WO2020184373A1 - Coating solution for forming functional polymer film, and functional polymer film - Google Patents

Coating solution for forming functional polymer film, and functional polymer film Download PDF

Info

Publication number
WO2020184373A1
WO2020184373A1 PCT/JP2020/009388 JP2020009388W WO2020184373A1 WO 2020184373 A1 WO2020184373 A1 WO 2020184373A1 JP 2020009388 W JP2020009388 W JP 2020009388W WO 2020184373 A1 WO2020184373 A1 WO 2020184373A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
substrate
film
polymer film
Prior art date
Application number
PCT/JP2020/009388
Other languages
French (fr)
Japanese (ja)
Inventor
泰宏 宮本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2020184373A1 publication Critical patent/WO2020184373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a coating liquid for forming a functional polymer film and a functional polymer film.
  • Polyimide is widely used as a protective material, an insulating material, and a functional material used in various devices in the electric and electronic fields because of its high mechanical strength, heat resistance, and solvent resistance.
  • a typical example of a functional material application is a liquid crystal alignment film that plays an important role in orienting a liquid crystal in a liquid crystal display element represented by a liquid crystal television or a smartphone.
  • Polyimide can be obtained, for example, by thermally and chemically imidizing a polyamic acid obtained by reacting a tetracarboxylic dianhydride with a diamine, but in applications of functional materials requiring various properties, polyimide By variously changing the structure of the diamine, which is the raw material of the above, various properties are imparted to the obtained polyimide film.
  • the method of using a diamine having a side chain as a part of the polyimide raw material has a pretilt angle according to the usage ratio of the diamine. Since it can be controlled, it is relatively easy to set the target pretilt angle, and it is useful as a means for increasing the pretilt angle.
  • a long-chain alkyl group or fluoroalkyl group see, for example, Patent Document 1
  • a cyclic group or a combination of a cyclic group and an alkyl group see, for example, Patent Document 2.
  • a steroid skeleton see, for example, Patent Document 3 and the like are known.
  • Japanese Unexamined Patent Publication No. 2-282726 Japanese Unexamined Patent Publication No. 3-179323 Japanese Unexamined Patent Publication No. 4-281427
  • An object of the present invention is to solve the above-mentioned problems, and it is possible to obtain a functional polymer film (also referred to as a functional polymer film) in which various properties are relatively freely improved.
  • An object of the present invention is to provide a coating liquid for forming and a functional polymer film obtained by coating the coating liquid.
  • the coating liquid for forming a functional polymer film of the present invention comprises a functional structural site that imparts functionality and at least one NHS ester structural site linked thereto, and a modifying compound of the following formula. It is obtained by reacting with a modifying polymer.
  • W 1 represents a k 1 monovalent organic group which is a functional structural part that imparts functionality
  • k 1 is an integer of 1-8.
  • N-hydroxysuccinimide is eliminated by the reaction of the amino group existing at the terminal of the polyamic acid with the NHS ester structure, and various functionalities are provided at the terminal of the polyamic acid polymer via an amide bond. It is possible to introduce structural parts. As a result, the degree of freedom in imparting various functions to the polyimide polymer can be further improved.
  • the modifying compound of the present invention is a compound of the following formula (A).
  • W 1 represents a k 1 monovalent organic group which is a functional structural part that imparts functionality
  • k 1 is an integer of 1-8. It is preferably 1 to 2.
  • W 1 it is possible to freely select a structure that expresses the function to be imparted to the polymer to be modified. Taking the example of imparting a function to a liquid crystal alignment film using polyimide as a polymer to be modified, the heat or photocrosslinkable group required for improving the mechanical strength of the liquid crystal alignment film, the liquid crystal alignment film of the liquid crystal and long-chain side groups required inclination (pretilt angle) expression, it is conceivable to introduce to W 1.
  • (A) The specific structure of (A) is listed below, but the structure is not limited to this, and a structure capable of expressing the functionality required for various functional membranes can be arbitrarily introduced.
  • NHS esters are synthesized by a condensation reaction of N-hydroxysuccinimide and a carboxylic acid.
  • DCC diclohexylcarbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide
  • the modifying polymer of the present invention is not particularly limited as long as it has a reaction point with the above-mentioned modifying compound.
  • Specific examples include polyamic acids, polyamic acid esters, polyimides, polyureas, and polyamides. From the viewpoint as a liquid crystal alignment agent, at least one selected from a polyimide precursor containing a structural unit represented by the following formula (6) and a polyimide as an imide thereof is more preferable. More preferably, it is a polyamic acid.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine
  • R 4 is a hydrogen atom or 1 to 1 to carbon atoms. It is an alkyl group of 5.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.
  • X 1 in the polyimide precursor of the above formula (6) is a tetravalent organic group derived from a tetracarboxylic acid derivative.
  • the tetracarboxylic acid derivative include not only tetracarboxylic dianhydride but also its derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Among them, the one represented by the following formula (7) is preferable.
  • X 1 is the same as the definition of X 1 in the above formula (6), and its structure is not particularly limited. Preferred specific examples include the following formulas (X1-1) to (X1-44).
  • R 3 to R 23 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, respectively. It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and preferably a hydrogen atom or a methyl group. Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal orientation and sensitivity of photoreaction.
  • the tetracarboxylic acid derivative used in the modifying polymer of the present invention is appropriately selected and the same according to the solubility and coatability of the polymer in a solvent and the degree of properties required for a functional film.
  • One type may be used in the polymer, or two or more types may be mixed in the polymer.
  • Y 1 is a divalent organic group derived from diamine, and the diamine is represented by the following formula (8).
  • a 1 and A 2 are independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • Y 1 is appropriately selected according to the solubility and coatability of the polymer in a solvent and the degree of characteristics required for a functional film, and two or more types are mixed in the same polymer. You may. Specific examples of Y 1 are as shown below, but are not limited thereto.
  • H represents a hydrogen atom
  • Me represents a methyl group
  • OMe represents a methoxy group.
  • the coating liquid for forming a functional polymer film of the present invention contains a polymer (hereinafter, also referred to as a specific polymer) which is a reaction product of the above-mentioned modifying compound and the polymer to be modified.
  • a specific polymer which is a reaction product of the above-mentioned modifying compound and the polymer to be modified.
  • the production of a specific polymer will be described by taking a polyamic acid as an example.
  • the specific polymer of the present invention can be obtained by adding a modifying compound to the obtained polyamic acid solution and stirring the mixture.
  • the concentration of the polyamic acid solution is preferably 4 to 25% by mass, more preferably 10 to 20% by mass, still more preferably 12 to 15% by mass.
  • the amount of the modifying compound added is preferably 0.01 to 0.1 equivalents, preferably 0.02 to 0 equivalents, based on 1 equivalent of the amino groups in the diamine involved in the polymerization reaction among the diamines used in the production of the polyamic acid. .08 equivalents are more preferred.
  • a tertiary amine such as TEA (triethylamine), DIPEA (diisopropylethylamine) or DBU (diazabicycloundecene) may be added.
  • the temperature at the time of stirring is preferably ⁇ 20 to 50 ° C., more preferably 0 to 30 ° C.
  • the stirring time is preferably 10 minutes to 108 hours, more preferably 1 hour to 72 hours.
  • the coating liquid for forming a functional polymer film of the present invention can be used for various devices due to the function of imparting it.
  • a liquid crystal alignment agent used for manufacturing a liquid crystal display element is preferable as one of its uses.
  • the liquid crystal aligning agent of the present invention contains the coating liquid for forming the functional polymer film of the present invention and various solvents and compounds used as needed.
  • the liquid crystal alignment agent of the present invention contains the above-mentioned specific polymer, but may contain two or more kinds of specific polymers having different structures. Further, in addition to the specific polymer, another polymer, that is, a polymer having no divalent group represented by the formula (6) may be contained.
  • the types of polymers include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate. And so on.
  • the ratio of the specific polymer to the total polymer components is preferably 5% by mass or more, and examples thereof include 5 to 95% by mass.
  • the liquid crystal alignment agent generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent for dissolving the polymer component.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone.
  • organic solvent contained in the liquid crystal alignment agent of the present invention in addition to the above solvent, a solvent that improves the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film can also be used. Specific examples of such an organic solvent are given below.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-Pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-Heptanol, 3-Heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethyl-4-heptanol, 1,2-ethanedi
  • the organic solvents are 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, and ethylene. It is preferable to use glycol monobutyl ether or dipropylene glycol dimethyl ether.
  • the type and content of such a solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
  • the liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate, the adhesion between the liquid crystal alignment film and the sealing material, a cross-linking agent for increasing the strength of the liquid crystal alignment film, and a liquid crystal. Examples thereof include a dielectric and a conductive material for adjusting the dielectric constant and the electric resistance of the alignment film.
  • Specific examples of these additional components include poor solvents and crosslinkable compounds disclosed in paragraph 53 [0104] to paragraph 60 [0116] of International Publication No. 2015/060357.
  • Examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • functional silane-containing compounds For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-.
  • liquid crystal alignment agent of the present invention may contain the following additives in order to increase the mechanical strength of the liquid crystal alignment film.
  • the above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. If it is less than 0.1 parts by mass, the effect cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, so that it is more preferably 0.5 to 20 parts by mass.
  • the liquid crystal alignment agent of the present invention includes polymers other than the specific polymers described in the present invention, dielectrics for which the purpose of changing the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film is changed, and liquid crystal alignment films.
  • An imidization accelerator or the like for the purpose of efficiently advancing imidization by heating may be contained.
  • the liquid crystal alignment film of the present invention is obtained from the liquid crystal alignment agent.
  • a rubbing treatment method or a photoalignment treatment is applied to a film obtained by applying a liquid crystal alignment agent in the form of a coating liquid to a substrate, drying and firing.
  • a method of performing orientation treatment by a method can be mentioned.
  • the substrate to which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • the method of applying the liquid crystal alignment agent is generally screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used depending on the purpose.
  • the solvent is evaporated and fired by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. Any temperature and time can be selected for the drying and firing steps after applying the liquid crystal alignment agent.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. Any temperature and time can be selected for the drying and firing steps after applying the liquid crystal alignment agent.
  • the drying step is not always required, it is preferable to perform the drying step when the time from coating to firing is not constant for each substrate or when firing is not performed immediately after coating.
  • the solvent may be removed to the extent that the shape of the coating film is not deformed by transporting the substrate, and the drying means is, for example, on a hot plate having a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. Then, a method of drying for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the firing temperature of the coating film formed by applying the liquid crystal alignment agent is, for example, 100 to 350 ° C., preferably 120 to 300 ° C., and more preferably 150 to 250 ° C.
  • the firing time is 5 to 240 minutes, preferably 10 to 90 minutes, and more preferably 20 to 90 minutes.
  • the heating can be performed by a generally known method, for example, a hot plate, a hot air circulation furnace, an infrared furnace, or the like.
  • the thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which the coating film is irradiated with polarized or unpolarized radiation. Processing etc. can be mentioned.
  • the radiation to irradiate the coating film for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used.
  • the radiation when the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof.
  • the direction of irradiation is diagonal.
  • a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excima laser, an LED lamp and the like can be used.
  • Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
  • the irradiation amount of radiation is preferably 100 to 50,000 J / m 2 , and more preferably 300 to 20,000 J / m 2 .
  • the light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity.
  • the temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, and more preferably 50 to 150 ° C.
  • the photo-alignment treatment may be heat-treated at the time of light irradiation, or may be heat-treated after the photo-alignment treatment.
  • the heating temperature at this time is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
  • the heating time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • a washing treatment with an organic solvent or water may be performed, or the washing treatment and the heat treatment may be combined.
  • the liquid crystal alignment film after the rubbing treatment is further subjected to a process of changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or a part of the surface of the liquid crystal alignment film.
  • the rubbing treatment may be performed in a direction different from the previous rubbing treatment, and then the resist film may be removed so that the liquid crystal alignment film has a different liquid crystal alignment ability for each region. In this case, it is possible to improve the visibility characteristics of the obtained liquid crystal display element.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS method or an FFS (Fringe Field Switching) method.
  • liquid crystal display element of the present invention after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent, a liquid crystal cell is produced by a known method, and the liquid crystal cell is used as an element.
  • the liquid crystal display element that can be manufactured include two substrates arranged so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal orientation of the present invention provided between the substrates and the liquid crystal layer. It is a liquid crystal display element including a liquid crystal cell having the liquid crystal alignment film formed by the agent.
  • the liquid crystal alignment agent of the present invention is applied onto two substrates and fired to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other. It is a liquid crystal display element in which a liquid crystal layer composed of a liquid crystal is sandwiched between the two substrates, that is, the liquid crystal layer is provided in contact with the liquid crystal alignment film.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Specifically, a transparent substrate is prepared, and then a liquid crystal alignment film is formed on each substrate under the conditions as described above. As described above, the substrate is usually a substrate on which a transparent electrode for driving a liquid crystal is formed. As a specific example, the same substrate as that described in the liquid crystal alignment film can be mentioned.
  • a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2- TiO 2 formed by the sol-gel method.
  • a liquid crystal aligning agent is applied to one surface thereof, and then each coated surface is heated to form a coating film.
  • the metal film a film made of a metal such as chromium can be used.
  • an element such as a transistor is used between an electrode for driving a liquid crystal and a substrate.
  • a transmissive liquid crystal display element it is common to use a substrate as described above, but in a reflective liquid crystal display element, an opaque substrate such as a silicon wafer may be used if only one side of the substrate is used. It is possible. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the horizontal orientation system such as IPS and FFS is a liquid crystal material conventionally used in the horizontal alignment system, for example, MLC-2003 or MLC-2041 manufactured by Merck. Negative-positive liquid crystals and negative liquid crystals such as MLC-6608 can also be used.
  • a known method can be mentioned.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are sprayed on the liquid crystal alignment film of one substrate so that the surface on the side on which the liquid crystal alignment film is formed is on the inside.
  • Another method is to bond the other substrate and inject the liquid crystal under reduced pressure to seal it.
  • a pair of substrates on which the liquid crystal alignment film is formed is prepared, spacers such as beads are sprayed on the liquid crystal alignment film of one substrate, liquid crystal is dropped, and then the surface on the side where the liquid crystal alignment film is formed is formed.
  • a liquid crystal cell can also be produced by a method in which the other substrate is bonded and sealed so that the surface is on the inside.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a polarizing plate is installed in the liquid crystal cell. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited as long as the liquid crystal alignment agent of the present invention is used, and may be manufactured by other known methods.
  • the steps from obtaining a liquid crystal display element from a liquid crystal alignment agent are disclosed, for example, in Japanese Patent Application Laid-Open No. 2015-135393, pages 17 [0074] to 19 [0081].
  • the liquid crystal display element of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, and the like. It can be used for various display devices such as various monitors, LCD TVs, and information displays.
  • the viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25 ° C.
  • a liquid crystal cell having a configuration of a Fringe Field Switching (FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer.
  • the thickness of the SiN film of the second layer is 500 nm, and it functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the SiN film of the second layer to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 6 mm in length and about 5 mm in width.
  • the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg” -shaped electrode elements whose central portion is bent at an internal angle of 160 °.
  • the width of each electrode element in the lateral direction is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrodes forming each pixel are formed by arranging a plurality of bent "dogleg” -shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is centered like the electrode elements. It has a shape similar to a bold "dogleg” that bends at a part.
  • Each pixel is divided into upper and lower parts with a bent portion in the center as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
  • the liquid crystal alignment film formed on the first glass substrate is oriented so that the direction of equally dividing the inner angle of the pixel bending portion and the orientation direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film formed on the second glass substrate is formed.
  • the film is oriented so that the orientation direction of the liquid crystal on the first substrate and the orientation direction of the liquid crystal on the second substrate coincide with each other when the liquid crystal cell is produced.
  • This substrate was fired in a hot air circulation oven at 230 ° C. for another 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • the above two substrates are made into a set, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the orientation direction is 0 °, and then the sealant is applied. It was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • a liquid crystal cell After leaving it for a day, a liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied, so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cells was adjusted as described above. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became the darkest to the angle at which the first region became the darkest was calculated as the angle ⁇ . Similarly, in the second pixel, the second region and the first region were compared and the same angle ⁇ was calculated.
  • a sample for evaluating the seal adhesion was prepared as follows. First, a liquid crystal alignment agent was applied to an ITO substrate of 30 mm ⁇ 40 mm by spin coating. Subsequently, after drying on a hot plate at 80 ° C. for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. Next, the coating film surface was irradiated with ultraviolet rays having a wavelength of 254 nm linearly polarized with an extinction ratio of 10: 1 or more via a polarizing plate. Finally, it was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • a 4 ⁇ m bead spacer was applied onto the substrate surface of the obtained substrate with the liquid crystal alignment film, and then a sealing agent (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped onto the center of the substrate.
  • a sealing agent 723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.
  • the substrate with the liquid crystal alignment film and the ITO substrate without the liquid crystal alignment film were bonded so that the substrates overlapped with each other in a cross shape.
  • the amount of the sealant dropped was adjusted in advance so that the diameter of the sealant after bonding was 2 mm.
  • the two bonded substrates were fixed with clips.
  • the substrate was irradiated with ultraviolet rays having a wavelength of 365 nm at 3.0 J / cm 2 to photo-cure the seal, and the seal was thermoset at 150 ° C. for 1 hour.
  • the substrate peeling test was performed with a desktop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation. Of the two boards stuck together in a cross, both ends of one board are fixed to the device, both ends of the other board are grasped with a jig and lifted, and the force (N) when the two boards are peeled off is measured. did.
  • the peeling stress (N / mm 2 ) was calculated by dividing the peeling force (N) by the area of the applied sealant.
  • ⁇ Synthesis example 1> In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.08 g (10.0 mmol) of DA-1, 3.66 g (15.0 mmol) of DA-2, and 4.81 g (15) of DA-3. Weighed 3.41 g (10.0 mmol) of 0.0 mmol) and DA-4, added 132.0 g of NMP, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 10.54 g (47.0 mmol) of TA-1 was added, NMP was further added so that the solid content concentration became 12% by mass, and the mixture was stirred at 40 ° C. for 20 hours to form a polyamic. An acid solution (PAA-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 380 mPa ⁇ s.
  • a polyimide solution (SPI-1) was obtained by adding 26.4 g of NMP to 3.6 g of the obtained polyimide powder and stirring at 60 ° C. for 20 hours to dissolve the powder.
  • a polyimide solution (SPI-1_EC2) was obtained by adding 10.3 g of NMP to 1.4 g of the obtained polyimide powder and stirring at 60 ° C. for 20 hours to dissolve it.
  • ⁇ Synthesis example 6> Weigh 3.9 g (20.0 mmol) of DA-5 and 1.49 g (5.0 mmol) of DA-6 in a 100 mL four-necked flask with a stirrer and a nitrogen introduction tube, and add 78.0 g of NMP. , Nitrogen was sent and stirred to dissolve. While stirring this diamine solution, 6.77 g (23.0 mmol) of TA-3 was added, NMP was further added so that the solid content concentration became 12% by mass, and the mixture was stirred at 70 ° C. for 20 hours to form a polyamic. An acid solution (PAA-2) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 420 mPa ⁇ s.
  • ⁇ Synthesis example 7> Take 9.01 g (60.0 mmol) of DA-7 and 26.8 g (89.8 mmol) of DA-6 in a 500 mL four-necked flask with a stirrer and a nitrogen introduction tube, add 290 g of NMP, and add nitrogen. Was stirred and dissolved while feeding. While stirring this diamine solution under water cooling, 27.9 g (142 mmol) of TA-2 was added, 71.4 g of NMP was added, and the mixture was stirred at 23 ° C. for 2 hours to obtain a polyamic acid solution (PAA-3). .. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 750 mPa ⁇ s.
  • Example 1 4.17 g of the 12 mass% polyamic acid solution (PAA-1_EC1) obtained in Synthesis Example 3 was placed in a 20 mL Erlenmeyer flask, 2.83 g of NMP and 3.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. An aligning agent (A1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • PAA-1_EC1 12 mass% polyamic acid solution obtained in Synthesis Example 3 was placed in a 20 mL Erlenmeyer flask, 2.83 g of NMP and 3.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours.
  • An aligning agent (A1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • Example 2 and 3 The liquid crystal alignment agent (A2) was carried out in the same manner as in Example 1 except that the polyamic acid solution (PAA-1_EC2) and the polyimide solution (SPI-1_EC2) were used instead of the polyamic acid solution (PAA-1_EC1). ), (A3) were obtained.
  • Example 4 > 2.00 g of the 12% by mass polyamic acid solution (PAA-1_EC2) obtained in Synthesis Example 4 and 3.00 g of the 12% by mass polyamic acid solution (PAA-2) obtained in Synthesis Example 6 were placed in a 20 mL Erlenmeyer flask. Then, 3.40 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A4). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • Example 5 2.00 g of the 12% by mass polyamic acid solution (PAA-1_EC2) obtained in Synthesis Example 4 and 2.40 g of the 15% by mass polyamic acid solution (PAA-3) obtained in Synthesis Example 7 were placed in a 20 mL Erlenmeyer flask. Then, 4.00 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A5). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • ⁇ Comparative example 1> 4.17 g of the 12 mass% polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was placed in a 20 mL Erlenmeyer flask, 2.83 g of NMP and 3.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. An aligning agent (B1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • PAA-1 12 mass% polyamic acid solution obtained in Synthesis Example 1
  • a liquid crystal alignment agent (B2) was obtained by carrying out in the same manner as in Comparative Example 1 except that the polyimide solution (SPI-1) was used instead of the polyamic acid solution (PAA-1).
  • This substrate was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • the obtained two substrates were made into a set, a sealant was applied onto one substrate, and the other substrates were laminated so that the liquid crystal alignment film surfaces faced each other and the orientation direction was 0 °. After that, the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the liquid crystal alignment agent (A1) was applied to a 30 mm ⁇ 40 mm ITO substrate by spin coating. Subsequently, after drying on a hot plate at 80 ° C. for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. Next, the coating film surface was irradiated with 0.3 J / cm 2 of ultraviolet rays having a wavelength of 254 nm linearly polarized to an extinction ratio of 26: 1 via a polarizing plate. Finally, it was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • a 4 ⁇ m bead spacer was applied onto the substrate surface of the obtained substrate with the liquid crystal alignment film, and then a sealing agent (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped onto the center of the substrate.
  • a sealing agent 723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.
  • the substrate with the liquid crystal alignment film and the ITO substrate without the liquid crystal alignment film were bonded so that the substrates overlapped with each other in a cross shape.
  • the amount of the sealant dropped was adjusted in advance so that the diameter of the sealant after bonding was 2 mm.
  • the two bonded substrates were fixed with clips.
  • the substrate was irradiated with ultraviolet rays having a wavelength of 365 nm at 3.0 J / cm 2 to photo-cure the seal, and the seal was thermoset at 150 ° C. for 1 hour.
  • the substrate peeling test was performed with a desktop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation. Of the two boards stuck together in a cross, both ends of one board were fixed to the device, and both ends of the other board were grasped with a jig and lifted up. The two boards were peeled off at 23.9 (N). .. From the area of sealant (7.02mm 2), peeling stress was calculated as 3.40 (N / mm 2). Tables 2 and 3 show the evaluation results of the afterimage and the seal adhesion by long-term AC drive.
  • liquid crystal alignment agent of the present invention it is possible to obtain a liquid crystal alignment film having high seal adhesion while suppressing afterimages generated by AC drive in an IPS or FFS drive type liquid crystal display element. Therefore, it can be expected to be used in liquid crystal display elements that require high display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided are: a coating solution for forming a functional polymer film, which makes it possible to produce a functional polymer film of which the various properties can be improved relatively freely; and a functional polymer film formation method using the coating solution. A coating solution for forming a functional polymer film, the coating solution containing a polymer that is a reaction product between a modifying compound represented by the formula shown below and a polymer to be modified. In the formula, W1 represents a k1-valent organic group which is a functional structure moiety capable of imparting a functionality, and k1 represents an integer of 1 to 8.

Description

機能性高分子膜形成用塗布液及び機能性高分子膜Coating liquid for forming a functional polymer film and a functional polymer film
 本発明は、機能性高分子膜形成用塗布液及び機能性高分子膜に関する。 The present invention relates to a coating liquid for forming a functional polymer film and a functional polymer film.
 ポリイミドは、その特徴である高い機械的強度、耐熱性、耐溶剤性のために、電気・電子分野における保護材料、絶縁材料及び各種デバイスに用いる機能性材料として広く用いられている。機能性材料用途の代表的な例としては、液晶テレビやスマートフォン等に代表される液晶表示素子中で、液晶を配向させる重要な役割を担う液晶配向膜が挙げられる。
 ポリイミドは、例えば、テトラカルボン酸二無水物とジアミンを反応させて得られるポリアミック酸を熱及び化学イミド化することで得ることが出来るが、種々の特性が求められる機能性材料用途においては、ポリイミドの原料であるジアミンの構造を種々変更する事によって、得られるポリイミド膜に各種の特性を付与している。
Polyimide is widely used as a protective material, an insulating material, and a functional material used in various devices in the electric and electronic fields because of its high mechanical strength, heat resistance, and solvent resistance. A typical example of a functional material application is a liquid crystal alignment film that plays an important role in orienting a liquid crystal in a liquid crystal display element represented by a liquid crystal television or a smartphone.
Polyimide can be obtained, for example, by thermally and chemically imidizing a polyamic acid obtained by reacting a tetracarboxylic dianhydride with a diamine, but in applications of functional materials requiring various properties, polyimide By variously changing the structure of the diamine, which is the raw material of the above, various properties are imparted to the obtained polyimide film.
 例えば、上述した液晶配向膜分野において、ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミンをポリイミド原料の一部として用いる方法は、このジアミンの使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角にせしめることが比較的容易であり、プレチルト角を大きくする手段として有用である。液晶のプレチルト角を大きくするジアミンの側鎖構造としては、長鎖のアルキル基又はフルオロアルキル基(例えば、特許文献1参照)、環状基又は環状基とアルキル基の組み合わせ(例えば、特許文献2参照)、ステロイド骨格(例えば、特許文献3参照)などが知られている。 For example, in the above-mentioned liquid crystal alignment film field, among the techniques for controlling the pretilt angle by the structure of the polyimide, the method of using a diamine having a side chain as a part of the polyimide raw material has a pretilt angle according to the usage ratio of the diamine. Since it can be controlled, it is relatively easy to set the target pretilt angle, and it is useful as a means for increasing the pretilt angle. As the side chain structure of the diamine that increases the pretilt angle of the liquid crystal, a long-chain alkyl group or fluoroalkyl group (see, for example, Patent Document 1), a cyclic group or a combination of a cyclic group and an alkyl group (see, for example, Patent Document 2). ), A steroid skeleton (see, for example, Patent Document 3) and the like are known.
特開平2-282726号公報Japanese Unexamined Patent Publication No. 2-282726 特開平3-179323号公報Japanese Unexamined Patent Publication No. 3-179323 特開平4-281427号公報Japanese Unexamined Patent Publication No. 4-281427
 しかしジアミンの構造を種々変更するに際しては、合成上の難易度が高いものもあり、また、ジアミンとテトラカルボン酸二無水物とを反応させ、ポリアミック酸を重合する際、立体障害等の理由によって重合が充分に進まず、結果として所望のジアミン成分を自由に用いられない結果、所望の機能性を重合体に充分に付与出来ないことが生じる。
 本発明の課題は、上述の問題点を解決することにあり、種々の特性を比較的自由に改善した機能性高分子膜(機能性ポリマー膜ともいう)を得ることができる機能性高分子膜形成用塗布液、及び、これを塗布して得られる機能性高分子膜を提供することにある。
However, when changing the structure of diamine in various ways, there are some that are difficult to synthesize, and when diamine and tetracarboxylic dianhydride are reacted to polymerize polyamic acid, due to steric hindrance and the like. The polymerization does not proceed sufficiently, and as a result, the desired diamine component cannot be freely used, and as a result, the desired functionality cannot be sufficiently imparted to the polymer.
An object of the present invention is to solve the above-mentioned problems, and it is possible to obtain a functional polymer film (also referred to as a functional polymer film) in which various properties are relatively freely improved. An object of the present invention is to provide a coating liquid for forming and a functional polymer film obtained by coating the coating liquid.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明に到達したものである。
 本発明の機能性高分子膜形成用塗布液は、機能性を付与する機能性構造部位と、これに連結された少なくとも1つのNHSエステル構造部位とを具備する下記式の修飾用化合物と、被修飾用重合体とを反応させることで得られる。
The present inventors have arrived at the present invention as a result of diligent studies to solve the above problems.
The coating liquid for forming a functional polymer film of the present invention comprises a functional structural site that imparts functionality and at least one NHS ester structural site linked thereto, and a modifying compound of the following formula. It is obtained by reacting with a modifying polymer.
Figure JPOXMLDOC01-appb-C000002
 式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表し、kは、1~8の整数を表す。
Figure JPOXMLDOC01-appb-C000002
Wherein, W 1 represents a k 1 monovalent organic group which is a functional structural part that imparts functionality, k 1 is an integer of 1-8.
 本発明によれば、ポリアミック酸の末端に存在するアミノ基とNHSエステル構造が反応することにより、N-ヒドロキシスクシンイミドが脱離し、ポリアミック酸重合体の末端に、アミド結合を介して種々の機能性構造部位を導入することが可能となる。これにより、ポリイミド重合体への種々の機能性付与の自由度をより向上させることが出来る。 According to the present invention, N-hydroxysuccinimide is eliminated by the reaction of the amino group existing at the terminal of the polyamic acid with the NHS ester structure, and various functionalities are provided at the terminal of the polyamic acid polymer via an amide bond. It is possible to introduce structural parts. As a result, the degree of freedom in imparting various functions to the polyimide polymer can be further improved.
<修飾用化合物>
 本発明の修飾用化合物は、下記式(A)の化合物である。
<Modifying compound>
The modifying compound of the present invention is a compound of the following formula (A).
Figure JPOXMLDOC01-appb-C000003
 式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表し、kは、1~8の整数を表す。好ましくは1~2である。
Figure JPOXMLDOC01-appb-C000003
Wherein, W 1 represents a k 1 monovalent organic group which is a functional structural part that imparts functionality, k 1 is an integer of 1-8. It is preferably 1 to 2.
 Wの構造は、被修飾用重合体に付与したい機能を発現する構造を自由に選択することが可能である。被修飾用重合体にポリイミドを用いた液晶配向膜への機能付与を例にとり説明すると、液晶配向膜の機械的強度の向上に必要な、熱又は光架橋性基、液晶配向膜において、液晶の傾斜角(プレチルト角)発現に必要な長鎖側鎖基などを、Wに導入することが考えられる。 As for the structure of W 1 , it is possible to freely select a structure that expresses the function to be imparted to the polymer to be modified. Taking the example of imparting a function to a liquid crystal alignment film using polyimide as a polymer to be modified, the heat or photocrosslinkable group required for improving the mechanical strength of the liquid crystal alignment film, the liquid crystal alignment film of the liquid crystal and long-chain side groups required inclination (pretilt angle) expression, it is conceivable to introduce to W 1.
 (A)の具体的な構造を以下に列挙するが、これに限定されず、種々の機能性膜に必要とされる機能性を発現出来る構造を任意に導入することが出来る。
 一般に、NHSエステルは、N-ヒドロキシスクシンイミドとカルボン酸の縮合反応によって合成される。縮合剤としては、DCC(ジシクロヘキシルカルボジイミド)やEDC(1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド)が頻繁に用いられる。
The specific structure of (A) is listed below, but the structure is not limited to this, and a structure capable of expressing the functionality required for various functional membranes can be arbitrarily introduced.
Generally, NHS esters are synthesized by a condensation reaction of N-hydroxysuccinimide and a carboxylic acid. As the condensing agent, DCC (dicyclohexylcarbodiimide) and EDC (1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide) are frequently used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(Bocは、tert-ブトキシカルボニル基を表す。Cbzは、ベンジルオキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000005
(Boc represents a tert-butoxycarbonyl group; Cbz represents a benzyloxycarbonyl group.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
<被修飾用重合体>
 本発明の修飾用重合体は、上述の修飾用化合物との反応点がある限り特に限定はされない。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられる。液晶配向剤としての観点から、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種がより好ましい。より好ましくは、ポリアミック酸である。
<Polymer for modification>
The modifying polymer of the present invention is not particularly limited as long as it has a reaction point with the above-mentioned modifying compound. Specific examples include polyamic acids, polyamic acid esters, polyimides, polyureas, and polyamides. From the viewpoint as a liquid crystal alignment agent, at least one selected from a polyimide precursor containing a structural unit represented by the following formula (6) and a polyimide as an imide thereof is more preferable. More preferably, it is a polyamic acid.
Figure JPOXMLDOC01-appb-C000009
 上記式(6)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yはジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
Figure JPOXMLDOC01-appb-C000009
In the above formula (6), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, Y 1 is a divalent organic group derived from a diamine, and R 4 is a hydrogen atom or 1 to 1 to carbon atoms. It is an alkyl group of 5. R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.
<<テトラカルボン酸誘導体>>
 上記式(6)のポリイミド前駆体中のXは、テトラカルボン酸誘導体に由来する4価の有機基である。テトラカルボン酸誘導体としては、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライドが挙げられる。なかでも、下記式(7)で表されるものが好ましい。
<< Tetracarboxylic acid derivative >>
X 1 in the polyimide precursor of the above formula (6) is a tetravalent organic group derived from a tetracarboxylic acid derivative. Examples of the tetracarboxylic acid derivative include not only tetracarboxylic dianhydride but also its derivatives such as tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Among them, the one represented by the following formula (7) is preferable.
Figure JPOXMLDOC01-appb-C000010
 式(7)中、Xは上記式(6)のXの定義と同様であり、その構造は特に限定されない。好ましい具体例としては、下記式(X1-1)~(X1-44)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
In the formula (7), X 1 is the same as the definition of X 1 in the above formula (6), and its structure is not particularly limited. Preferred specific examples include the following formulas (X1-1) to (X1-44).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(X1-1)~(X1-4)において、R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基が好ましい。
 式(X1-1)の具体例としては、下記式(X1-1-1)~(X1-1-6)が挙げられる。液晶配向性及び光反応の感度の点から、(X1-1-1)が特に好ましい。
In the formulas (X1-1) to (X1-4), R 3 to R 23 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, respectively. It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and preferably a hydrogen atom or a methyl group.
Specific examples of the formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). (X1-1-1) is particularly preferable from the viewpoint of liquid crystal orientation and sensitivity of photoreaction.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 本発明の修飾用重合体に用いられるテトラカルボン酸誘導体は、重合体の溶媒への溶解性や塗布性、機能性膜とした場合に必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。 The tetracarboxylic acid derivative used in the modifying polymer of the present invention is appropriately selected and the same according to the solubility and coatability of the polymer in a solvent and the degree of properties required for a functional film. One type may be used in the polymer, or two or more types may be mixed in the polymer.
<<ジアミン>>
 上記式(6)において、Yはジアミンに由来する2価の有機基であり、ジアミンは、下記式(8)で表される。
<< Diamine >>
In the above formula (6), Y 1 is a divalent organic group derived from diamine, and the diamine is represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000018
 式中、A及びAはそれぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。
 また、Yは重合体の溶媒への溶解性や塗布性、機能性膜とした場合に必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上が混在していても良い。Yの具体例は以下に示す通りであるがこれらに限定されない。式中、Hは水素原子を、Meはメチル基を、OMeはメトキシ基を表す。
Figure JPOXMLDOC01-appb-C000018
In the formula, A 1 and A 2 are independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
Further, Y 1 is appropriately selected according to the solubility and coatability of the polymer in a solvent and the degree of characteristics required for a functional film, and two or more types are mixed in the same polymer. You may. Specific examples of Y 1 are as shown below, but are not limited thereto. In the formula, H represents a hydrogen atom, Me represents a methyl group, and OMe represents a methoxy group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<機能性高分子膜形成用塗布液>
 本発明の機能性高分子膜形成用塗布液は、上述した修飾用化合物と、被修飾用高分子との反応物である重合体(以下、特定重合体とも称する。)を含有する。
 特定重合体の製造につき、ポリアミック酸を例にとり説明する。
 本発明の特定重合体は、得られたポリアミック酸溶液に、修飾用化合物を添加し、撹拌することで得ることが出来る。
 ポリアミック酸溶液の濃度は、4~25質量%が好ましく、10~20質量%がより好ましく、12~15質量%が更に好ましい。
 修飾用化合物の添加量は、ポリアミック酸の製造に使用したジアミンのうち、重合反応に関与するジアミン中のアミノ基1当量に対し、0.01~0.1当量が好ましく、0.02~0.08当量がより好ましい。アミノ基とNHSエステルの反応を促進するための塩基性触媒として、TEA(トリエチルアミン)、DIPEA(ジイソプロピルエチルアミン)、DBU(ジアザビシクロウンデセン)等の第三級アミンを添加してもよい。
 撹拌時の温度は、-20~50℃が好ましく、0~30℃がより好ましい。
 撹拌時間は、10分~108時間が好ましく、1時間~72時間がより好ましい。
 以上の工程により、ポリアミック酸の末端アミンが封止されたポリアミック酸溶液を得ることが出来る。更に、末端アミンが封止されたポリアミック酸に、公知のイミド化工程を行うことで、末端アミンが封止されたポリイミドを得ることが出来る。
<Coating liquid for forming a functional polymer film>
The coating liquid for forming a functional polymer film of the present invention contains a polymer (hereinafter, also referred to as a specific polymer) which is a reaction product of the above-mentioned modifying compound and the polymer to be modified.
The production of a specific polymer will be described by taking a polyamic acid as an example.
The specific polymer of the present invention can be obtained by adding a modifying compound to the obtained polyamic acid solution and stirring the mixture.
The concentration of the polyamic acid solution is preferably 4 to 25% by mass, more preferably 10 to 20% by mass, still more preferably 12 to 15% by mass.
The amount of the modifying compound added is preferably 0.01 to 0.1 equivalents, preferably 0.02 to 0 equivalents, based on 1 equivalent of the amino groups in the diamine involved in the polymerization reaction among the diamines used in the production of the polyamic acid. .08 equivalents are more preferred. As a basic catalyst for accelerating the reaction between the amino group and NHS ester, a tertiary amine such as TEA (triethylamine), DIPEA (diisopropylethylamine) or DBU (diazabicycloundecene) may be added.
The temperature at the time of stirring is preferably −20 to 50 ° C., more preferably 0 to 30 ° C.
The stirring time is preferably 10 minutes to 108 hours, more preferably 1 hour to 72 hours.
By the above steps, a polyamic acid solution in which the terminal amine of the polyamic acid is sealed can be obtained. Further, by performing a known imidization step on the polyamic acid in which the terminal amine is sealed, a polyimide in which the terminal amine is sealed can be obtained.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<液晶配向剤>
 本発明の機能性高分子膜形成用塗布液は、付与する機能により、種々のデバイスに使用可能である。液晶表示素子の製造に用いる液晶配向剤は、その用途の1つとして好ましい。本発明の液晶配向剤は、本発明の機能性高分子膜形成用塗布液及び、必要に応じて用いられる種々の溶媒や化合物を含有する。
 本発明の液晶配向剤は、上記の特定重合体を含有するが、異なる構造の特定重合体を2種以上含有していてもよい。また、特定重合体に加えて、その他の重合体、すなわち式(6)で表される2価の基を有さない重合体を含有していてもよい。重合体の形式としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、例えば5~95質量%が挙げられる。
<Liquid crystal alignment agent>
The coating liquid for forming a functional polymer film of the present invention can be used for various devices due to the function of imparting it. A liquid crystal alignment agent used for manufacturing a liquid crystal display element is preferable as one of its uses. The liquid crystal aligning agent of the present invention contains the coating liquid for forming the functional polymer film of the present invention and various solvents and compounds used as needed.
The liquid crystal alignment agent of the present invention contains the above-mentioned specific polymer, but may contain two or more kinds of specific polymers having different structures. Further, in addition to the specific polymer, another polymer, that is, a polymer having no divalent group represented by the formula (6) may be contained. The types of polymers include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate. And so on. When the liquid crystal alignment agent of the present invention contains other polymers, the ratio of the specific polymer to the total polymer components is preferably 5% by mass or more, and examples thereof include 5 to 95% by mass.
 液晶配向剤は、均一な薄膜を形成させるという点から、一般的には塗布液の形態をとる。本発明の液晶配向剤も、上記重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更できる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。 The liquid crystal alignment agent generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. The liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent for dissolving the polymer component. At that time, the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン等である。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。 The organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved. To give specific examples, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl- 2-Imidazoridinone, methylethylketone, cyclohexanone, cyclopentanone and the like. Of these, it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone.
 また、本発明の液晶配向剤に含有される有機溶媒は、上記溶媒に加えて、液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を用いることもできる。かかる有機溶媒の具体例を下記に挙げる。 Further, as the organic solvent contained in the liquid crystal alignment agent of the present invention, in addition to the above solvent, a solvent that improves the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film can also be used. Specific examples of such an organic solvent are given below.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル等を挙げることができる。 For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-Pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-Heptanol, 3-Heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethyl-4-heptanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, 3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diisopropyl ether, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene Glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2 -Hexanone, 2-Heptanone, 4-Heptanone, 2,6-dimethyl-4-Heptanone, 4,6-dimethyl-2-Heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl ace Tart, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether , 2- (Hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, Lopyrene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether , Tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono Butyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, acetic acid n-butyl, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3- Examples thereof include ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate and the like.
 なかでも、有機溶媒は、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。 Among them, the organic solvents are 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, and ethylene. It is preferable to use glycol monobutyl ether or dipropylene glycol dimethyl ether. The type and content of such a solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や、液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、国際公開第2015/060357号の53頁段落[0104]~60頁段落[0116]に開示される貧溶媒や架橋性化合物が挙げられる。 The liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the organic solvent. Such additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate, the adhesion between the liquid crystal alignment film and the sealing material, a cross-linking agent for increasing the strength of the liquid crystal alignment film, and a liquid crystal. Examples thereof include a dielectric and a conductive material for adjusting the dielectric constant and the electric resistance of the alignment film. Specific examples of these additional components include poor solvents and crosslinkable compounds disclosed in paragraph 53 [0104] to paragraph 60 [0116] of International Publication No. 2015/060357.
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン又はN,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 Examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-. Glycydoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-) Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-Aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4 , 7-Triazadecane, 10-triethoxysilyl-1,4,7-Triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N -Benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (Oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol Diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5, 6-Tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N , N, N', N'-tetraglycidyl-4, 4'-diaminodiphenylmethane and the like.
 また、本発明の液晶配向剤は、液晶配向膜の機械的強度を上げるために以下のような添加物を含有していてもよい。 Further, the liquid crystal alignment agent of the present invention may contain the following additives in order to increase the mechanical strength of the liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000040
(式中、MeOはメトキシ基を表す。)
Figure JPOXMLDOC01-appb-C000040
(In the formula, MeO represents a methoxy group.)
 上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。 The above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. If it is less than 0.1 parts by mass, the effect cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, so that it is more preferably 0.5 to 20 parts by mass.
 本発明の液晶配向剤には、上記の他、本発明に記載の特定重合体以外の重合体、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。 In addition to the above, the liquid crystal alignment agent of the present invention includes polymers other than the specific polymers described in the present invention, dielectrics for which the purpose of changing the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film is changed, and liquid crystal alignment films. A silane coupling agent for the purpose of improving the adhesion between the substrate and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into a liquid crystal alignment film, and a polyimide precursor when firing the coating film. An imidization accelerator or the like for the purpose of efficiently advancing imidization by heating may be contained.
<液晶配向膜>
 本発明の液晶配向膜は、前記液晶配向剤から得られる。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対して、ラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is obtained from the liquid crystal alignment agent. To give an example of a method of obtaining a liquid crystal alignment film from a liquid crystal alignment agent, a rubbing treatment method or a photoalignment treatment is applied to a film obtained by applying a liquid crystal alignment agent in the form of a coating liquid to a substrate, drying and firing. A method of performing orientation treatment by a method can be mentioned.
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板、ポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。 The substrate to which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
 液晶配向剤の塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。 Industrially, the method of applying the liquid crystal alignment agent is generally screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択できる。乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については、例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。 After applying the liquid crystal alignment agent on the substrate, the solvent is evaporated and fired by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. Any temperature and time can be selected for the drying and firing steps after applying the liquid crystal alignment agent. Although the drying step is not always required, it is preferable to perform the drying step when the time from coating to firing is not constant for each substrate or when firing is not performed immediately after coating. For this drying, the solvent may be removed to the extent that the shape of the coating film is not deformed by transporting the substrate, and the drying means is, for example, on a hot plate having a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. Then, a method of drying for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は、例えば100~350℃、好ましくは120~300℃であり、さらに好ましくは150~250℃である。焼成時間は5~240分、好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。 The firing temperature of the coating film formed by applying the liquid crystal alignment agent is, for example, 100 to 350 ° C., preferably 120 to 300 ° C., and more preferably 150 to 250 ° C. The firing time is 5 to 240 minutes, preferably 10 to 90 minutes, and more preferably 20 to 90 minutes. The heating can be performed by a generally known method, for example, a hot plate, a hot air circulation furnace, an infrared furnace, or the like.
 焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。 If the thickness of the liquid crystal alignment film after firing is too thin, the reliability of the liquid crystal display element may decrease. Therefore, the thickness is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程で形成した塗膜に液晶配向能を付与する処理を実施する。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 When manufacturing a TN type, STN type, IPS type or FFS type liquid crystal display element, a process of imparting a liquid crystal alignment ability to the coating film formed in the above step is performed. The alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which the coating film is irradiated with polarized or unpolarized radiation. Processing etc. can be mentioned.
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。 In the photo-alignment treatment, as the radiation to irradiate the coating film, for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used. When the radiation is polarized, it may be linearly polarized or partially polarized. When the radiation to be used is linearly polarized light or partially polarized light, the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof. When irradiating unpolarized radiation, the direction of irradiation is diagonal.
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザー、LEDランプなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは100~50,000J/mであり、より好ましくは300~20,000J/mである。 As the light source to be used, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excima laser, an LED lamp and the like can be used. Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating. The irradiation amount of radiation is preferably 100 to 50,000 J / m 2 , and more preferably 300 to 20,000 J / m 2 .
 また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。 Further, the light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity. The temperature at the time of heating is usually 30 to 250 ° C, preferably 40 to 200 ° C, and more preferably 50 to 150 ° C.
 光配向処理は、光照射時に加熱処理を施してもよく、光配向処理後に加熱処理を行っても良い。このときの加熱温度は、好ましくは80~300℃であり、より好ましくは120~250℃である。加熱時間は、好ましくは5~200分であり、より好ましくは10~100分である。また、前記加熱処理の代わりに、有機溶媒や水による洗浄処理を行ってもよく、洗浄処理と加熱処理を組み合わせても良い。 The photo-alignment treatment may be heat-treated at the time of light irradiation, or may be heat-treated after the photo-alignment treatment. The heating temperature at this time is preferably 80 to 300 ° C, more preferably 120 to 250 ° C. The heating time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes. Further, instead of the heat treatment, a washing treatment with an organic solvent or water may be performed, or the washing treatment and the heat treatment may be combined.
 ラビング処理後の液晶配向膜に対して更に、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、液晶配向膜が領域ごとに異なる液晶配向能を持つようにしてもよい。この場合、得られる液晶表示素子の視界特性を改善することが可能である。 The liquid crystal alignment film after the rubbing treatment is further subjected to a process of changing the pretilt angle of a part of the liquid crystal alignment film by irradiating a part of the liquid crystal alignment film with ultraviolet rays, or a part of the surface of the liquid crystal alignment film. After forming the resist film, the rubbing treatment may be performed in a direction different from the previous rubbing treatment, and then the resist film may be removed so that the liquid crystal alignment film has a different liquid crystal alignment ability for each region. In this case, it is possible to improve the visibility characteristics of the obtained liquid crystal display element.
 本発明の液晶配向膜は、IPS方式やFFS(Fringe Field Switching)方式などの横電界方式の液晶表示素子の液晶配向膜として好適である。 The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS method or an FFS (Fringe Field Switching) method.
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。作製可能な液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜と、を有する液晶セルを具備する液晶表示素子である。より具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設けた液晶表示素子である。
<Liquid crystal display element>
In the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent, a liquid crystal cell is produced by a known method, and the liquid crystal cell is used as an element. Specific examples of the liquid crystal display element that can be manufactured include two substrates arranged so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal orientation of the present invention provided between the substrates and the liquid crystal layer. It is a liquid crystal display element including a liquid crystal cell having the liquid crystal alignment film formed by the agent. More specifically, the liquid crystal alignment agent of the present invention is applied onto two substrates and fired to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other. It is a liquid crystal display element in which a liquid crystal layer composed of a liquid crystal is sandwiched between the two substrates, that is, the liquid crystal layer is provided in contact with the liquid crystal alignment film.
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。具体的には、透明な基板を準備し、次に、前記のような条件で、各基板の上に液晶配向膜を形成する。基板は上記のとおり、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。 As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Specifically, a transparent substrate is prepared, and then a liquid crystal alignment film is formed on each substrate under the conditions as described above. As described above, the substrate is usually a substrate on which a transparent electrode for driving a liquid crystal is formed. As a specific example, the same substrate as that described in the liquid crystal alignment film can be mentioned.
 一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。 A common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be, for example, ITO electrodes and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2- TiO 2 formed by the sol-gel method.
 IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。金属膜としては、例えばクロムなどの金属からなる膜を使用できる。 When manufacturing an IPS type or FFS type liquid crystal display element, an electrode forming surface of a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb-tooth shape and an opposing substrate not provided with an electrode. A liquid crystal aligning agent is applied to one surface thereof, and then each coated surface is heated to form a coating film. As the metal film, a film made of a metal such as chromium can be used.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 Further, in a high-performance element such as a TFT type element, an element such as a transistor is used between an electrode for driving a liquid crystal and a substrate.
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above, but in a reflective liquid crystal display element, an opaque substrate such as a silicon wafer may be used if only one side of the substrate is used. It is possible. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
 一方、IPSやFFS等の水平配向方式の液晶表示素子の液晶層を構成する液晶材料は、従来水平配向方式で使用される液晶材料、例えば、メルク社製のMLC-2003やMLC-2041などのネガポジ型の液晶やMLC-6608などのネガ型の液晶も用いることができる。 On the other hand, the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the horizontal orientation system such as IPS and FFS is a liquid crystal material conventionally used in the horizontal alignment system, for example, MLC-2003 or MLC-2041 manufactured by Merck. Negative-positive liquid crystals and negative liquid crystals such as MLC-6608 can also be used.
 液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 As a method of sandwiching the liquid crystal layer between two substrates, a known method can be mentioned. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are sprayed on the liquid crystal alignment film of one substrate so that the surface on the side on which the liquid crystal alignment film is formed is on the inside. Another method is to bond the other substrate and inject the liquid crystal under reduced pressure to seal it. Further, a pair of substrates on which the liquid crystal alignment film is formed is prepared, spacers such as beads are sprayed on the liquid crystal alignment film of one substrate, liquid crystal is dropped, and then the surface on the side where the liquid crystal alignment film is formed is formed. A liquid crystal cell can also be produced by a method in which the other substrate is bonded and sealed so that the surface is on the inside. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以上の工程が終了した後、液晶セルに偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。 After the above steps are completed, a polarizing plate is installed in the liquid crystal cell. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、日本特開公報2015-135393の17頁[0074]~19頁[0081]に開示されている。 The liquid crystal alignment film and the liquid crystal display element of the present invention are not limited as long as the liquid crystal alignment agent of the present invention is used, and may be manufactured by other known methods. The steps from obtaining a liquid crystal display element from a liquid crystal alignment agent are disclosed, for example, in Japanese Patent Application Laid-Open No. 2015-135393, pages 17 [0074] to 19 [0081].
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display element of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, and the like. It can be used for various display devices such as various monitors, LCD TVs, and information displays.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
(溶媒)
NMP:N-メチル-2-ピロリドン
GBL:γ―ブチロラクトン
BCS:ブチルセロソルブ
(ジアミン)
DA-1:p-フェニレンジアミン
DA-2:1,2-ビス(4-アミノフェノキシ)エタン
DA-3:下記式(DA-3)参照
DA-4:N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン
DA-5:4,4’-ジアミノジフェニルアミン
DA-6:1,3-ビス(4-アミノフェネチル)ウレア
DA-7:4-(2-メチルアミノエチル)アニリン
(酸二無水物)
TA-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
TA-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
TA-3:3,3′,4,4′―ビフェニルテトラカルボン酸二無水物
(NHSエステル)
EC-1:4-ベンゾイル安息香酸 N-スクシンイミジル
EC-2:4-アジド-2,3,5,6-テトラフルオロ安息香酸 N-スクシンイミジル
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto. The abbreviations of the compounds and the method for measuring each property in the following are as follows.
(solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve (diamine)
DA-1: p-phenylenediamine DA-2: 1,2-bis (4-aminophenoxy) ethane DA-3: See formula (DA-3) below DA-4: N-tert-butoxycarbonyl-N- ( 2- (4-Aminophenyl) Ethyl) -N- (4-Aminobenzyl) Amine DA-5: 4,4'-Diaminodiphenylamine DA-6: 1,3-bis (4-aminophenethyl) urea DA-7 : 4- (2-Methylaminoethyl) aniline (acid dianhydride)
TA-1: 1,3-dimethyl-1,2-2,3,4-cyclobutanetetracarboxylic dianhydride TA-2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride TA-3: 3, 3', 4,4'-biphenyltetracarboxylic dianhydride (NHS ester)
EC-1: 4-benzoylbenzoic acid N-succinimidyl EC-2: 4-azido-2,3,5,6-tetrafluorobenzoic acid N-succinimidyl
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[粘度]
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25 ° C.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦6mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Preparation of liquid crystal cell]
A liquid crystal cell having a configuration of a Fringe Field Switching (FFS) mode liquid crystal display element is manufactured.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. An ITO electrode having a solid pattern, which constitutes a counter electrode as a first layer, is formed on the substrate. A SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer. The thickness of the SiN film of the second layer is 500 nm, and it functions as an interlayer insulating film. A comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the SiN film of the second layer to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 6 mm in length and about 5 mm in width. At this time, the counter electrode of the first layer and the pixel electrode of the third layer are electrically insulated by the action of the SiN film of the second layer.
 第3層目の画素電極は、中央部分が内角160°で屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-tooth shape formed by arranging a plurality of "dogleg" -shaped electrode elements whose central portion is bent at an internal angle of 160 °. The width of each electrode element in the lateral direction is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrodes forming each pixel are formed by arranging a plurality of bent "dogleg" -shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is centered like the electrode elements. It has a shape similar to a bold "dogleg" that bends at a part. Each pixel is divided into upper and lower parts with a bent portion in the center as a boundary, and has a first region on the upper side and a second region on the lower side of the bent portion.
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。この基板を、230℃の熱風循環式オーブンでさらに30分間焼成し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after filtering the liquid crystal alignment agent with a 1.0 μm filter, spin coating is applied to the prepared substrate with electrodes and a glass substrate having a columnar spacer having a height of 4 μm on which an ITO film is formed on the back surface. Was applied in. After drying on a hot plate at 80 ° C. for 2 minutes, it was baked in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. The coating film surface was irradiated with ultraviolet rays having a wavelength of 254 nm, which were linearly polarized with an extinction ratio of 10: 1 or more, via a polarizing plate. The liquid crystal alignment film formed on the first glass substrate is oriented so that the direction of equally dividing the inner angle of the pixel bending portion and the orientation direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film formed on the second glass substrate is formed. The film is oriented so that the orientation direction of the liquid crystal on the first substrate and the orientation direction of the liquid crystal on the second substrate coincide with each other when the liquid crystal cell is produced. This substrate was fired in a hot air circulation oven at 230 ° C. for another 30 minutes to obtain a substrate with a liquid crystal alignment film. The above two substrates are made into a set, a sealant is printed on the substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the orientation direction is 0 °, and then the sealant is applied. It was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Then, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour, left overnight, and then used for each evaluation.
[長期交流駆動による残像評価]
 上記した液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温で一日放置した。
[Afterimage evaluation by long-term AC drive]
Using the liquid crystal cell described above, an AC voltage of ± 5 V was applied at a frequency of 60 Hz for 120 hours in a constant temperature environment of 60 ° C. Then, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
 一日放置した後、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。 After leaving it for a day, a liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the backlight is turned on with no voltage applied, so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cells was adjusted as described above. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became the darkest to the angle at which the first region became the darkest was calculated as the angle Δ. Similarly, in the second pixel, the second region and the first region were compared and the same angle Δ was calculated.
[シール密着性の評価]
 シール密着性評価のサンプルは、以下のように作製した。まず、30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤を塗布した。続いて、80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。次に、この塗膜面に偏光板を介して消光比10:1以上に直線偏光した波長254nmの紫外線を照射した。最後に、230℃の熱風循環式オーブンで30分間焼成を行い、液晶配向膜付きの基板を得た。
[Evaluation of seal adhesion]
A sample for evaluating the seal adhesion was prepared as follows. First, a liquid crystal alignment agent was applied to an ITO substrate of 30 mm × 40 mm by spin coating. Subsequently, after drying on a hot plate at 80 ° C. for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. Next, the coating film surface was irradiated with ultraviolet rays having a wavelength of 254 nm linearly polarized with an extinction ratio of 10: 1 or more via a polarizing plate. Finally, it was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
 得られた液晶配向膜付きの基板の基板面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学産業社製723K1)を基板の中央に滴下した。次いで、この液晶配向膜付きの基板と、液晶配向膜の付いていないITO基板とを、基板同士が十字に重なり合うように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が2mmとなるようにシール剤滴下量をあらかじめ調整した。貼り合わせた2枚の基板はクリップにて固定した。この基板に対して、波長365nmの紫外線を3.0J/cm照射し、シールを光硬化させ、さらに150℃で1時間、シールを熱硬化させた。 A 4 μm bead spacer was applied onto the substrate surface of the obtained substrate with the liquid crystal alignment film, and then a sealing agent (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped onto the center of the substrate. Next, the substrate with the liquid crystal alignment film and the ITO substrate without the liquid crystal alignment film were bonded so that the substrates overlapped with each other in a cross shape. At that time, the amount of the sealant dropped was adjusted in advance so that the diameter of the sealant after bonding was 2 mm. The two bonded substrates were fixed with clips. The substrate was irradiated with ultraviolet rays having a wavelength of 365 nm at 3.0 J / cm 2 to photo-cure the seal, and the seal was thermoset at 150 ° C. for 1 hour.
 基板の剥離試験は、島津製作所社製の卓上形精密万能試験機AGS-X 500Nで行った。十字に張り合わせた二枚の基板のうち、片方の基板の両端を装置に固定し、もう片方の基板の両端を冶具で掴んで引き揚げ、2枚の基板が剥離する際の力(N)を測定した。剥離した際の力(N)を塗布したシール剤の面積で割って、剥離応力(N/mm)を算出した。 The substrate peeling test was performed with a desktop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation. Of the two boards stuck together in a cross, both ends of one board are fixed to the device, both ends of the other board are grasped with a jig and lifted, and the force (N) when the two boards are peeled off is measured. did. The peeling stress (N / mm 2 ) was calculated by dividing the peeling force (N) by the area of the applied sealant.
<合成例1>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、DA-1を1.08g(10.0mmol)、DA-2を3.66g(15.0mmol)、DA-3を4.81g(15.0mmol)及びDA-4を3.41g(10.0mmol)量り取り、NMPを132.0g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、TA-1を10.54g(47.0mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の温度25℃における粘度は380mPa・sであった。
<Synthesis example 1>
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.08 g (10.0 mmol) of DA-1, 3.66 g (15.0 mmol) of DA-2, and 4.81 g (15) of DA-3. Weighed 3.41 g (10.0 mmol) of 0.0 mmol) and DA-4, added 132.0 g of NMP, and stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 10.54 g (47.0 mmol) of TA-1 was added, NMP was further added so that the solid content concentration became 12% by mass, and the mixture was stirred at 40 ° C. for 20 hours to form a polyamic. An acid solution (PAA-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 380 mPa · s.
<合成例2>
 合成例1で得たポリアミック酸溶液(PAA-1)60.0gを、200mLの三角フラスコに分取し、これにNMPを20.0g加えた後、無水酢酸を4.56g、及びピリジンを1.18g加え、55℃で3時間反応させた。この反応溶液をメタノール300gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は66%であった。得られたポリイミド粉末3.6gにNMP26.4gを加えて60℃にて20時間撹拌して溶解させることでポリイミド溶液(SPI-1)を得た。
<Synthesis example 2>
60.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was separated into a 200 mL Erlenmeyer flask, 20.0 g of NMP was added thereto, and then 4.56 g of acetic anhydride and 1 of pyridine were added. .18 g was added and reacted at 55 ° C. for 3 hours. The reaction solution was poured into 300 g of methanol and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidization rate of this polyimide was 66%. A polyimide solution (SPI-1) was obtained by adding 26.4 g of NMP to 3.6 g of the obtained polyimide powder and stirring at 60 ° C. for 20 hours to dissolve the powder.
<合成例3>
 50mL三角フラスコに、ポリアミック酸(PAA-1)を29.0g量り取り、NHSエステルEC-1を0.190g(0.59mmol、重合反応に関与するジアミン中のアミノ基1当量に対して0.04当量)加えた。25℃で72時間撹拌し、アミンとNHSエステルEC-1の反応により末端アミンが封止された、ポリアミック酸溶液(PAA-1_EC1)を得た。
<Synthesis example 3>
In a 50 mL Erlenmeyer flask, weigh 29.0 g of polyamic acid (PAA-1) and 0.190 g (0.59 mmol) of NHS ester EC-1, with respect to 1 equivalent of amino groups in the diamine involved in the polymerization reaction. 04 equivalent) was added. The mixture was stirred at 25 ° C. for 72 hours to obtain a polyamic acid solution (PAA-1_EC1) in which the terminal amine was sealed by the reaction of the amine and the NHS ester EC-1.
<合成例4>
 50mL三角フラスコに、ポリアミック酸(PAA-1)を29.0g量り取り、NHSエステルEC-2を0.195g(0.59mmol、重合反応に関与するジアミン中のアミノ基1当量に対して0.04当量)加えた。25℃で72時間撹拌し、アミンとNHSエステルEC-2の反応により末端アミンが封止された、ポリアミック酸溶液(PAA-1_EC2)を得た。
<Synthesis example 4>
In a 50 mL Erlenmeyer flask, weigh 29.0 g of polyamic acid (PAA-1) and 0.195 g (0.59 mmol) of NHS ester EC-2, with respect to 1 equivalent of amino groups in the diamine involved in the polymerization reaction. 04 equivalent) was added. The mixture was stirred at 25 ° C. for 72 hours to obtain a polyamic acid solution (PAA-1_EC2) in which the terminal amine was sealed by the reaction of the amine and the NHS ester EC-2.
<合成例5>
 合成例4で得たポリアミック酸溶液(PAA-1_EC2)15.0gを、50mLの三角フラスコに分取し、これにNMPを5.0g加えた後、無水酢酸を1.14g、及びピリジンを0.29g加え、55℃で3時間反応させた。この反応溶液をメタノール64gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は64%であった。得られたポリイミド粉末1.4gにNMP10.3gを加えて60℃にて20時間撹拌して溶解させることでポリイミド溶液(SPI-1_EC2)を得た。
<Synthesis example 5>
15.0 g of the polyamic acid solution (PAA-1_EC2) obtained in Synthesis Example 4 was separated into a 50 mL Erlenmeyer flask, 5.0 g of NMP was added thereto, and then 1.14 g of acetic anhydride and 0 of pyridine were added. .29 g was added and reacted at 55 ° C. for 3 hours. The reaction solution was poured into 64 g of methanol and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidization rate of this polyimide was 64%. A polyimide solution (SPI-1_EC2) was obtained by adding 10.3 g of NMP to 1.4 g of the obtained polyimide powder and stirring at 60 ° C. for 20 hours to dissolve it.
<合成例6>
 撹拌装置付きおよび窒素導入管付きの100mL四つ口フラスコにDA-5を3.99g(20.0mmol)、DA-6を1.49g(5.0mmol)量り取り、NMPを78.0g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、TA-3を6.77g(23.0mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、70℃で20時間撹拌して、ポリアミック酸溶液(PAA-2)を得た。
 このポリアミック酸溶液の温度25℃における粘度は420mPa・sであった。
<Synthesis example 6>
Weigh 3.9 g (20.0 mmol) of DA-5 and 1.49 g (5.0 mmol) of DA-6 in a 100 mL four-necked flask with a stirrer and a nitrogen introduction tube, and add 78.0 g of NMP. , Nitrogen was sent and stirred to dissolve. While stirring this diamine solution, 6.77 g (23.0 mmol) of TA-3 was added, NMP was further added so that the solid content concentration became 12% by mass, and the mixture was stirred at 70 ° C. for 20 hours to form a polyamic. An acid solution (PAA-2) was obtained.
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 420 mPa · s.
<合成例7>
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-7を9.01g(60.0mmol)、DA-6を26.8g(89.8mmol)取り、NMPを290g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらTA-2を27.9g(142mmol)添加し、NMPを71.4g加えて23℃で2時間撹拌してポリアミック酸の溶液(PAA-3)を得た。
 このポリアミック酸の溶液の温度25℃における粘度は750mPa・sであった。
<Synthesis example 7>
Take 9.01 g (60.0 mmol) of DA-7 and 26.8 g (89.8 mmol) of DA-6 in a 500 mL four-necked flask with a stirrer and a nitrogen introduction tube, add 290 g of NMP, and add nitrogen. Was stirred and dissolved while feeding. While stirring this diamine solution under water cooling, 27.9 g (142 mmol) of TA-2 was added, 71.4 g of NMP was added, and the mixture was stirred at 23 ° C. for 2 hours to obtain a polyamic acid solution (PAA-3). ..
The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 750 mPa · s.
<実施例1>
 合成例3で得られた12質量%のポリアミック酸溶液(PAA-1_EC1)4.17gを20mL三角フラスコに取り、NMP2.83g、BCS3.00gを加え、25℃にて2時間混合して、液晶配向剤(A1)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
4.17 g of the 12 mass% polyamic acid solution (PAA-1_EC1) obtained in Synthesis Example 3 was placed in a 20 mL Erlenmeyer flask, 2.83 g of NMP and 3.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. An aligning agent (A1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
<実施例2、3>
 ポリアミック酸溶液(PAA-1_EC1)の代わりに、ポリアミック酸溶液(PAA-1_EC2)、ポリイミド溶液(SPI-1_EC2)を用いた以外は、実施例1と同様に実施することで、液晶配向剤(A2)、(A3)を得た。
<Examples 2 and 3>
The liquid crystal alignment agent (A2) was carried out in the same manner as in Example 1 except that the polyamic acid solution (PAA-1_EC2) and the polyimide solution (SPI-1_EC2) were used instead of the polyamic acid solution (PAA-1_EC1). ), (A3) were obtained.
<実施例4>
 合成例4で得られた12質量%のポリアミック酸溶液(PAA-1_EC2)2.00gと合成例6で得られた12質量%のポリアミック酸溶液(PAA-2)3.00gを20mL三角フラスコに取り、NMP3.40g、BCS3.60gを加え、25℃にて2時間混合して、液晶配向剤(A4)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 4>
2.00 g of the 12% by mass polyamic acid solution (PAA-1_EC2) obtained in Synthesis Example 4 and 3.00 g of the 12% by mass polyamic acid solution (PAA-2) obtained in Synthesis Example 6 were placed in a 20 mL Erlenmeyer flask. Then, 3.40 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A4). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
<実施例5>
 合成例4で得られた12質量%のポリアミック酸溶液(PAA-1_EC2)2.00gと合成例7で得られた15質量%のポリアミック酸溶液(PAA-3)2.40gを20mL三角フラスコに取り、NMP4.00g、BCS3.60gを加え、25℃にて2時間混合して、液晶配向剤(A5)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 5>
2.00 g of the 12% by mass polyamic acid solution (PAA-1_EC2) obtained in Synthesis Example 4 and 2.40 g of the 15% by mass polyamic acid solution (PAA-3) obtained in Synthesis Example 7 were placed in a 20 mL Erlenmeyer flask. Then, 4.00 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A5). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
<比較例1>
 合成例1で得られた12質量%のポリアミック酸溶液(PAA-1)4.17gを20mL三角フラスコに取り、NMP2.83g、BCS3.00gを加え、25℃にて2時間混合して、液晶配向剤(B1)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 1>
4.17 g of the 12 mass% polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was placed in a 20 mL Erlenmeyer flask, 2.83 g of NMP and 3.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. An aligning agent (B1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
<比較例2>
 ポリアミック酸溶液(PAA-1)の代わりに、ポリイミド溶液(SPI-1)を用いた以外は、比較例1と同様に実施することで、液晶配向剤(B2)を得た。
<Comparative example 2>
A liquid crystal alignment agent (B2) was obtained by carrying out in the same manner as in Comparative Example 1 except that the polyimide solution (SPI-1) was used instead of the polyamic acid solution (PAA-1).
<比較例3>
 合成例1で得られた12質量%のポリアミック酸溶液(PAA-1)2.00gと合成例6で得られた12質量%のポリアミック酸溶液(PAA-2)3.00gを20mL三角フラスコに取り、NMP3.40g、BCS3.60gを加え、25℃にて2時間混合して、液晶配向剤(B3)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 3>
2.00 g of the 12% by mass polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 3.00 g of the 12% by mass polyamic acid solution (PAA-2) obtained in Synthesis Example 6 were placed in a 20 mL Erlenmeyer flask. Then, 3.40 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (B3). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
<比較例4>
 合成例1で得られた12質量%のポリアミック酸溶液(PAA-1)2.00gと合成例7で得られた15質量%のポリアミック酸溶液(PAA-3)2.40gを20mL三角フラスコに取り、NMP4.00g、BCS3.60gを加え、25℃にて2時間混合して、液晶配向剤(B4)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 4>
2.00 g of the 12% by mass polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.40 g of the 15% by mass polyamic acid solution (PAA-3) obtained in Synthesis Example 7 were placed in a 20 mL Erlenmeyer flask. Then, 4.00 g of NMP and 3.60 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (B4). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
<実施例6>
 実施例1で得られた液晶配向剤(A1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1に直線偏光した波長254nmの紫外線を0.3J/cm照射した。この基板を、230℃の熱風循環式オーブンで30分間焼成し、液晶配向膜付き基板を得た。
 得られた上記2枚の基板を一組とし、1枚の基板上にシール剤を塗布し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
<Example 6>
After filtering the liquid crystal alignment agent (A1) obtained in Example 1 with a 1.0 μm filter, it has the prepared substrate with electrodes and a columnar spacer having a height of 4 μm on which an ITO film is formed on the back surface. It was applied to a glass substrate by spin coating. After drying on a hot plate at 80 ° C. for 2 minutes, it was baked in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. The coating film surface was irradiated with 0.3 J / cm 2 of ultraviolet rays having a wavelength of 254 nm linearly polarized to an extinction ratio of 26: 1 via a polarizing plate. This substrate was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
The obtained two substrates were made into a set, a sealant was applied onto one substrate, and the other substrates were laminated so that the liquid crystal alignment film surfaces faced each other and the orientation direction was 0 °. After that, the sealant was cured to prepare an empty cell. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS-driven liquid crystal cell.
[長期交流駆動による残像評価]
 上記した液晶セルに対して、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。120時間の交流電圧の印加後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、室温で一日放置した。その後、この液晶セルにおける角度Δを測定したところ、角度Δの値は0.11度であった。
[Afterimage evaluation by long-term AC drive]
An AC voltage of ± 5 V was applied to the liquid crystal cell at a frequency of 60 Hz for 120 hours in a constant temperature environment of 60 ° C. After applying the AC voltage for 120 hours, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left at room temperature for one day. After that, when the angle Δ in this liquid crystal cell was measured, the value of the angle Δ was 0.11 degrees.
[シール密着性の評価]
 30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤(A1)を塗布した。続いて、80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。次に、この塗膜面に偏光板を介して消光比26:1に直線偏光した波長254nmの紫外線を0.3J/cm照射した。最後に、230℃の熱風循環式オーブンで30分間焼成を行い、液晶配向膜付きの基板を得た。
[Evaluation of seal adhesion]
The liquid crystal alignment agent (A1) was applied to a 30 mm × 40 mm ITO substrate by spin coating. Subsequently, after drying on a hot plate at 80 ° C. for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm. Next, the coating film surface was irradiated with 0.3 J / cm 2 of ultraviolet rays having a wavelength of 254 nm linearly polarized to an extinction ratio of 26: 1 via a polarizing plate. Finally, it was fired in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film.
 得られた液晶配向膜付きの基板の基板面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学産業社製723K1)を基板の中央に滴下した。次いで、この液晶配向膜付きの基板と、液晶配向膜の付いていないITO基板とを、基板同士が十字に重なり合うように、貼り合わせた。その際、貼り合わせ後のシール剤の直径が2mmとなるようにシール剤滴下量をあらかじめ調整した。貼り合わせた2枚の基板はクリップにて固定した。この基板に対して、波長365nmの紫外線を3.0J/cm照射し、シールを光硬化させ、さらに150℃で1時間、シールを熱硬化させた。 A 4 μm bead spacer was applied onto the substrate surface of the obtained substrate with the liquid crystal alignment film, and then a sealing agent (723K1 manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was dropped onto the center of the substrate. Next, the substrate with the liquid crystal alignment film and the ITO substrate without the liquid crystal alignment film were bonded so that the substrates overlapped with each other in a cross shape. At that time, the amount of the sealant dropped was adjusted in advance so that the diameter of the sealant after bonding was 2 mm. The two bonded substrates were fixed with clips. The substrate was irradiated with ultraviolet rays having a wavelength of 365 nm at 3.0 J / cm 2 to photo-cure the seal, and the seal was thermoset at 150 ° C. for 1 hour.
 基板の剥離試験は、島津製作所社製の卓上形精密万能試験機AGS-X 500Nで行った。十字に張り合わせた二枚の基板のうち、片方の基板の両端を装置に固定し、もう片方の基板の両端を冶具で掴んで引き揚げところ、2枚の基板は23.9(N)で剥離した。シール剤の面積(7.02mm)から、剥離応力は3.40(N/mm)と算出した。
 長期交流駆動による残像の評価とシール密着性の評価結果を表2及び表3に示す。
The substrate peeling test was performed with a desktop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation. Of the two boards stuck together in a cross, both ends of one board were fixed to the device, and both ends of the other board were grasped with a jig and lifted up. The two boards were peeled off at 23.9 (N). .. From the area of sealant (7.02mm 2), peeling stress was calculated as 3.40 (N / mm 2).
Tables 2 and 3 show the evaluation results of the afterimage and the seal adhesion by long-term AC drive.
<実施例7、比較例5>
 液晶配向剤(A1)の代わりに、液晶配向剤(A2)、(B1)を用いた以外は、実施例6と全く同様の方法で、長期交流駆動による残像の評価とシール密着性の評価を実施した。長期交流駆動による残像の評価の結果を表2、シール密着性の評価結果を表3に示す。
<Example 7, Comparative Example 5>
Evaluation of afterimage and seal adhesion by long-term AC drive was performed in exactly the same manner as in Example 6 except that the liquid crystal alignment agents (A2) and (B1) were used instead of the liquid crystal alignment agent (A1). Carried out. Table 2 shows the evaluation results of the afterimage by long-term AC drive, and Table 3 shows the evaluation results of the seal adhesion.
<実施例8、9、10、比較例6、7、8>
 液晶配向剤(A1)の代わりに、液晶配向剤(A3)、(A4)、(A5)、(B2)、(B3)、(B4)を用いた以外は、実施例6と全く同様の方法で、シール密着性の評価を実施した。シール密着性の評価結果を表3に示す。
<Examples 8, 9, 10 and Comparative Examples 6, 7, 8>
Exactly the same method as in Example 6 except that the liquid crystal alignment agents (A3), (A4), (A5), (B2), (B3), and (B4) were used instead of the liquid crystal alignment agent (A1). Then, the seal adhesion was evaluated. Table 3 shows the evaluation results of the seal adhesion.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 実施例6、7と、比較例5の比較から、末端を修飾していない液晶配向剤B1に比べて、NHSエステルを用いてアミン末端を修飾した液晶配向剤A1とA2の方が、シール密着性が高いことがわかる。このように機能性構造部位を有するNHSエステルを利用して、ポリマーのアミン末端に機能性部位を導入することで、長期交流駆動による残像に優れ、かつシール密着性に優れた液晶配向剤が得られることがわかった。さらに、実施例8、9、10と、比較例6、7、8の比較から、末端に機能性構造部位を導入したポリアミック酸を化学イミド化することで得たポリイミド液晶配向剤や、末端に機能性構造部位を導入したポリアミック酸と機能性構造部位を導入していないポリアミック酸をブレンドした液晶配向剤でもシール密着性の向上の効果が得られるとわかった。 From the comparison between Examples 6 and 7 and Comparative Example 5, the liquid crystal alignment agents A1 and A2 whose amine ends were modified with NHS ester had better seal adhesion than the liquid crystal alignment agent B1 whose ends were not modified. It turns out that the sex is high. By introducing a functional site at the amine terminal of the polymer using the NHS ester having a functional structural site in this way, a liquid crystal alignment agent having excellent afterimages due to long-term AC driving and excellent seal adhesion can be obtained. It turned out to be. Further, from the comparison between Examples 8, 9, and 10 and Comparative Examples 6, 7, and 8, the polyimide liquid crystal alignment agent obtained by chemically imidizing the polyamic acid having the functional structural site introduced at the terminal, and the terminal It was found that a liquid crystal alignment agent in which a polyamic acid having a functional structural part introduced and a polyamic acid having no functional structural part introduced was also obtained to improve the seal adhesion.
 本発明の液晶配向剤を用いることにより、IPS、FFS駆動方式の液晶表示素子において、交流駆動により生じる残像が抑制され、かつ高いシール密着性を有する液晶配向膜を得ることができる。そのため、高い表示品位が求められる液晶表示素子における利用が期待できる。

 
By using the liquid crystal alignment agent of the present invention, it is possible to obtain a liquid crystal alignment film having high seal adhesion while suppressing afterimages generated by AC drive in an IPS or FFS drive type liquid crystal display element. Therefore, it can be expected to be used in liquid crystal display elements that require high display quality.

Claims (6)

  1.  下記式の修飾用化合物と、被修飾用高分子との反応物である重合体を含有する機能性高分子膜形成用塗布液。
    Figure JPOXMLDOC01-appb-C000001
     式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表し、kは1~8の整数を表す。
    A coating liquid for forming a functional polymer film, which contains a polymer which is a reaction product of a modifying compound of the following formula and a polymer to be modified.
    Figure JPOXMLDOC01-appb-C000001
    Wherein, W 1 represents a k 1 monovalent organic group which is a functional structural part that imparts functionality, k 1 is an integer of 1-8.
  2.  被修飾用高分子が、ポリアミック酸、ポリアミック酸エステル、ポリイミドから選ばれる、請求項1に記載の機能性高分子膜形成用塗布液。 The coating liquid for forming a functional polymer film according to claim 1, wherein the polymer to be modified is selected from polyamic acid, polyamic acid ester, and polyimide.
  3.  請求項1または請求項2に記載の機能性高分子膜形成用塗布液から得られる機能性高分子膜。 A functional polymer film obtained from the coating liquid for forming a functional polymer film according to claim 1 or 2.
  4.  請求項1から請求項2に記載の機能性高分子膜形成用塗布液を含有する液晶配向剤。 A liquid crystal alignment agent containing the coating liquid for forming a functional polymer film according to claims 1 to 2.
  5.  請求項4に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to claim 4.
  6.  請求項5に記載の液晶配向膜を具備する液晶表示素子。

     
    A liquid crystal display element including the liquid crystal alignment film according to claim 5.

PCT/JP2020/009388 2019-03-12 2020-03-05 Coating solution for forming functional polymer film, and functional polymer film WO2020184373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044857 2019-03-12
JP2019044857A JP2022068884A (en) 2019-03-12 2019-03-12 Coating liquid for functional polymer film formation and functional film

Publications (1)

Publication Number Publication Date
WO2020184373A1 true WO2020184373A1 (en) 2020-09-17

Family

ID=72427362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009388 WO2020184373A1 (en) 2019-03-12 2020-03-05 Coating solution for forming functional polymer film, and functional polymer film

Country Status (3)

Country Link
JP (1) JP2022068884A (en)
TW (1) TW202104362A (en)
WO (1) WO2020184373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068084A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101782A (en) * 2002-09-09 2004-04-02 Chisso Corp Liquid crystal alignment layer
WO2016021570A1 (en) * 2014-08-05 2016-02-11 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101782A (en) * 2002-09-09 2004-04-02 Chisso Corp Liquid crystal alignment layer
WO2016021570A1 (en) * 2014-08-05 2016-02-11 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHI, X. L. ET AL.: "Nanofilamentous virus-based dynamic hydrogels with tunable internal structures, injectability, self-healing, and sugar responsiveness at physiological pH", LANGMUIR, vol. 34, no. 43, 30 October 2018 (2018-10-30), pages 12914 - 12923, XP055739159 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068084A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Also Published As

Publication number Publication date
JP2022068884A (en) 2022-05-11
TW202104362A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
KR102241791B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR102241786B1 (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
KR20160074567A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7107220B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2019082975A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20190082293A (en) A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
WO2013157586A1 (en) Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
JP7255486B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2020040089A1 (en) Liquid crystal alignment agent, production method thereof, liquid crystal alignment film, and liquid crystal display element
JP7099327B2 (en) Method for manufacturing liquid crystal alignment agent and liquid crystal alignment film
TWI772371B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7243628B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
WO2020184373A1 (en) Coating solution for forming functional polymer film, and functional polymer film
JPWO2019198671A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP2022173076A (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method for the same, liquid crystal device, liquid crystal display, and polymer
JP7488516B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018047872A1 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018066607A1 (en) Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2021065934A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
TW202227601A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2020218331A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2020121979A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP