JP2004101782A - Liquid crystal alignment layer - Google Patents

Liquid crystal alignment layer Download PDF

Info

Publication number
JP2004101782A
JP2004101782A JP2002262300A JP2002262300A JP2004101782A JP 2004101782 A JP2004101782 A JP 2004101782A JP 2002262300 A JP2002262300 A JP 2002262300A JP 2002262300 A JP2002262300 A JP 2002262300A JP 2004101782 A JP2004101782 A JP 2004101782A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
general formula
alignment film
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262300A
Other languages
Japanese (ja)
Other versions
JP4029700B2 (en
Inventor
Kichiji Hirai
平井 吉治
Shizuo Murata
村田 鎮男
Tokuji Miyashita
宮下 徳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2002262300A priority Critical patent/JP4029700B2/en
Publication of JP2004101782A publication Critical patent/JP2004101782A/en
Application granted granted Critical
Publication of JP4029700B2 publication Critical patent/JP4029700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal alignment layer with which liquid crystal molecules are uniformly aligned, stable display operation is carried out, a picture with few display defects is imparted and further which is excellent in chemical stability without depending on an oblique deposition method or a rubbing method. <P>SOLUTION: The liquid crystal alignment layer is characterized by forming a monomolecular film composed of an organic polymer expressed by a general formula (2) on a substrate treated with an organic silicon compound expressed by a general formula (1), (YR)<SB>p</SB>SiX<SB>4-p</SB>, which is chemically fixed by the reaction between Y of the organic silicon compound and W of the organic polymer. In addition, in the general formulas (1) and (2), Y and W are groups which react with each other via active hydrogen donation and acceptance, R is a divalent organic group, X is a hydrolyzable group, R<SB>1</SB>and R<SB>2</SB>are (a) hydrogen atom(s) or (a) methyl group(s), Z<SB>1</SB>and Z<SB>2</SB>are -NH-, -O- or -S-, n is an integer of 2-20 and p, a, b and m are specified integers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、単分子膜を用いた液晶配向膜に関するものである。
【0002】
【背景技術】
従来より、時計やテレビ等において液晶表示素子を用いた平面ディスプレイが広く採用されている。これらの液晶ディスプレイに用いられる液晶表示素子としては、ネマチック液晶を用いた表示素子が主流であり、90°ツイストしたツイステッド ネマティック(Twisted Nematic、以下、略号「TN」で表記する。)型液晶表示素子、通常180°以上ツイストしたスーパー ツイステッド ネマティック(Super Twisted Nematic、以下、略号「STN」で表記する)型液晶表示素子、薄膜トランジスターを使用したいわゆるティン フィルム トランジスター(Thin Film Transistor、以下、略号「TFT」で表記する。)型液晶表示素子などがある。
【0003】
これらのTN型液晶表示素子、STN型液晶表示素子、TFT型液晶表示素子においては、基板上にポリイミド系高分子樹脂を塗布した後、布等で一定方向にラビング(擦る)等の処理が行われた配向膜を用いて液晶分子を一定方向に、即ち、概略水平配向させることが行われている。
【0004】
しかしながら、ラビング法は、ラビング時に発生するごみや静電気により生産性の低下や品質の劣化という欠点を有している(非特許文献1及び2参照)。
【0005】
また、TN型液晶表示素子の視覚特性を改良するため、液晶分子の垂直配向状態を利用したバーティカル アラインメント(Vertical Alignment、以下、略号「VA」で表記する)型液晶表示素子が提案されている。
【0006】
VA型液晶表示素子では、液晶層をはさんで対向する一対の透明基板の互いに対向する面に、透明電極と、液晶分子を基板面に対して垂直に配向させるための垂直配向膜を形成したもので、前記垂直配向膜は、従来、SiO、Au等の斜方蒸着法、あるいは基板面に長鎖のアルキル基を有する界面活性剤溶液、または長鎖のアルキル基を有するシランカップリング剤溶液を塗布して乾燥させることにより形成されている(非特許文献3参照)。
【0007】
【非特許文献1】
季刊 化学総説 No.22 液晶の化学 日本化学会編 p.107(1994)
【非特許文献2】
イラスト・図解 液晶のしくみがわかる本 (株)技術評論社発行 p.150(1999)
【非特許文献3】
液晶の基礎と応用 工業調査会発行 p.97〜100、p.212〜216(1991)
【0008】
【発明が解決しようとする課題】
しかしながら、上記のような斜方蒸着法は、液晶に所定のプレチルト角を与えるのに大変有利であるが、真空蒸着であるため10μTorr位の高真空が必要であり、しかも基板を傾斜しなければならないため量産性に乏しいという欠点を有している。一方、基板面に長鎖のアルキル基を有する界面活性剤溶液を塗布して乾燥させることにより垂直配向膜を形成する方法、または長鎖のアルキル基を有するシランカップリング剤溶液は配向の長期信頼性が劣るという欠点がある。
【0009】
また、水面上に形成した単分子膜を所定の基板上に1層ずつ積層して形成されるラングミュア−ブロジェット(以下、LBと略)膜を用いた液晶配向膜として応用した例(雑誌 応用物理 第62巻 第2号 p.160〜163(1993)、特開昭62−286021号公報等)もあるが、クロロホルム等の有機溶剤に溶解するため化学的安定性(耐溶剤性)に欠けていた。また、耐溶剤性に優れたものとしてポリイミドLB膜があるがイミド化のため高温の熱処理が必要であった。
【0010】
本発明の目的は、上記従来技術の欠点を改良しようとするものである。即ち、斜方蒸着法やラビング法によらず液晶分子を一様に配向させて光学特性を均一にし、しかも電界を印加したときの液晶分子の倒れ方向を一定にして表示欠陥を減少させ、安定した表示動作を行わせることができ、更に化学的安定性に優れた液晶配向膜を提供することにある。
【0011】
【課題を解決するための手段】
請求項1記載の発明によれば、一般式(1)
(YR)SiX4−p      (1)
で表される有機ケイ素化合物で処理された基板上に、一般式(2)
【化2】

Figure 2004101782
(但し、式(1)及び(2)においてYとWは、活性水素を有する基若しくは活性水素に対して反応性を有する基であり、一方が活性水素を有する基であれば、他方は活性水素に対して反応性を有する基であり、Rは炭素数1〜20個の2価の有機基であり、Xは加水分解性基であり、pは1〜3の整数であり、RとRは同一または異なってもよく水素原子若しくはメチル基を表し、Z、Zは同一または異なってもよく、−NH−、−O−若しくは−S−であり、nは2〜20の整数であり、a、bは共に100b/(a+b)が0.01〜99.99の範囲にある整数であり、mは1〜5の整数であり、式(2)で表わされる有機高分子の重量平均分子量は8,000〜200,000〜の範囲である)で表される有機高分子からなる単分子膜を形成し、該単分子膜が有機ケイ素化合物のYと有機高分子のWが反応することにより化学的固定化が行われた膜であることを特徴とする液晶配向膜である。
【0012】
請求項2記載の発明によれば、一般式(1)において、Yがエポキシ基若しくは酸無水物基であり、一般式(2)において、Wがアミノ基、カルボキシル基、スルホン酸基、ヒドロキシ基、ヒドロキシフェニル基、アミド基、ヒドラジノ基、ヒドラジノカルボニル基、メルカプト基の何れかである請求項1に記載の配向膜である。
【0013】
請求項3記載の発明によれば、一般式(1)において、Yがアミノ基、カルボキシル基、スルホン酸基、ヒドロキシ基、ヒドロキシフェニル基、アミド基、ヒドラジノ基、ヒドラジノカルボニル基、メルカプト基の何れかであり、一般式(2)において、Wがエポキシ基若しくは酸無水物基である請求項1に記載の配向膜である。
【0014】
請求項4記載の発明によれば、液晶配向膜が、液晶分子に対して垂直配向を与えることを特徴とする請求項1〜3の何れかに記載の液晶配向膜である。
【0015】
請求項5記載の発明によれば、請求項1〜4の何れかに記載の液晶配向膜を用いた液晶表示素子である。
【0016】
【作用】
上記の構成からなる液晶配向膜において、有機ケイ素化合物により被覆された基板上に有機高分子からなる単分子膜を形成するためには通常のラングミュア−ブロジェット法(以下、LB法と略)を用いて作成する。LB法を用いた場合、有機高分子を水面上に展開した際、疎水性を示す直鎖アルキル基は空気中を向き、親水性基であるオキシエチレン基は水中を向く(図1参照)。そのため有機ケイ素化合物で被覆された基板を水中から引き上げると図2に示したように、有機高分子の官能基と有機ケイ素化合物の官能基が互いに接触した層構造を形成するため化学反応が起こり、有機高分子が化学的に固定化される(図3参照)。
【0017】
このようなメカニズムで単分子膜の化学的安定性が向上すると共に、単分子膜として有機高分子を用いていることにより、低分子化合物系の単分子膜と比べ機械的強度が格段に向上する。また、直鎖のアルキル鎖が空気中(基板面と反対側)を向いているため液晶配向膜として用いた場合、アルキル鎖の長い有機高分子を用いると、液晶分子はより安定して垂直に配向する傾向がある。
【0018】
【発明の実施の形態】
本発明で好ましく用いることのできる有機高分子は一般式(2)で表される共重合体である。この共重合体の2つの構成単位のうち第1項が疎水性を示す構成単位であり、第2項が親水性を示す構成単位である。即ち、共重合体中、第1項の構成単位の割合が多くなると共重合体は疎水性の性質が強くなり、第2項の構成単位の割合が多くなると親水性の性質が強く現れる。親水性が強くなりすぎるとLB膜として製膜が難しくなり、親水性が弱くなりすぎると本発明の目的を達成できなくなる。そのため両構成単位が必要になる。好ましい両構成単位の割合を、第2項の構成単位で表わせば(100b/(a+b))が0.01〜99.99モル%の範囲であり、より好ましくは3〜50モル%である。
【0019】
一般式(2)で表わされる共重合体の分子量が小さすぎても、大きすぎても製膜が困難になる。従って、重量平均分子量で表現すると8,000〜20,000の範囲が好ましく、より好ましくは10,000〜100,000である。
【0020】
本発明で用いることのできる単分子膜としては、通常のLB法により作成したものを挙げることができる。そして、これらの単分子膜を化学的に固定化するために行う基板の表面処理は、有機ケイ素化合物(シランカップリング剤等)を用いて行うことができる。本発明で用いることのできる有機ケイ素化合物は、一般式(1)で表されるものである。その具体例を以下に示す。
【0021】
NCHCHCHCHSi(OC
【0022】
【化3】
Figure 2004101782
【0023】
NCHCHNHCHCHCHSi(OCH
【0024】
N(CHNHCHCHCHSi(OCH
【0025】
【化4】
Figure 2004101782
【0026】
【化5】
Figure 2004101782
【0027】
【化6】
Figure 2004101782
【0028】
【化7】
Figure 2004101782
【0029】
【化8】
Figure 2004101782
【0030】
【化9】
Figure 2004101782
【0031】
一般式(1)におけるY若しくは一般式(2)におけるWが活性水素を有する基である場合には、前記列挙された基のうちでもアミノ基、カルボキシル基、メルカプト基が好ましく、活性水素に対して反応性を有する基としては前述したようにエポキシ基、酸無水物基が挙げられるが化合物の安定性からエポキシ基が好ましい。
【0032】
本発明のLB膜を用いて液晶配向膜を形成させた基板と、また、場合によればラビング処理を併用して、これと同一または異なる液晶配向膜を形成させた基板とを対向配置し、その間に液晶を挟み込んで液晶挟持基板とすることができる。この液晶狭持基板を用い、公知の方法により、液晶狭持基板を有する液晶表示素子とすることができる。液晶表示素子の動作モードは、TN型、STN型、インプレイン スイッチング(In Plane Switching、以下、略号「IPS」で表記する。)型、VA型、オプティカリー コンペンセイティッド ベンド(Optically Compensated Bend、以下、略号「OCB」で表記する。)型、強誘電性型、または反強誘電性型であってもよい。液晶配向膜により液晶分子の配列を制御し、液晶分子の配列状態を変化させて使用する液晶表示素子であれば、本発明の液晶配向膜を用いることができる。
【0033】
本発明の液晶配向膜を、TN型、STN型、IPS型、OCB型、強誘電性型、反強誘電性型の液晶表示素子の作製に用いる場合、共に用いられる誘電率異方性が正の液晶組成物として、例えば特開平8−157828号公報、特開平8−231960号公報、特開平9−241644号公報(EP885272A1)、特開平9−302346号公報(EP806466A1)、特開平8−199168号公報(EP722998A1)、特開平9−235552号公報、特開平9−241643号公報(EP885271A1)、特開平10−204016号公報(EP844229A1)、特開平10−204436号公報、特開平10−231482号公報、特開平2000−087040号公報などに開示されている液晶組成物が好ましい。
【0034】
また、本発明の液晶配向膜を、VA型の液晶表示素子の作製に用いる場合、共に用いられる誘電率異方性が負の液晶組成物として、例えば、特開昭57−114532号公報、特開平2−4725号公報、特開平4−224885号公報、特開平8−40953号公報、特開平8−104869号公報、特開平10−10168076号公報、特開平10−168453号公報、特開平10−236989号公報、特開平10−236990号公報、特開平10−236992号公報、特開平10−236993号公報、特開平10−236994号公報、特開平10−237000号公報、特開平10−237004号公報、特開平10−237024号公報、特開平10−237035号公報、特開平10−237075号公報、特開平10−237076号公報、特開平10−237448号公報(EP967261)、特開平10−287874号公報、特開平10−287875号公報、特開平10−291945号公報、特開平11−029581号公報、特開平11−080049号公報、特開2000−256307号公報、特開2001−019965号公報、特開2001−072626号公報、特開2001−192657号公報などに開示されている液晶組成物が好ましい。
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
【0035】
【実施例】
<モノマー及びポリマーの合成>
N−ドデシルアクリルアミド(DDA)モノマーはクロロホルムを溶媒とし、アクリル酸クロリドとドデシルアミンをトリエチルアミン存在下で反応させることにより合成した。
【化10】
Figure 2004101782
【0036】
また、N−アクリロイルオキシスクシンイミド(SuOA)モノマーも同様にN−ヒドロキシスクシンイミドとアクリル酸クロリドをクロロホルム溶媒、トリエチルアミン存在下で反応させることにより合成した。
【化11】
Figure 2004101782
【0037】
次に、所定量のDDAモノマーとSuOAモノマーを重合管中で精製トルエンに溶解し、濃度0.2M/Lの溶液に調製した。その溶液中に開始剤である2,2′−アゾビスイソブチロニトリル(AIBN)をモノマーに対して0.01当量加え、溶解した。次に反応系内の酸素を除去するため、凍結脱気を数回繰り返した後、60℃の水浴中で12時間重合を行った。反応物を濃縮し、約20倍量のアセトニトリル中へ反応物を滴下し、共重合体(p(DDA−SuOA))を沈殿析出させた。
【化12】
Figure 2004101782
【0038】
<高分子反応>
側鎖末端にアミノ基を有する共重合体(p(DDA−DADOO))は共重合体(p(DDA−SuOA))と2,2′−(エチレンジオキシ)ビス(エチルアミン)(DADOO)の高分子反応により得た。生成する共重合体のゲル化を防ぐため、DADOOの濃厚溶液に、共重合体(p(DDA−SuOA))の希薄クロロホルム溶液をゆっくり滴下した。また、DADOOはスクシニル基に対して約20当量加え、室温下で2日間反応させた。なお、溶媒はクロロホルムを用いた。反応後の共重合体(p(DDA−DADOO))はアセトニトリルで数回再沈殿し、過剰のDADOOを除去した。
【0039】
得られた共重合体(p(DDA−DADOO))の組成比をNMRで求めたところ、DADOOの含有率が12%であった。また、ゲル浸透クロマトグラフィー(GPC)による分子量測定から、数平均分子量30,000、分子量分布(Mw/Mn)は約1.5であった。
【化13】
Figure 2004101782
【0040】
<基板表面のエポキシ処理>
適当な大きさの基板をオゾンクリーナーで洗浄し、基板表面に水酸基を発生させた。その後、濃度1mM程度の(3−グリシドキシプロピル)トリエトキシシランをトルエン溶液中で80℃、3時間処理した。この処理を行った基板の水の接触角は約50°であった。図4(a)にシラン処理を行った基板の模式図を示す。
【0041】
<単分子膜の作成、および化学的固定化>
温度20℃、累積圧35mN/mにおいてpDDA−DADOOの単分子膜(DADOOの導入率12%、膜厚1.84nm)を(3−グリシドキシプロピル)トリエトキシシランで処理した基板へ親水側から1層累積を行った。この単分子膜累積後の基板は、水の接触角が約95°であった。その後、室温で12時間放置することにより化学的固定化を行った。このような化学的に固定化された単分子膜はクロロホルム中で超音波洗浄をしても溶解せず、水の接触角も殆ど変化しなかった。図4(b)に化学的に固定化された単分子膜の模式図を示す。
【0042】
実施例1
<液晶セルの作成−1>
前記の同一処理基板を2枚用意し、各々の基板の単分子膜形成時における基板の引き上げ方向が互いに反平行となるように液晶セルを構成し、片方の基板表面に直径20μmのギャップ剤を分散させたエポキシ樹脂系常温硬化型接着剤を使用してセルを作成した。
【0043】
このセルに下記に示す液晶組成物を注入し、注入口を光硬化剤で封止した。次いで、110℃で15分間加熱処理を行い、徐々に冷却して初期配向させることにより、均一で無欠陥且つ良好な配向状態の液晶セルが得られた。このセルの液晶分子のプレチルト角をクリスタルローテーション法により測定したところほぼ垂直配向であった。
【化14】
Figure 2004101782
【0044】
実施例2
<液晶セルの作成−2>
実施例1の処理基板をラビングすることと注入液晶を以下の組成物とした以外は実施例1と同一の方法でセルを作成し、液晶分子を初期配向させると均一で無欠陥且つ良好な配向状態の液晶セルが得られた。このセルの液晶分子のプレチルト角をクリスタルローテーション法により測定したところ20°であった。
【化15】
Figure 2004101782
【0045】
【発明の効果】
従来、有機ケイ素化合物により被覆された基板と、有機ケイ素化合物と親和性のある有機官能基を有した低分子化合物を付着させたのみの液晶配向膜では化学的安定性や機械的強度が乏しいため、液晶分子の均一配向性や信頼性が低いものであったが、本発明の液晶配向膜を用いることで、液晶分子に安定した配向性、特に垂直配向性を与えることができるようになった。したがって液晶表示素子の表示性能等に悪影響を与えるといったことがない等、信頼性の高い液晶配向膜の形成が可能となった。また真空蒸着装置も必要がなく、製造を簡略化することができた。また、ラビングなしで良好に液晶分子を配向させることができた。たとえラビング操作を行っても配向欠陥が生じない機械的強度に優れた液晶表示素子(TN型、STN型、IPS型、OCB型、強誘電性型、または反強誘電性型)を提供することができた。
【図面の簡単な説明】
【図1】本発明の有機高分子を水面に展開した際に有機高分子がとりうる状態の模式図である。
【図2】本発明の有機高分子の単分子膜を有機ケイ素化合物で被覆した基板に形成した際の模式図である。
【図3】本発明の有機高分子の単分子膜と有機ケイ素化合物で被覆した基板を化学的に固定化した際の模式図である。
【図4】本発明(実施例)の単分子膜の形成過程を説明する図である。
【符号の説明】
1 直鎖アルキル鎖
2 高分子主鎖
3 オキシエチレン基
4 有機高分子が有する官能基
5 有機ケイ素化合物が有する官能基
6 基板面に結合した有機ケイ素化合物
7 基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal alignment film using a monomolecular film.
[0002]
[Background Art]
Conventionally, flat displays using liquid crystal display elements have been widely used in watches, televisions, and the like. As a liquid crystal display element used in these liquid crystal displays, a display element using a nematic liquid crystal is mainstream, and a twisted nematic (Twisted Nematic, hereinafter abbreviated as “TN”) type liquid crystal display element twisted by 90 ° is used. Super Twisted Nematic (hereinafter abbreviated as "STN") type liquid crystal display element, which is usually twisted by 180 ° or more, a so-called Thin Film Transistor (hereinafter abbreviated as "TFT") using a thin film transistor. ) Type liquid crystal display element and the like.
[0003]
In these TN type liquid crystal display elements, STN type liquid crystal display elements, and TFT type liquid crystal display elements, a process such as rubbing (rubbing) in a certain direction with a cloth or the like is performed after a polyimide polymer resin is applied on a substrate. 2. Description of the Related Art Liquid crystal molecules are aligned in a certain direction, that is, substantially horizontally, by using an aligned alignment film.
[0004]
However, the rubbing method has a drawback in that productivity and quality deteriorate due to dust and static electricity generated during rubbing (see Non-Patent Documents 1 and 2).
[0005]
In addition, in order to improve the visual characteristics of a TN-type liquid crystal display device, a vertical alignment (Vertical Alignment, hereinafter abbreviated as “VA”) type liquid crystal display device using a vertical alignment state of liquid crystal molecules has been proposed.
[0006]
In the VA-mode liquid crystal display element, a transparent electrode and a vertical alignment film for aligning liquid crystal molecules perpendicularly to the substrate surface were formed on a pair of transparent substrates facing each other with a liquid crystal layer interposed therebetween. The vertical alignment film is conventionally formed by oblique deposition of SiO, Au, or the like, or a surfactant solution having a long-chain alkyl group on the substrate surface, or a silane coupling agent solution having a long-chain alkyl group. And dried (see Non-Patent Document 3).
[0007]
[Non-patent document 1]
Quarterly Chemistry Review No. 22 Chemistry of Liquid Crystals The Chemical Society of Japan p. 107 (1994)
[Non-patent document 2]
Illustrations / Illustrations A book that understands the structure of liquid crystals Published by Technology Review Co., Ltd. p. 150 (1999)
[Non-Patent Document 3]
Liquid crystal fundamentals and applications Published by the Industrial Research Committee p. 97-100, p. 212-216 (1991)
[0008]
[Problems to be solved by the invention]
However, the oblique evaporation method as described above is very advantageous for giving a predetermined pretilt angle to the liquid crystal, but requires high vacuum of about 10 μTorr because of vacuum evaporation, and furthermore, unless the substrate is tilted. Therefore, it has a disadvantage of poor mass productivity. On the other hand, a method of forming a vertical alignment film by applying a surfactant solution having a long-chain alkyl group on the substrate surface and drying the solution, or a silane coupling agent solution having a long-chain alkyl group has long-term reliability of alignment. There is a disadvantage that the properties are poor.
[0009]
An example in which a monomolecular film formed on a water surface is laminated on a predetermined substrate one by one and applied as a liquid crystal alignment film using a Langmuir-Blodgett (hereinafter abbreviated as LB) film (magazine application) Physics Vol. 62, No. 2, pp. 160-163 (1993), JP-A-62-286021, etc.), but lacks chemical stability (solvent resistance) because it is dissolved in an organic solvent such as chloroform. I was A polyimide LB film has excellent solvent resistance, but a high-temperature heat treatment was required for imidization.
[0010]
An object of the present invention is to remedy the disadvantages of the prior art. In other words, the liquid crystal molecules are uniformly aligned without using the oblique evaporation method or the rubbing method to make the optical characteristics uniform, and the display direction is reduced by keeping the falling direction of the liquid crystal molecules constant when an electric field is applied, thereby stabilizing the display. It is an object of the present invention to provide a liquid crystal alignment film that can perform the above-described display operation and that has excellent chemical stability.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, the general formula (1)
(YR) p Six 4-p (1)
On a substrate treated with an organosilicon compound represented by the general formula (2)
Embedded image
Figure 2004101782
(However, in the formulas (1) and (2), Y and W are a group having active hydrogen or a group having reactivity with active hydrogen, and if one is a group having active hydrogen, the other is active) R is a group reactive with hydrogen, R is a divalent organic group having 1 to 20 carbon atoms, X is a hydrolyzable group, p is an integer of 1 to 3, and R 1 And R 2 may be the same or different and represent a hydrogen atom or a methyl group; Z 1 and Z 2 may be the same or different; —NH—, —O— or —S—, and n is 2 to 20 A and b are integers in which 100b / (a + b) is in the range of 0.01 to 99.99, m is an integer of 1 to 5, and the organic height represented by the formula (2). The molecular weight is in the range of 8,000 to 200,000). A liquid crystal alignment film characterized in that the monomolecular film is a film that has been chemically fixed by the reaction of Y of an organosilicon compound and W of an organic polymer. is there.
[0012]
According to the invention described in claim 2, in the general formula (1), Y is an epoxy group or an acid anhydride group, and in the general formula (2), W is an amino group, a carboxyl group, a sulfonic acid group, or a hydroxy group. The alignment film according to claim 1, which is any one of a phenyl group, a hydroxyphenyl group, an amide group, a hydrazino group, a hydrazinocarbonyl group, and a mercapto group.
[0013]
According to the invention described in claim 3, in the general formula (1), Y represents an amino group, a carboxyl group, a sulfonic acid group, a hydroxy group, a hydroxyphenyl group, an amide group, a hydrazino group, a hydrazinocarbonyl group, or a mercapto group. 2. The alignment film according to claim 1, wherein W is an epoxy group or an acid anhydride group in the general formula (2).
[0014]
According to the fourth aspect of the present invention, the liquid crystal alignment film provides vertical alignment to liquid crystal molecules.
[0015]
According to a fifth aspect of the present invention, there is provided a liquid crystal display device using the liquid crystal alignment film according to any one of the first to fourth aspects.
[0016]
[Action]
In the liquid crystal alignment film having the above structure, a normal Langmuir-Blodgett method (hereinafter abbreviated as LB method) is used to form a monomolecular film made of an organic polymer on a substrate coated with an organosilicon compound. Create using When the LB method is used, when the organic polymer is developed on the water surface, the linear alkyl group showing hydrophobicity faces in the air, and the oxyethylene group, which is a hydrophilic group, faces water (see FIG. 1). Therefore, when the substrate coated with the organosilicon compound is pulled out of water, as shown in FIG. 2, a chemical reaction occurs because a functional layer of the organic polymer and a functional group of the organosilicon compound form a layer structure in which they are in contact with each other. The organic polymer is chemically immobilized (see FIG. 3).
[0017]
Such a mechanism improves the chemical stability of the monolayer, and the use of an organic polymer as the monolayer significantly improves the mechanical strength as compared with the low-molecular compound monolayer. . In addition, when a linear alkyl chain is used in a liquid crystal alignment film because it faces in the air (opposite to the substrate surface), when an organic polymer having a long alkyl chain is used, the liquid crystal molecule is more stably and vertically oriented. Tends to orient.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The organic polymer that can be preferably used in the present invention is a copolymer represented by the general formula (2). Of the two structural units of this copolymer, the first term is a structural unit exhibiting hydrophobicity, and the second term is a structural unit exhibiting hydrophilicity. That is, in the copolymer, when the proportion of the constitutional unit of the first term increases, the copolymer has a strong hydrophobic property, and when the proportion of the constitutional unit of the second term increases, the hydrophilic property appears strongly. If the hydrophilicity becomes too strong, it becomes difficult to form an LB film, and if the hydrophilicity becomes too weak, the object of the present invention cannot be achieved. Therefore, both constituent units are required. If the preferred ratio of both constitutional units is represented by the constitutional unit of item 2, (100b / (a + b)) is in the range of 0.01 to 99.99 mol%, and more preferably 3 to 50 mol%.
[0019]
If the molecular weight of the copolymer represented by the general formula (2) is too small or too large, film formation becomes difficult. Therefore, when expressed in terms of weight average molecular weight, the range is preferably 8,000 to 20,000, and more preferably 10,000 to 100,000.
[0020]
Examples of the monomolecular film that can be used in the present invention include those formed by a normal LB method. The surface treatment of the substrate for chemically fixing these monomolecular films can be performed using an organosilicon compound (such as a silane coupling agent). The organosilicon compound that can be used in the present invention is represented by the general formula (1). Specific examples are shown below.
[0021]
H 2 NCH 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3
[0022]
Embedded image
Figure 2004101782
[0023]
H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3
[0024]
H 2 N (CH 2 ) 6 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3
[0025]
Embedded image
Figure 2004101782
[0026]
Embedded image
Figure 2004101782
[0027]
Embedded image
Figure 2004101782
[0028]
Embedded image
Figure 2004101782
[0029]
Embedded image
Figure 2004101782
[0030]
Embedded image
Figure 2004101782
[0031]
When Y in the general formula (1) or W in the general formula (2) is a group having an active hydrogen, an amino group, a carboxyl group, or a mercapto group is preferable among the above-listed groups. Examples of the reactive group include an epoxy group and an acid anhydride group as described above, but an epoxy group is preferable in view of the stability of the compound.
[0032]
A substrate on which a liquid crystal alignment film is formed using the LB film of the present invention, and a substrate on which the same or a different liquid crystal alignment film is formed by using a rubbing treatment, if necessary, are opposed to each other, In the meantime, a liquid crystal can be sandwiched between them to form a liquid crystal sandwiching substrate. Using this liquid crystal holding substrate, a liquid crystal display device having the liquid crystal holding substrate can be obtained by a known method. The operation modes of the liquid crystal display element are TN mode, STN mode, In-Plane Switching (hereinafter, abbreviated as “IPS”) mode, VA mode, Optically Compensated Bend (hereinafter, referred to as “Optically Compensated Bend”). , An abbreviation “OCB”.), A ferroelectric type, or an antiferroelectric type. The liquid crystal alignment film of the present invention can be used as long as the liquid crystal display element is used by controlling the alignment of liquid crystal molecules by the liquid crystal alignment film and changing the alignment state of the liquid crystal molecules.
[0033]
When the liquid crystal alignment film of the present invention is used for manufacturing a TN type, STN type, IPS type, OCB type, ferroelectric type or antiferroelectric type liquid crystal display element, the dielectric anisotropy used together is positive. Examples of the liquid crystal composition include: JP-A-8-157828, JP-A-8-231960, JP-A-9-241644 (EP885272A1), JP-A-9-302346 (EP806466A1), and JP-A-8-199168. JP (EP722998A1), JP-A-9-235552, JP-A-9-241463 (EP885271A1), JP-A-10-204016 (EP844229A1), JP-A-10-204436, and JP-A-10-231482. JP-A-2000-087040 and the like. Masui.
[0034]
When the liquid crystal alignment film of the present invention is used for manufacturing a VA type liquid crystal display device, a liquid crystal composition having a negative dielectric anisotropy used together with the liquid crystal alignment film is disclosed in, for example, JP-A-57-114532. JP-A-2-4725, JP-A-4-224885, JP-A-8-40953, JP-A-8-104869, JP-A-10-101676, JP-A-10-168453, JP-A-10-168453 Japanese Patent Application Laid-Open Nos. Hei 10-236894, Hei 10-236990, Hei 10-236992, Hei 10-236993, Hei 10-236994, Hei 10-237000, Hei 10-237004 JP, JP-A-10-237024, JP-A-10-237035, JP-A-10-237075, JP-A-10-237015 Japanese Patent Application Laid-Open Nos. 0-237076, 10-237448 (EP 968261), 10-287874, 10-287875, 10-291945, 11-029581 and 11-029581. The liquid crystal compositions disclosed in Japanese Unexamined Patent Publication No. Hei 11-080049, JP-A-2000-256307, JP-A-2001-01965, JP-A-2001-072626, JP-A-2001-192657 and the like are preferable.
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0035]
【Example】
<Synthesis of monomer and polymer>
N-dodecylacrylamide (DDA) monomer was synthesized by reacting acrylic acid chloride with dodecylamine in the presence of triethylamine using chloroform as a solvent.
Embedded image
Figure 2004101782
[0036]
Similarly, an N-acryloyloxysuccinimide (SuOA) monomer was similarly synthesized by reacting N-hydroxysuccinimide and acrylic acid chloride in the presence of triethylamine in a chloroform solvent.
Embedded image
Figure 2004101782
[0037]
Next, a predetermined amount of DDA monomer and SuOA monomer were dissolved in purified toluene in a polymerization tube to prepare a solution having a concentration of 0.2 M / L. Into the solution, 2,2'-azobisisobutyronitrile (AIBN) as an initiator was added in an amount of 0.01 equivalent to the monomer and dissolved. Next, in order to remove oxygen in the reaction system, freeze degassing was repeated several times, and then polymerization was performed in a water bath at 60 ° C. for 12 hours. The reaction product was concentrated, and the reaction product was dropped into about 20 times the amount of acetonitrile to precipitate a copolymer (p (DDA-SuOA)).
Embedded image
Figure 2004101782
[0038]
<Polymer reaction>
The copolymer having an amino group at the terminal of the side chain (p (DDA-DAADO)) is composed of the copolymer (p (DDA-SuOA)) and 2,2 '-(ethylenedioxy) bis (ethylamine) (DADOO). Obtained by polymer reaction. In order to prevent the resulting copolymer from gelling, a dilute chloroform solution of the copolymer (p (DDA-SuOA)) was slowly dropped into the DADOO concentrated solution. Further, about 20 equivalents of DADOO were added to the succinyl group, and reacted at room temperature for 2 days. Note that chloroform was used as a solvent. The copolymer after the reaction (p (DDA-DADOO)) was reprecipitated several times with acetonitrile to remove excess DADOO.
[0039]
When the composition ratio of the obtained copolymer (p (DDA-DAADO)) was determined by NMR, the content of DADOO was 12%. Further, from the molecular weight measurement by gel permeation chromatography (GPC), the number average molecular weight was 30,000 and the molecular weight distribution (Mw / Mn) was about 1.5.
Embedded image
Figure 2004101782
[0040]
<Epoxy treatment of substrate surface>
An appropriately sized substrate was washed with an ozone cleaner to generate hydroxyl groups on the substrate surface. Thereafter, (3-glycidoxypropyl) triethoxysilane having a concentration of about 1 mM was treated in a toluene solution at 80 ° C. for 3 hours. The contact angle of water on the substrate subjected to this treatment was about 50 °. FIG. 4A is a schematic view of a substrate subjected to the silane treatment.
[0041]
<Preparation of monolayer and chemical immobilization>
At a temperature of 20 ° C. and a cumulative pressure of 35 mN / m, a monomolecular film of pDDA-DADOO (introduction rate of DADOO: 12%, film thickness: 1.84 nm) was treated with (3-glycidoxypropyl) triethoxysilane on the hydrophilic side. From one layer. The substrate after the accumulation of the monomolecular film had a contact angle of water of about 95 °. Thereafter, the substrate was left at room temperature for 12 hours to perform chemical immobilization. Such a chemically immobilized monomolecular film did not dissolve even when subjected to ultrasonic cleaning in chloroform, and the contact angle of water hardly changed. FIG. 4B is a schematic diagram of a chemically immobilized monomolecular film.
[0042]
Example 1
<Creation of liquid crystal cell-1>
A liquid crystal cell is prepared such that two identical substrates are prepared, and the pulling directions of the substrates when forming a monomolecular film on each substrate are antiparallel to each other. A cell was prepared using the dispersed epoxy resin-based cold-setting adhesive.
[0043]
The liquid crystal composition shown below was injected into this cell, and the injection port was sealed with a photocuring agent. Next, a heat treatment was carried out at 110 ° C. for 15 minutes, and the liquid crystal cell was uniformly cooled, defect-free and well-aligned by gradually cooling and performing initial alignment. When the pretilt angle of the liquid crystal molecules of this cell was measured by a crystal rotation method, it was almost vertical alignment.
Embedded image
Figure 2004101782
[0044]
Example 2
<Creation of liquid crystal cell-2>
A cell was prepared in the same manner as in Example 1 except that the processed substrate of Example 1 was rubbed and the injected liquid crystal was made to have the following composition. A liquid crystal cell in a state was obtained. The pretilt angle of the liquid crystal molecules of this cell was measured by a crystal rotation method and found to be 20 °.
Embedded image
Figure 2004101782
[0045]
【The invention's effect】
Conventionally, a substrate coated with an organosilicon compound and a liquid crystal alignment film that only has a low molecular weight compound having an organic functional group that has an affinity for the organosilicon compound have poor chemical stability and mechanical strength. Although the liquid crystal molecules had low uniform alignment and low reliability, the use of the liquid crystal alignment film of the present invention enabled the liquid crystal molecules to have stable alignment, particularly vertical alignment. . Therefore, it is possible to form a highly reliable liquid crystal alignment film without adversely affecting the display performance of the liquid crystal display element. Further, no vacuum evaporation apparatus was required, and the production was simplified. In addition, the liquid crystal molecules could be well aligned without rubbing. To provide a liquid crystal display element (TN type, STN type, IPS type, OCB type, ferroelectric type, or antiferroelectric type) excellent in mechanical strength in which alignment defects do not occur even if a rubbing operation is performed. Was completed.
[Brief description of the drawings]
FIG. 1 is a schematic view of a state that an organic polymer can take when the organic polymer of the present invention is spread on a water surface.
FIG. 2 is a schematic diagram when a monomolecular film of an organic polymer of the present invention is formed on a substrate coated with an organosilicon compound.
FIG. 3 is a schematic diagram when a substrate coated with a monomolecular film of an organic polymer of the present invention and an organic silicon compound is chemically immobilized.
FIG. 4 is a diagram illustrating a process of forming a monomolecular film according to the present invention (Example).
[Explanation of symbols]
REFERENCE SIGNS LIST 1 linear alkyl chain 2 polymer main chain 3 oxyethylene group 4 functional group of organic polymer 5 functional group of organosilicon compound 6 organosilicon compound bonded to substrate surface 7 substrate

Claims (5)

一般式(1)
(YR)SiX4−p      (1)
で表される有機ケイ素化合物で処理された基板上に、一般式(2)
Figure 2004101782
(但し、式(1)及び(2)においてYとWは、活性水素を有する基若しくは活性水素に対して反応性を有する基であり、一方が活性水素を有する基であれば、他方は活性水素に対して反応性を有する基であり、Rは炭素数1〜20個の2価の有機基であり、Xは加水分解性基であり、pは1〜3の整数であり、RとRは同一または異なってもよく水素原子若しくはメチル基を表し、Z、Zは同一または異なってもよく、−NH−、−O−若しくは−S−であり、nは2〜20の整数であり、a、bは共に100b/(a+b)が0.01〜99.99の範囲にある整数であり、mは1〜5の整数であり、式(2)で表わされる有機高分子の重量平均分子量は8,000〜200,000の範囲である)で表される有機高分子からなる単分子膜を形成し、該単分子膜が有機ケイ素化合物のYと有機高分子のWが反応することにより化学的固定化が行われた膜であることを特徴とする液晶配向膜。
General formula (1)
(YR) p Six 4-p (1)
On a substrate treated with an organosilicon compound represented by the general formula (2)
Figure 2004101782
(However, in the formulas (1) and (2), Y and W are a group having active hydrogen or a group having reactivity with active hydrogen, and if one is a group having active hydrogen, the other is active) R is a group reactive with hydrogen, R is a divalent organic group having 1 to 20 carbon atoms, X is a hydrolyzable group, p is an integer of 1 to 3, and R 1 And R 2 may be the same or different and represent a hydrogen atom or a methyl group; Z 1 and Z 2 may be the same or different; —NH—, —O— or —S—, and n is 2 to 20 A and b are integers in which 100b / (a + b) is in the range of 0.01 to 99.99, m is an integer of 1 to 5, and the organic height represented by the formula (2). The weight average molecular weight of the molecule is in the range of 8,000 to 200,000). Comprising a monomolecular film is formed, a liquid crystal alignment film monolayer is characterized in that W Y and an organic polymer of the organic silicon compound is a film chemical immobilization is performed by reacting.
一般式(1)において、Yがエポキシ基若しくは酸無水物基であり、一般式(2)において、Wがアミノ基、カルボキシル基、スルホン酸基、ヒドロキシ基、ヒドロキシフェニル基、アミド基、ヒドラジノ基、ヒドラジノカルボニル基、メルカプト基の何れかである請求項1に記載の配向膜。In the general formula (1), Y is an epoxy group or an acid anhydride group, and in the general formula (2), W is an amino group, a carboxyl group, a sulfonic group, a hydroxy group, a hydroxyphenyl group, an amide group, a hydrazino group. The alignment film according to claim 1, which is any one of a hydrazinocarbonyl group and a mercapto group. 一般式(1)において、Yがアミノ基、カルボキシル基、スルホン酸基、ヒドロキシ基、ヒドロキシフェニル基、アミド基、ヒドラジノ基、ヒドラジノカルボニル基、メルカプト基の何れかであり、一般式(2)において、Wがエポキシ基若しくは酸無水物基である請求項1に記載の配向膜。In the general formula (1), Y is any one of an amino group, a carboxyl group, a sulfonic acid group, a hydroxy group, a hydroxyphenyl group, an amide group, a hydrazino group, a hydrazinocarbonyl group, and a mercapto group; 2. The alignment film according to claim 1, wherein W is an epoxy group or an acid anhydride group. 液晶配向膜が、液晶分子に対して垂直配向を与えることを特徴とする請求項1〜3の何れかに記載の液晶配向膜。The liquid crystal alignment film according to any one of claims 1 to 3, wherein the liquid crystal alignment film gives vertical alignment to liquid crystal molecules. 請求項1〜4の何れかに記載の液晶配向膜を用いた液晶表示素子。A liquid crystal display device using the liquid crystal alignment film according to claim 1.
JP2002262300A 2002-09-09 2002-09-09 Liquid crystal alignment film Expired - Fee Related JP4029700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262300A JP4029700B2 (en) 2002-09-09 2002-09-09 Liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262300A JP4029700B2 (en) 2002-09-09 2002-09-09 Liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2004101782A true JP2004101782A (en) 2004-04-02
JP4029700B2 JP4029700B2 (en) 2008-01-09

Family

ID=32262381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262300A Expired - Fee Related JP4029700B2 (en) 2002-09-09 2002-09-09 Liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP4029700B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256031A (en) * 2005-03-16 2006-09-28 Chisso Corp Substrate for electroless plating, electroless-plated substrate and its manufacturing method
CN100392502C (en) * 2005-03-29 2008-06-04 精工爱普生株式会社 Oriented film, method for forming the same, liquid crystal plate and electronic equipment
KR101166398B1 (en) 2004-09-30 2012-07-23 후지필름 가부시키가이샤 Retarder and liquid crystal display
WO2012108317A1 (en) * 2011-02-09 2012-08-16 シャープ株式会社 Liquid crystal display device and liquid crystal display device manufacturing method
US9151987B2 (en) 2011-03-09 2015-10-06 Sharp Kabushiki Kaisha Liquid crystal display device and production method for liquid crystal display device
US9207495B2 (en) 2011-03-09 2015-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
WO2020184373A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Coating solution for forming functional polymer film, and functional polymer film
CN117806076A (en) * 2024-02-28 2024-04-02 中国科学院长春光学精密机械与物理研究所 Preparation method of self-assembled vertical orientation film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166398B1 (en) 2004-09-30 2012-07-23 후지필름 가부시키가이샤 Retarder and liquid crystal display
JP2006256031A (en) * 2005-03-16 2006-09-28 Chisso Corp Substrate for electroless plating, electroless-plated substrate and its manufacturing method
JP4692032B2 (en) * 2005-03-16 2011-06-01 チッソ株式会社 Electroless plating substrate, electroless plated substrate and method for producing the same
CN100392502C (en) * 2005-03-29 2008-06-04 精工爱普生株式会社 Oriented film, method for forming the same, liquid crystal plate and electronic equipment
WO2012108317A1 (en) * 2011-02-09 2012-08-16 シャープ株式会社 Liquid crystal display device and liquid crystal display device manufacturing method
US9316867B2 (en) 2011-02-09 2016-04-19 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing liquid crystal display device
US9151987B2 (en) 2011-03-09 2015-10-06 Sharp Kabushiki Kaisha Liquid crystal display device and production method for liquid crystal display device
US9207495B2 (en) 2011-03-09 2015-12-08 Sharp Kabushiki Kaisha Liquid crystal display device
WO2020184373A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Coating solution for forming functional polymer film, and functional polymer film
CN117806076A (en) * 2024-02-28 2024-04-02 中国科学院长春光学精密机械与物理研究所 Preparation method of self-assembled vertical orientation film

Also Published As

Publication number Publication date
JP4029700B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP5396188B2 (en) Method for preparing branched hybrid polymer
US20060051524A1 (en) Hybrid polymer materials for liquid crystal alignment layers
JP5524199B2 (en) Liquid crystal alignment film
CN117186663A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP4029700B2 (en) Liquid crystal alignment film
Yoon et al. Giant surfactants for the construction of automatic liquid crystal alignment layers
US10921650B2 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5158314B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP7299557B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2882630B2 (en) Photo-alignment polymer, alignment film formed therefrom, and liquid crystal display device having the alignment film
JP2002357831A (en) Liquid crystal aligning agent varnish and liquid crystal display element
JP7334723B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP3057045B2 (en) N-aralkyl-substituted aromatic polyamide aligning agent and method for producing the same
JP2004264354A (en) Method for forming liquid crystal alignment layer
JPH08245724A (en) Thermotropic side-chain-type liquid-crystalline polymer and ferroelectric liquid crystal display element using same as orientation film
JPWO2019182071A1 (en) Liquid crystal alignment agent, polymer for obtaining it, liquid crystal alignment film, and liquid crystal display element using it.
JPH04141625A (en) Liquid crystal element
WO1993000604A1 (en) Process for producing liquid crystal alignment film
TWI834646B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN117384652A (en) Liquid crystal aligning agent, method for producing same, liquid crystal alignment film, and liquid crystal element
JP2004037962A (en) Liquid crystal aligning agent and liquid crystal alignment film using the same
TW202028442A (en) Liquid crystal orientation agent, liquid crystal orientation film, and liquid crystal display element
KR20230095990A (en) Radical generating film forming composition, radical generating film, manufacturing method of liquid crystal display element, and liquid crystal display element
TW202317666A (en) Liquid crystal aligning agent, liquid crystal aligning film and manufacturing method thereof, liquid crystal element and polymer capable of forming a liquid crystal aligning film with high mechanical strength
CN117126676A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

R150 Certificate of patent or registration of utility model

Ref document number: 4029700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees