Y represents an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom.
  • Examples of the diamine having a photoreactive side chain include a diamine of the following formula [VII].
  • the diamine of the formula [VII] has a site having a radical generating structure in the side chain.
  • radicals are generated by decomposition by ultraviolet irradiation.
  • Ar represents at least one aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, and the hydrogen atom of those rings may be substituted with a halogen atom. Since Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugate length such as naphthylene or biphenylene is preferable when the wavelength is increased. On the other hand, when Ar has a structure such as naphthylene or biphenylene, the solubility may deteriorate, and in this case, the difficulty of synthesis increases. Ar is most preferably a phenyl group because sufficient characteristics can be obtained even with a phenyl group if the wavelength of ultraviolet rays is in the range of 250 nm to 380 nm.
  • the aromatic hydrocarbon group may be provided with a substituent.
  • substituent here are preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 may form a ring.
  • T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH. 2 O -, - N (CH 3) -, - CON (CH 3) - or an -N (CH 3) CO- linking group.
  • S represents a single bond, unsubstituted or an alkylene group having 1 to 20 carbon atoms substituted with a fluorine atom.
  • the alkylene group —CH 2 — or —CF 2 — in this case may be optionally substituted with —CH ⁇ CH—, and when any of the following groups is not adjacent to each other, May be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle, divalent heterocycle;
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 represents —CH 2 —, —NR—, —O—, or —S—.
  • Q is preferably an electron-donating organic group, and is preferably an alkyl group, a hydroxyl group, an alkoxy group, an amino group, or the like as described in the example of Ar.
  • Q is an amino derivative
  • a defect such as the formation of a salt between the carboxylic acid group and the amino group generated during polymerization of the polyamic acid, which is a polyimide precursor, may result in a hydroxyl group or an alkoxy group. Is more preferable.
  • the position of the two amino groups (—NH 2 ) may be any of o-phenylenediamine, m-phenylenediamine, and p-phenylenediamine, but is reactive with acid dianhydride. In this respect, m-phenylenediamine or p-phenylenediamine is preferable.
  • n is an integer of 2 to 8.
  • diamines having a photoreactive side chain represented by the above formula [VII], [VIII] or [IX] can be used singly or in combination of two or more.
  • a single type or a mixture of two or more types may be used. It may be used, or in the case of using a mixture of two or more, the proportion thereof may be appropriately adjusted.
  • the tetracarboxylic acid derivative component for producing the polymer having the structural unit of the above formula (1), which is contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also its tetracarboxylic acid.
  • Derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound can also be used.
  • tetracarboxylic dianhydride or a derivative thereof it is more preferable to use at least one selected from a tetracarboxylic dianhydride represented by the following formula (3) and a derivative thereof.
  • X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited. Specific examples include the following formulas (X1-1) to (X1-44).
  • R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different.
  • R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • Specific examples of the structure of the formula (X1-1) include structures represented by the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoints of liquid crystal alignment and photoreaction sensitivity.
  • the polyimide precursor and the tetracarboxylic dianhydride which is a raw material of the polyimide described in the present invention and derivatives thereof are represented by the above formula (3) with respect to 1 mol of all tetracarboxylic dianhydrides and derivatives thereof. It is preferable to contain 60 to 100 mol% of tetracarboxylic dianhydride and derivatives thereof. Since a liquid crystal alignment film having good liquid crystal alignment properties can be obtained, it is more preferably 80 mol% to 100 mol%, and still more preferably 90 mol% to 100 mol%.
  • the polyamic acid ester which is one of the polyimide precursors used in the present invention can be synthesized by the following method (1), (2) or (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine, etc. are used.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
  • tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent.
  • the molecular weight of the polyimide precursor and polyimide described in the present invention is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100. , 000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less.
  • the polyimide precursor described in the present invention can be used as a solvent other than the solvents belonging to the groups A, B and C (hereinafter also referred to as other solvents).
  • a solvent also referred to as a good solvent
  • a solvent also referred to as a poor solvent
  • improves the coating properties and surface smoothness of the liquid crystal alignment film when a liquid crystal aligning agent is applied may be contained. .
  • the good solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide (IPMA or 4-hydroxy-4 -Methyl-2-pentanone and the like.
  • the poor solvent include, for example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl -1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3- Methylcyclohex Nord, 1,2-ethanediol, 1,
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms
  • the liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. Or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A].
  • crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol
  • Examples of the melamine derivative or benzoguanamine derivative include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MX-750 which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MW-30 manufactured by Sanwa Chemical Co., Ltd.
  • Methoxymethylated ethoxymethyl Benzomethylamine methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 (Mitsui Cyanamid) For example).
  • glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compounds of the formulas [6-1] to [6-48] described on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27) can be mentioned. It is done.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component. More preferred is 1 to 50 parts by mass.
  • the liquid crystal aligning agent of the present invention can use a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is disclosed in International Publication No. WO2011 / 132751 (published 2011.10.27) on pages 69 to 73 as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device.
  • Nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] can also be added.
  • the amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass.
  • the solvent is not particularly limited as long as the specific polymer (A) is dissolved.
  • the liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal.
  • a polymer other than the polymer described in the present invention, a silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, and further when firing the coating film An imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added to.
  • the liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent.
  • the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • the liquid crystal alignment treatment agent of the present invention is applied to a substrate, baked, and then subjected to an alignment treatment by a rubbing treatment, a rubbing treatment or a photo-alignment treatment performed by a conventional apparatus or method, or in a vertical alignment application. Without alignment treatment, it can be used as a liquid crystal alignment film.
  • liquid crystal display element having a passive matrix structure
  • the liquid crystal display element may be an active matrix structure in which switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
  • switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used, but a negative liquid crystal material is preferable.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • a line / slit electrode pattern of, for example, 1 ⁇ m to 10 ⁇ m is formed on one substrate, and a slit pattern or projection pattern is not formed on the counter substrate.
  • the liquid crystal display element having this structure can simplify the manufacturing process and obtain high transmittance.
  • an electrode forming surface of a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate provided with no electrode A liquid crystal aligning agent is apply
  • the metal film for example, a film made of a metal such as chromium can be used.
  • the liquid crystal material constituting the liquid crystal layer of the vertical alignment type liquid crystal display element is not particularly limited, and liquid crystal materials used in the conventional vertical alignment method, for example, MLC-6608, MLC-6609, MLC-3022 manufactured by Merck & Co., Inc. Negative type liquid crystal such as can be used.
  • MLC-3023 which is a liquid crystal containing a polymerizable compound can be used.
  • a liquid crystal containing a polymerizable compound represented by the following formula can be used.
  • liquid crystal material constituting the liquid crystal layer of the horizontal alignment type liquid crystal display element such as IPS or FFS is not particularly limited, and liquid crystal materials conventionally used in the horizontal alignment type, such as MLC-2003 and MLC manufactured by Merck Negative-positive liquid crystals such as ⁇ 2041 and negative-type liquid crystals such as MLC-6608 can also be used.
  • a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal.
  • a liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a liquid crystal cell is produced by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
  • a method of applying an electric voltage to the liquid crystal alignment film and the liquid crystal layer by applying a voltage between the electrodes installed on the substrate and irradiating ultraviolet rays while maintaining the electric field can be mentioned.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p or DC 2.5 to 15 V, preferably 10 to 30 Vp-p or DC 5 to 15 V.
  • ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • the light source of the irradiation light is as described above.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
  • the polymerizable compound when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
  • the response speed of the obtained liquid crystal display element can be increased.
  • a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film excellent in the uniformity of the film thickness within the coating surface and the linearity and dimensional stability of the peripheral portion of the coating.
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve
  • PB 1-butoxy-2-propanol
  • DPM dipropylene glycol monomethyl ether
  • DIBK diisobutyl ketone
  • DC-1 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DC-2 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DC-3 bicyclo [ 3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • DC-4 pyromellitic anhydride
  • DC-5 3,3,4,4-biphenyltetracarboxylic dianhydride
  • Me represents a methyl group
  • Bu represents an n-butyl group
  • Boc represents a t-butoxy group
  • the measuring method of each characteristic is as follows.
  • the viscosity of the polyamic acid ester, the polyamic acid solution and the polyimide solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), with a sample volume of 1.1 mL (milliliter) and cone rotor TE-1 (1 ° 34 ′ R24) at a temperature of 25 ° C.
  • the molecular weights of the polyamic acid ester and the polyamic acid were measured by a GPC (room temperature gel permeation chromatography) device, and converted into a polyethylene glycol (polyethylene oxide) conversion value as a number average molecular weight (hereinafter, also referred to as Mn) and a weight average molecular weight (hereinafter, Mw) was calculated.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min
  • Standard sample for preparing a calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and polyethylene glycol (peak top molecular weight manufactured by Polymer Laboratory) (Mp) of about 12,000, 4,000, and 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight manufactured by Polymer Laboratory
  • Example 1 In a 40 ml sample tube containing a stir bar, 4.00 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 4.80 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were weighed. Weighed 23.20 g of NMP, 6.80 g of PB and 1.20 g of DIBK and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent A1.
  • Liquid crystal aligning agent A1 adjusted above was apply
  • the coating conditions were a discharge pitch of 40 ⁇ m, a coating speed of 100 mm / sec, an injection voltage of 13.0 V, and a coating area of 36 ⁇ 80 mm.
  • the film thickness of the coating film was applied under the conditions of 100 nm when baked in an IR oven at 230 ° C. for 30 minutes after being temporarily dried on an 80 ° C. hot plate for 2 minutes.
  • Lv4 is a material that can be visually confirmed to have a noticeable unevenness on the entire surface
  • Lv3 is a material that can be visually confirmed to be partially uneven
  • Lv2 is a material that cannot be seen visually
  • Lv1 is an image that has no unevenness even on an optical microscope.
  • Silicone-based water repellent film OA-160R1 (manufactured by Nissan Chemical Industries, Ltd.) was dropped on a 10 ⁇ 10 cm glass substrate and spin-coated on the glass substrate at a rotational speed of 2000 rpm. Thereafter, this glass substrate was baked in an IR oven at 200 ° C. for 30 minutes to obtain a hydrophobic glass substrate.
  • liquid crystal aligning agent A1 adjusted above, it apply
  • the coating conditions were a discharge pitch of 500 ⁇ m, a coating speed of 100 mm / sec, an injection voltage of 13.0 V, and a coating area of 36 ⁇ 80 mm.
  • coating liquid crystal aligning agent A1 on the said conditions after performing temporary drying for 2 minutes on an 80 degreeC hotplate, it baked by IR oven on the conditions for 230 degreeC for 30 minutes.
  • Examples 2 to 9 and Comparative Examples 1 to 9 The polyamic acid solutions obtained in Synthesis Examples 1 to 3, 5, and 7 to 9 and the polyimide solutions obtained in Synthesis Examples 4 and 6 have the predetermined blend ratio, solid content concentration, and solvent ratio shown in Table 1 below.
  • the liquid crystal aligning agents A2 to A6 and the liquid crystal aligning agents B1 to B5, C1, D1, E1, F1, G1, H1, and I1 were obtained.
  • the composition ratio of the polyamic acid solution, the polyimide solution and the solvent is shown in Table 1 together with Example 1.
  • the solid content composition and the weight ratio represent the mixing ratio (mass%) of each polymer.
  • the composition and weight ratio of the solution represent the ratio (mass%) of each organic solvent to the whole polymer solution.
  • Table 2 summarizes the evaluation results and the like in Examples 1 to 9 and Comparative Examples 1 to 9.
  • Tetracarboxylic dianhydride DC-3 (12.51 g, 50.0 mmol), diamine DA-7 (13.66 g, 40.0 mmol), diamine DA-11 (6.61 g, 20.0 mmol), diamine DA- 13 (17.39 g, 40.0 mmol) was dissolved in NMP (179.3 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-2 (9.61 g, 49.0 mmol). And NMP (59.8 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
  • NMP (27.0 g) was added to the obtained polyimide powder (J) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours.
  • 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (J1) was obtained by stirring at room temperature for 5 hours.
  • NMP (27.0 g) was added to the obtained polyimide powder (K) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours.
  • 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (K1) was obtained by stirring at room temperature for 5 hours.
  • NEP (27.0 g) was added to the obtained polyimide powder (L) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours.
  • NEP (20.0g) and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (L1) was obtained by stirring at room temperature for 5 hours.
  • NMP (27.0 g) was added to the obtained polyimide powder (M) (3.0 g) and dissolved by stirring at 70 ° C. for 20 hours.
  • NEP (20.0g) and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (M1) was obtained by stirring at room temperature for 5 hours.
  • Tetracarboxylic dianhydride DC-3 (5.00 g, 20.0 mmol), diamine DA-9 (6.09 g, 40.0 mmol), diamine DA-10 (7.27 g, 30.0 mmol), diamine DA- 12 (11.42 g, 30.0 mmol) was dissolved in NMP (137.1 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-4 (4.36 g, 20.0 mmol). Then, tetracarboxylic dianhydride DC-2 (11.57 g, 59.0 mmol) and NMP (45.7 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
  • NMP (27.0 g) was added to the obtained polyimide powder (N) (3.0 g) and dissolved by stirring at 70 ° C. for 20 hours.
  • 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (N1) was obtained by stirring at room temperature for 5 hours.
  • liquid crystal aligning agents J1, K1, L1, M1 and N1 were obtained.
  • Example 10 About liquid crystal aligning agent J2 and N3 obtained by the synthesis example 16 and the synthesis example 20, it stirred at room temperature for 3 hours so that the weight ratio of the resin composition contained in each might be set to 3: 7, and liquid crystal aligning agent (JN1) was prepared.
  • Examples 11 and 12 Comparative Examples 10 to 14> Each liquid crystal aligning agent was mix
  • the liquid crystal aligning agent in Table 5 was evaluated in the same manner as in Example 1. The evaluation results were as shown in Table 6.
  • Example 10 and Comparative Example 10 Example 11 and Comparative Example 12, and Example 12 and Comparative Example 14 are compared, diisobutylketone is introduced, so that the polymer contains a protecting group that is eliminated by heat. It was confirmed that the coatability can be improved even when the film is exposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a liquid crystal alignment agent which is capable of suppressing coating defects that occur in an alignment film due to the effects of a wiring structure or C/H, and suppressing a defect in which the display of a liquid crystal display device becomes non-uniform, and which has a reduced viscosity and an increased proportion of resin components; and a liquid crystal alignment film using the liquid crystal alignment agent. The present invention pertains to a liquid crystal alignment agent characterized by containing: at least one polymer selected from the group consisting of a polyimide precursor and polyimide, which is an imidized product thereof, and containing a protecting group that is removed by heat; and a solvent component containing a solvent from Group A below, a solvent from Group B below, and isobutyl ketone. The solvent from Group A is at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, and 1,3-dimethylimidazolidinone, and the solvent from Group B is at least one solvent selected from the group consisting of butyl cellosolve, 1-butoxy-2-propanol, 2-butoxy-1-propanol, and dipropylene glycol dimethyl ether.

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
 本発明は、インクジェット塗布に適し、低粘度を維持しながら樹脂成分比率を増加させた液晶配向剤、及び該液晶配向剤から得られる液晶配向膜に関する。 The present invention relates to a liquid crystal aligning agent that is suitable for inkjet coating and has an increased resin component ratio while maintaining a low viscosity, and a liquid crystal aligning film obtained from the liquid crystal aligning agent.
 液晶配向膜としては、ポリアミック酸(ポリアミド酸とも言われる。)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤を塗布し焼成した、いわゆるポリイミド系の液晶配向膜が広く使用されているが、かかる液晶配向膜の成膜法としては、一般に、スピンコート、ディップコート、フレキソ印刷などが知られている。実際にはフレキソ印刷による塗布が多い。 As the liquid crystal alignment film, a so-called polyimide-based liquid crystal alignment film, which is obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a soluble polyimide solution, is widely used. However, spin coating, dip coating, flexographic printing, and the like are generally known as methods for forming such a liquid crystal alignment film. Actually, there are many applications by flexographic printing.
 しかしながら、フレキソ印刷では液晶パネルの品種違いにより様々な樹脂版が必要となること、製造工程ではその版交換が煩雑であるということ、成膜工程を安定させるためにダミー基板への成膜をしなければならないこと、版の製作が液晶表示パネルの製造コスト上昇の一因になるなどの問題がある。 However, flexographic printing requires various resin plates due to the different types of liquid crystal panels, the plate replacement in the manufacturing process is complicated, and film formation on a dummy substrate is required to stabilize the film formation process. There are problems such as the necessity of manufacturing the plate and the production cost of the liquid crystal display panel.
 そのため、印刷版を用いない新たな液晶配向膜塗布方法として、インクジェット法が注目されている。インクジェット法は、基板に微細な液滴を滴下し、液の濡れ広がりにより成膜する方法である。印刷版を用いないだけでなく、自由に印刷のパターンを設定できるため、液晶表示素子の製造工程が簡素化できる。また、フレキソ印刷で必要であったダミー基板への成膜が不要となることで塗布液の無駄が少ないという利点がある。インクジェット法により、液晶パネルのコストダウン、生産効率の向上が期待される。 Therefore, an inkjet method has attracted attention as a new method for applying a liquid crystal alignment film without using a printing plate. The ink jet method is a method in which fine droplets are dropped on a substrate and a film is formed by wetting and spreading of the liquid. Not only the printing plate is not used, but also the printing pattern can be set freely, so that the manufacturing process of the liquid crystal display element can be simplified. In addition, there is an advantage that the waste of the coating liquid is reduced because the film formation on the dummy substrate which is necessary for flexographic printing is not necessary. The inkjet method is expected to reduce the cost of liquid crystal panels and improve production efficiency.
 インクジェット法により形成される液晶配向膜は、塗布面内部の膜厚ムラが小さく、かつ塗布周辺部の成膜精度が高いことが要求される。一般的にインクジェット法により成膜した液晶配向膜は、塗布面内での膜厚の均一性と、塗布周辺部の成膜精度がトレードオフの関係にある。通常、面内均一性の高い材料は、塗布周辺部の寸法安定性が悪く、設定した寸法から、膜がはみ出してしまう。一方、塗布周辺部が直線となる材料は、塗布面内均一性が悪くなってしまう。 The liquid crystal alignment film formed by the ink jet method is required to have small film thickness unevenness inside the coating surface and high film forming accuracy in the periphery of the coating. In general, a liquid crystal alignment film formed by an ink-jet method has a trade-off relationship between the uniformity of the film thickness in the coating surface and the film forming accuracy in the periphery of the coating. Usually, a material with high in-plane uniformity has poor dimensional stability in the periphery of the coating, and the film protrudes from the set dimensions. On the other hand, the material in which the coating peripheral part is a straight line has poor uniformity in the coated surface.
 上記塗布周辺部の成膜精度を高めるため、構造物によって配向膜を所定の範囲に閉じ込める方法が提案されている(特許文献1、特許文献2、特許文献3)。しかしながら、これらの方法は追加の構造物が必要になるという欠点を有する。 In order to improve the film forming accuracy in the coating peripheral part, a method of confining the alignment film in a predetermined range with a structure has been proposed (Patent Document 1, Patent Document 2, and Patent Document 3). However, these methods have the disadvantage that additional structures are required.
日本国特許公開公報、特開2004-361623号公報Japanese Patent Publication, JP 2004-361623 A 日本国特許公開公報、特開2008-145461号公報Japanese Patent Publication, JP 2008-145461 A 日本国特許公開公報、特開2010-281925号公報Japanese Patent Publication, JP 2010-281925 A
 近年、液晶表示素子の高精細化に伴い、多層配線のTFT設計が主流になりつつある。本設計では、下層の配線と上層の配線とを接続するため、TFT基板上にコンタクトホール(以下、C/Hとも称する)が形成される。これに伴い、配線構造やC/Hの影響で、液晶配向剤塗布時において、液の広がり性が阻害されやすくなる。結果、C/H周辺やその他の部分にドット状のムラや筋状のムラのような、配向膜の膜厚の不均一が生じ、液晶表示素子の表示が不均一となることがある。 In recent years, with the high definition of liquid crystal display elements, multi-layer TFT designs are becoming mainstream. In this design, a contact hole (hereinafter also referred to as C / H) is formed on the TFT substrate in order to connect the lower layer wiring and the upper layer wiring. Along with this, the spread of the liquid tends to be hindered during the application of the liquid crystal aligning agent due to the influence of the wiring structure and C / H. As a result, unevenness in the film thickness of the alignment film, such as dot-like unevenness and streaky unevenness, occurs around the C / H and other portions, and the display of the liquid crystal display element may become uneven.
 また、インクジェット法で用いられる液晶配向剤は、インクジェットノズルからの配向剤吐出を安定に行う為に、低粘度であることが求められ、それに応じて液晶配向剤中の樹脂成分比率を少なく設定することがあるが、一方で、配向膜塗布周辺部の膜厚を均一にし、幅を抑制するためには、低粘度を維持しながら樹脂成分比率を増加させることが好適であり、そのような液晶配向剤が求められている。 In addition, the liquid crystal aligning agent used in the ink jet method is required to have low viscosity in order to stably discharge the aligning agent from the ink jet nozzle, and accordingly, the resin component ratio in the liquid crystal aligning agent is set to be small. However, on the other hand, in order to make the film thickness at the peripheral part of the alignment film uniform and suppress the width, it is preferable to increase the resin component ratio while maintaining the low viscosity. There is a need for aligning agents.
 本発明は、上記課題に鑑み、配線構造やC/Hの影響で生じる配向膜の塗布不良を抑制することが出来、液晶表示素子の表示が不均一となる不良を抑制することが出来、更には、液晶配向剤の粘度を低くしつつ、樹脂成分比率を大きくした液晶配向剤及びそれを用いた液晶配向膜を提供することにある。 In view of the above problems, the present invention can suppress poor application of the alignment film due to the influence of the wiring structure and C / H, can suppress defects in which the display of the liquid crystal display element is non-uniform, and An object of the present invention is to provide a liquid crystal aligning agent in which the resin component ratio is increased while lowering the viscosity of the liquid crystal aligning agent, and a liquid crystal alignment film using the same.
 本発明者は上記課題の解決の為鋭意研究を重ねた結果、特定構造を有する溶媒を用いた液晶配向剤が、上記課題を解決する為に有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies for solving the above problems, the present inventors have found that a liquid crystal aligning agent using a solvent having a specific structure is effective for solving the above problems, and to complete the present invention. It came.
本発明の要旨は、以下に記載するとおりである。 The gist of the present invention is as described below.
1) ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種であり、熱により脱離する保護基を含有する重合体と、
 下記Aグループの溶媒、Bグループの溶媒及びイソブチルケトンを含有する溶媒成分
とを含有することを特徴とする、液晶配向剤。
 Aグループ: N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ‐ブチロラクトンおよび1,3-ジメチルイミダゾリジノンからなる群から選ばれる少なくとも1種の溶媒
 Bグループ: ブチルセロソルブ、1-ブトキシ-2-プロパノール、2-ブトキシ-1―プロパノール及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の溶媒。
1) At least one selected from the group consisting of a polyimide precursor and a polyimide which is an imidized product thereof, and a polymer containing a protective group that is eliminated by heat;
The liquid crystal aligning agent characterized by including the solvent component containing the solvent of the following A group, the solvent of B group, and isobutyl ketone.
Group A: At least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone and 1,3-dimethylimidazolidinone Group B: Butyl cellosolve, 1-butoxy -At least one solvent selected from the group consisting of 2-propanol, 2-butoxy-1-propanol and dipropylene glycol dimethyl ether;
 本発明によれば、配線構造やC/Hの影響で生じる配向膜の塗布不良を抑制することが出来、液晶表示素子の表示が不均一となる不良を抑制することが出来、なおかつ、低粘度、高樹脂成分比率であるポリイミド系の液晶配向剤、及びそれを用いた液晶配向膜を提供出来る。 According to the present invention, defective application of the alignment film caused by the influence of the wiring structure and C / H can be suppressed, the defect that the display of the liquid crystal display element is nonuniform can be suppressed, and the low viscosity. A polyimide-based liquid crystal aligning agent having a high resin component ratio and a liquid crystal aligning film using the same can be provided.
 本発明の液晶配向剤は、ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種であり、熱により脱離する保護基を含有する重合体と、上記Aグループの溶媒、Bグループの溶媒及びイソブチルケトンを含有する溶媒成分と、を含有することを特徴とする液晶配向剤である。 The liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor and a polyimide which is an imidized product thereof, a polymer containing a protecting group that is eliminated by heat, a solvent of the above group A, And a solvent component containing isobutyl ketone and a group B solvent.
 以下、各構成要件につき詳述する。 Hereafter, each component requirement will be described in detail.
<特定溶媒>
 本発明の液晶配向剤に含有される溶媒は、上記A、B及びCグループに属する溶媒を含有する。
<Specific solvent>
The solvent contained in the liquid crystal aligning agent of this invention contains the solvent which belongs to the said A, B, and C group.
<Aグループ>
 Aグループに属する溶媒は、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ‐ブチロラクトンおよび1,3-ジメチルイミダゾリジノンからなる群から選ばれる少なくとも1種の溶媒である。これらの溶媒は、液晶配向剤中の重合体を溶解させるものである。
<Group A>
The solvent belonging to Group A is at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, and 1,3-dimethylimidazolidinone. These solvents dissolve the polymer in the liquid crystal aligning agent.
 その中でも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ‐ブチロラクトンが好ましく、より好ましくはN-メチル-2-ピロリドン、γ‐ブチロラクトンである。」 Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone are preferable, and N-methyl-2-pyrrolidone and γ-butyrolactone are more preferable. "
 本発明の液晶配向剤において、Aグループに属する溶媒が含まれる量は、液晶配向剤の全質量に対し、20質量%~90質量%以下が好ましく、30質量%~85質量%以下がより好ましく、更に好ましくは、50質量%~85質量%以下である。 In the liquid crystal aligning agent of the present invention, the amount of the solvent belonging to Group A is preferably 20% by mass to 90% by mass and more preferably 30% by mass to 85% by mass with respect to the total mass of the liquid crystal aligning agent. More preferably, it is 50 mass% to 85 mass% or less.
<Bグループ>
 Bグループに属する溶媒は、ブチルセロソルブ、1-ブトキシ-2-プロパノール、2-ブトキシ-1―プロパノール、ジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の溶媒である。この溶媒は、液晶配向剤の塗布均一性の向上と低粘度化に寄与する溶媒である。
<Group B>
The solvent belonging to Group B is at least one solvent selected from the group consisting of butyl cellosolve, 1-butoxy-2-propanol, 2-butoxy-1-propanol, and dipropylene glycol dimethyl ether. This solvent is a solvent that contributes to improving the application uniformity of the liquid crystal aligning agent and lowering the viscosity.
 その中でも、ブチルセロソルブ、1-ブトキシ-2-プロパノール、ジプロピレングリコールジメチルエーテルが含まれていることが好ましく、1-ブトキシ-2-プロパノールが含まれていることが特に好ましい。 Among them, butyl cellosolve, 1-butoxy-2-propanol and dipropylene glycol dimethyl ether are preferably contained, and 1-butoxy-2-propanol is particularly preferred.
 なお、市販の1-ブトキシ-2-プロパノールは、異性体として、2-ブトキシ-1―プロパノールを始めとした数種類の異性体を通常含有しており、その状態で通常使用されるものである。 Note that commercially available 1-butoxy-2-propanol usually contains several isomers including 2-butoxy-1-propanol as isomers, and is usually used in that state.
 本発明の液晶配向剤において、Bグループに属する溶媒が含まれる量は、液晶配向剤の全質量に対し、1質量%~50質量%以下が好ましく、10質量%~50質量%以下がより好ましく、更に好ましくは、10質量%~30質量%以下である。 In the liquid crystal aligning agent of the present invention, the amount of the solvent belonging to the group B is preferably 1% by mass to 50% by mass and more preferably 10% by mass to 50% by mass with respect to the total mass of the liquid crystal aligning agent. More preferably, the content is 10% by mass to 30% by mass.
 本発明の液晶配向剤に含有されるジイソブチルケトンが含まれる量は、液晶配向剤の全質量に対し、1質量%~20質量%以下が好ましく、5質量%~20質量%以下がより好ましい。 The amount of the diisobutyl ketone contained in the liquid crystal aligning agent of the present invention is preferably 1% by mass to 20% by mass and more preferably 5% by mass to 20% by mass with respect to the total mass of the liquid crystal aligning agent.
<特定重合体>
 本発明の液晶配向剤に含有される重合体は、テトラカルボン酸誘導体成分とジアミン成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種であり、熱により水素原子に置き換わる保護基を含有する重合体である。
<Specific polymer>
The polymer contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor that is a reaction product of a tetracarboxylic acid derivative component and a diamine component, and a polyimide that is an imidized product thereof, It is a polymer containing a protecting group that replaces a hydrogen atom by heat.
 以下、重合体をなす原料となる各成分について詳述する。 Hereafter, each component used as the raw material which forms a polymer is explained in full detail.
<熱で脱離する保護基を構造中に含有するジアミン>
 本発明の液晶配向剤に用いられるジアミン成分には、熱で脱離する保護基を構造中に含有するジアミン(以下、特定ジアミンとも称する)が含まれる。
<Diamine containing a protecting group that is eliminated by heat>
The diamine component used in the liquid crystal aligning agent of the present invention includes a diamine (hereinafter, also referred to as a specific diamine) that contains a protective group that is eliminated by heat in the structure.
 上記保護基は、加熱により脱離する官能基であれば、その構造は特に限定されない。本発明の液晶配向剤の保存安定性の観点からは、この保護基Aは室温において脱離しないことが好ましく、好ましくは80℃以上の熱で脱離する保護基であり、更に好ましくは100℃以上での熱で脱離する保護基である。また、ポリアミック酸エステルの熱イミド化を促進する効率及びポリイミド前駆体又はポリイミドとの架橋反応の観点からは、300℃以下の熱で脱離する保護基であることが好ましく、より好ましくは250℃以下の熱で脱離する保護基であり、更に好ましくは200℃以下の熱で脱離する保護基である。 The structure of the protecting group is not particularly limited as long as it is a functional group that can be removed by heating. From the viewpoint of the storage stability of the liquid crystal aligning agent of the present invention, this protecting group A is preferably not desorbed at room temperature, preferably a protecting group desorbed by heat of 80 ° C. or more, more preferably 100 ° C. This is a protecting group which is eliminated by heat. Further, from the viewpoint of the efficiency of promoting thermal imidation of polyamic acid ester and the crosslinking reaction with the polyimide precursor or polyimide, it is preferably a protective group that is eliminated by heat of 300 ° C. or less, more preferably 250 ° C. The following protecting groups can be removed by heat, and more preferably, the protecting group can be removed by heat at 200 ° C. or less.
 本発明において好ましく用いられる特定ジアミンは、以下の構造を含有する。 The specific diamine preferably used in the present invention contains the following structure.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 前記式中、Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、*は、他の原子との結合を表す。 In the above formula, X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.
 式(a)中、Xは酸素原子又は硫黄原子であり、酸素原子が好ましい。A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数1が好ましい。なお、炭素数の合計は1~9であり、3~6が好ましい。また、*は、他の原子との結合を表す。 In the formula (a), X 1 is an oxygen atom or a sulfur atom, preferably an oxygen atom. A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, preferably 1 carbon atom. The total number of carbon atoms is 1 to 9, preferably 3 to 6. * Represents a bond with another atom.
 式(a)を構造中に有するジアミンとしては、例えば以下の構造のジアミンが挙げられる。なお、式中の「Boc」はtert-ブトキシカルボニル基である。 Examples of the diamine having the formula (a) in the structure include diamines having the following structure. In the formula, “Boc” is a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 
 本発明の液晶配向剤に用いられる特定ジアミンの量としては、全ジアミン成分中の10モル%~50モル%が好ましく、10モル~40%がより好ましい。 The amount of the specific diamine used in the liquid crystal aligning agent of the present invention is preferably 10 mol% to 50 mol% in the total diamine component, more preferably 10 mol to 40%.
<その他のジアミン>
 本発明の液晶配向剤に用いられるジアミン成分には、上述したジアミンの他、本発明の効果を奏する限りにおいて、その他のジアミンを含有させることが出来る。その他のジアミンの構造は特に限定されず、例えば以下の式(2)で一般式化することが出来る
<Other diamines>
The diamine component used in the liquid crystal aligning agent of the present invention can contain other diamines as long as the effects of the present invention are exhibited in addition to the diamines described above. The structure of other diamines is not particularly limited, and can be generalized by, for example, the following formula (2).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 上記式(2)のA及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基である。液晶配向性の観点から、A及びAは水素原子、又はメチル基が好ましい。
の構造を例示すると、以下の通りである。
A 1 and A 2 in the above formula (2) are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. . From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
An example of the structure of Y 1 is as follows.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
式中nは、1~6の整数である。 In the formula, n is an integer of 1 to 6.
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
 式中nは、1~6の整数である。 Where n is an integer from 1 to 6.
<垂直配向性ジアミン:特定側鎖構造を有するジアミン>
 本発明をVA方式の液晶配向剤として用いる場合、垂直配向能を発現する特定側鎖構造を有するジアミンを用いて重合体を調製することが好ましい。この特定側鎖構造を有するジアミンは、下記式[S1]~[S3]で表される群から選ばれる少なくとも1種の側鎖構造を有する。
<Vertical alignment diamine: diamine having a specific side chain structure>
When the present invention is used as a VA liquid crystal aligning agent, it is preferable to prepare a polymer using a diamine having a specific side chain structure that exhibits a vertical alignment ability. The diamine having the specific side chain structure has at least one side chain structure selected from the group represented by the following formulas [S1] to [S3].
 以下、かかる特定側鎖構造を有するジアミンについて、式[S1]~[S3]の順に説明する。 Hereinafter, the diamine having the specific side chain structure will be described in the order of the formulas [S1] to [S3].
 特定側鎖構造を有するジアミンの例として、下記式[S1]で表される特定側鎖構造を有するジアミンがある。 As an example of a diamine having a specific side chain structure, there is a diamine having a specific side chain structure represented by the following formula [S1].
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 上記式[S1]中、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。 In the above formula [S1], X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, — CON (CH 3 ) —, —NH—, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 — is represented. Among them, the plurality of a1 are each independently an integer of 1 to 15, the plurality of A 1 are each independently an oxygen atom or —COO—, and m 1 is 1 to 2.
 なかでも、原料の入手性や合成の容易さの点からは、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましく、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-がより好ましい。 Among these, X 1 and X 2 are each independently a single bond or — (CH 2 ) a — (a is an integer of 1 to 15) from the viewpoint of availability of raw materials and ease of synthesis. , —O—, —CH 2 O— or —COO— are preferred, a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or — COO- is more preferred.
 また、上記式[S1]中、G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。 In the above formula [S1], G 1 and G 2 are each independently selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms. Represents a divalent cyclic group. Arbitrary hydrogen atoms on the cyclic group include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom. m and n are each independently an integer of 0 to 3, and the sum of m and n is 1 to 4.
 また、上記式[S1]中、Rは、炭素数1~20のアルキル、炭素数1~20のアルコキシ又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。このうち、炭素数6~12の2価の芳香族基の例としては、フェニレン、ビフェニレン、ナフタレン等が挙げられる。また、炭素数3~8の2価の脂環式基の例としては、シクロプロピレン、シクロヘキシレン等が挙げられる。 In the above formula [S1], R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 1 may be substituted with fluorine. Among these, examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, naphthalene and the like. Examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
 従って、上記式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]があげられるが、これらに限定されない。 Therefore, preferred specific examples of the above formula [S1] include, but are not limited to, the following formulas [S1-x1] to [S1-x7].
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
 上記式[S1-x1]~[S1-x7]中、Rは、上記式[S1]の場合と同様である。Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Aは、酸素原子又は-COO-*(「*」を付した結合手が(CHa2と結合する)を表す。Aは、酸素原子又は*-COO-(「*」を付した結合手が(CHa2と結合する)を表す。aは0又は1の整数であり、aは2~10の整数である。Cyは1,4-シクロへキシレン基又は1,4-フェニレン基を表す。 In the above formulas [S1-x1] to [S1-x7], R 1 is the same as in the above formula [S1]. X p is — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or —OCO— is represented. A 1 represents an oxygen atom or —COO— * (a bond marked with “*” binds to (CH 2 ) a2 ). A 2 represents an oxygen atom or * —COO— (the bond with “*” is bonded to (CH 2 ) a2 ). a 1 is an integer of 0 or 1, and a 2 is an integer of 2 to 10. Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
 また、特定側鎖構造を有するジアミンの例として、下記式[S2]で表される特定側鎖構造を有するジアミンがある。 Further, as an example of a diamine having a specific side chain structure, there is a diamine having a specific side chain structure represented by the following formula [S2].
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
 上記式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。なかでも、液晶配向剤の液晶配向性の点から、Xは-CONH-、-NHCO-、-O-、-CHO-、-COO-又は-OCO-が好ましい。 In the above formula [S2], X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or —OCO—. Represents. Of these, X 3 is preferably —CONH—, —NHCO—, —O—, —CH 2 O—, —COO— or —OCO— from the viewpoint of the liquid crystal orientation of the liquid crystal aligning agent.
 また、上記式[S2]中、Rは、炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。なかでも、液晶配向剤の液晶配向性の点から、Rは炭素数3~20のアルキル又は炭素数2~20のアルコキシアルキルが好ましい。 In the above formula [S2], R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 2 may be substituted with fluorine. Among these, R 2 is preferably an alkyl having 3 to 20 carbon atoms or an alkoxyalkyl having 2 to 20 carbon atoms from the viewpoint of the liquid crystal alignment property of the liquid crystal aligning agent.
 更に、特定側鎖構造を有するジアミンの例として、下記式[S3]で表される特定側鎖構造を有するジアミンがある。 Furthermore, as an example of a diamine having a specific side chain structure, there is a diamine having a specific side chain structure represented by the following formula [S3].
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
 上記式[S3]中、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。ここでのステロイド骨格は、3つの六員環及び1つの五員環が結合した下記式(st)で表される骨格を有する。 In the above formula [S3], X 4 represents —CONH—, —NHCO—, —O—, —COO— or —OCO—. R 3 represents a structure having a steroid skeleton. The steroid skeleton here has a skeleton represented by the following formula (st) in which three six-membered rings and one five-membered ring are bonded.
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
 上記式[S3]の例として下記式[S3-x]が挙げられるが、これに限定されない。 Examples of the above formula [S3] include, but are not limited to, the following formula [S3-x].
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
 上記式[S3-x]中、Xは、上記式[X1]又は[X2]を表す。また、Colは、上記式[Col1]~[Col4]からなる群から選ばれる少なくとも1種を表し、Gは、上記式[G1]又は[G2]を表す。*は他の基に結合する部位を表す。 In the above formula [S3-x], X represents the above formula [X1] or [X2]. Col represents at least one selected from the group consisting of the above formulas [Col1] to [Col4], and G represents the above formula [G1] or [G2]. * Represents a site bonded to another group.
 上記式[S3-x]における、X、Col及びGの好ましい組み合わせの例としては、例えば、下記が挙げられる。すなわち、[X1]と[Col1]及び[G1]の組合せ、[X1]と[Col1]及び[G2]の組合せ、[X1]と[Col2]及び[G1]の組合せ、[X1]と[Col2]及び[G2]の組合せ、[X1]と[Col3]及び[G2]の組合せ、[X1]と[Col4]及び[G2]の組合せ、[X1]と[Col3]及び[G1]の組合せ、[X1]と[Col4]及び[G1]の組合せ、[X2]と[Col1]及び[G2]の組合せ、[X2]と[Col2]及び[G2]の組合せ、[X2]と[Col2]及び[G1]の組合せ、[X2]と[Col3]及び[G2]の組合せ、[X2]と[Col4]及び[G2]の組合せ、[X2]と[Col1]及び[G1]の組合せ、[X2]と[Col4]及び[G1]の組合せである。 Examples of preferable combinations of X, Col and G in the above formula [S3-x] include the following. That is, a combination of [X1] and [Col1] and [G1], a combination of [X1] and [Col1] and [G2], a combination of [X1], [Col2] and [G1], and [X1] and [Col2] ] And [G2], [X1] and [Col3] and [G2], [X1] and [Col4] and [G2], [X1] and [Col3] and [G1] Combination of [X1] and [Col4] and [G1], combination of [X2] and [Col1] and [G2], combination of [X2] and [Col2] and [G2], [X2] and [Col2] and [G1], [X2], [Col3] and [G2], [X2], [Col4] and [G2], [X2], [Col1] and [G1], [X2] ], [Col4] and [G1] It is.
 また、上記式[S3]の具体的としては、特開平4-281427号公報の段落[0024]に記載のステロイド化合物から水酸基(ヒドロキシ基)を除いた構造、同公報の段落[0030]に記載のステロイド化合物から酸クロライド基を除いた構造、同公報の段落[0038]に記載のステロイド化合物からアミノ基を除いた構造、同公報の段落[0042]にステロイド化合物からハロゲン基を除いた構造、及び特開平8-146421の段落[0018]~[0022]に記載の構造等が挙げられる。 Specific examples of the above formula [S3] include a structure obtained by removing a hydroxyl group (hydroxy group) from a steroid compound described in paragraph [0024] of JP-A-4-281427, and paragraph [0030] of the same publication. A structure in which an acid chloride group is removed from the steroid compound, a structure in which an amino group is removed from the steroid compound described in paragraph [0038] of the publication, a structure in which a halogen group is removed from the steroid compound in paragraph [0042] of the publication, And the structures described in paragraphs [0018] to [0022] of JP-A-8-146421.
 なお、ステロイド骨格の代表例としては、コレステロール(上記式[S3-x]における[Col1]及び[G2]の組み合わせ)が挙げられるが、該コレステロールを含まないステロイド骨格を利用することもできる。すなわち、ステロイド骨格を有するジアミンとして、例えば3,5-ジアミノ安息香酸コレスタニル等が挙げられるが、かかるコレステロール骨格を有するジアミンを含まないジアミン成分とすることも可能である。また、特定側鎖構造を有するジアミンとして、ジアミンと側鎖との連結位置にアミドを含まないものを利用することもできる。このようなジアミンを利用しても、本実施形態においては、コレステロール骨格を有するジアミンを含まないジアミン成分を利用しても、長期に渡って高い電圧保持率を確保できる液晶配向膜や液晶表示素子を得ることができる液晶配向剤を提供できる。 A typical example of a steroid skeleton is cholesterol (a combination of [Col1] and [G2] in the above formula [S3-x]), but a steroid skeleton that does not contain cholesterol can also be used. That is, examples of the diamine having a steroid skeleton include cholestanyl 3,5-diaminobenzoate, and the like, but a diamine component which does not include a diamine having a cholesterol skeleton is also possible. Moreover, what does not contain an amide in the connection position of a diamine and a side chain can also be utilized as a diamine which has a specific side chain structure. Even if such a diamine is used or a diamine component not containing a diamine having a cholesterol skeleton is used in the present embodiment, a liquid crystal alignment film or a liquid crystal display element capable of ensuring a high voltage holding ratio over a long period of time. It is possible to provide a liquid crystal aligning agent capable of obtaining
 なお、上記式[S1]~[S3]で表される側鎖構造を有するジアミンは、それぞれ、下記式[1-S1]-[1-S3]の構造で表される。 The diamine having a side chain structure represented by the above formulas [S1] to [S3] is represented by the following formula [1-S1]-[1-S3], respectively.
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 上記式[1-S1]中、X、X、G、G、R、m及びnは、上記式[S1]における場合と同様である。上記式[1-S2]中、X及びRは、上記式[S2]における場合と同様である。上記式[1-S3]中、X及びRは、上記式[S3]における場合と同様である。 In the above formula [1-S1], X 1 , X 2 , G 1 , G 2 , R 1 , m and n are the same as in the above formula [S1]. In the above formula [1-S2], X 3 and R 2 are the same as in the above formula [S2]. In the above formula [1-S3], X 4 and R 3 are the same as in the above formula [S3].
<垂直配向性ジアミン:二側鎖型の特性側鎖構造を有するジアミン>
 VA方式の液晶配向剤として用いる場合、垂直配向性の特定側鎖構造を2つ有する二側鎖型のジアミンを用いて重合体を調製することもできる。
本実施形態において、ジアミン成分として含まれていてもよい二側鎖ジアミンは、例えば下記式[1]で表される
<Vertical alignment diamine: diamine having a two-side chain characteristic side chain structure>
When used as a VA liquid crystal aligning agent, a polymer can be prepared using a two-side chain type diamine having two specific side chain structures with vertical alignment.
In this embodiment, the bilateral diamine which may be contained as a diamine component is represented, for example by following formula [1].
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
 上記式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-又はそれらの任意の組み合わせからなる2価の有機基を表す。なかでも、Xは、単結合、-O-、-NH-、-O-(CH-O-であるのが好ましい。「それらの任意の組み合わせ」の例としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-等が挙げられるが、これらに限定されない。mは1~8の整数である。
 また、上記式[1]中、2つのYは、それぞれ独立して、下記式[1-1]の構造を表す。
In the above formula [1], X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, It represents a divalent organic group consisting of —SO 2 — or any combination thereof. Among these, X is preferably a single bond, —O—, —NH—, —O— (CH 2 ) m —O—. Examples of “any combination thereof” include —O— (CH 2 ) m —O—, —O—C (CH 3 ) 2 —, —CO— (CH 2 ) m —, —NH— (CH 2) m -, - SO 2 - (CH 2) m -, - CONH- (CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) m -OCO- , etc. However, it is not limited to these. m is an integer of 1 to 8.
In the above formula [1], two Y's independently represent the structure of the following formula [1-1].
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
 上記式[1-1]中、Y及びYは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を表す。Yは単結合又は-(CH-(bは1~15の整数である)を表す。ただし、Y又はYが単結合又は-(CH-である場合、Yは単結合である。また、Yが-O-、-CHO-、-COO-又は-OCO-であるか、及び/又はYが-O-、-CHO-、-COO-又は-OCO-である場合、Yは単結合又は-(CH-である。 In the above formula [1-1], Y 1 and Y 3 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2. O—, —COO— or —OCO— is represented. Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). However, when Y 1 or Y 3 is a single bond or — (CH 2 ) a —, Y 2 is a single bond. Y 1 is —O—, —CH 2 O—, —COO— or —OCO—, and / or Y 3 is —O—, —CH 2 O—, —COO— or —OCO—. In certain instances, Y 2 is a single bond or — (CH 2 ) b —.
 また、式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基又はステロイド骨格を有する炭素数17~51の2価の有機基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。 In Formula [1-1], Y 4 represents a divalent group having 17 to 51 carbon atoms having at least one divalent cyclic group or steroid skeleton selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring. Represents an organic group. The optional hydrogen atom forming the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
 また、上記式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。 In the above formula [1-1], Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring. The optional hydrogen atom forming the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
 また、上記式[1-1]中、Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を表す。nは0~4の整数である。 In the above formula [1-1], Y 6 represents an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. And at least one selected from the group consisting of a group and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. n is an integer of 0-4.
 なお、上記式[S1]~[S3]で表される側鎖構造を有する二側鎖ジアミンは、それぞれ、下記式[2-S1]-[2-S3]の構造で表される。 The two-side chain diamine having a side chain structure represented by the above formulas [S1] to [S3] is represented by the following formula [2-S1]-[2-S3], respectively.
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
 また、上記式[1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位がよい。すなわち、上記式[1]は、下記式[1’]であるのが好ましい。 In the above formula [1], Y may be in the meta position or in the ortho position from the position of X, but is preferably in the ortho position. That is, the formula [1] is preferably the following formula [1 ′].
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
 また、上記式[1]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよいが、下記式[1]-a1~[1]-a3で表される位置が好ましく、下記式[1]-a1であるのがより好ましい。下記式中、Xは、上記式[1]における場合と同様である。なお、下記式[1]-a1~[1]-a3は、2つのアミノ基の位置を説明するものであり、上記式[1]中で表されていたYの表記が省略されている。 In the above formula [1], the position of the two amino groups (—NH 2 ) may be any position on the benzene ring, but in the following formulas [1] -a1 to [1] -a3 The represented position is preferable, and the following formula [1] -a1 is more preferable. In the following formula, X is the same as in the above formula [1]. The following formulas [1] -a1 to [1] -a3 are for explaining the positions of the two amino groups, and the Y notation represented in the above formula [1] is omitted.
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
 従って、上記式[1’]及び[1]-a1~[1]-a3に基づけば、上記式[1]は、下記式[1]-a1-1~[1]-a3-2から選ばれるいずれかの構造であるのが好ましく、下記式[1]-a1-1で表される構造がより好ましい。下記式中、X及びYは、それぞれ式[1]における場合と同様である。 Therefore, based on the above formulas [1 ′] and [1] -a1 to [1] -a3, the above formula [1] is selected from the following formulas [1] -a1-1 to [1] -a3-2 The structure represented by the following formula [1] -a1-1 is more preferable. In the following formula, X and Y are the same as those in the formula [1].
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
 また、上記式[1-1]の例として、下記式[1-1]-1~[1-1]-22が挙げられるが、これらに限定されない。このうち、上記式[1-1]の例としては、下記式[1-1]-1~[1-1]-4、[1-1]-8又は[1-1]-10が好ましい。なお、下記式中、*は、上記式[1]、[1’]及び[1]-a1~[1]-a3におけるフェニル基との結合位置を表す。 Further, examples of the formula [1-1] include the following formulas [1-1] -1 to [1-1] -22, but are not limited thereto. Among these, as examples of the above formula [1-1], the following formulas [1-1] -1 to [1-1] -4, [1-1] -8 or [1-1] -10 are preferable. . In the following formula, * represents the bonding position with the phenyl group in the above formulas [1], [1 '] and [1] -a1 to [1] -a3.
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
 ジアミン成分が、所定構造を有する二側鎖ジアミンを含有することで、過度の加熱にさらされた場合でも、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。また、ジアミン成分が該二側鎖ジアミンを含有することで、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。すなわち、ジアミン成分が該二側鎖ジアミンを含有することで、各種の上記特性に優れた液晶配向膜が得られる液晶配向剤を提供できるようになる。 When the diamine component contains a two-side chain diamine having a predetermined structure, a liquid crystal alignment film in which the ability to align the liquid crystal vertically is hardly lowered even when exposed to excessive heating. Moreover, when the diamine component contains the two-side chain diamine, even when some foreign matter comes into contact with the film and is damaged, the liquid crystal alignment film is difficult to reduce the ability to align the liquid crystal vertically. That is, the liquid crystal aligning agent from which the liquid crystal aligning film excellent in the said various characteristics can be provided because a diamine component contains this 2 side chain diamine.
<その他のジアミン:光反応性側鎖を有するジアミン>
 また、本発明を垂直配向方式のPSAモードの液晶配向剤として用いる場合、液晶中に含まれる重合性化合物の反応性を高める目的で光反応性側鎖を有するジアミンを用いて重合体を調製することもできる。
 本実施形態のジアミン成分は、その他のジアミンとして、光反応性側鎖を有するジアミンを含有してもよい。ジアミン成分が、光反応性側鎖を有するジアミンを含有することで、特定重合体やそれ以外の重合体に、光反応性側鎖を導入できるようになる。
<Other diamines: diamines having photoreactive side chains>
When the present invention is used as a PSA mode liquid crystal aligning agent of the vertical alignment system, a polymer is prepared using a diamine having a photoreactive side chain for the purpose of increasing the reactivity of the polymerizable compound contained in the liquid crystal. You can also.
The diamine component of this embodiment may contain a diamine having a photoreactive side chain as another diamine. When the diamine component contains a diamine having a photoreactive side chain, the photoreactive side chain can be introduced into the specific polymer or other polymers.
 光反応性側鎖を有するジアミンとしては、例えば、下記式[VIII]又は[IX]で表されるものが挙げられるが、これらに限定されない。 Examples of the diamine having a photoreactive side chain include, but are not limited to, those represented by the following formula [VIII] or [IX].
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
 上記式[VIII]及び[IX]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよく、例えば、側鎖の結合基に対し、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置又は3,5の位置が挙げられる。ポリアミック酸を合成する際の反応性の点からは、2,4の位置、2,5の位置又は3,5の位置が好ましい。ジアミンを合成する際の容易性の点も加味すると、2,4の位置又は3,5の位置がより好ましい。 In the above formulas [VIII] and [IX], the position of the two amino groups (—NH 2 ) may be any position on the benzene ring, for example, on the benzene ring with respect to the linking group of the side chain. 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions, 3, 4 positions or 3, 5 positions. From the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferred. Considering the ease of synthesis of the diamine, the positions 2, 4 or 3, 5 are more preferable.
 また、上記式[VIII]中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-又は-N(CH)CO-を表す。特に、Rは単結合、-O-、-COO-、-NHCO-又は-CONH-であるのが好ましい。 In the above formula [VIII], R 8 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) — or —N (CH 3 ) CO— is represented. In particular, R 8 is preferably a single bond, —O—, —COO—, —NHCO— or —CONH—.
 また、上記式[VIII]中、Rは、単結合又はフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。ここでのアルキレン基の-CH-は、-CF-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環又は複素環。なお、この二価の炭素環又は複素環は、具体的には下記式(1a)のものを例示することができるが、これに限定されない。 In the above formula [VIII], R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom. Here, —CH 2 — of the alkylene group may be optionally substituted with —CF 2 — or —CH═CH—, and when any of the following groups is not adjacent to each other, these groups are substituted: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocyclic or heterocyclic ring. The divalent carbocycle or heterocycle can be specifically exemplified by the following formula (1a), but is not limited thereto.
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
 また、上記式[VIII]中、Rは、通常の有機合成的手法で形成させることができるが、合成の容易性の点からは、単結合又は炭素数1~12のアルキレン基が好ましい。 In the formula [VIII], R 9 can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
 また、上記式[VIII]中、R10は、下記式(1b)からなる群から選択される光反応性基を表す。なかでも、R10は、光反応性の点から、メタクリル基、アクリル基又はビニル基が好ましい。 In the above formula [VIII], R 10 represents a photoreactive group selected from the group consisting of the following formula (1b). Among these, R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
 また、上記式[IX]中、Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-又は-CO-を表す。Yは、炭素数1~30のアルキレン基、二価の炭素環又は複素環を表す。ここでのアルキレン基、二価の炭素環または複素環における、1つ又は複数の水素原子は、フッ素原子又は有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。 In the above formula [IX], Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH— or —CO—. Y 2 represents an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring. One or a plurality of hydrogen atoms in the alkylene group, divalent carbocyclic ring or heterocyclic ring herein may be substituted with a fluorine atom or an organic group. In Y 2 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
 また、上記式[IX]中、Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-又は単結合を表す。Yはシンナモイル基を表す。Yは単結合、炭素数1~30のアルキレン基、二価の炭素環又は複素環を表す。ここでのアルキレン基、二価の炭素環または複素環における、1つ又は複数の水素原子は、フッ素原子又は有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yはアクリル基又はメタクリル基等の光重合性基を表す。 In the above formula [IX], Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO— or a single bond. . Y 4 represents a cinnamoyl group. Y 5 represents a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle. One or a plurality of hydrogen atoms in the alkylene group, divalent carbocyclic ring or heterocyclic ring herein may be substituted with a fluorine atom or an organic group. In Y 5 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—. Y 6 represents a photopolymerizable group such as an acryl group or a methacryl group.
 このような上記式[VIII]又は[IX]で表される光反応性側鎖を有するジアミンの具体例としては、下記式(1c)が挙げられるが、これに限定されない。 Specific examples of the diamine having a photoreactive side chain represented by the above formula [VIII] or [IX] include the following formula (1c), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
 上記式(1c)中、X及びX10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-又は-NH-である結合基を表す。Yは、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。 In the formula (1c), X 9 and X 10 each independently represent a single bond, —O—, —COO—, —NHCO— or —NH—. Y represents an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom.
 光反応性側鎖を有するジアミンとしては、下記式[VII]のジアミンも挙げられる。式[VII]のジアミンは、ラジカル発生構造を有する部位を側鎖に有している。ラジカル発生構造においては、紫外線照射により分解しラジカルが発生する。 Examples of the diamine having a photoreactive side chain include a diamine of the following formula [VII]. The diamine of the formula [VII] has a site having a radical generating structure in the side chain. In the radical generating structure, radicals are generated by decomposition by ultraviolet irradiation.
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
 上記式[VII]中、Arはフェニレン、ナフチレン及びビフェニレンからなる群から選ばれる少なくとも1種の芳香族炭化水素基を表し、それらの環の水素原子はハロゲン原子に置換されていてもよい。カルボニルが結合しているArは、紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。一方、Arがナフチレンやビフェニレンのような構造になると、溶解性が悪くなる場合があり、この場合、合成の難易度が高くなる。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、Arはフェニル基が最も好ましい。 In the above formula [VII], Ar represents at least one aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, and the hydrogen atom of those rings may be substituted with a halogen atom. Since Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugate length such as naphthylene or biphenylene is preferable when the wavelength is increased. On the other hand, when Ar has a structure such as naphthylene or biphenylene, the solubility may deteriorate, and in this case, the difficulty of synthesis increases. Ar is most preferably a phenyl group because sufficient characteristics can be obtained even with a phenyl group if the wavelength of ultraviolet rays is in the range of 250 nm to 380 nm.
 上記Arにおいて、芳香族炭化水素基には置換基が設けられていてもよい。ここでの置換基の例としては、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基等、電子供与性の有機基が好ましい。 In the above Ar, the aromatic hydrocarbon group may be provided with a substituent. Examples of the substituent here are preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
 また、上記式[VII]中、R1及びRは、それぞれ独立して、炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基又はフェネチル基を表す。アルキル基やアルコキシ基の場合、R及びRにより環が形成されていてもよい。 In the formula [VII], R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 may form a ring.
 また、上記式[VII]中、T及びTは、それぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-又は-N(CH)CO-の結合基を表す。 In the formula [VII], T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH. 2 O -, - N (CH 3) -, - CON (CH 3) - or an -N (CH 3) CO- linking group.
 また、式[VII]中、Sは単結合、非置換又はフッ素原子によって置換されている炭素原子数1~20のアルキレン基を表す。ここでのアルキレン基の-CH-又は-CF-は、-CH=CH-で任意に置換されていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。 In the formula [VII], S represents a single bond, unsubstituted or an alkylene group having 1 to 20 carbon atoms substituted with a fluorine atom. The alkylene group —CH 2 — or —CF 2 — in this case may be optionally substituted with —CH═CH—, and when any of the following groups is not adjacent to each other, May be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle, divalent heterocycle;
 また、式[VII]中、Qは、下記式(1d)から選ばれる構造を表す。 In the formula [VII], Q represents a structure selected from the following formula (1d).
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
 上記式(1d)中、Rは水素原子又は炭素原子数1~4のアルキル基を表す。Rは、-CH-、-NR-、-O-、又は-S-を表す。 In the above formula (1d), R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 3 represents —CH 2 —, —NR—, —O—, or —S—.
 また、上記式[VII]中、Qは、電子供与性の有機基が好ましく、上記Arの例でも挙げたような、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基等が好ましい。Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、ヒドロキシル基又はアルコキシ基がより好ましい。 In the formula [VII], Q is preferably an electron-donating organic group, and is preferably an alkyl group, a hydroxyl group, an alkoxy group, an amino group, or the like as described in the example of Ar. In the case where Q is an amino derivative, there is a possibility that a defect such as the formation of a salt between the carboxylic acid group and the amino group generated during polymerization of the polyamic acid, which is a polyimide precursor, may result in a hydroxyl group or an alkoxy group. Is more preferable.
 また、上記式[VII]中、2つのアミノ基(-NH)の位置は、o-フェニレンジアミン、m-フェニレンジアミン又はp-フェニレンジアミンのいずれでもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン又はp-フェニレンジアミンが好ましい。 In the above formula [VII], the position of the two amino groups (—NH 2 ) may be any of o-phenylenediamine, m-phenylenediamine, and p-phenylenediamine, but is reactive with acid dianhydride. In this respect, m-phenylenediamine or p-phenylenediamine is preferable.
 従って、上記式[VII]の好ましい具体的としては、合成の容易さ、汎用性の高さ、特性等の点から、下記式が挙げられる。なお、下記式中、nは2~8の整数である。 Therefore, preferable specific examples of the above formula [VII] include the following formulas from the viewpoint of ease of synthesis, high versatility, characteristics, and the like. In the following formula, n is an integer of 2 to 8.
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
 これらの上記式[VII]、[VIII]又は[IX]で表される光反応性側鎖を有するジアミンは、1種単独又は2種以上混合して用いることができる。液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷等の特性、液晶表示素子とした際の液晶の応答速度等に応じて、1種単独か2種以上混合して用いるか、また、2種以上混合して用いる場合にはその割合等、適宜調整すればよい。 These diamines having a photoreactive side chain represented by the above formula [VII], [VIII] or [IX] can be used singly or in combination of two or more. Depending on the liquid crystal alignment properties, pretilt angle, voltage holding characteristics, accumulated charge characteristics, etc., and the response speed of the liquid crystal when it is used as a liquid crystal display element, a single type or a mixture of two or more types may be used. It may be used, or in the case of using a mixture of two or more, the proportion thereof may be appropriately adjusted.
 <テトラカルボン酸誘導体>
 本発明の液晶配向剤に含有される、上記式(1)の構造単位を有する重合体を作製するためのテトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる。
<Tetracarboxylic acid derivative>
The tetracarboxylic acid derivative component for producing the polymer having the structural unit of the above formula (1), which is contained in the liquid crystal aligning agent of the present invention, includes not only tetracarboxylic dianhydride but also its tetracarboxylic acid. Derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound can also be used.
 テトラカルボン酸二無水物又はその誘導体としては、下記式(3)で示されるテトラカルボン酸二無水物及びその誘導体から選ばれる少なくとも1つを用いることがより好ましい。 As the tetracarboxylic dianhydride or a derivative thereof, it is more preferable to use at least one selected from a tetracarboxylic dianhydride represented by the following formula (3) and a derivative thereof.
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
 式中、Xは、脂環式構造を有する4価の有機基であり、その構造は特に限定されない。具体例としては、下記式(X1-1)~(X1-44)が挙げられる。 In the formula, X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited. Specific examples include the following formulas (X1-1) to (X1-44).
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
 式(X1-1)~(X1-4)において、RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、RからR23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。式(X1-1)の具体的な構造としては、下記式(X1-1-1)~(X1-1-6)で表される構造が挙げられる。液晶配向性及び光反応の感度の観点から、(X1-1-1)が特に好ましい。 In formulas (X1-1) to (X1-4), R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, carbon An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group. Specific examples of the structure of the formula (X1-1) include structures represented by the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoints of liquid crystal alignment and photoreaction sensitivity.
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000044
 
 本発明に記載のポリイミド前駆体及びポリイミドの原料であるテトラカルボン酸二無水物及びその誘導体としては、全テトラカルボン酸二無水物及びその誘導体1モルに対して、上記式(3)で表されるテトラカルボン酸二無水物及びその誘導体を60~100モル%含むことが好ましい。良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。 The polyimide precursor and the tetracarboxylic dianhydride which is a raw material of the polyimide described in the present invention and derivatives thereof are represented by the above formula (3) with respect to 1 mol of all tetracarboxylic dianhydrides and derivatives thereof. It is preferable to contain 60 to 100 mol% of tetracarboxylic dianhydride and derivatives thereof. Since a liquid crystal alignment film having good liquid crystal alignment properties can be obtained, it is more preferably 80 mol% to 100 mol%, and still more preferably 90 mol% to 100 mol%.
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体の一つであるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で合成することができる。
<Method for producing polyamic acid ester>
The polyamic acid ester which is one of the polyimide precursors used in the present invention can be synthesized by the following method (1), (2) or (3).
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
(2) When synthesizing by reaction of tetracarboxylic acid diester dichloride and diamine The polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
For the base, pyridine, triethylamine, 4-dimethylaminopyridine, etc. are used.
できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。 Pyridine is preferred because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
(3) When synthesizing a polyamic acid ester from a tetracarboxylic acid diester and a diamine The polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine.
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。 Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize | combine by making it react for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。 In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。 Among the methods for synthesizing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。 Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。 Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。 When a polyimide is produced from a polyamic acid, chemical imidization in which a catalyst is added to the polyamic acid solution obtained by the reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。 Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、特定構造の重合体が有機溶媒中に溶解された溶液の形態を有する。本発明に記載のポリイミド前駆体及びポリイミドの分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent. The molecular weight of the polyimide precursor and polyimide described in the present invention is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100. , 000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。 The concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is 1 weight from the viewpoint of forming a uniform and defect-free coating film. % From the viewpoint of storage stability of the solution, and preferably 10% by weight or less.
<その他の溶媒>
 本発明の液晶配向剤には、本発明の効果を損なわない限りにおいて、上記A、B及びCグループに属する溶媒以外の溶媒(以下、その他の溶媒とも称する)として、本発明に記載のポリイミド前駆体及びポリイミドを溶解させる溶媒(良溶媒ともいう)や、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を含有させても良い。
<Other solvents>
In the liquid crystal aligning agent of the present invention, as long as the effects of the present invention are not impaired, the polyimide precursor described in the present invention can be used as a solvent other than the solvents belonging to the groups A, B and C (hereinafter also referred to as other solvents). A solvent (also referred to as a good solvent) that dissolves the body and polyimide, or a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal alignment film when a liquid crystal aligning agent is applied may be contained. .
 下記に、その他の溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 良溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシーN,N-ジメチルプロパンアミド(IPMA又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
Specific examples of other solvents are shown below, but the invention is not limited to these examples.
Examples of the good solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide (IPMA or 4-hydroxy-4 -Methyl-2-pentanone and the like.
 貧溶媒の具体例としては、例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、ブチルセロソルブ、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ダイアセトンアルコール、プロピレングリコールジアセタート、ジイソペンチルエーテル、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、エチルカルビトール又は下記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。 Specific examples of the poor solvent include, for example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl -1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3- Methylcyclohex Nord, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether , Ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pen Non, 2-hexanone, 2-heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol dia Cetrate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, butyl cellosolve, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether Ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol Monoethyl ether acetate, diacetone alcohol, propylene glycol diacetate, diisopentyl ether, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol Monomethyl ether, triethylene glycol monoethyl ether , Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3 -Ethyl methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate Examples thereof include esters, isoamyl lactate, ethyl carbitol, and solvents represented by the following formulas [D-1] to [D-3].
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000045
 
 (式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す)。 (In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms).
 本発明の液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含んでいても良い。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。 The liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. Or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物は、下記式[4A]で示されるオキセタン基を少なくとも2個有する化合物である。 The crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A].
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000046
 
 具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の58~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。 Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。 The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000047
 
 具体的には、国際公開公報WO2012/014898号(2012.2.2公開)の76~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。 Specifically, crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (published on 2012.2.2). It is done.
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 上記のメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールが挙げられる。
Examples of the melamine derivative or benzoguanamine derivative include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring. MW-30 (manufactured by Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and the like methoxymethylated melamine, Cymel 235, 236, Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123, etc. Methoxymethylated ethoxymethyl Benzomethylamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 (Mitsui Cyanamid) For example). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の62~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。 More specifically, the crosslinkable compounds of the formulas [6-1] to [6-48] described on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27) can be mentioned. It is done.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、更に、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物等が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2 Crosslinkability having one polymerizable unsaturated group in the molecule such as hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide Compounds and the like.
 更に、下記式[7A]で示される化合物を用いることもできる。 Furthermore, a compound represented by the following formula [7A] can also be used.
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000048
 
 (式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からからなる群から選ばれる基を示し、Eは下記式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す)。 (In the formula [7A], E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000049
 
 上記は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、の重合体成分100質量部に対して、0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。
The above is an example of a crosslinkable compound, but is not limited thereto. Moreover, the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In particular, in order for the crosslinking reaction to proceed and to exhibit the desired effect, the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component. More preferred is 1 to 50 parts by mass.
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention can use a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。 More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 The amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
 更に、液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751号(2011.10.27公開)の69~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向剤に直接添加しても構わないが、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒は、特定重合体(A)を溶解させるならば特に限定されない。 Furthermore, the liquid crystal aligning agent is disclosed in International Publication No. WO2011 / 132751 (published 2011.10.27) on pages 69 to 73 as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. Nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] can also be added. The amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass. The solvent is not particularly limited as long as the specific polymer (A) is dissolved.
 本発明の液晶配向剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、配向膜と基板との密着性を向上させる目的のシランカップリング剤、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 The liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal. As long as the effects of the invention are not impaired, a polymer other than the polymer described in the present invention, a silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, and further when firing the coating film An imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added to.
<液晶配向膜・液晶表示素子>
 液晶配向膜は、上記の液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 After the liquid crystal aligning agent is applied on the substrate, the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent. If the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、従来の装置、方法で行われるラビング処理や、ラビング処理や光配向処理などで配向処理をして、または垂直配向用途などでは配向処理無しで、液晶配向膜として用いることができる。 The liquid crystal alignment treatment agent of the present invention is applied to a substrate, baked, and then subjected to an alignment treatment by a rubbing treatment, a rubbing treatment or a photo-alignment treatment performed by a conventional apparatus or method, or in a vertical alignment application. Without alignment treatment, it can be used as a liquid crystal alignment film.
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。 As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that the liquid crystal display element may be an active matrix structure in which switching elements such as TFTs (Thin Film Transistors) are provided in each pixel portion constituting the image display.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。 Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよいが、好ましいのは、ネガ型液晶材料である。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。 Next, a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided. A part of the sealant is provided with an opening that can be filled with liquid crystal from the outside. Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. As the liquid crystal material, either a positive liquid crystal material or a negative liquid crystal material may be used, but a negative liquid crystal material is preferable. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
 垂直配向方式(特にPSAモード)の液晶表示素子においては、片側基板に例えば1μmから10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 In a vertical alignment type (particularly PSA mode) liquid crystal display element, a line / slit electrode pattern of, for example, 1 μm to 10 μm is formed on one substrate, and a slit pattern or projection pattern is not formed on the counter substrate. The liquid crystal display element having this structure can simplify the manufacturing process and obtain high transmittance.
 IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。金属膜としては、例えばクロムなどの金属からなる膜を使用できる。 When manufacturing an IPS type or FFS type liquid crystal display element, an electrode forming surface of a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate provided with no electrode A liquid crystal aligning agent is apply | coated to one surface, respectively, Then, a coating film is formed by heating each application surface. As the metal film, for example, a film made of a metal such as chromium can be used.
 垂直配向方式の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC-6608やMLC-6609、MLC-3022などのネガ型の液晶を用いることができる。また、PSAモードでは、重合性化合物を含有する液晶であるMLC-3023を用いることが出来る。その他にも、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。 The liquid crystal material constituting the liquid crystal layer of the vertical alignment type liquid crystal display element is not particularly limited, and liquid crystal materials used in the conventional vertical alignment method, for example, MLC-6608, MLC-6609, MLC-3022 manufactured by Merck & Co., Inc. Negative type liquid crystal such as can be used. In the PSA mode, MLC-3023 which is a liquid crystal containing a polymerizable compound can be used. In addition, for example, a liquid crystal containing a polymerizable compound represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000050
 
 一方、IPSやFFS等の水平配向方式の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来水平配向方式で使用される液晶材料、例えば、メルク社製のMLC-2003やMLC-2041などのネガポジ型の液晶やMLC-6608などのネガ型の液晶も用いることができる。 On the other hand, the liquid crystal material constituting the liquid crystal layer of the horizontal alignment type liquid crystal display element such as IPS or FFS is not particularly limited, and liquid crystal materials conventionally used in the horizontal alignment type, such as MLC-2003 and MLC manufactured by Merck Negative-positive liquid crystals such as −2041 and negative-type liquid crystals such as MLC-6608 can also be used.
 液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 As a method for sandwiching the liquid crystal layer between two substrates, a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal. Also, a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed A liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 PSAモード方式に於いては、液晶を挟持させた後、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する。この工程としては、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p又はDC2.5~15V、好ましくは10~30Vp-p又はDC5~15Vである。また、照射する光としては、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、前記のとおりである。紫外線の照射量は、例えば、1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 In the PSA mode method, after sandwiching the liquid crystal, a liquid crystal cell is produced by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer. As this process, for example, a method of applying an electric voltage to the liquid crystal alignment film and the liquid crystal layer by applying a voltage between the electrodes installed on the substrate and irradiating ultraviolet rays while maintaining the electric field can be mentioned. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p or DC 2.5 to 15 V, preferably 10 to 30 Vp-p or DC 5 to 15 V. Further, as the light to be irradiated, ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. The light source of the irradiation light is as described above. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
 上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。 As described above, when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer. Thus, the response speed of the obtained liquid crystal display element can be increased. In addition, a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
 上記のようにして、本発明の液晶配向剤を用いることで、塗布面内の膜厚の均一性や、塗布周辺部の直線性及び寸法安定性に優れる液晶配向膜を得ることができる。 As described above, by using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film excellent in the uniformity of the film thickness within the coating surface and the linearity and dimensional stability of the peripheral portion of the coating.
 以下に実施例を挙げて、さらに、本発明を具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to these examples.
 以下に、用いた化合物の略号を示す。 The abbreviations of the compounds used are shown below.
(溶媒)
NMP:N-メチル-2-ピロリドン
NEP:N-エチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
PB:1-ブトキシ-2-プロパノール
DPM:ジプロピレングリコールモノメチルエーテル
DIBK:ジイソブチルケトン
(solvent)
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve PB: 1-butoxy-2-propanol DPM: dipropylene glycol monomethyl ether DIBK: diisobutyl ketone
(テトラカルボン酸二無水物)
DC-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-3:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
DC-4:ピロメリット酸無水物
DC-5:3,3,4,4―ビフェニルテトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
DC-1: 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DC-3: bicyclo [ 3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride DC-4: pyromellitic anhydride DC-5: 3,3,4,4-biphenyltetracarboxylic dianhydride
(ジアミン)
DA-1:p-フェニレンジアミン
DA-2:ビス(4-アミノフェノキシ)エタン
DA-3:1,3-ビス(4-アミノフェノキシ)プロパン
DA-4:N-メチル-2-(4-アミノフェニル)エチルアミン
DA-5:下記式(DA-5)で表される化合物
DA-6:下記式(DA-6)で表される化合物
DA-7:下記式(DA-7)で表される化合物
DA-8:下記式(DA-8)で表される化合物
DA-9:3,5-ジアミノ安息香酸
DA-10:下記式(DA-10)で表される化合物
DA-11:下記式(DA-11)で表される化合物
DA-12:下記式(DA-12)で表される化合物
DA-13:下記式(DA-13)で表される化合物
DA-14:下記式(DA-14)で表される化合物
DA-15:下記式(DA-15)で表される化合物
DA-16:下記式(DA-16)で表される化合物
DA-17:下記式(DA-17)で表される化合物
DA-18:下記式(DA-18)で表される化合物
DA-19:下記式(DA-19)で表される化合物
DA-20:下記式(DA-20)で表される化合物
DA-21:下記式(DA-21)で表される化合物
(Diamine)
DA-1: p-phenylenediamine DA-2: bis (4-aminophenoxy) ethane DA-3: 1,3-bis (4-aminophenoxy) propane DA-4: N-methyl-2- (4-amino Phenyl) ethylamine DA-5: Compound DA-6 represented by the following formula (DA-5): Compound DA-7 represented by the following formula (DA-6): Represented by the following formula (DA-7) Compound DA-8: Compound DA-9 represented by the following formula (DA-8) DA-9: 3,5-diaminobenzoic acid DA-10: Compound DA-11 represented by the following formula (DA-10) Compound DA-12 represented by (DA-11): Compound DA-13 represented by the following formula (DA-12): Compound DA-14 represented by the following formula (DA-13): Formula (DA Compound DA-15 represented by formula (-14): Compound DA-16 represented by 5): Compound DA-17 represented by the following formula (DA-16): Compound DA-18 represented by the following formula (DA-17): Formula (DA-18) Compound DA-19 represented by: Compound DA-20 represented by the following formula (DA-19): Compound DA-21 represented by the following formula (DA-20): Formula represented by the following formula (DA-21) Compound
(添加剤)
3AMP:3-ピコリルアミン
(Additive)
3AMP: 3-picolylamine
 なお、以下の化学式において、Meはメチル基、Buはn-ブチル基、Bocはt-ブトキシ基を表す。 In the chemical formula below, Me represents a methyl group, Bu represents an n-butyl group, and Boc represents a t-butoxy group.
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000051
 
各特性の測定方法は、以下のとおりである。 The measuring method of each characteristic is as follows.
[粘度]
 ポリアミック酸エステル、ポリアミック酸溶液及びポリイミド溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of the polyamic acid ester, the polyamic acid solution and the polyimide solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), with a sample volume of 1.1 mL (milliliter) and cone rotor TE-1 (1 ° 34 ′ R24) at a temperature of 25 ° C.
[分子量]
 ポリアミック酸エステル及びポリアミック酸の分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール(ポリエチレンオキシド)換算値として、数平均分子量(以下、Mnとも言う)と重量平均分子量(以下、Mwとも言う)を算出した。
[Molecular weight]
The molecular weights of the polyamic acid ester and the polyamic acid were measured by a GPC (room temperature gel permeation chromatography) device, and converted into a polyethylene glycol (polyethylene oxide) conversion value as a number average molecular weight (hereinafter, also referred to as Mn) and a weight average molecular weight (hereinafter, Mw) was calculated.
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、及びKD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、及び30,000)及びポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)が、約12,000、4,000、及び1,000)を用いた。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプル、並びに150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルを別々に実施した。
<合成例1>
Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and polyethylene glycol (peak top molecular weight manufactured by Polymer Laboratory) (Mp) of about 12,000, 4,000, and 1,000). In order to avoid overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and 3 of 150,000, 30,000, and 4,000. Two samples of mixed types were run separately.
<Synthesis Example 1>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-1を0.81g(7.5mmol)、DA-2を1.22g(5.0mmol)、DA-3を1.94g(7.5mmol)及びジアミンDA-6を1.99g(5.0mmol)量り取り、NMPを74.86g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物DC-1を5.38g(24.0mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸(PAA-1)の溶液を得た。
 このポリアミック酸溶液の温度25℃における粘度は502mPa・sであった。また、このポリアミック酸の分子量はMn=16,715、Mw=43,662であった。
<合成例2>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 0.81 g (7.5 mmol) of diamine DA-1, 1.22 g (5.0 mmol) of DA-2, and 1.94 g of DA-3 ( 7.5 mmol) and 1.99 g (5.0 mmol) of diamine DA-6, 74.86 g of NMP were added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.38 g (24.0 mmol) of tetracarboxylic dianhydride DC-1 was added, and NMP was further added so that the solid content concentration was 12% by mass. Stirring for a time gave a solution of polyamic acid (PAA-1).
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 502 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 16,715 and Mw = 43,662.
<Synthesis Example 2>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-5を6.26g(21.0mmol)及びジアミンDA-4を2.10g(14.0mmol)量り取り、NMPを76.28g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物DC-2を6.58g(33.6mmol)添加し、更に、固形分濃度が15質量%になるようにNMPを加え、室温で4時間撹拌して、ポリアミック酸溶液(PAA-2)の溶液を得た。
 このポリアミック酸溶液の温度25℃における粘度は768mPa・sであった。また、このポリアミック酸の分子量はMn=11,658、Mw=28,328であった。
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 6.26 g (21.0 mmol) of diamine DA-5 and 2.10 g (14.0 mmol) of diamine DA-4 were weighed and 76.28 g of NMP was measured. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 6.58 g (33.6 mmol) of tetracarboxylic dianhydride DC-2 was added, and NMP was further added so that the solid content concentration was 15% by mass. By stirring, a solution of polyamic acid solution (PAA-2) was obtained.
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 768 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11,658 and Mw = 28,328.
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコに、ジアミンDA-1を0.84g(7.8mmol)、DA-2を1.27g(5.2mmol)、DA-3を2.01g(7.8mmol)及びジアミンDA-5を1.55g(5.2mmol)量り取り、NMPを73.26g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物DC-1を5.42g(24.2mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸(PAA-3)の溶液を得た。
 このポリアミック酸溶液の温度25℃における粘度は393mPa・sであった。また、このポリアミック酸の分子量はMn=14,654、Mw=39,268であった。
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.84 g (7.8 mmol) of diamine DA-1, 1.27 g (5.2 mmol) of DA-2, and 2.01 g of DA-3 ( 7.8 mmol) and 1.55 g (5.2 mmol) of diamine DA-5 were added, 73.26 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.42 g (24.2 mmol) of tetracarboxylic dianhydride DC-1 was added, and NMP was further added so that the solid content concentration was 12% by mass. Stirring for a time gave a solution of polyamic acid (PAA-3).
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 393 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14,654 and Mw = 39,268.
<合成例4>
 撹拌装置及び窒素導入管付きの3L四つ口フラスコに、ジアミンDA-1を17.30g(159.98mmol)、ジアミンDA-2を58.63g(240.0mmol)、ジアミンDA-15を76.89g(240.0mmol)及びジアミンDA-7を54.63g(159.99mmol)量り取り、NMPを2458.13g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物DC-1を171.27g(764.02mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸(PAA-4)の溶液を得た。
 このポリアミック酸溶液の温度25℃における粘度は426mPa・sであった。また、このポリアミック酸の分子量はMn=12,380、Mw=33,250であった。
<Synthesis Example 4>
In a 3 L four-necked flask equipped with a stirrer and a nitrogen introduction tube, 17.30 g (159.98 mmol) of diamine DA-1, 58.63 g (240.0 mmol) of diamine DA-2, and 76. 89 g (240.0 mmol) and 54.63 g (159.99 mmol) of diamine DA-7 were weighed, 2458.13 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 171.27 g (764.02 mmol) of tetracarboxylic dianhydride DC-1 was added, and NMP was further added so that the solid content concentration was 12% by mass. Stirring for a time gave a solution of polyamic acid (PAA-4).
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 426 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 12,380 and Mw = 33,250.
 このポリアミック酸溶液を2250.0g分取し、NMPを750.0g加えた後、無水酢酸を171.1g、及びピリジンを35.4g加え、55℃で3時間反応させた。この反応溶液をメタノール9619.2gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は66%であった。得られたポリイミド粉末120.0gにNMP880.0gを加えて70℃にて20hr攪拌して溶解させることでポリイミド溶液(SPI-1)を得た。
 このポリイミド溶液の温度25℃における粘度は137mPa・sであった。また、このポリイミドの分子量はMn=11,035、Mw=27,887であった。
2250.0 g of this polyamic acid solution was collected, 750.0 g of NMP was added, 171.1 g of acetic anhydride and 35.4 g of pyridine were added, and the mixture was reacted at 55 ° C. for 3 hours. This reaction solution was poured into 9619.2 g of methanol, and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 66%. 880.0 g of NMP was added to 120.0 g of the obtained polyimide powder, and dissolved by stirring at 70 ° C. for 20 hr to obtain a polyimide solution (SPI-1).
The viscosity of this polyimide solution at a temperature of 25 ° C. was 137 mPa · s. Moreover, the molecular weight of this polyimide was Mn = 11,035 and Mw = 27,887.
<合成例5>
 撹拌装置及び窒素導入管付きの3L四つ口フラスコに、ジアミンDA-21を130.71g(656.0mmol)及びジアミンDA-9を24.95g(163.98mmol)量り取り、NMPを171.60g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、テトラカルボン酸二無水物DC-5を226.78g(770.8mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、室温で4時間撹拌して、ポリアミック酸溶液(PAA-4)の溶液を得た。
 このポリアミック酸溶液の温度25℃における粘度は234mPa・sであった。また、このポリアミック酸の分子量はMn=9,657、Mw=22,975であった。
<Synthesis Example 5>
In a 3 L four-necked flask equipped with a stirrer and a nitrogen introduction tube, 107.71 g (656.0 mmol) of diamine DA-21 and 24.95 g (163.98 mmol) of diamine DA-9 were weighed and 171.60 g of NMP was measured. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 226.78 g (770.8 mmol) of tetracarboxylic dianhydride DC-5 was added, NMP was further added so that the solid content concentration was 12% by mass, and 4 hours at room temperature. By stirring, a solution of polyamic acid solution (PAA-4) was obtained.
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 234 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 9,657 and Mw = 22,975.
<合成例6>
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコにジアミンDA-2を4.03g(16.5mmol)、ジアミンDA-6を3.59g(9.0mmol)、及びジアミンDA-18を2.50g(4.5mmol)加えた後、NMPを102.1g加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながらテトラカルボン酸二無水物DC-1を4.37g(19.5mmol)、及びNMPを12.8g加え、40℃条件下にて3時間攪拌した。その後、25℃条件下にてテトラカルボン酸二無水物DC-2を1.71g(8.7mmol)、及びNMPを12.8g加えた後、さらに12時間攪拌することで樹脂固形分濃度15質量%のポリアミック酸溶液を得た。
 このポリアミック酸溶液の粘度は820mPa・sであった。また、このポリアミック酸の分子量はMn=13,250、Mw=35,459であった。
<Synthesis Example 6>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.03 g (16.5 mmol) of diamine DA-2, 3.59 g (9.0 mmol) of diamine DA-6, and 2 diamine DA-18 were added. After adding 50 g (4.5 mmol), 102.1 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this solution, 4.37 g (19.5 mmol) of tetracarboxylic dianhydride DC-1 and 12.8 g of NMP were added, and the mixture was stirred at 40 ° C. for 3 hours. Thereafter, 1.71 g (8.7 mmol) of tetracarboxylic dianhydride DC-2 and 12.8 g of NMP were added at 25 ° C., and the mixture was further stirred for 12 hours, whereby the resin solid content concentration was 15 mass. % Polyamic acid solution was obtained.
The viscosity of this polyamic acid solution was 820 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13,250 and Mw = 35,459.
 このポリアミック酸溶液を80.0g分取し、NMPを70.0g加えた後、無水酢酸を6.8g、及びピリジンを1.8g加え、50℃で3時間反応させた。この反応溶液をメタノール555.0gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は75%であった。得られたポリイミド粉末80.0gにNMP586.7gを加えて50℃にて20hr攪拌して溶解させることでポリイミド溶液(SPI-2)を得た。
 このポリイミド溶液の温度25℃における粘度は74.0mPa・sであった。また、このポリイミドの分子量はMn=9,848、Mw=23,058であった。
80.0 g of this polyamic acid solution was collected, 70.0 g of NMP was added, 6.8 g of acetic anhydride and 1.8 g of pyridine were added, and the mixture was reacted at 50 ° C. for 3 hours. This reaction solution was poured into 555.0 g of methanol, and the produced precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 75%. NMP586.7g was added to 80.0g of obtained polyimide powder, and it stirred for 20 hours and dissolved at 50 degreeC, and the polyimide solution (SPI-2) was obtained.
The viscosity of this polyimide solution at a temperature of 25 ° C. was 74.0 mPa · s. Moreover, the molecular weight of this polyimide was Mn = 9,848 and Mw = 23,058.
<合成例7>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコにジアミンDA-20を1.12g(4.5mmol)、ジアミンDA-19を0.59g(3.0mmol)、及びジアミンDA-21を1.49g(7.5mmol)を加えた後、NMP:GBL=1:1の混合溶媒31.0gを加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながら、テトラカルボン酸二無水物DC-2を1.15g(5.9mmol)、及びNMP:GBL=1:1の混合溶媒を10.0g加えた後、25℃条件下にて1時間攪拌した。その後、テトラカルボン酸二無水物DC-5を2.60g(8.8mmol)加え、NMP:GBL=1:1の混合溶媒を10.0g加えた後、さらに50℃条件下にて12時間攪拌することで樹脂固形分濃度12質量%のポリアミック酸溶液(PAA-5)を得た。
 このポリアミック酸溶液の温度25℃における粘度は200mPa・sであった。また、このポリアミック酸の分子量はMn=8,026、Mw=18,458であった。
<Synthesis Example 7>
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 1.12 g (4.5 mmol) of diamine DA-20, 0.59 g (3.0 mmol) of diamine DA-19, and 1 of diamine DA-21 After adding .49 g (7.5 mmol), 31.0 g of a mixed solvent of NMP: GBL = 1: 1 was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this solution, 1.15 g (5.9 mmol) of tetracarboxylic dianhydride DC-2 and 10.0 g of a mixed solvent of NMP: GBL = 1: 1 were added, And stirred for 1 hour. Thereafter, 2.60 g (8.8 mmol) of tetracarboxylic dianhydride DC-5 was added, 10.0 g of a mixed solvent of NMP: GBL = 1: 1 was added, and the mixture was further stirred at 50 ° C. for 12 hours. As a result, a polyamic acid solution (PAA-5) having a resin solid content concentration of 12% by mass was obtained.
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 200 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 8,026 and Mw = 18,458.
<合成例8>
 撹拌装置及び窒素導入管付きの500mLフラスコに、ジアミンDA-16を25.20g(0.088mol)、及びジアミンDA-17を8.72g(0.022mol)投入した後、NMPを334.28g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、テトラカルボン酸二無水物DC-4を23.06g(0.11mol)添加し、更にNMPを83.57g加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-6)を得た。
 このポリアミック酸溶液の粘度は545mPa・sであった。また、このポリアミック酸の分子量はMn=17,344、Mw=43,383であった。
<Synthesis Example 8>
After adding 25.20 g (0.088 mol) of diamine DA-16 and 8.72 g (0.022 mol) of diamine DA-17 to a 500 mL flask equipped with a stirrer and a nitrogen introduction tube, add 334.28 g of NMP. And dissolved by stirring. While stirring this solution under water cooling, 23.06 g (0.11 mol) of tetracarboxylic dianhydride DC-4 was added, and 83.57 g of NMP was further added, followed by stirring at 50 ° C. for 12 hours to obtain a polyamic acid solution. (PAA-6) was obtained.
The viscosity of this polyamic acid solution was 545 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 17,344 and Mw = 43,383.
<合成例9>
 撹拌装置及び窒素導入管付きの500mLフラスコに、ジアミンDA-21を23.91g(0.12mol)、及びジアミンDA-9を4.56g(0.03mol)投入した後、NMPを241.76g加えて撹拌して溶解させた。この溶液を水冷下で撹拌しながら、テトラカルボン酸二無水物DC-2を13.71g(0.070mol)添加し、更にNMPを69.07g加えた後、2時間撹拌させた。その後テトラカルボン酸二無水物DC-3を18.77g(0.075mol)投入した後、NMPを34.54g加えて、50℃で12時間撹拌してポリアミック酸溶液(PAA-7)を得た。
 このポリアミック酸溶液の粘度は300mPa・sであった。また、このポリアミック酸の分子量はMn=11,333、Mw=24,081であった。
<Synthesis Example 9>
After adding 23.91 g (0.12 mol) of diamine DA-21 and 4.56 g (0.03 mol) of diamine DA-9 to a 500 mL flask equipped with a stirrer and a nitrogen introduction tube, add 241.76 g of NMP. And dissolved by stirring. While stirring this solution under water cooling, 13.71 g (0.070 mol) of tetracarboxylic dianhydride DC-2 was added, and 69.07 g of NMP was further added, followed by stirring for 2 hours. Thereafter, 18.77 g (0.075 mol) of tetracarboxylic dianhydride DC-3 was added, 34.54 g of NMP was added, and the mixture was stirred at 50 ° C. for 12 hours to obtain a polyamic acid solution (PAA-7). .
The viscosity of this polyamic acid solution was 300 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11,333 and Mw = 24,081.
[液晶配向剤の調製]
(実施例1)
 撹拌子を入れた40mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を4.00g、合成例2で得られたポリアミック酸溶液(PAA-2)を4.80g量り取り、NMPを23.20g、PBを6.80g及びDIBKを1.20g量り取り、室温で3時間攪拌し、液晶配向剤A1を得た。
[Preparation of liquid crystal aligning agent]
Example 1
In a 40 ml sample tube containing a stir bar, 4.00 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 4.80 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were weighed. Weighed 23.20 g of NMP, 6.80 g of PB and 1.20 g of DIBK and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent A1.
 この液晶配向剤A1を用いて、25℃における粘度を測定した。その後、以下の塗布性評価を行った。 Using this liquid crystal alignment agent A1, the viscosity at 25 ° C. was measured. Thereafter, the following applicability evaluation was performed.
[インクジェット塗布性評価]
 上記で調整した液晶配向剤A1を、インクジェット塗布装置(株式会社日立プラントテクノロジー製)を用いて、クロムが表面に蒸着されたガラス基板上に塗布した。塗布条件は、吐出ピッチ40μm、塗布速度100mm/sec、射出電圧13.0V、塗布面積36×80mmで行った。塗膜の膜厚は、80℃のホットプレート上で2分仮乾燥を行った後、230℃30分の条件で、IRオーブンで焼成した際に、100nmとなる条件で塗布した。
[Inkjet applicability evaluation]
Liquid crystal aligning agent A1 adjusted above was apply | coated on the glass substrate by which chromium was vapor-deposited on the surface using the inkjet coating device (made by Hitachi Plant Technology Co., Ltd.). The coating conditions were a discharge pitch of 40 μm, a coating speed of 100 mm / sec, an injection voltage of 13.0 V, and a coating area of 36 × 80 mm. The film thickness of the coating film was applied under the conditions of 100 nm when baked in an IR oven at 230 ° C. for 30 minutes after being temporarily dried on an 80 ° C. hot plate for 2 minutes.
 80℃で仮乾燥し、230℃で焼成した塗膜について、塗布性不足もしくは液ダレの影響で発生するスジ状のムラ程度を比較して、4段階で評価した。目視で全面に顕著なムラが確認できるものをLv4、目視で部分的にムラが確認できるものをLv3、ムラが目視では見えないものをLv2、光学顕微鏡でもムラが全くないものをLv1とした。 The coating film that was temporarily dried at 80 ° C. and baked at 230 ° C. was evaluated in four stages by comparing the degree of streaky unevenness generated due to insufficient coating properties or dripping. Lv4 is a material that can be visually confirmed to have a noticeable unevenness on the entire surface, Lv3 is a material that can be visually confirmed to be partially uneven, Lv2 is a material that cannot be seen visually, and Lv1 is an image that has no unevenness even on an optical microscope.
 シリコーン系撥水膜OA-160R1(日産化学工業製)を10×10cmのガラス基板上に滴下し、2000rpmの回転数でガラス基板にスピンコートした。その後、このガラス基板を200℃、30分の条件で、IRオーブンで焼成し、疎水性ガラス基板を得た。 Silicone-based water repellent film OA-160R1 (manufactured by Nissan Chemical Industries, Ltd.) was dropped on a 10 × 10 cm glass substrate and spin-coated on the glass substrate at a rotational speed of 2000 rpm. Thereafter, this glass substrate was baked in an IR oven at 200 ° C. for 30 minutes to obtain a hydrophobic glass substrate.
[ドット塗布評価]
 上記で調整した液晶配向剤A1について、インクジェット塗布装置(株式会社日立プラントテクノロジー製)を用いて、上記で準備した疎水性ガラス基板上に塗布した。塗布条件は、吐出ピッチ500μm、塗布速度100mm/sec、射出電圧13.0V、塗布面積36×80mmで行った。液晶配向剤A1を上記条件で塗布した後、80℃のホットプレート上で2分仮乾燥を行った後、230℃30分の条件で、IRオーブンで焼成した。
[Dot application evaluation]
About liquid crystal aligning agent A1 adjusted above, it apply | coated on the hydrophobic glass substrate prepared above using the inkjet coating apparatus (made by Hitachi Plant Technology). The coating conditions were a discharge pitch of 500 μm, a coating speed of 100 mm / sec, an injection voltage of 13.0 V, and a coating area of 36 × 80 mm. After apply | coating liquid crystal aligning agent A1 on the said conditions, after performing temporary drying for 2 minutes on an 80 degreeC hotplate, it baked by IR oven on the conditions for 230 degreeC for 30 minutes.
[塗膜の評価方法]
 80℃で仮乾燥し、230℃で焼成したドット状の塗膜について、顕微鏡を用いてドットの直径を測定した。一般にドット径は大きいほど、良好な塗膜性を有する材料であるとされる。ドット径が160μm以上を良好とし、それ以下を不良とした。
[Evaluation method of coating film]
About the dot-shaped coating film which was temporarily dried at 80 degreeC and baked at 230 degreeC, the diameter of the dot was measured using the microscope. In general, the larger the dot diameter, the better the coating material. A dot diameter of 160 μm or more was considered good, and less than that was considered bad.
<実施例2~9および比較例1~9>
 合成例1~3、5、7~9で得られたポリアミック酸溶液および合成例4、6で得られたポリイミド溶液を下記表1で示した所定のブレンド比率、固形分濃度、溶媒比率となるように各種溶剤による希釈を行い、液晶配向剤A2~A6及び液晶配向剤B1~B5、C1、D1、E1、F1、G1、H1、およびI1を得た。ポリアミック酸溶液、ポリイミド溶液及び溶剤の組成比を実施例1と共に表1に示す。
<Examples 2 to 9 and Comparative Examples 1 to 9>
The polyamic acid solutions obtained in Synthesis Examples 1 to 3, 5, and 7 to 9 and the polyimide solutions obtained in Synthesis Examples 4 and 6 have the predetermined blend ratio, solid content concentration, and solvent ratio shown in Table 1 below. Thus, the liquid crystal aligning agents A2 to A6 and the liquid crystal aligning agents B1 to B5, C1, D1, E1, F1, G1, H1, and I1 were obtained. The composition ratio of the polyamic acid solution, the polyimide solution and the solvent is shown in Table 1 together with Example 1.
 表1中、固形分組成と重量比は、各重合体の混合比率(質量%)を表す。溶液の組成と重量比は、各有機溶媒のポリマー溶液全体に対する比率(質量%)を表す。 In Table 1, the solid content composition and the weight ratio represent the mixing ratio (mass%) of each polymer. The composition and weight ratio of the solution represent the ratio (mass%) of each organic solvent to the whole polymer solution.
Figure JPOXMLDOC01-appb-T000052
 
Figure JPOXMLDOC01-appb-T000052
 
 表2には、実施例1~9、及び比較例1~9における各評価結果等をまとめて示した。 Table 2 summarizes the evaluation results and the like in Examples 1 to 9 and Comparative Examples 1 to 9.
Figure JPOXMLDOC01-appb-T000053
 
Figure JPOXMLDOC01-appb-T000053
 
<合成例10>。
 テトラカルボン酸二無水物DC-3(12.51g、 50.0mmol)、ジアミンDA-7(13.66g、40.0mmol)、ジアミンDA-11(6.61g、20.0mmol)、ジアミンDA-13(17.39g、40.0mmol)をNMP(179.3g)中で溶解し、60℃で5時間反応させたのち、テトラカルボン酸二無水物DC-2(9.61g、49.0mmol)とNMP(59.8g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
<Synthesis Example 10>.
Tetracarboxylic dianhydride DC-3 (12.51 g, 50.0 mmol), diamine DA-7 (13.66 g, 40.0 mmol), diamine DA-11 (6.61 g, 20.0 mmol), diamine DA- 13 (17.39 g, 40.0 mmol) was dissolved in NMP (179.3 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-2 (9.61 g, 49.0 mmol). And NMP (59.8 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.0g)、およびピリジン(5.3g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(1700ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(J)を得た。このポリイミドのイミド化率は76%であり、数平均分子量は11000、重量平均分子量は38000であった。 After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (17.0 g) and pyridine (5.3 g) were added as an imidization catalyst and reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1700 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (J). The imidation ratio of this polyimide was 76%, the number average molecular weight was 11000, and the weight average molecular weight was 38000.
 得られたポリイミド粉末(J)(3.0g)にNMP(27.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)3.0g、NMP(2.0g)、BCS(50.0g)を加え、室温で5時間攪拌することにより液晶配向剤(J1)を得た。 NMP (27.0 g) was added to the obtained polyimide powder (J) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours. 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (J1) was obtained by stirring at room temperature for 5 hours.
<合成例11>
 テトラカルボン酸二無水物DC-3(12.51g、 50.0mmol)、ジアミンDA-8(11.87g、50.0mmol)、ジアミンDA-11(9.91g、30.0mmol)、ジアミンDA-14(15.14g、20.0mmol)をNMP(177.1g)中で溶解し、60℃で5時間反応させたのち、テトラカルボン酸二無水物DC-2(9.61g、49.0mmol)とNMP(59.0g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
<Synthesis Example 11>
Tetracarboxylic dianhydride DC-3 (12.51 g, 50.0 mmol), diamine DA-8 (11.87 g, 50.0 mmol), diamine DA-11 (9.91 g, 30.0 mmol), diamine DA- 14 (15.14 g, 20.0 mmol) was dissolved in NMP (177.1 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-2 (9.61 g, 49.0 mmol). And NMP (59.0 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.2g)、およびピリジン(5.3g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(1300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(K)を得た。このポリイミドのイミド化率は71%であり、数平均分子量は9000、重量平均分子量は24000であった。 After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (17.2 g) and pyridine (5.3 g) were added as imidization catalysts, and the mixture was reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (K). The imidation ratio of this polyimide was 71%, the number average molecular weight was 9000, and the weight average molecular weight was 24000.
 得られたポリイミド粉末(K)(3.0g)にNMP(27.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)3.0g、NMP(2.0g)、BCS(50.0g)を加え、室温で5時間攪拌することにより液晶配向剤(K1)を得た。 NMP (27.0 g) was added to the obtained polyimide powder (K) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours. 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (K1) was obtained by stirring at room temperature for 5 hours.
<合成例12>
 テトラカルボン酸二無水物DC-3(12.51g、 50.0mmol)、ジアミンDA-9(6.10g、40.0mmol)、ジアミンDA-11(6.61g、20.0mmol)、ジアミンDA-13(17.39g、40.0mmol)をNMP(156.6g)中で溶解し、60℃で5時間反応させたのち、テトラカルボン酸二無水物DC-2(9.61g、49.0mmol)とNMP(52.2g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
<Synthesis Example 12>
Tetracarboxylic dianhydride DC-3 (12.51 g, 50.0 mmol), diamine DA-9 (6.10 g, 40.0 mmol), diamine DA-11 (6.61 g, 20.0 mmol), diamine DA- 13 (17.39 g, 40.0 mmol) was dissolved in NMP (156.6 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-2 (9.61 g, 49.0 mmol). And NMP (52.2 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(19.5g)、およびピリジン(6.0g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(1300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は75%であり、数平均分子量は16000、重量平均分子量は43000であった。 After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (19.5 g) and pyridine (6.0 g) were added as an imidization catalyst and reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide was 75%, the number average molecular weight was 16000, and the weight average molecular weight was 43,000.
 得られたポリイミド粉末(L)(3.0g)にNEP(27.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液にNEP(20.0g)、BCS(50.0g)を加え、室温で5時間攪拌することにより液晶配向剤(L1)を得た。 NEP (27.0 g) was added to the obtained polyimide powder (L) (3.0 g), and dissolved by stirring at 70 ° C. for 20 hours. NEP (20.0g) and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (L1) was obtained by stirring at room temperature for 5 hours.
<合成例13>
 テトラカルボン酸二無水物DC-3(12.51g、 50.0mmol)、ジアミンDA-9(7.61g、50.0mmol)、ジアミンDA-11(9.91g、30.0mmol)、ジアミンDA-14(15.14g、20.0mmol)をNMP(164.4g)中で溶解し、60℃で5時間反応させたのち、テトラカルボン酸二無水物DC-2(9.61g、49.0mmol)とNMP(54.8g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
<Synthesis Example 13>
Tetracarboxylic dianhydride DC-3 (12.51 g, 50.0 mmol), diamine DA-9 (7.61 g, 50.0 mmol), diamine DA-11 (9.91 g, 30.0 mmol), diamine DA- 14 (15.14 g, 20.0 mmol) was dissolved in NMP (164.4 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-2 (9.61 g, 49.0 mmol). And NMP (54.8 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.6g)、およびピリジン(5.8g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(1300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(M)を得た。このポリイミドのイミド化率は71%であり、数平均分子量は12000、重量平均分子量は29000であった。 After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (18.6 g) and pyridine (5.8 g) were added as an imidization catalyst, and the mixture was reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (M). The imidation ratio of this polyimide was 71%, the number average molecular weight was 12000, and the weight average molecular weight was 29000.
 得られたポリイミド粉末(M)(3.0g)にNMP(27.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液にNEP(20.0g)、BCS(50.0g)を加え、室温で5時間攪拌することにより液晶配向剤(M1)を得た。 NMP (27.0 g) was added to the obtained polyimide powder (M) (3.0 g) and dissolved by stirring at 70 ° C. for 20 hours. NEP (20.0g) and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (M1) was obtained by stirring at room temperature for 5 hours.
<合成例14>
 テトラカルボン酸二無水物DC-3(5.00g、 20.0mmol)、ジアミンDA-9(6.09g、40.0mmol)、ジアミンDA-10(7.27g、30.0mmol)、ジアミンDA-12(11.42g、30.0mmol)をNMP(137.1g)中で溶解し、60℃で5時間反応させたのち、テトラカルボン酸二無水物DC-4(4.36g、20.0mmol)、テトラカルボン酸二無水物DC-2(11.57g、59.0mmol)とNMP(45.7g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
<Synthesis Example 14>
Tetracarboxylic dianhydride DC-3 (5.00 g, 20.0 mmol), diamine DA-9 (6.09 g, 40.0 mmol), diamine DA-10 (7.27 g, 30.0 mmol), diamine DA- 12 (11.42 g, 30.0 mmol) was dissolved in NMP (137.1 g), reacted at 60 ° C. for 5 hours, and then tetracarboxylic dianhydride DC-4 (4.36 g, 20.0 mmol). Then, tetracarboxylic dianhydride DC-2 (11.57 g, 59.0 mmol) and NMP (45.7 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution.
 このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(22.2g)、およびピリジン(6.9g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(1300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(N)を得た。このポリイミドのイミド化率は78%であり、数平均分子量は18000、重量平均分子量は39000であった。 After adding NMP to this polyamic acid solution (100 g) and diluting to 6.5% by mass, acetic anhydride (22.2 g) and pyridine (6.9 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (N). The imidation ratio of this polyimide was 78%, the number average molecular weight was 18000, and the weight average molecular weight was 39000.
 得られたポリイミド粉末(N)(3.0g)にNMP(27.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)3.0g、NMP(2.0g)、BCS(50.0g)を加え、室温で5時間攪拌することにより液晶配向剤(N1)を得た。 NMP (27.0 g) was added to the obtained polyimide powder (N) (3.0 g) and dissolved by stirring at 70 ° C. for 20 hours. 3AMP (1 wt% NMP solution) 3.0g, NMP (2.0g), and BCS (50.0g) were added to this solution, and the liquid crystal aligning agent (N1) was obtained by stirring at room temperature for 5 hours.
 以上のような合成例10~14にしたがって、液晶配向剤J1、K1,L1、M1およびN1を得た。 According to Synthesis Examples 10 to 14 as described above, liquid crystal aligning agents J1, K1, L1, M1 and N1 were obtained.
 下記表は、合成例10~14において使用された酸二無水物成分とジアミン成分の組成比を示す。 The following table shows the composition ratio of the acid dianhydride component and the diamine component used in Synthesis Examples 10-14.
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000054
 
<合成例15~23>
 さらに、合成例10~14で得られたポリイミド粉末(J~N)を用いて、前記した合成例3~7と同様の操作によって、下記の表4に示す溶媒組成の液晶配向剤を調製した。
<Synthesis Examples 15 to 23>
Further, using the polyimide powders (J to N) obtained in Synthesis Examples 10 to 14, liquid crystal aligning agents having the solvent compositions shown in Table 4 below were prepared by the same operations as in Synthesis Examples 3 to 7. .
Figure JPOXMLDOC01-appb-T000055
 
Figure JPOXMLDOC01-appb-T000055
 
<実施例10>
 合成例16と合成例20で得られた液晶配向剤J2とN3について、それぞれに含まれる樹脂組成物の重量比が3:7となるように室温で3時間撹拌し、液晶配向剤(JN1)を調製した。
<Example 10>
About liquid crystal aligning agent J2 and N3 obtained by the synthesis example 16 and the synthesis example 20, it stirred at room temperature for 3 hours so that the weight ratio of the resin composition contained in each might be set to 3: 7, and liquid crystal aligning agent (JN1) Was prepared.
<実施例11、12、比較例10~14>
 実施例10と同様の操作で各液晶配向剤を配合し、下記表5に示す各種の液晶配向剤を調製した。調製した液晶配向剤の配合比率および、溶媒組成は表5の通りであった。
<Examples 11 and 12, Comparative Examples 10 to 14>
Each liquid crystal aligning agent was mix | blended by the same operation as Example 10, and the various liquid crystal aligning agents shown in following Table 5 were prepared. Table 5 shows the blending ratio and solvent composition of the prepared liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-T000056
 
Figure JPOXMLDOC01-appb-T000056
 
 表5の液晶配向剤について実施例1と同様にして評価を行った。評価結果は表6に示される通りであった。 The liquid crystal aligning agent in Table 5 was evaluated in the same manner as in Example 1. The evaluation results were as shown in Table 6.
Figure JPOXMLDOC01-appb-T000057
 
Figure JPOXMLDOC01-appb-T000057
 
 表6の結果から、比較例10と比較例11、比較例12と13とを比べると重合体中に熱によって脱離する保護基を含んでいる場合、塗布ムラやドット塗布性が低下する傾向にあることがわかる。 From the results in Table 6, when Comparative Example 10 and Comparative Example 11 and Comparative Examples 12 and 13 are compared, if the polymer contains a protective group that is released by heat, uneven coating and dot coating properties tend to decrease. You can see that
 一方で、実施例10と比較例10、実施例11と比較例12、実施例12と比較例14を比べるとジイソブチルケトンを導入させることで、重合体中に熱によって脱離する保護基を含んでいる場合でも塗布性を改善できることが確認された。
 
On the other hand, when Example 10 and Comparative Example 10, Example 11 and Comparative Example 12, and Example 12 and Comparative Example 14 are compared, diisobutylketone is introduced, so that the polymer contains a protecting group that is eliminated by heat. It was confirmed that the coatability can be improved even when the film is exposed.

Claims (10)

  1.  ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種であり、熱により脱離する保護基を含有する重合体と、
     下記Aグループの溶媒、Bグループの溶媒及びイソブチルケトンを含有する溶媒成分
    とを含有することを特徴とする、液晶配向剤。
     Aグループ:N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ‐ブチロラクトンおよび1,3-ジメチルイミダゾリジノンからなる群から選ばれる少なくとも1種の溶媒
     Bグループ:ブチルセロソルブ、1-ブトキシ-2-プロパノール、2-ブトキシ-1―プロパノール、ジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の溶媒。
    A polymer containing a protecting group which is at least one selected from the group consisting of a polyimide precursor and a polyimide which is an imidized product thereof, and is desorbed by heat;
    The liquid crystal aligning agent characterized by including the solvent component containing the solvent of the following A group, the solvent of B group, and isobutyl ketone.
    Group A: at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone and 1,3-dimethylimidazolidinone Group B: butyl cellosolve, 1-butoxy -At least one solvent selected from the group consisting of 2-propanol, 2-butoxy-1-propanol, and dipropylene glycol dimethyl ether.
  2.  前記Aグループに属する溶媒が含まれる量が、液晶配向剤の全質量に対し、20質量%~90質量%以下である、請求項1に記載の液晶配向剤。 2. The liquid crystal aligning agent according to claim 1, wherein the amount of the solvent belonging to the A group is 20% by mass to 90% by mass or less with respect to the total mass of the liquid crystal aligning agent.
  3.  前記Bグループに属する溶媒が含まれる量が、液晶配向剤の全質量に対し、1質量%~50質量%以下である、請求項1または2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the amount of the solvent belonging to the group B is 1% by mass to 50% by mass or less with respect to the total mass of the liquid crystal aligning agent.
  4.  前記ジイソブチルケトンが含まれる量が、液晶配向剤の全質量に対し、1質量%~20質量%以下である、請求項1~3のいずれか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the amount of the diisobutyl ketone is 1% by mass to 20% by mass or less based on the total mass of the liquid crystal aligning agent.
  5.  前記重合体が、以下の構造を含有する、請求項1~4のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     
     式中、
     Xは酸素原子又は硫黄原子であり、A~Aはそれぞれ独立に水素原子又は炭素数1~3の炭化水素基であり、炭素数の合計は1~9である。また、*は、他の原子との結合を表す。
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the polymer contains the following structure.
    Figure JPOXMLDOC01-appb-C000001

    Where
    X 1 is an oxygen atom or a sulfur atom, A 1 to A 3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and the total number of carbon atoms is 1 to 9. * Represents a bond with another atom.
  6.  前記重合体が、上記式(a)の構造を含有するジアミンを含有するジアミン成分と、テトラカルボン酸誘導体との反応物であるポリイミド前駆体及びそのイミド化物からなる群から選ばれる少なくとも1種の重合体である、請求項1~6のいずれか一項に記載の液晶配向剤。 The polymer is at least one selected from the group consisting of a diamine component containing a diamine containing the structure of the above formula (a) and a polyimide precursor which is a reaction product of a tetracarboxylic acid derivative and an imidized product thereof. The liquid crystal aligning agent according to any one of claims 1 to 6, which is a polymer.
  7.  上記式(a)の構造を含有するジアミンが、以下のジアミンから選ばれる少なくとも1種である、請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     
    The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the diamine containing the structure of the formula (a) is at least one selected from the following diamines.
    Figure JPOXMLDOC01-appb-C000002
  8.  上記式(a)の構造を含有するジアミンが、全ジアミン成分中の10モル%~50モル%である、請求項6または7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 6 or 7, wherein the diamine containing the structure of the above formula (a) is 10 mol% to 50 mol% in the total diamine component.
  9.  請求項1~8のいずれか一項に記載の液晶配向剤から得られる、液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 8.
  10.  請求項9の液晶配向膜を具備する、液晶表示素子。
     
    A liquid crystal display device comprising the liquid crystal alignment film of claim 9.
PCT/JP2017/035120 2016-09-29 2017-09-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device WO2018062353A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780073610.6A CN110023826B (en) 2016-09-29 2017-09-28 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020227036843A KR20220147158A (en) 2016-09-29 2017-09-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP2018542833A JP7063270B2 (en) 2016-09-29 2017-09-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR1020197012038A KR20190060803A (en) 2016-09-29 2017-09-28 A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191841 2016-09-29
JP2016-191841 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062353A1 true WO2018062353A1 (en) 2018-04-05

Family

ID=61759815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035120 WO2018062353A1 (en) 2016-09-29 2017-09-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP7063270B2 (en)
KR (2) KR20220147158A (en)
CN (1) CN110023826B (en)
TW (1) TWI773689B (en)
WO (1) WO2018062353A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230617A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film
WO2019244939A1 (en) * 2018-06-19 2019-12-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same, and production method for said liquid crystal display element, and diamine compound
WO2020105561A1 (en) * 2018-11-19 2020-05-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN113412449A (en) * 2019-02-08 2021-09-17 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573952B (en) * 2017-03-02 2022-03-22 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN112639595A (en) * 2018-08-30 2021-04-09 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI819102B (en) * 2019-01-17 2023-10-21 日商Jsr股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062443B2 (en) * 2007-03-08 2012-10-31 Jsr株式会社 Liquid crystal aligning agent and horizontal electric field type liquid crystal display element
JP2014238564A (en) * 2013-05-09 2014-12-18 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, manufacturing method of liquid crystal alignment film, retardation film, and manufacturing method of retardation film
WO2016080458A1 (en) * 2014-11-21 2016-05-26 Jnc株式会社 Liquid crystal aligning agent containing polyamic acid or derivative thereof, liquid crystal alignment film and liquid crystal display element

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156445B2 (en) 2003-06-04 2008-09-24 株式会社 日立ディスプレイズ Manufacturing method of liquid crystal display device
JP4869892B2 (en) 2006-12-06 2012-02-08 株式会社 日立ディスプレイズ Liquid crystal display
JP5273357B2 (en) * 2007-07-06 2013-08-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101649839B1 (en) * 2008-10-29 2016-08-19 닛산 가가쿠 고교 가부시키 가이샤 Diamine
JP5553531B2 (en) 2009-06-03 2014-07-16 株式会社ジャパンディスプレイ Liquid crystal display
CN104685412B (en) * 2012-08-06 2018-02-13 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal orientation film for having used the aligning agent for liquid crystal
JP6146135B2 (en) * 2012-08-30 2017-06-14 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
KR20150070276A (en) * 2012-10-18 2015-06-24 닛산 가가쿠 고교 가부시키 가이샤 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061781A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6354759B2 (en) * 2013-07-24 2018-07-11 日産化学工業株式会社 Liquid crystal alignment agent and liquid crystal alignment film using the same
CN110950781A (en) * 2013-10-23 2020-04-03 日产化学工业株式会社 Novel diamine, polyamic acid, and polyimide
WO2015122413A1 (en) * 2014-02-13 2015-08-20 日産化学工業株式会社 Novel liquid crystal orientation agent, diamine, and polyimide precursor
JP6248784B2 (en) * 2014-04-25 2017-12-20 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102425044B1 (en) * 2014-11-12 2022-07-25 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6716966B2 (en) 2015-03-11 2020-07-01 Jnc株式会社 Liquid crystal aligning agent for forming liquid crystal aligning film, liquid crystal aligning film, and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062443B2 (en) * 2007-03-08 2012-10-31 Jsr株式会社 Liquid crystal aligning agent and horizontal electric field type liquid crystal display element
JP2014238564A (en) * 2013-05-09 2014-12-18 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, manufacturing method of liquid crystal alignment film, retardation film, and manufacturing method of retardation film
WO2016080458A1 (en) * 2014-11-21 2016-05-26 Jnc株式会社 Liquid crystal aligning agent containing polyamic acid or derivative thereof, liquid crystal alignment film and liquid crystal display element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200018441A (en) * 2017-06-14 2020-02-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element using the same, and manufacturing method of the liquid crystal aligning film
KR102623136B1 (en) 2017-06-14 2024-01-09 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element using the same, and manufacturing method of the liquid crystal aligning film
WO2018230617A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film
JP7401853B2 (en) 2018-06-19 2023-12-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and manufacturing method of the liquid crystal display element
WO2019244939A1 (en) * 2018-06-19 2019-12-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same, and production method for said liquid crystal display element, and diamine compound
CN112352191A (en) * 2018-06-19 2021-02-09 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using same, method for producing liquid crystal display element, and diamine compound
JPWO2019244939A1 (en) * 2018-06-19 2021-07-15 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using the same, manufacturing method of the liquid crystal display element, diamine compound
CN113168052A (en) * 2018-11-19 2021-07-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2020105561A1 (en) * 2018-11-19 2021-10-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2020105561A1 (en) * 2018-11-19 2020-05-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP7414006B2 (en) 2018-11-19 2024-01-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2020162508A1 (en) * 2019-02-08 2021-12-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
CN113412449A (en) * 2019-02-08 2021-09-17 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7472799B2 (en) 2019-02-08 2024-04-23 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Also Published As

Publication number Publication date
KR20190060803A (en) 2019-06-03
JPWO2018062353A1 (en) 2019-07-25
TWI773689B (en) 2022-08-11
KR20220147158A (en) 2022-11-02
JP7063270B2 (en) 2022-05-09
CN110023826A (en) 2019-07-16
TW201825555A (en) 2018-07-16
CN110023826B (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP7063270B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2018083943A (en) Composition, liquid crystal orientation treatment agent, liquid crystal orientation film and liquid crystal display element
JP7351382B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060363A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2017061575A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6750627B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP6160610B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6652739B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6798550B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7052721B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017217413A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6866892B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7001063B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7093058B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7256472B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20140139115A (en) Liquid crystal display element and manufacturing method therefor
TWI726965B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2018230617A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device using same, and method for producing said liquid crystal alignment film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012038

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856302

Country of ref document: EP

Kind code of ref document: A1