WO2019182071A1 - Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same - Google Patents

Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same Download PDF

Info

Publication number
WO2019182071A1
WO2019182071A1 PCT/JP2019/011907 JP2019011907W WO2019182071A1 WO 2019182071 A1 WO2019182071 A1 WO 2019182071A1 JP 2019011907 W JP2019011907 W JP 2019011907W WO 2019182071 A1 WO2019182071 A1 WO 2019182071A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbon atoms
group
formula
polymer
Prior art date
Application number
PCT/JP2019/011907
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 野田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020207029468A priority Critical patent/KR20200135404A/en
Priority to JP2020507906A priority patent/JP7235209B2/en
Priority to CN201980019479.4A priority patent/CN111868618B/en
Publication of WO2019182071A1 publication Critical patent/WO2019182071A1/en
Priority to JP2023004168A priority patent/JP2023052403A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3259Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts
    • C08G18/3262Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts with carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a polymer for obtaining the same, a liquid crystal alignment film, and a liquid crystal display element using the same.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment film used industrially is a polyimide liquid crystal aligning agent made of polyamic acid (also called polyimide precursor or polyamic acid) or a polyimide solution applied to a substrate and baked. A film is formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-287324 proposes to use a polyimide resin having a specific repeating structure in order to obtain a high voltage holding ratio (VHR).
  • Patent Document 2 Japanese Patent Laid-Open No. 10-104633 proposes the use of a soluble polyimide having a nitrogen atom in addition to the imide group in order to shorten the time until the afterimage is erased.
  • the material used for the liquid crystal alignment film examples include polyimide precursors such as polyamide acid and polyamide acid ester, and polyimide obtained by dehydrating them by baking or chemical reaction.
  • polyimide precursors such as polyamide acid and polyamide acid ester
  • polyimide obtained by dehydrating them by baking or chemical reaction since the polyamic acid is easy to synthesize and has excellent solubility in a solvent, it is possible to obtain a liquid crystal aligning agent having excellent coating properties and film forming properties on a substrate.
  • polyamic acid is easily decomposed by hydrolysis or the like due to its structure, it is difficult to ensure reliability over a long period of time with a liquid crystal alignment film obtained using the polyamic acid.
  • soluble polyimide polyimide that is soluble in a solvent obtained by polyamic acid dehydration reaction
  • soluble polyimide polyimide that is soluble in a solvent obtained by polyamic acid dehydration reaction
  • it becomes easy to ensure reliability over a long period of time.
  • soluble polyimide has few choices of solvent that can be dissolved, and therefore, the solvent that can be used is limited.
  • precipitation or the like occurs during coating and film formation. It is easy to be defective.
  • the present inventors have found that a polymer having a specific structure and a liquid crystal aligning agent using the polymer are effective for achieving the above object, and have completed the present invention. It was.
  • the said polymer is novel and the monomer for obtaining the said polymer also contains the novel compound.
  • the present invention provides the following 1. ⁇ 10. Is the gist. 1. A liquid crystal aligning agent using a polymer obtained from a diamine derivative represented by the following formula (1), a diisocyanate derivative, and a monomer selected from diamine or diisocyanate having a specific side chain.
  • A represents a divalent organic group selected from an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • B and C each independently represent a single bond or an aliphatic carbon group having 1 to 5 carbon atoms.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched.
  • R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1).
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • the monomer containing the specific side chain is represented by the following formula (2): Liquid crystal aligning agent as described in.
  • N represents an amino group or an isocyanate group
  • R 3 represents a single bond or a divalent organic group
  • X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring.
  • P, q and r each independently represents an integer of 0 or 1
  • R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton.
  • An organic group is shown.
  • the diamine derivative is a diamino compound represented by the following formula (3). Liquid crystal aligning agent as described in.
  • Ar represents an aryl group
  • D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
  • the diamine derivative is a diamino compound represented by the following formula (3-a): Liquid crystal aligning agent as described in.
  • D and R 1 have the same meanings as D and R 1 above.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched.
  • B represents a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • the monomer containing the specific side chain is represented by the following formula (2).
  • N represents an amino group or an isocyanate group
  • R 3 represents a single bond or a divalent organic group
  • X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring.
  • P, q and r each independently represents an integer of 0 or 1
  • R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton.
  • An organic group is shown.
  • the diisocyanate derivative is at least one of structures represented by the following formulas (4-1) to (4-13); The polymer described in 1.
  • R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • the present invention it is possible to provide a liquid crystal aligning agent that can be fired at a low temperature and can obtain a high-quality liquid crystal aligning film and has excellent printability. Moreover, according to this invention, the novel polymer for obtaining the said liquid crystal aligning agent can be provided. In addition, according to the present invention, in addition to realizing a high pretilt angle, a liquid crystal alignment film having a high voltage holding ratio can be provided. Furthermore, according to this invention, the liquid crystal display element using the said liquid crystal aligning film can be provided.
  • the liquid crystal aligning agent which is one embodiment of the present invention includes a diamine derivative represented by formula (1) (hereinafter sometimes referred to as “diamine”), a diisocyanate derivative (hereinafter sometimes referred to as “diisocyanate”), It contains a polymer according to one embodiment of the present invention, which is obtained from a monomer selected from diamine or diisocyanate having a specific side chain (hereinafter sometimes referred to as “side chain-containing monomer”).
  • the diamine used in the present invention is represented by the formula (1).
  • A represents a divalent organic group of an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • R1 represents an alkyl group having 1 to 4 carbon atoms and may be branched.
  • R2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1).
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • A is an aromatic hydrocarbon group
  • B is 1 carbon atom. It is preferable that the aliphatic hydrocarbon group of 1 to 3 and C is a single bond.
  • Specific examples of the formula (1) include the following structures.
  • Ar represents an aryl group
  • D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms.
  • R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
  • formula (3) When considering the viewpoint that it is easy to obtain a reagent for synthesizing diamine, the reactivity with diisocyanate is good, the physical properties of the obtained polymer are good, etc., formula (3) Among them, Ar is preferably a phenyl group, and R 2 is preferably a hydrogen atom. Therefore, the formula (3) is preferably a structure represented by the following formula (3-a) ′. Especially, in Formula (3), it is preferable that Ra and Rb are each a hydrogen atom. Therefore, the formula (3) is particularly preferably represented by the formula (3-a).
  • D and R 1 have the same meanings as D and R 1 above.
  • the above formula (3-a) ′ is preferably represented by the following formula (3-1). Is done.
  • Formula (3-1) when B has 1 and 2 carbon atoms, and Ra and Rb are each a hydrogen atom, Formula (3-1) can be represented by Formula (3-1a) and Formula (3-1b) It is represented by
  • R 1 has the same meaning as R 1 described above.
  • a specific example of the diamine represented by the formula (1) is not limited to the diamine represented by the formula (3). If the effect of the present invention (for example, that a high pretilt angle can be realized) is not impaired, a part of the diamine represented by the formula (1) or the formula (3) may be used in synthesizing the polymer. You may substitute with the diamine represented by Formula (5) mentioned later.
  • the diisocyanate used in the present invention is represented by the following formula (4).
  • Formula (4) is preferably represented by Formula (4-1) to Formula (4-13).
  • R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • aromatic diisocyanates represented by formulas (4-1) to (4-5) When using aliphatic diisocyanates represented by formulas (4-1) to (4-5), compared to using aromatic diisocyanates represented by formulas (4-6) to (4-13) The resulting polymer is well dissolved in the solvent. On the other hand, the aromatic diisocyanate reacts better with diamine than the aliphatic diisocyanate.
  • aromatic diisocyanates such as those represented by formulas (4-6) and (4-7) can react well with diamines and improve the heat resistance of the resulting liquid crystal alignment film.
  • the formula (4) is represented by the formula (4-1), the formula (4- 7), Formula (4-8), Formula (4-9), or Formula (4-10) is preferable.
  • the formula (5) is preferably the formula (4-12) from the viewpoint of improving the electrical characteristics of the obtained liquid crystal alignment film, and from the viewpoint of improving the liquid crystal alignment of the obtained liquid crystal alignment film. Is preferably formula (4-13).
  • formula (4) is not limited to the above as long as it is within the scope of the present invention.
  • a readily available diisocyanate can be suitably used in accordance with target properties such as the obtained polymer, liquid crystal aligning agent, and liquid crystal aligning film. Two or more diisocyanates may be used in combination.
  • the side chain-containing monomer used in the present invention is represented by the formula (2).
  • N represents an amino group or an isocyanate group
  • R 3 represents a single bond or a divalent organic group
  • X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring.
  • P, q and r each independently represents an integer of 0 or 1
  • R 4 is selected from a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a carbon atom having 12 to 25 carbon atoms having a steroid skeleton.
  • a valent organic group is selected from a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a carbon atom having 12 to 25 carbon atoms having a steroid skeleton.
  • the side chain-containing monomer represented by the formula (2) contributes to increasing the pretilt angle of the liquid crystal.
  • the side chain-containing monomer is a diamine
  • the diamine may have a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, a substituent combining these, a steroid skeleton group, and the like. preferable. Since the preferred size of the pretilt angle varies depending on the display mode of the liquid crystal display, the desired pretilt angle can be obtained by variously selecting the structure and amount of the side chain-containing monomer.
  • the TN mode which requires a pretilt angle of 3 ° to 5 °, which is lower than the VA mode, which will be described later
  • the OCB mode which requires a pretilt of 8 ° to 20 °, etc.
  • pretilt development ability it is preferable to use a relatively small side chain-containing monomer.
  • side chain-containing monomers having long alkyl side chains such as [2-1] to [2-3] in Table 1 are preferred.
  • the side chain-containing monomers represented by [2-25] to [2-27] in Table 1 are used. preferable.
  • R 3 is preferably —O—, —COO—, or —CH 2 O—
  • p is 0 to 1
  • q is 0 to 1
  • r is 0 to 1
  • R 4 preferably has 2 to 22 carbon atoms.
  • R 4 is preferably a linear alkyl group having 18 to 22 carbon atoms or a divalent organic group having a steroid skeleton and having 12 to 25 carbon atoms.
  • Specific structures of the side chain-containing monomers having a large tilting ability are shown in Tables 2-1 and 2-2, but the formula (4) is not limited to the structures of Tables 2-1 and 2-2.
  • the side chain-containing monomers in Table 2-1 and Table 2-2 are preferable when used in the VA mode because of their high tilting ability.
  • [2-43], [2-92] and the like have a large tilting ability and can easily align the liquid crystal vertically even with a relatively small amount of side chains.
  • [2-52] and [2-101] have extremely large tilting ability and can align the liquid crystal vertically even with a very small amount of side chain. Accordingly, these side chain-containing monomers are preferable in terms of improving the printability of the liquid crystal aligning agent.
  • the side chain-containing monomer represented by the formula (2) is selected from diamine or diisocyanate.
  • diisocyanates are derived by causing highly toxic phosgene or the like to act on diamines. Therefore, from the viewpoint of easily obtaining the side chain-containing monomer, it is easier to use diamine as the side chain-containing monomer. Therefore, N in the formula (2) is preferably an amino group.
  • Monomers overlapping in Table 1 and Tables 2-1 and 2-2 may be used for both TN mode and OCB mode, and VA mode. is there.
  • the content of the side chain-containing monomer is arbitrary within the scope of the present invention.
  • the number of moles of the side chain-containing monomer can be 0.05 to 0.5 with respect to the total number of moles of the diamine represented by the formula (1) and the side chain-containing monomer.
  • a part of the diamine represented by the formula (1) is replaced with other diamines (other diamines, that is, the diamines represented by the formula (1), and the side chain. It may be replaced with a diamine that does not correspond to the contained monomer.
  • diamines are abundant in types, and since many compounds have organic groups having various functions, by using other diamines in combination, further effects can be imparted to the polymer, The effect of the diamine may be further improved.
  • the ratio of the number of moles of the other diamine to the number of moles of the diamine represented by the formula (1) is arbitrary as long as the effects of the present invention (for example, a high pretilt angle can be realized) are not impaired.
  • other diamines may not be used in combination. Examples of such other diamines include diamines represented by the following formula (5).
  • Y represents a divalent organic group. Examples of specific structures of Y are listed as in the following formulas (Y-1) to (Y-147), but are not limited thereto.
  • the black point means the bonding site to the nitrogen atom.
  • R 7 each independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • a 1 represents an alkyl group or a fluorine-containing alkyl group having 2 to 24 carbon atoms.
  • a 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • a 3 represents An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms is shown.
  • a 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 — or —CH 2 —
  • a 5 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • a 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 —, —CH 2 —, —O—, or —NH—
  • a 7 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, Or a hydroxyl group is shown.
  • a 8 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 9 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH.
  • -And A 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • n represents an integer of 1 to 10.
  • the polymer (polyurea and polyurea copolymer) is represented by the formula (6).
  • X represents a divalent organic group derived from diisocyanate
  • Y represents a divalent organic group derived from diamine
  • R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched
  • R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the following formula (1-1).
  • Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  • R 1, Ra and Rb are as defined above R 1, Ra and Rb.
  • the resulting film has excellent mechanical strength.
  • the strong hydrogen bonding force causes aggregation of the polymer and may deteriorate the stability of the polymer solution (the viscosity of the polymer solution increases, a part of the polymer precipitates, or the polymer solution gels). ,etc). Therefore, the usable solvent is limited depending on the structure of polyurea, and for example, it is necessary to use a highly polar and high boiling point solvent.
  • the polymer has a structure represented by the formula (6), that is, a structure in which an organic group represented by the formula (1-1) is substituted on the N atom of polyurea.
  • the organic group represented by the formula (1-1) inhibits the formation of hydrogen bonds, thereby preventing the polymers from aggregating. For this reason, the stability of the polymer solution is greatly improved. Accordingly, in obtaining a polymer solution of polyurea, the range of selection of usable solvents can be expanded, and as a result, baking at low temperature and great improvement in printability are possible.
  • the urea bond site may form a hydantoin ring or an intermolecular bridge depending on the firing temperature during film formation.
  • the reaction solution (organic solvent used in the reaction for obtaining the polymer) is not particularly limited as long as it is a solution in which the polymer is dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, eth
  • reaction solution since water in the reaction solution inhibits the polymerization reaction and further causes hydrolysis of the produced polymer, it is preferable to use a dehydrated and dried reaction solution.
  • the reaction solution in which the diamine is dispersed or dissolved is stirred, and the diisocyanate is added as it is or dispersed or dissolved in the reaction solution.
  • the diisocyanate is dispersed.
  • the method of adding diamine to the dissolved reaction solution, the method of adding diisocyanate and diamine to a reaction solution alternately, etc. are mentioned, Any of these methods may be used.
  • the diisocyanate or diamine when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted by individually reacting low molecular weight substances. It may be a body.
  • the polymerization temperature can be selected from -20 ° C. to 150 ° C., but it is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes.
  • the total concentration in the reaction solution of diisocyanate (diisocyanate represented by formula (4)) and diamine (diisocyanate represented by formulas (1) and (5)) is preferably from 1% by mass. 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction can be performed at a high concentration, and then a reaction solution can be added.
  • the ratio between the total number of moles of diisocyanate (diisocyanate represented by formula (4)) and the total number of moles of diamine (diamines represented by formula (1) and formula (5)) Is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced.
  • the reaction solution may be poured into a poor solvent to precipitate the polymer.
  • the poor solvent include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polymer that has been precipitated in a poor solvent and collected can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the recovered polymer is redissolved in an organic solvent, and reprecipitation and recollection are repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polymer is GPC (Gel) in consideration of the strength of the coating film obtained from the polymer, the ease of work when forming the coating film, the uniformity of the coating film thickness, and the like.
  • the weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent which is 1 aspect of this invention is a coating liquid for forming a liquid crystal aligning film, and the resin component for forming a coating film (resin film) is melt
  • the resin component contains at least one kind of the polymer.
  • the content of the resin component in the liquid crystal aligning agent is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the polymers contained in the resin component may be the above polymers (polyurea and polyurea copolymers), and other polymers (within the scope of the present invention) Other polymers) may be included.
  • the content of the other polymer is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • examples of such other polymers include acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, polysiloxane and the like.
  • the organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it is an organic solvent that dissolves the resin component.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone,
  • the liquid crystal aligning agent may contain components other than those described above.
  • a coating film formed by applying a liquid crystal aligning agent improves the adhesion between the liquid crystal alignment film and the substrate, or a solvent or compound that improves the film thickness uniformity or surface smoothness. Compounds and the like.
  • Solvents that improve film thickness uniformity and surface smoothness include low surface tension solvents such as isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, Ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol Diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropy
  • Examples of the compound that improves the uniformity of the film thickness and the smoothness of the coating film surface include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the following phenoplast type additives may be added for the purpose of preventing deterioration of electrical characteristics caused by light irradiation by the backlight.
  • Specific phenoplast additives are shown below, but are not limited to this structure.
  • the usage-amount of the compound shall be 0.1 mass part to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid crystal aligning agent. Is more preferable, and it is 1 to 20 parts by mass. If the amount used is less than the above value, it is difficult to improve the adhesion, and if it is more than the above value, the liquid crystal orientation may be deteriorated.
  • the liquid crystal aligning agent includes dielectric materials for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired.
  • a predetermined crosslinkable compound may be added for the purpose of increasing the hardness and density of the body, the conductive material, and the liquid crystal alignment film.
  • the liquid crystal aligning agent is applied onto a substrate and baked, and then subjected to an alignment treatment if necessary, and a liquid crystal alignment film according to one embodiment of the present invention is obtained even without an alignment treatment in vertical alignment applications.
  • a substrate a highly transparent glass substrate, a plastic substrate (for example, an acrylic substrate or a polycarbonate substrate), or the like can be used.
  • a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process for manufacturing the liquid crystal display element.
  • an opaque object such as a silicon wafer can be used on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, spin coating printing, screen printing, offset printing, flexographic printing, inkjet printing, and the like are common. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these methods may be used depending on the purpose.
  • Calcination can be performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C., by a heating means such as a hot plate.
  • a coating film can be formed by evaporating the organic solvent in the liquid crystal aligning agent. If the thickness of the coating film is too thick, the power consumption of the liquid crystal display element tends to increase, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, the thickness is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. .
  • the liquid crystal display element which is one embodiment of the present invention can be obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent by the above-described method and then manufacturing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers are dispersed on the liquid crystal alignment film of one substrate so that the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, and the liquid crystal is injected under reduced pressure to be sealed.
  • the thickness of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. Since the liquid crystal display element manufactured using the liquid crystal aligning agent is excellent in reliability, it can be suitably used for a large-screen, high-definition liquid crystal television.
  • Second Step To a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirrer, 45.0 g (0.19 mol) of the nitro body obtained above, 300.0 g of THF, and 4.5 g of iron-doped platinum carbon are added, The inside of the vessel was carefully replaced with a hydrogen atmosphere and reacted at room temperature for 24 hours. When the raw material disappeared, the reaction was completed, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes.
  • activated carbon manufactured by Shirasagi
  • Step 1 To a 1 L four-necked flask equipped with a nitrogen introduction tube and a reflux tube was added 50 g (0.246 mol) of 4-nitrophenethylamine hydrochloride, 500 g of THF, and 62.1 g (0.604 mol) of triethylamine, and a mechanical stirrer was used. The mixture was stirred at room temperature for 1 hour and heated at a temperature at which THF was refluxed (setting 70 ° C.). 25.1 g (0.205 mol) of 2-chloroethyl acetate was dissolved in 300 g of THF, and this was slowly added dropwise. The mixture was further reacted for 24 hours.
  • Second Step 30.0 g of the nitro compound obtained above, 300 g of THF, and 3.0 g of iron-doped platinum carbon are added to a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirring bar, and the inside of the container is carefully placed under a hydrogen atmosphere. And allowed to react at room temperature for 24 hours. When the raw material disappeared, the reaction was completed, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes.
  • p-PDA paraphenylenediamine
  • NG4ABA ethyl (4-aminobenzyl) glycinate
  • NG4APhA ethyl (4-aminophenethyl) glycinate
  • Me4APhA N-methyl-4-aminophenethylamine
  • DA-3MG 1,3-di (4-amino) Phenoxy) propane
  • APC16 2-hexadecyloxy-1,3-diaminobenzene
  • PCH7 4- (4- (4-heptylcyclohexyl) phenoxy) benzene-1,3-diamine
  • CBDA cyclobutane tetracarboxylic dianhydride
  • the molecular weight measurement conditions of polyimide are as follows. Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. Column: Column made by Shodex (KD-803, KD-805) Column temperature: 50 ° C Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, THF is 10ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight of about 9,000,150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) (Molecular weight about 12,000, 4,000, 1,000)
  • Example 4 DI-2MG / NG4APhA APC16 DI-2MG 2.00 g (6.75 mmol) was measured in a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, NMP 20.12 g was added and dissolved, and APC16 0.24 g (0.68 mmol) was added. Then, it was made to react at room temperature for 1 hour. Further, 1.31 g (5.88 mmol) of NG4APhA was added and reacted at 40 ° C. for 24 hours in a nitrogen atmosphere. As a result, a polymer (polymer solution: P-2) having a concentration of 15% by mass and a viscosity of 280 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 39100.
  • Example 5 DI-2MG / NG4ABA, PCH7
  • 2.00 g (6.75 mmol) of DI-2MG was measured, and 20.57 g of NMP was added and dissolved, and 0.52 g (1.36 mmol) of PCH7 was added. Then, it was made to react at room temperature for 1 hour. Further, 1.11 g (5.34 mmol) of NG4ABA was added and reacted at 40 ° C. for 24 hours under a nitrogen atmosphere.
  • a polymer polymer solution: P-3) having a concentration of 15% by mass and a viscosity of 230 mPas was obtained.
  • the weight average molecular weight of the obtained polymer was Mw: 40200.
  • Example 6 IDI, DI-2MG / NG4ABA, PCH7
  • DI-2MG 1.00 g (3.38 mmol) and NMP 14.05 g were added and dissolved, and then PCH7 0.37 g (0.97 mmol) was added, followed by room temperature. For 1 hour.
  • 0.32 g (1.45 mmol) of IDI and 0.79 g (3.81 mmol) of NG4ABA were added and reacted at 40 ° C. for 24 hours in a nitrogen atmosphere.
  • a polymer polymer solution: P-4) having a concentration of 15% by mass and a viscosity of 300 mPas was obtained.
  • the weight average molecular weight of the obtained polymer was Mw: 44200.
  • Example 7 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-1) obtained in Example 3 was weighed, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-1) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • a liquid crystal aligning agent AL-1 having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Example 8 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-2) obtained in Example 4 was weighed, NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-2) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • AL-2 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Example 9 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-3) obtained in Example 5 was measured, and 2.5 g of NMP, 5.0 g of GBL and 7.5 g of BCS were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-3) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • A-3 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Example 10 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-4) obtained in Example 6 was weighed, NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-4) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • A-4 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Comparative Example 4 In a 50 ml Erlenmeyer flask equipped with a stirrer, 10.0 g of the polymer (PRef-1) obtained in Comparative Example 1 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-5) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • A-5 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Comparative Example 5 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (PRef-2) obtained in Comparative Example 2 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-6) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • A-6 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • Comparative Example 6 In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (PRef-3) obtained in Comparative Example 3 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-7) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • A-7 liquid crystal aligning agent having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
  • liquid crystal aligning agents (AL-1 to AL-4) of Examples 7 to 10 and the liquid crystal aligning agents (AL-5 to AL-7) of Comparative Examples 4 to 6 a liquid crystal aligning film was formed based on the following method. evaluated.
  • the applicability test is performed by performing flexographic printing on the washed Cr plate using an alignment film printing machine (“Nongstromer” manufactured by Nissha Printing Co., Ltd.). went.
  • This membrane is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Chemical Industries) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then in pure water for 1 minute.
  • the substrate was washed by irradiating with ultrasonic waves, water droplets were removed by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • Table 3 shows the results of the various evaluations described above.
  • the liquid crystal aligning agents of Examples 7 to 10 have excellent whitening resistance and good printability as compared with the comparative examples. Since Comparative Example 6 is a polyamic acid-based material, it is a material system with good whitening resistance and printability. In Examples 7 to 10, it is expected that characteristics equivalent to or higher than those of Comparative Example 5 can be obtained in terms of whitening resistance and printability.
  • the liquid crystal cells obtained using the liquid crystal aligning agents of Examples 7 to 10 have a high pretilt angle and a high voltage holding ratio.
  • the target pretilt angle can be adjusted by variously selecting the structure and amount of the side chain-containing monomer monomer. Expected to be able to get.
  • the liquid crystal alignment film which is one embodiment of the present invention is considered very promising as a liquid crystal alignment film that can be obtained by baking at a low temperature. It should be noted that the liquid crystal alignment film and the liquid crystal display element could be suitably obtained using any of the liquid crystal alignment agents of Examples 7 to 10.
  • the liquid crystal display element produced using the liquid crystal aligning agent of this invention can be made into a highly reliable liquid crystal display device, TN liquid crystal display element, STN liquid crystal display element, TFT liquid crystal display element, VA liquid crystal display element, OCB. It can be suitably used for display elements of various systems such as liquid crystal display elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided is a liquid crystal alignment agent that uses a polymer obtained from the following: a diamine derivative represented by formula (1); a diisocyanate derivative; and a monomer selected from among diamines and diisocyanates and having a specific side chain. In the formula, A represents a divalent organic group selected from among aliphatic hydrocarbon groups and aromatic hydrocarbon groups and B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1-5 carbon atoms. R1 represents an alkyl group that has 1-4 carbon atoms and that may be branched. R2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1-4 carbon atoms, or an organic group represented by formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 or 2 carbon atoms.

Description

液晶配向剤、それを得るための重合体、液晶配向膜、及びそれを用いた液晶表示素子Liquid crystal aligning agent, polymer for obtaining the same, liquid crystal aligning film, and liquid crystal display element using the same
 本発明は、液晶配向剤、それを得るための重合体、液晶配向膜、及びそれを用いた液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a polymer for obtaining the same, a liquid crystal alignment film, and a liquid crystal display element using the same.
 液晶表示素子において液晶配向膜は、液晶を一定の方向に配向させる役割を担う。現在、工業的に利用されている主な液晶配向膜は、ポリアミド酸(ポリイミド前駆体やポリアミック酸ともいわれる。)やポリイミド溶液からなるポリイミド系の液晶配向剤を基板に塗布し、焼成することで成膜される。 In a liquid crystal display element, a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction. Currently, the main liquid crystal alignment film used industrially is a polyimide liquid crystal aligning agent made of polyamic acid (also called polyimide precursor or polyamic acid) or a polyimide solution applied to a substrate and baked. A film is formed.
 液晶表示素子の表示特性の向上のために、数々の技術が提案されてきた。例えば、特許文献1(特開平2-287324号公報)では、高い電圧保持率(VHR)を得るために、特定の繰り返し構造を有するポリイミド樹脂を用いることが提案されている。また、特許文献2(特開平10-104633号公報)では、残像が消去されるまでの時間を短くするために、イミド基以外に窒素原子を有する可溶性ポリイミドを用いることが提案されている。 A number of techniques have been proposed to improve the display characteristics of liquid crystal display elements. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2-287324) proposes to use a polyimide resin having a specific repeating structure in order to obtain a high voltage holding ratio (VHR). Patent Document 2 (Japanese Patent Laid-Open No. 10-104633) proposes the use of a soluble polyimide having a nitrogen atom in addition to the imide group in order to shorten the time until the afterimage is erased.
特開平2-287324号公報JP-A-2-287324 特開平10-104633号公報JP-A-10-104633
 近年、液晶ディスプレイ(LCDパネル)の多機能化・多様化に伴い、ガラス基板を用いたディスプレイから、樹脂基板(プラスチック基板、すなわちフィルム基板)を用いたフレキシブルなディスプレイへと、開発が進んでいる。それに従い、低温での焼成で得ることができる液晶配向膜が必要となってきており、加えて、液晶配向膜に要求される信頼性(高い電圧保持率等)も求められるようになってきている。 In recent years, with the increase in functionality and diversification of liquid crystal displays (LCD panels), development is progressing from displays using glass substrates to flexible displays using resin substrates (plastic substrates, ie film substrates). . Accordingly, a liquid crystal alignment film that can be obtained by baking at a low temperature has become necessary, and in addition, the reliability required for the liquid crystal alignment film (high voltage holding ratio, etc.) has been required. Yes.
 液晶配向膜に用いられる材料としては、ポリアミド酸やポリアミド酸エステル等のポリイミド前駆体や、それらを焼成により或いは化学反応により脱水することで得られるポリイミド等が挙げられる。このうち、ポリアミド酸は、その合成が容易であり、かつ溶媒への溶解性に優れるため、基板への塗布性・成膜性に優れる液晶配向剤を得ることができる。しかし、ポリアミド酸は、その構造上、加水分解等により分解しやすいため、これを用いて得た液晶配向膜では、長期に亘って信頼性を確保することが難しい。 Examples of the material used for the liquid crystal alignment film include polyimide precursors such as polyamide acid and polyamide acid ester, and polyimide obtained by dehydrating them by baking or chemical reaction. Among these, since the polyamic acid is easy to synthesize and has excellent solubility in a solvent, it is possible to obtain a liquid crystal aligning agent having excellent coating properties and film forming properties on a substrate. However, since polyamic acid is easily decomposed by hydrolysis or the like due to its structure, it is difficult to ensure reliability over a long period of time with a liquid crystal alignment film obtained using the polyamic acid.
 一方、可溶性ポリイミド(ポリアミド酸の脱水反応により得られる溶媒に可溶なポリイミド)は、プレイミド化されているため、加熱してイミド化させる熱硬化工程が必要なく、そのため、比較的低温での焼成が可能になる。また、化学的安定性・耐熱性に優れるため、可溶性ポリイミドを用いて得た液晶配向膜では、長期に亘って信頼性を確保しやすくなる。しかし、可溶性ポリイミドは、溶解させることができる溶媒の選択肢が少なく、それゆえに、使用できる溶媒が限られ、その結果、可溶性ポリイミドを用いる場合、塗布中・成膜中に析出等が生じ、塗膜に欠陥ができやすい。近年の、LCDパネルの大型化・高精細化・使用環境の多様化に伴い、それぞれの問題を解決するとともに、各種特性を向上させることができる手法の探索が求められている。 On the other hand, soluble polyimide (polyimide that is soluble in a solvent obtained by polyamic acid dehydration reaction) is pre-midified, so there is no need for a heat-curing step to imidize by heating, and therefore firing at a relatively low temperature. Is possible. Moreover, since it is excellent in chemical stability and heat resistance, in the liquid crystal aligning film obtained using soluble polyimide, it becomes easy to ensure reliability over a long period of time. However, soluble polyimide has few choices of solvent that can be dissolved, and therefore, the solvent that can be used is limited. As a result, when soluble polyimide is used, precipitation or the like occurs during coating and film formation. It is easy to be defective. In recent years, with the increase in size, definition, and usage environment of LCD panels, there has been a demand for searching for methods that can solve various problems and improve various characteristics.
 本発明は、上記の事情に鑑みなされたものであって、その課題は、低温での焼成が可能、かつ印刷性(得られる重合体の、有機溶媒への溶解性)が良好である液晶配向剤を提供することにある。また、上記液晶配向剤を得ることができる重合体を提供することにある。また、液晶配向性が良好であり(すなわち、高プレチルト角を実現でき)、かつ電圧保持率が高い液晶配向膜を提供することにある。更に、上記液晶配向膜を有する液晶表示素子を提供することにある。 The present invention has been made in view of the above circumstances, and the problem is that the liquid crystal alignment is capable of firing at a low temperature and has good printability (the solubility of the resulting polymer in an organic solvent). It is to provide an agent. Moreover, it is providing the polymer which can obtain the said liquid crystal aligning agent. Another object of the present invention is to provide a liquid crystal alignment film having good liquid crystal alignment (that is, a high pretilt angle can be realized) and a high voltage holding ratio. Furthermore, it is providing the liquid crystal display element which has the said liquid crystal aligning film.
 本発明者は、鋭意研究した結果、特定の構造を有する重合体、及びそれを用いた液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。なお、上記重合体は新規であり、上記重合体を得るためのモノマーも、新規化合物を含んでいる。 As a result of diligent research, the present inventors have found that a polymer having a specific structure and a liquid crystal aligning agent using the polymer are effective for achieving the above object, and have completed the present invention. It was. In addition, the said polymer is novel and the monomer for obtaining the said polymer also contains the novel compound.
 すなわち、本発明は以下1.~10.を要旨とする。
 1. 下式(1)で表されるジアミン誘導体と、ジイソシアネート誘導体と、特定の側鎖を有する、ジアミン又はジイソシアネートから選ばれるモノマーと、から得られる重合体を用いた、液晶配向剤。
That is, the present invention provides the following 1. ~ 10. Is the gist.
1. A liquid crystal aligning agent using a polymer obtained from a diamine derivative represented by the following formula (1), a diisocyanate derivative, and a monomer selected from diamine or diisocyanate having a specific side chain.
Figure JPOXMLDOC01-appb-C000008
 式中、Aは脂肪族炭化水素基又は芳香族炭化水素基から選ばれる、二価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。
は炭素数1~4のアルキル基を示し、分岐していてもよい。Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000008
In the formula, A represents a divalent organic group selected from an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C each independently represent a single bond or an aliphatic carbon group having 1 to 5 carbon atoms. Indicates a hydrogen group.
R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
 2. 前記特定の側鎖を含有するモノマーが下式(2)で表される、1.に記載の液晶配向剤。 2. The monomer containing the specific side chain is represented by the following formula (2): Liquid crystal aligning agent as described in.
Figure JPOXMLDOC01-appb-C000009
 式中、Nはアミノ基又はイソシアネート基を示し、Rは単結合、又は二価の有機基を示し、X1、X2、及びX3はそれぞれ独立して、ベンゼン環又はシクロヘキサン環を示し、p,q,rはそれぞれ独立して、0又は1の整数を示し、Rは水素原子、炭素数1~22のアルキル基、又はステロイド骨格を有する炭素数12~25である二価の有機基を示す。
Figure JPOXMLDOC01-appb-C000009
In the formula, N represents an amino group or an isocyanate group, R 3 represents a single bond or a divalent organic group, and X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring. , P, q and r each independently represents an integer of 0 or 1, and R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton. An organic group is shown.
 3. 前記ジアミン誘導体が、下式(3)で表されるジアミノ化合物である、2.に記載の液晶配向剤。 3. The diamine derivative is a diamino compound represented by the following formula (3). Liquid crystal aligning agent as described in.
Figure JPOXMLDOC01-appb-C000010
 式中、Arはアリール基を示し、Dは単結合、又は炭素数1~5の炭化水素基を示す。R、R、Ra及びRbは上記のR、R、Ra及びRbと同義である。
Figure JPOXMLDOC01-appb-C000010
In the formula, Ar represents an aryl group, and D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
 4. 前記ジアミン誘導体が、下式(3-a)で表されるジアミノ化合物である、3.に記載の液晶配向剤。 4. 2. The diamine derivative is a diamino compound represented by the following formula (3-a): Liquid crystal aligning agent as described in.
Figure JPOXMLDOC01-appb-C000011
 式中、D及びRは上記のD及びRと同義である。
Figure JPOXMLDOC01-appb-C000011
Wherein, D and R 1 have the same meanings as D and R 1 above.
 5. 下式(3-1)で表されるジアミノ化合物と、ジイソシアネート誘導体と、特定の側鎖を有する、ジアミン又はジイソシアネートから選ばれるモノマーと、から得られる、重合体。 5. A polymer obtained from a diamino compound represented by the following formula (3-1), a diisocyanate derivative, and a monomer selected from diamine or diisocyanate having a specific side chain.
Figure JPOXMLDOC01-appb-C000012
 式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Bは単結合、又は炭素数1~5の脂肪族炭化水素基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000012
In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. B represents a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
 6. 前記特定の側鎖を含有するモノマーが下式(2)で表される、5.に記載の重合体。 6. 4. The monomer containing the specific side chain is represented by the following formula (2). The polymer described in 1.
Figure JPOXMLDOC01-appb-C000013
 式中、Nはアミノ基又はイソシアネート基を示し、Rは単結合、又は二価の有機基を示し、X1、X2、及びX3はそれぞれ独立して、ベンゼン環又はシクロヘキサン環を示し、p,q,rはそれぞれ独立して、0又は1の整数を示し、Rは水素原子、炭素数1~22のアルキル基、又はステロイド骨格を有する炭素数12~25である二価の有機基を
示す。
Figure JPOXMLDOC01-appb-C000013
In the formula, N represents an amino group or an isocyanate group, R 3 represents a single bond or a divalent organic group, and X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring. , P, q and r each independently represents an integer of 0 or 1, and R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton. An organic group is shown.
 7. 前記ジイソシアネート誘導体が、下式(4-1)~式(4-13)で表される構造の少なくとも1つである、6.に記載の重合体。 7. 5. the diisocyanate derivative is at least one of structures represented by the following formulas (4-1) to (4-13); The polymer described in 1.
Figure JPOXMLDOC01-appb-C000014
 式中、R及びRはそれぞれ独立して、炭素数1~10の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000014
In the formula, R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
 8. 5.~7.の何れか一つに記載の重合体を用いた、液晶配向剤。 8. 5. ~ 7. Liquid crystal aligning agent using the polymer as described in any one of these.
 9. 1.~4.及び8.の何れか1つに記載の液晶配向剤から得られる、液晶配向膜。 9. 1. ~ 4. And 8. Liquid crystal aligning film obtained from the liquid crystal aligning agent as described in any one of these.
 10. 9.に記載の液晶配向膜を用いた、液晶表示素子。 10. 9. A liquid crystal display element using the liquid crystal alignment film described in 1.
 本発明によれば、低温での焼成が可能であり、高品位な液晶配向膜を得ることができる上、印刷性に優れる液晶配向剤を提供することができる。また、本発明によれば、上記液晶配向剤を得るための新規な重合体を提供することができる。また、本発明によれば、高プレチルト角を実現できるのに加えて、電圧保持率が高い液晶配向膜を提供することができる。更に、本発明によれば、上記液晶配向膜を用いた液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a liquid crystal aligning agent that can be fired at a low temperature and can obtain a high-quality liquid crystal aligning film and has excellent printability. Moreover, according to this invention, the novel polymer for obtaining the said liquid crystal aligning agent can be provided. In addition, according to the present invention, in addition to realizing a high pretilt angle, a liquid crystal alignment film having a high voltage holding ratio can be provided. Furthermore, according to this invention, the liquid crystal display element using the said liquid crystal aligning film can be provided.
 本発明の一態様である液晶配向剤は、式(1)で表されるジアミン誘導体(以下「ジアミン」と称することがある)と、ジイソシアネート誘導体(以下「ジイソシアネート」と称することがある)と、特定の側鎖を有する、ジアミン又はジイソシアネートから選ばれるモノマー(以下「側鎖含有モノマー」と称することがある)と、から得られる、本発明の一態様である重合体を含有する。 The liquid crystal aligning agent which is one embodiment of the present invention includes a diamine derivative represented by formula (1) (hereinafter sometimes referred to as “diamine”), a diisocyanate derivative (hereinafter sometimes referred to as “diisocyanate”), It contains a polymer according to one embodiment of the present invention, which is obtained from a monomer selected from diamine or diisocyanate having a specific side chain (hereinafter sometimes referred to as “side chain-containing monomer”).
 <本発明に使用するジアミン>
 本発明に使用するジアミンは、式(1)で表される。
<Diamine used in the present invention>
The diamine used in the present invention is represented by the formula (1).
Figure JPOXMLDOC01-appb-C000015
 式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、二価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。R1は炭素数1~4のアルキル基を示し、分岐していてもよい。R2は水素原子、炭素数1~4の脂肪族炭化水素基、又は式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000015
In the formula, A represents a divalent organic group of an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C each independently represent a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Indicates. R1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. R2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
 モノマーの重合反応性や、耐熱性や液晶配向性に優れた液晶配向膜を得ることができる、等の観点からは、式(1)中、Aは芳香族炭化水素基、Bは炭素数1~3の脂肪族炭化水素基、Cは単結合、であると好ましい。式(1)は、具体的には以下の構造が挙げられる。 From the standpoint of obtaining a liquid crystal alignment film excellent in polymerization reactivity of monomers, heat resistance and liquid crystal alignment properties, in formula (1), A is an aromatic hydrocarbon group, and B is 1 carbon atom. It is preferable that the aliphatic hydrocarbon group of 1 to 3 and C is a single bond. Specific examples of the formula (1) include the following structures.
Figure JPOXMLDOC01-appb-C000016
 式中、Arはアリール基を示し、Dは単結合、又は炭素数1~5の炭化水素基を示す。R、R、Ra及びRbは上記のR、R、Ra及びRbと同義である。
Figure JPOXMLDOC01-appb-C000016
In the formula, Ar represents an aryl group, and D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
 ジアミンを合成するための試薬を入手するのが容易である、ジイソシアネートとの反応性が良好である、得られる上記重合体の物性が良好になる、等の観点を鑑みた場合、式(3)中、Arはフェニル基が好ましく、Rは水素原子が好ましい。従って、式(3)は、好ましくは以下式(3-a)´で表される構造である。なかでも、式(3)中、Ra及びRbはそれぞれ水素原子であることが好ましい。従って、式(3)は、特に好ましくは、式(3-a)で表される。 When considering the viewpoint that it is easy to obtain a reagent for synthesizing diamine, the reactivity with diisocyanate is good, the physical properties of the obtained polymer are good, etc., formula (3) Among them, Ar is preferably a phenyl group, and R 2 is preferably a hydrogen atom. Therefore, the formula (3) is preferably a structure represented by the following formula (3-a) ′. Especially, in Formula (3), it is preferable that Ra and Rb are each a hydrogen atom. Therefore, the formula (3) is particularly preferably represented by the formula (3-a).
Figure JPOXMLDOC01-appb-C000017
 式中、D及びRは上記のD及びRと同義である。
Figure JPOXMLDOC01-appb-C000017
Wherein, D and R 1 have the same meanings as D and R 1 above.
 目的とするモノマーを好適に得ることができる、上記の特性のすべてが良好になりやすい、等の観点からは、上記式(3-a)´は、好ましくは下式(3-1)で表される。 From the standpoint that the desired monomer can be suitably obtained and all of the above characteristics are likely to be favorable, the above formula (3-a) ′ is preferably represented by the following formula (3-1). Is done.
Figure JPOXMLDOC01-appb-C000018
 式中、B、R、Ra及びRbは上記のB、R、Ra及びRbと同義である。式(3-1)中、Bが炭素数1及び2であり、Ra及びRbがそれぞれ水素原子であると、式(3-1)は、式(3-1a)及び式(3-1b)で表される。
Figure JPOXMLDOC01-appb-C000018
In the formula, B, R 1 , Ra and Rb have the same meanings as B, R 1 , Ra and Rb. In Formula (3-1), when B has 1 and 2 carbon atoms, and Ra and Rb are each a hydrogen atom, Formula (3-1) can be represented by Formula (3-1a) and Formula (3-1b) It is represented by
Figure JPOXMLDOC01-appb-C000019
 式中、Rは上記のRと同義である。
Figure JPOXMLDOC01-appb-C000019
Wherein, R 1 has the same meaning as R 1 described above.
 ただし、式(1)で表されるジアミンの具体例は、式(3)で表されるジアミンに限定されない。本発明の効果(例えば、高プレチルト角を実現できること)が損なわれない範囲であれば、上記重合体を合成するにあたり、式(1)又は式(3)で表されるジアミンの一部を、後述する式(5)で表されるジアミンに置き換えてもよい。 However, a specific example of the diamine represented by the formula (1) is not limited to the diamine represented by the formula (3). If the effect of the present invention (for example, that a high pretilt angle can be realized) is not impaired, a part of the diamine represented by the formula (1) or the formula (3) may be used in synthesizing the polymer. You may substitute with the diamine represented by Formula (5) mentioned later.
 <本発明に使用するジイソシアネート>
 本発明に使用するジイソシアネートは、下式(4)で表される。
<Diisocyanate used in the present invention>
The diisocyanate used in the present invention is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000020
 式中、Xは二価の有機基を示す。式(4)は、好ましくは式(4-1)~式(4-13)で表される。
Figure JPOXMLDOC01-appb-C000020
In the formula, X represents a divalent organic group. Formula (4) is preferably represented by Formula (4-1) to Formula (4-13).
Figure JPOXMLDOC01-appb-C000021
 式中、R及びRはそれぞれ独立して、炭素数1~10の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000021
In the formula, R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
 式(4-1)~式(4-5)で表される脂肪族ジイソシアネートを用いる場合は、式(4-6)~式(4-13)で表される芳香族ジイソシアネートを用いる場合に比べ、得られる重合体が溶媒に良好に溶解するようになる。一方、上記芳香族ジイソシアネートは、上記脂肪族ジイソシアネートに比べ、ジアミンと良好に反応する。例えば、式(4-6)や式(4-7)に示すような芳香族ジイソシアネートは、ジアミンと良好に反応し、得られる液晶配向膜の耐熱性を向上させることができる。 When using aliphatic diisocyanates represented by formulas (4-1) to (4-5), compared to using aromatic diisocyanates represented by formulas (4-6) to (4-13) The resulting polymer is well dissolved in the solvent. On the other hand, the aromatic diisocyanate reacts better with diamine than the aliphatic diisocyanate. For example, aromatic diisocyanates such as those represented by formulas (4-6) and (4-7) can react well with diamines and improve the heat resistance of the resulting liquid crystal alignment film.
 上記重合体を得るのに汎用性が高い化合物である、得られる上記重合体の特性が良好になる、等の観点からは、式(4)は、式(4-1)、式(4-7)、式(4-8)、式(4-9)、又は式(4-10)が好ましい。また、式(5)は、得られる液晶配向膜の電気特性が良好になる観点からは、式(4-12)が好ましく、また、得られる液晶配向膜の液晶配向性が良好になる観点からは、式(4-13)が好ましい。 From the viewpoints of being a highly versatile compound for obtaining the polymer and improving the properties of the obtained polymer, the formula (4) is represented by the formula (4-1), the formula (4- 7), Formula (4-8), Formula (4-9), or Formula (4-10) is preferable. Further, the formula (5) is preferably the formula (4-12) from the viewpoint of improving the electrical characteristics of the obtained liquid crystal alignment film, and from the viewpoint of improving the liquid crystal alignment of the obtained liquid crystal alignment film. Is preferably formula (4-13).
 ただし、本発明の趣旨の範囲内であれば、式(4)は上記に限定されない。得られる重合体、液晶配向剤、及び液晶配向膜等の目標とする特性に応じて、入手が容易なジイソシアネートを好適に使用することができる。ジイソシアネートは、2種以上を併用して使用してもよい。 However, formula (4) is not limited to the above as long as it is within the scope of the present invention. A readily available diisocyanate can be suitably used in accordance with target properties such as the obtained polymer, liquid crystal aligning agent, and liquid crystal aligning film. Two or more diisocyanates may be used in combination.
 <本発明に使用される側鎖含有モノマー>
 本発明に使用される側鎖含有モノマーは、式(2)で表される。
<Side chain-containing monomer used in the present invention>
The side chain-containing monomer used in the present invention is represented by the formula (2).
Figure JPOXMLDOC01-appb-C000022
 式中、Nはアミノ基又はイソシアネート基を示し、Rは単結合、又は二価の有機基を示し、X1、X2、及びX3はそれぞれ独立して、ベンゼン環又はシクロヘキサン環を示し、p,q,rはそれぞれ独立して、0又は1の整数を示し、Rは水素原子、又は炭素数1~22のアルキル基或いはステロイド骨格を有する炭素数12~25より選ばれる、二価の有機基を示す。
Figure JPOXMLDOC01-appb-C000022
In the formula, N represents an amino group or an isocyanate group, R 3 represents a single bond or a divalent organic group, and X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring. , P, q and r each independently represents an integer of 0 or 1, R 4 is selected from a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a carbon atom having 12 to 25 carbon atoms having a steroid skeleton. A valent organic group.
 式(2)で表される側鎖含有モノマーは、液晶のプレチルト角を大きくすることに貢献する。側鎖含有モノマーがジアミンである場合、かかるジアミンは、長鎖アルキル基、パーフルオロアルキル基、芳香族環状基、脂肪族環状基、及びこれらを組み合わせた置換基、ステロイド骨格基等を有することが好ましい。プレチルト角の好ましい大きさは、液晶ディスプレイの表示モードにより種々異なるため、上記側鎖含有モノマーの構造や導入量を種々選択することにより、目的とするプレチルト角を得ることができる。 The side chain-containing monomer represented by the formula (2) contributes to increasing the pretilt angle of the liquid crystal. When the side chain-containing monomer is a diamine, the diamine may have a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, a substituent combining these, a steroid skeleton group, and the like. preferable. Since the preferred size of the pretilt angle varies depending on the display mode of the liquid crystal display, the desired pretilt angle can be obtained by variously selecting the structure and amount of the side chain-containing monomer.
 後述するVAモードより低い、3°~5°のプレチルト角が要求されるTNモードや8°~20°のプレチルトが要求されるOCBモード等では、プレチルト角を大きくする機能(チルト発現能)が比較的小さい側鎖含有モノマーを用いることが好ましい。チルト発現能が比較的小さな側鎖含有モノマーとしては、例えば、式(2)中、Rは―O-、又は-NHCO-(或いは-CONH-)が好ましく、pは0~1、qは0~1、rは0が好ましく、p及び/又はqが1の場合、Rは炭素数1~12の直鎖アルキル基が好ましく、p=q=r=0の場合、Rは炭素数10~22の直鎖アルキル基、又はステロイド骨格を有する炭素数12~25の有機基である二価の有機基が好ましい。チルト発現能の小さな側鎖含有モノマーの具体的な構造を表1に示すが、式(2)は、表1の構造に限定されない。なお、表1の[2-16]~[2-30]の各々において、Rの「-NHCO-」は、「-CONH-」と読み替えることができる。 In the TN mode, which requires a pretilt angle of 3 ° to 5 °, which is lower than the VA mode, which will be described later, and the OCB mode, which requires a pretilt of 8 ° to 20 °, etc., there is a function to increase the pretilt angle (tilt development ability). It is preferable to use a relatively small side chain-containing monomer. As the side chain-containing monomer having a relatively small tilting ability, for example, in formula (2), R 3 is preferably —O— or —NHCO— (or —CONH—), p is 0 to 1, and q is 0 to 1, r is preferably 0, and when p and / or q is 1, R 4 is preferably a linear alkyl group having 1 to 12 carbon atoms, and when p = q = r = 0, R 4 is carbon A divalent organic group which is a linear alkyl group of several tens to 22 or an organic group of 12 to 25 carbon atoms having a steroid skeleton is preferable. The specific structure of the side chain-containing monomer having a small tilting ability is shown in Table 1, but the formula (2) is not limited to the structure of Table 1. In each of [2-16] to [2-30] in Table 1, “—NHCO—” in R 1 can be read as “—CONH—”.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 得られる液晶配向膜の電気特性が良好になる観点からは、表1の[2-1]~[2-3]のような長鎖アルキル側鎖を有する側鎖含有モノマーが好ましい。また、得られる液晶配向膜の、液晶配向性及びプレチルトの安定性を向上させることができる観点からは、表1の[2-25]~[2-27]で表される側鎖含有モノマーが好ましい。 From the viewpoint of improving the electrical properties of the obtained liquid crystal alignment film, side chain-containing monomers having long alkyl side chains such as [2-1] to [2-3] in Table 1 are preferred. Further, from the viewpoint of improving the liquid crystal alignment property and the stability of the pretilt of the obtained liquid crystal alignment film, the side chain-containing monomers represented by [2-25] to [2-27] in Table 1 are used. preferable.
 一方、チルト発現能の大きな側鎖含有モノマーを用いることで、液晶が垂直に配向しやすくなる。従って、VAモードにおける式(2)の構造としては、例えば、Rは-O-、-COO-、又は-CHO-が好ましく、pは0~1、qは0~1、rは0~1が好ましく、Rは炭素数2~22が好ましい。p=q=r=0の場合、Rは炭素数18~22の直鎖アルキル基、又はステロイド骨格を有する炭素数12~25の有機基である二価の有機基が好ましい。チルト発現能の大きな側鎖含有モノマーの具体的な構造を表2-1及び表2-2に示すが、式(4)は、表2-1及び表2-2の構造に限定されない。 On the other hand, by using a side chain-containing monomer having a large tilting ability, the liquid crystal is easily aligned vertically. Accordingly, as the structure of the formula (2) in the VA mode, for example, R 3 is preferably —O—, —COO—, or —CH 2 O—, p is 0 to 1, q is 0 to 1, and r is 0 to 1 is preferable, and R 4 preferably has 2 to 22 carbon atoms. When p = q = r = 0, R 4 is preferably a linear alkyl group having 18 to 22 carbon atoms or a divalent organic group having a steroid skeleton and having 12 to 25 carbon atoms. Specific structures of the side chain-containing monomers having a large tilting ability are shown in Tables 2-1 and 2-2, but the formula (4) is not limited to the structures of Tables 2-1 and 2-2.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表2-1及び表2-2の側鎖含有モノマーは、チルト発現能が大きいため、VAモードに用いる場合に好ましい。特に、[2-43]、[2-92]等は、チルト発現能が大きく、比較的少ない側鎖量でも、液晶を垂直に配向させやすい。特に、[2-52]や[2-101]は、チルト発現能が極めて大きく、非常に少ない側鎖量でも、液晶を垂直に配向させることができる。従って、これらの側鎖含有モノマーは、液晶配向剤の印刷性を向上させる点で好ましい。 The side chain-containing monomers in Table 2-1 and Table 2-2 are preferable when used in the VA mode because of their high tilting ability. In particular, [2-43], [2-92] and the like have a large tilting ability and can easily align the liquid crystal vertically even with a relatively small amount of side chains. In particular, [2-52] and [2-101] have extremely large tilting ability and can align the liquid crystal vertically even with a very small amount of side chain. Accordingly, these side chain-containing monomers are preferable in terms of improving the printability of the liquid crystal aligning agent.
 一方、式(2)で表される側鎖含有モノマーは、ジアミン又はジイソシアネートから選ばれる。ただ、ジイソシアネートは、毒性の高いホスゲン等をジアミンに作用させて誘導される。そのため、側鎖含有モノマーの入手が容易である観点からは、側鎖含有モノマーとしてジアミンを用いた方が簡便である。よって、式(2)のNは、アミノ基の方が好ましい。 On the other hand, the side chain-containing monomer represented by the formula (2) is selected from diamine or diisocyanate. However, diisocyanates are derived by causing highly toxic phosgene or the like to act on diamines. Therefore, from the viewpoint of easily obtaining the side chain-containing monomer, it is easier to use diamine as the side chain-containing monomer. Therefore, N in the formula (2) is preferably an amino group.
 表1と、表2-1及び表2-2と、に重複するモノマーは、TNモードやOCBモード等に用いる場合と、VAモード等に用いる場合と、の何れにも用いることができる場合がある。上記重合体を得るにあたり、側鎖含有モノマーの含有量は、本発明の趣旨の範囲内で任意である。例えば、式(1)で表されるジアミンと、側鎖含有モノマーと、の合計モル数に対して、側鎖含有モノマーのモル数を、0.05~0.5とすることができる。 Monomers overlapping in Table 1 and Tables 2-1 and 2-2 may be used for both TN mode and OCB mode, and VA mode. is there. In obtaining the polymer, the content of the side chain-containing monomer is arbitrary within the scope of the present invention. For example, the number of moles of the side chain-containing monomer can be 0.05 to 0.5 with respect to the total number of moles of the diamine represented by the formula (1) and the side chain-containing monomer.
 <ジアミン>
 上記重合体を得るにあたり、式(1)で表されるジアミンの一部を、それ以外のジアミン(他のジアミン、すなわち、式(1)で表されるジアミンに該当せず、かつ、側鎖含有モノマーにも該当しないジアミン)に置き換えてもよい。一般に、ジアミンは種類が豊富であり、また、様々な機能を有する有機基を持つ化合物が多いため、他のジアミンを併用することで、上記重合体に更なる効果を付与することができたり、上記ジアミンの上記効果を更に向上させることができたりする場合がある。式(1)で表されるジアミンのモル数に対する、他のジアミンのモル数の比は、本発明の効果(例えば、高プレチルト角を実現できること)が損なわれない範囲内で任意である。勿論、他のジアミンを併用しなくてもよい。このような他のジアミンとしては、例えば、下式(5)で表されるジアミンが挙げられる。
<Diamine>
In obtaining the above polymer, a part of the diamine represented by the formula (1) is replaced with other diamines (other diamines, that is, the diamines represented by the formula (1), and the side chain. It may be replaced with a diamine that does not correspond to the contained monomer. In general, diamines are abundant in types, and since many compounds have organic groups having various functions, by using other diamines in combination, further effects can be imparted to the polymer, The effect of the diamine may be further improved. The ratio of the number of moles of the other diamine to the number of moles of the diamine represented by the formula (1) is arbitrary as long as the effects of the present invention (for example, a high pretilt angle can be realized) are not impaired. Of course, other diamines may not be used in combination. Examples of such other diamines include diamines represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000026
 式中、Yは二価の有機基を示す。Yの具体的構造の例は、下式(Y-1)~式(Y-147)のように列挙されるが、これらに限定されない。式(Y-1)~式(Y-147)において、黒点は窒素原子への結合箇所を意味している。Rはそれぞれ独立して、水素原子、メチル基、又はエチル基を示す。テトラカルボン酸二無水物と、ジアミンと、の反応ではポリアミド酸を与え、ジイソシアネートと、ジアミンと、の反応ではポリウレアを与える。
Figure JPOXMLDOC01-appb-C000026
In the formula, Y represents a divalent organic group. Examples of specific structures of Y are listed as in the following formulas (Y-1) to (Y-147), but are not limited thereto. In the formulas (Y-1) to (Y-147), the black point means the bonding site to the nitrogen atom. R 7 each independently represents a hydrogen atom, a methyl group, or an ethyl group. The reaction between tetracarboxylic dianhydride and diamine gives polyamic acid, and the reaction between diisocyanate and diamine gives polyurea.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 式(Y-108)~式(Y-112)中、Aは炭素数2~24の、アルキル基又はフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000030
In formulas (Y-108) to (Y-112), A 1 represents an alkyl group or a fluorine-containing alkyl group having 2 to 24 carbon atoms.
Figure JPOXMLDOC01-appb-C000031
 式(Y-113)~式(Y-114)中、Aは-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000031
In formulas (Y-113) to (Y-114), A 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and A 3 represents An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group having 1 to 22 carbon atoms is shown.
Figure JPOXMLDOC01-appb-C000032
 式(Y-115)~式(Y-117)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000032
In formula (Y-115) to formula (Y-117), A 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 — or —CH 2 —, and A 5 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000033
 式(Y-118)~式(Y-119)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基を示す。
Figure JPOXMLDOC01-appb-C000033
In formula (Y-118) to formula (Y-119), A 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O— , —OCH 2 —, —CH 2 —, —O—, or —NH—, and A 7 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, Or a hydroxyl group is shown.
Figure JPOXMLDOC01-appb-C000034
 式(Y-120)~式(Y-121)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000034
In formulas (Y-120) to (Y-121), A 8 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000035
 式(Y-122)~式(Y-123)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure JPOXMLDOC01-appb-C000035
In formulas (Y-122) to (Y-123), A 9 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000036
 式(Y-132)~式(Y-137)中、A12は-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、A13は炭素数1~22の、アルキル基又はフッ素含有アルキル基を示す。
Figure JPOXMLDOC01-appb-C000036
In Formula (Y-132) to Formula (Y-137), A 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH. -And A 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000037
 式(Y-140)、式(Y-144)及び式(Y-145)中、nは1~10の整数を示す。
Figure JPOXMLDOC01-appb-C000037
In the formulas (Y-140), (Y-144), and (Y-145), n represents an integer of 1 to 10.
 <重合体>
 上記重合体(ポリウレア及びポリウレア共重合体)は、式(6)で表される。
<Polymer>
The polymer (polyurea and polyurea copolymer) is represented by the formula (6).
Figure JPOXMLDOC01-appb-C000038
 式中、Xはジイソシアネート由来の二価の有機基を示し、Yはジアミン由来の二価の有機基を示す。Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Rは、水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000038
In the formula, X represents a divalent organic group derived from diisocyanate, and Y represents a divalent organic group derived from diamine. R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the following formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
Figure JPOXMLDOC01-appb-C000039
 式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure JPOXMLDOC01-appb-C000039
Wherein black dots denotes a point of attachment to the nitrogen atom, R 1, Ra and Rb are as defined above R 1, Ra and Rb.
 ポリウレアは、ウレア結合の部位の極性により強固な水素結合を結ぶため、得られる膜は機械強度に優れる。一方、その強い水素結合力がポリマーの凝集の要因となり、ポリマー溶液の安定性等を悪くする場合がある(ポリマー溶液の粘度が増加する、ポリマーの一部が析出する、ポリマー溶液がゲル化する、等)。そのため、ポリウレアの構造によっては、使用可能な溶媒が制限され、例えば、高極性かつ高沸点の溶媒を使用する必要がある。 Since polyurea forms strong hydrogen bonds depending on the polarity of the urea bond site, the resulting film has excellent mechanical strength. On the other hand, the strong hydrogen bonding force causes aggregation of the polymer and may deteriorate the stability of the polymer solution (the viscosity of the polymer solution increases, a part of the polymer precipitates, or the polymer solution gels). ,etc). Therefore, the usable solvent is limited depending on the structure of polyurea, and for example, it is necessary to use a highly polar and high boiling point solvent.
 上記重合体は、式(6)で表される構造、すなわち、ポリウレアのN原子上に式(1-1)で表される有機基が置換された構造を有している。式(1-1)で表される有機基が水素結合の形成を阻害し、これにより、ポリマー同士の凝集を妨ぐことができる。このため、ポリマー溶液の安定性が大きく向上する。よって、ポリウレアのポリマー溶液を得るにあたり、使用可能な溶媒の選択の幅を広げることができ、ひいては、低温での焼成や、印刷性の大きな改善も可能となる。なお、ウレア結合の部位は、成膜時の焼成温度によっては、ヒダントイン環や分子間架橋を形成する場合がある。 The polymer has a structure represented by the formula (6), that is, a structure in which an organic group represented by the formula (1-1) is substituted on the N atom of polyurea. The organic group represented by the formula (1-1) inhibits the formation of hydrogen bonds, thereby preventing the polymers from aggregating. For this reason, the stability of the polymer solution is greatly improved. Accordingly, in obtaining a polymer solution of polyurea, the range of selection of usable solvents can be expanded, and as a result, baking at low temperature and great improvement in printability are possible. Note that the urea bond site may form a hydantoin ring or an intermolecular bridge depending on the firing temperature during film formation.
 <反応溶液>
 反応溶液(上記重合体を得る為の反応に用いる有機溶媒)としては、上記重合体が溶解する溶液であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。上記重合体が析出しない範囲であれば、上記重合体を溶解させない溶液であっても、上記反応溶液に混合して使用することができる。
<Reaction solution>
The reaction solution (organic solvent used in the reaction for obtaining the polymer) is not particularly limited as long as it is a solution in which the polymer is dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl Cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl Ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate Tate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane , N-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, pyruvine Acid methyl, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3 Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, Examples include 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. These may be used alone or in admixture of two or more. As long as the polymer does not precipitate, even a solution that does not dissolve the polymer can be used by mixing with the reaction solution.
 また、反応溶液中の水分は重合反応を阻害し、更には生成した重合体を加水分解させる原因となるので、脱水乾燥させた反応溶液を用いることが好ましい。ジイソシアネートとジアミンとを反応溶液中で反応させる際には、ジアミンを分散或いは溶解させた反応溶液を攪拌させ、ジイソシアネートをそのまま、又は反応溶液に分散或いは溶解させて添加する方法、逆にジイソシアネートを分散又は溶解させた反応溶液にジアミンを添加する方法、ジイソシアネートとジアミンとを反応溶液に交互に添加する方法等が挙げられ、これらの何れの方法を用いてもよい。 In addition, since water in the reaction solution inhibits the polymerization reaction and further causes hydrolysis of the produced polymer, it is preferable to use a dehydrated and dried reaction solution. When reacting diisocyanate and diamine in the reaction solution, the reaction solution in which the diamine is dispersed or dissolved is stirred, and the diisocyanate is added as it is or dispersed or dissolved in the reaction solution. Conversely, the diisocyanate is dispersed. Or the method of adding diamine to the dissolved reaction solution, the method of adding diisocyanate and diamine to a reaction solution alternately, etc. are mentioned, Any of these methods may be used.
 また、ジイソシアネート又はジアミンが複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。その際の重合温度は-20℃から150℃の任意の温度を選択することができるが、好ましくは-5℃から100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応溶液の粘性が高くなり過ぎて均一な攪拌が困難となる。従って、ジイソシアネート(式(4)で表されるジイソシアネート)と、ジアミン(式(1)および(5)で表されるジイソシアネート)と、の反応溶液中での合計濃度は、好ましくは1質量%から50質量%、より好ましくは5質量%から30質量%である。反応初期は高濃度で行い、その後、反応溶液を追加することもできる。 In addition, when the diisocyanate or diamine is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted by individually reacting low molecular weight substances. It may be a body. In this case, the polymerization temperature can be selected from -20 ° C. to 150 ° C., but it is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, the total concentration in the reaction solution of diisocyanate (diisocyanate represented by formula (4)) and diamine (diisocyanate represented by formulas (1) and (5)) is preferably from 1% by mass. 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction can be performed at a high concentration, and then a reaction solution can be added.
 ポリウレアの重合反応においては、ジイソシアネート(式(4)で表されるジイソシアネート)の合計モル数と、ジアミン(式(1)および式(5)で表されるジアミン)の合計モル数と、の比は0.8から1.2であることが好ましい。通常の重縮合反応と同様、このモル比が1.0に近いほど生成する重合体の分子量は大きくなる。 In the polymerization reaction of polyurea, the ratio between the total number of moles of diisocyanate (diisocyanate represented by formula (4)) and the total number of moles of diamine (diamines represented by formula (1) and formula (5)) Is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced.
 [ポリマーの回収]
 反応溶液から、生成した上記重合体を回収するには、反応溶液を貧溶媒に投入して上記重合体を沈殿させればよい。貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させた上記重合体は、濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥させることができる。また、回収した上記重合体を有機溶媒に再溶解させ、再沈殿及び再回収する操作を2回から10回繰り返すと、上記重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの内から選ばれる3種以上の貧溶媒を用いると、精製の効率がより一層上がるので好ましい。
[Recovery of polymer]
In order to recover the produced polymer from the reaction solution, the reaction solution may be poured into a poor solvent to precipitate the polymer. Examples of the poor solvent include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like. The polymer that has been precipitated in a poor solvent and collected can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. Further, when the recovered polymer is redissolved in an organic solvent, and reprecipitation and recollection are repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more poor solvents selected from these because purification efficiency is further improved.
 上記重合体の分子量は、上記重合体から得られる塗膜の強度、及び、塗膜を形成する時の作業の容易性、塗膜の膜厚の均一性、等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000から1,000,000とするのが好ましく、より好ましくは、10,000から150,000である。 The molecular weight of the polymer is GPC (Gel) in consideration of the strength of the coating film obtained from the polymer, the ease of work when forming the coating film, the uniformity of the coating film thickness, and the like. The weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 <液晶配向剤>
 本発明の一態様である液晶配向剤は、液晶配向膜を形成するための塗布液であり、塗膜(樹脂被膜)を形成するための樹脂成分が有機溶媒に溶解している。樹脂成分は、少なくとも一種の上記重合体を含む。液晶配向剤中の、樹脂成分の含有量は2質量%から20質量%が好ましく、より好ましくは3質量%から15質量%、特に好ましくは3質量%から10質量%である。本発明において、樹脂成分に含まれる重合体は、その全てが上記重合体(ポリウレア及びポリウレア共重合体)であってもよく、本発明の趣旨の範囲内であれば、それ以外の重合体(他の重合体)が含まれていてもよい。樹脂成分中、他の重合体の含有量は0.5質量%から15質量%、好ましくは1質量%から10質量%である。かかる他の重合体は、例えば、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース、ポリシロキサン等が挙げられる。
<Liquid crystal aligning agent>
The liquid crystal aligning agent which is 1 aspect of this invention is a coating liquid for forming a liquid crystal aligning film, and the resin component for forming a coating film (resin film) is melt | dissolving in the organic solvent. The resin component contains at least one kind of the polymer. The content of the resin component in the liquid crystal aligning agent is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass. In the present invention, all of the polymers contained in the resin component may be the above polymers (polyurea and polyurea copolymers), and other polymers (within the scope of the present invention) Other polymers) may be included. In the resin component, the content of the other polymer is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass. Examples of such other polymers include acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, polysiloxane and the like.
 上記液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。 The organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme 4-hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in admixture of two or more.
 上記液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布して形成される塗膜の、膜厚の均一性や表面の平滑性を向上させる溶媒や化合物、又は、液晶配向膜と基板との密着性を向上させる化合物等である。 The liquid crystal aligning agent may contain components other than those described above. For example, a coating film formed by applying a liquid crystal aligning agent improves the adhesion between the liquid crystal alignment film and the substrate, or a solvent or compound that improves the film thickness uniformity or surface smoothness. Compounds and the like.
 膜厚の均一性や表面の平滑性を向上させる溶媒(貧溶媒)としては、低表面張力を有する溶媒、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの貧溶媒は1種でも複数種を混合して用いてもよい。上記貧溶媒を用いる場合は、液晶配向剤に含まれる有機溶媒全体の5質量%から80質量%であることが好ましく、より好ましくは20質量%から60質量%である。 Solvents that improve film thickness uniformity and surface smoothness (poor solvents) include low surface tension solvents such as isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, Ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol Diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol Monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, Diisobutyl ketone, methylcyclohexene, propyl Ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, pyruvine Methyl acetate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, 3- Butyl methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate Propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate Examples thereof include n-propyl ester, lactic acid n-butyl ester, and lactate isoamyl ester. These poor solvents may be used alone or in combination. When the above poor solvent is used, it is preferably 5% by mass to 80% by mass, more preferably 20% by mass to 60% by mass, based on the entire organic solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や塗膜表面の平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤等が挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含まれる樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。 Examples of the compound that improves the uniformity of the film thickness and the smoothness of the coating film surface include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物等が挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane.
 更に、基板と膜の密着性の向上に加え、バックライトによる光の照射が原因となる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系の添加剤を添加してもよい。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the film, the following phenoplast type additives may be added for the purpose of preventing deterioration of electrical characteristics caused by light irradiation by the backlight. Specific phenoplast additives are shown below, but are not limited to this structure.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 基板と膜との密着性を向上させる化合物を使用する場合、その化合物の使用量は、液晶配向剤に含まれる樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が上記値未満であると密着性が向上しにくくなり、上記値よりも多くなると液晶配向性が悪くなる場合がある。 When using the compound which improves the adhesiveness of a board | substrate and a film | membrane, the usage-amount of the compound shall be 0.1 mass part to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid crystal aligning agent. Is more preferable, and it is 1 to 20 parts by mass. If the amount used is less than the above value, it is difficult to improve the adhesion, and if it is more than the above value, the liquid crystal orientation may be deteriorated.
 上記液晶配向剤には、上記のような溶媒や化合物の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、所定の架橋性化合物を添加してもよい。 In addition to the solvents and compounds as described above, the liquid crystal aligning agent includes dielectric materials for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A predetermined crosslinkable compound may be added for the purpose of increasing the hardness and density of the body, the conductive material, and the liquid crystal alignment film.
 <液晶配向膜・液晶表示素子>
 上記液晶配向剤を、基板上に塗布して焼成した後、必要な場合には配向処理をして、垂直配向の用途等では配向処理無しでも、本発明の一態様である液晶配向膜を得ることができる。基板としては、透明性の高いガラス基板、又はプラスチック基板(例えば、アクリル基板やポリカーボネート基板)等を用いることができる。また、液晶を駆動させるためのITO電極等が形成された基板を用いることが、液晶表示素子を製造するプロセスを簡素化させる観点から好ましい。また、反射型の液晶表示素子では、片側の基板にシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミ等の光を反射する材料も使用できる。液晶配向剤を塗布する方法は特に限定されないが、工業的には、スピンコート印刷、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット印刷等が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナー等があり、目的に応じてこれらの方法を用いてもよい。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal aligning agent is applied onto a substrate and baked, and then subjected to an alignment treatment if necessary, and a liquid crystal alignment film according to one embodiment of the present invention is obtained even without an alignment treatment in vertical alignment applications. be able to. As the substrate, a highly transparent glass substrate, a plastic substrate (for example, an acrylic substrate or a polycarbonate substrate), or the like can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process for manufacturing the liquid crystal display element. In the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case. The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, spin coating printing, screen printing, offset printing, flexographic printing, inkjet printing, and the like are common. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these methods may be used depending on the purpose.
 焼成は、ホットプレート等の加熱手段により50℃から300℃、好ましくは80℃から250℃で行うことができる。液晶配向剤中の有機溶媒を蒸発させることで、塗膜を形成させることができる。塗膜の厚みは、厚すぎると液晶表示素子の消費電力が増えやすく、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nmから300nm、より好ましくは10nmから150nmである。 Calcination can be performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C., by a heating means such as a hot plate. A coating film can be formed by evaporating the organic solvent in the liquid crystal aligning agent. If the thickness of the coating film is too thick, the power consumption of the liquid crystal display element tends to increase, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, the thickness is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. .
 上記した手法により、上記液晶配向剤から、液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製することで、本発明の一態様である液晶表示素子を得ることができる。液晶セルを作製する手法の一例としては、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法が挙げられる。このときのスペーサーの厚みは、好ましくは1μmから30μm、より好ましくは2μmから10μmである。上記液晶配向剤を用いて作製された上記液晶表示素子は、信頼性に優れるため、大画面で高精細の液晶テレビ等に好適に利用できる。 The liquid crystal display element which is one embodiment of the present invention can be obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent by the above-described method and then manufacturing a liquid crystal cell by a known method. As an example of a method for manufacturing a liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers are dispersed on the liquid crystal alignment film of one substrate so that the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, and the liquid crystal is injected under reduced pressure to be sealed. Alternatively, there may be mentioned a method in which after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, the substrates are bonded together for sealing. The thickness of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. Since the liquid crystal display element manufactured using the liquid crystal aligning agent is excellent in reliability, it can be suitably used for a large-screen, high-definition liquid crystal television.
 <ジアミンの合成>
 実施例1
 ethyl(4-aminobenzyl)glycinate[NG4ABA]の合成
<Synthesis of diamine>
Example 1
Synthesis of ethyl (4-aminobenzoyl) glycinate [NG4ABA]
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 第1工程
 窒素導入管と還流管を備えた1Lの4口フラスコに、グリシンエチル塩酸塩105.6g(0.694mol)、THF300g、トリエチルアミン93.6g(0.925mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌した後、THFが還流する温度(設定70℃)で加熱し、4-ニトロベンジルブロミド50.0g(0.231mol)をTHF500.0gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。4-ニトロベンジルブロミドが消失した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル300.0gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液300gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル300gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去して、目的物(ニトロ体)である薄黄色の粘体46.0g(0.193mol)を得た。目的物が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 8.2(2H)、7.53(2H)、4.22(2H)、3.93(2H)、3.42(2H)、1.89(1H)、1.27(3H)
First Step 105.6 g (0.694 mol) of glycine ethyl hydrochloride, 300 g of THF, and 93.6 g (0.925 mol) of triethylamine are added to a 1 L four-necked flask equipped with a nitrogen introduction tube and a reflux tube, and a mechanical stirrer is used. After stirring at room temperature for 1 hour, the mixture was heated at a temperature at which THF was refluxed (setting 70 ° C.), 50.0 g (0.231 mol) of 4-nitrobenzyl bromide was dissolved in 500.0 g of THF, and this was slowly added dropwise. After completion of dropping, the reaction was further continued for 24 hours. The reaction was terminated when 4-nitrobenzyl bromide disappeared, the precipitated solid was removed by filtration, THF was removed with a rotary evaporator, and the resulting crude product was redissolved with 300.0 g of ethyl acetate. This solution was washed 3 times with 100 g of pure water, 300 g of 10% hydrochloric acid aqueous solution was added and stirred for 1 hour, the aqueous layer side was recovered, and the aqueous layer was washed 3 times with 100 g of ethyl acetate. To the aqueous layer, 300 g of ethyl acetate was further added, potassium carbonate was slowly added, the pH was adjusted to about 10 and the mixture was stirred for 1 hour, the organic phase side was recovered, and washed with 100 g of pure water three times. After adding anhydrous magnesium sulfate to this organic phase, drying, filtering, adding activated carbon and stirring for a while, the activated carbon was removed by filtration, the solvent was removed with a rotary evaporator, and the target product (nitro body), a light yellow 46.0 g (0.193 mol) of a viscous body was obtained. It was confirmed by 1 H-NMR that the desired product was obtained.
1 H NMR (500 MHz, CDCl 3 ): δ 8.2 (2H), 7.53 (2H), 4.22 (2H), 3.93 (2H), 3.42 (2H), 1.89 ( 1H), 1.27 (3H)
 第2工程
 窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体45.0g(0.19mol)、THF300.0g、鉄ドープ型白金カーボン4.5gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物である薄黄色の粘体35.4g(0.17mol:収率89%)を得た。目的物(NG4ABA)が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 6.99(2H)、6.63(2H)、4.15(2H)、3.70(2H)、3.38(2H)、3.00(2H)、1.24(3H) 
Second Step To a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirrer, 45.0 g (0.19 mol) of the nitro body obtained above, 300.0 g of THF, and 4.5 g of iron-doped platinum carbon are added, The inside of the vessel was carefully replaced with a hydrogen atmosphere and reacted at room temperature for 24 hours. When the raw material disappeared, the reaction was completed, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes. Then, after filtering again and removing the solvent with a rotary evaporator, it was dried with a high vacuum pump to obtain 35.4 g (0.17 mol: yield 89%) of a light yellow viscous body as a target product. It was confirmed by 1 H-NMR that the desired product (NG4ABA) was obtained.
1 H NMR (500 MHz, CDCl 3 ): δ 6.99 (2H), 6.63 (2H), 4.15 (2H), 3.70 (2H), 3.38 (2H), 3.00 ( 2H), 1.24 (3H)
 実施例2
 ethyl(4-aminophenethyl)glycinate[NG4APhA]の合成
Example 2
Synthesis of ethyl (4-aminophenethyl) glycinate [NG4APhA]
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 第1工程
 窒素導入管と還流管を備えた1Lの4口フラスコに、4-ニトロフェネチルアミン塩酸塩50g(0.246mol)、THF500g、トリエチルアミン62.1g(0.604mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌し、THFが還流する温度(設定70℃)で加熱し、2-クロロ酢酸エチル25.1g(0.205mol)をTHF300gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。2-クロロ酢酸エチルが消失(HPLCにて確認)した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル500gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液500gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル500gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去し、目的物である薄黄色の粘体34.2g(0.136mol:収率66%)を得た。目的物(ニトロ体)が得られたことを、H-NMRで確認した。
 H NMR (500MHz、CDCl):δ 8.14(2H)、7.37(2H)、4.16(2H)、3.43(2H)、2.95(4H)、2.19(1H)、1.25(3H)
Step 1 To a 1 L four-necked flask equipped with a nitrogen introduction tube and a reflux tube was added 50 g (0.246 mol) of 4-nitrophenethylamine hydrochloride, 500 g of THF, and 62.1 g (0.604 mol) of triethylamine, and a mechanical stirrer was used. The mixture was stirred at room temperature for 1 hour and heated at a temperature at which THF was refluxed (setting 70 ° C.). 25.1 g (0.205 mol) of 2-chloroethyl acetate was dissolved in 300 g of THF, and this was slowly added dropwise. The mixture was further reacted for 24 hours. When the ethyl 2-chloroacetate disappears (confirmed by HPLC), the reaction is completed, the precipitated solid is removed by filtration, the THF is removed by a rotary evaporator, and the resulting crude product is reconstituted with 500 g of ethyl acetate. Dissolved. This solution was washed 3 times with 100 g of pure water, 500 g of 10% hydrochloric acid aqueous solution was added and stirred for 1 hour, the aqueous layer side was recovered, and the aqueous layer was washed 3 times with 100 g of ethyl acetate. To the aqueous layer was further added 500 g of ethyl acetate, potassium carbonate was slowly added, the pH was adjusted to about 10 and the mixture was stirred for 1 hour, the organic phase side was recovered, and washed with 100 g of pure water three times. The organic phase was dried by adding anhydrous magnesium sulfate, filtered, activated carbon was added, and the mixture was stirred for a while. Then, the activated carbon was removed by filtration, the solvent was removed by a rotary evaporator, and 34.2 g of a light yellow viscous body as a target product ( 0.136 mol: yield 66%) was obtained. It was confirmed by 1 H-NMR that the desired product (nitro compound) was obtained.
1 H NMR (500 MHz, CDCl 3 ): δ 8.14 (2H), 7.37 (2H), 4.16 (2H), 3.43 (2H), 2.95 (4H), 2.19 ( 1H), 1.25 (3H)
 第2工程
 窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体30.0g、THF300g、鉄ドープ型白金カーボン3.0gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物(NG4APhA)である薄黄色の粘体25.1g(0.113mol:収率95%)を得た。目的物が得られたことをH-NMRで確認した。
 H NMR (500MHz、CDCl):δ 6.99(2H)、6.60(2H)、4.18(2H)、3.42(2H)、2.89(2H)、2.86(2H)、2.75(2H)、1.24(3H)
Second Step 30.0 g of the nitro compound obtained above, 300 g of THF, and 3.0 g of iron-doped platinum carbon are added to a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirring bar, and the inside of the container is carefully placed under a hydrogen atmosphere. And allowed to react at room temperature for 24 hours. When the raw material disappeared, the reaction was completed, platinum carbon was removed with a membrane filter, activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40 ° C. for 30 minutes. Then, after filtering again and removing the solvent with a rotary evaporator, it was dried with a high vacuum pump to obtain 25.1 g (0.113 mol: yield 95%) of a pale yellow viscous body which was the target product (NG4APhA). It was confirmed by 1 H-NMR that the desired product was obtained.
1 H NMR (500 MHz, CDCl 3 ): δ 6.99 (2H), 6.60 (2H), 4.18 (2H), 3.42 (2H), 2.89 (2H), 2.86 ( 2H), 2.75 (2H), 1.24 (3H)
 <略語等>
 液晶配向剤の調製で用いる略号は以下の通りである。
 (ジイソシアネート)
 IDI:イソホロンジイソシアネート
 DI-2MG:1,2-ビス(4-イソシアナトフェノキシ)エタン
<Abbreviations>
The abbreviations used in the preparation of the liquid crystal aligning agent are as follows.
(Diisocyanate)
IDI: Isophorone diisocyanate DI-2MG: 1,2-bis (4-isocyanatophenoxy) ethane
Figure JPOXMLDOC01-appb-C000043
 (ジアミン)
 p-PDA:パラフェニレンジアミン
 NG4ABA:エチル(4-アミノベンジル)グリシネート
 NG4APhA:エチル(4-アミノフェネチル)グリシネート
 Me4APhA:N-メチル-4-アミノフェネチルアミン
 DA-3MG:1,3-ジ(4-アミノフェノキシ)プロパン
 APC16:2-ヘキサデシルオキシ-1,3-ジアミノベンゼン
 PCH7:4-(4-(4-ヘプチルシクロヘキシル)フェノキシ)ベンゼン―1,3-ジアミン
Figure JPOXMLDOC01-appb-C000043
(Diamine)
p-PDA: paraphenylenediamine NG4ABA: ethyl (4-aminobenzyl) glycinate NG4APhA: ethyl (4-aminophenethyl) glycinate Me4APhA: N-methyl-4-aminophenethylamine DA-3MG: 1,3-di (4-amino) Phenoxy) propane APC16: 2-hexadecyloxy-1,3-diaminobenzene PCH7: 4- (4- (4-heptylcyclohexyl) phenoxy) benzene-1,3-diamine
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 (テトラカルボン酸二無水物)
 CBDA:シクロブタンテトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
CBDA: cyclobutane tetracarboxylic dianhydride
 (溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 GBL:γブチロラクトン
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve GBL: γ-butyrolactone
 また、ポリイミドの分子量測定条件は、以下の通りである。
 装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)
 カラム:Shodex社製カラム(KD-803、KD-805)
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、THFが10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)
Moreover, the molecular weight measurement conditions of polyimide are as follows.
Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
Column: Column made by Shodex (KD-803, KD-805)
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, THF is 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight of about 9,000,150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) (Molecular weight about 12,000, 4,000, 1,000)
 <重合体の合成>
 実施例3
 DI-2MG/NG4ABA、APC16
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG2.00g(6.75mmol)を測り取り、NMP19.61gを加え溶解させ、APC16 0.24g(0.68mmol)を加えた後、室温で1時間反応させた。更にNG4ABA1.22g(5.88mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度220mPas、の重合体(ポリマー溶液:P-1)を得た。得られた重合体の重量平均分子量はMw:37200あった。
<Synthesis of polymer>
Example 3
DI-2MG / NG4ABA, APC16
In a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirring bar, DI-2MG 2.00 g (6.75 mmol) was measured, 19.61 g of NMP was added and dissolved, and 0.24 g (0.68 mmol) of APC16 was added. Then, it was made to react at room temperature for 1 hour. Further, 1.22 g (5.88 mmol) of NG4ABA was added and reacted at 40 ° C. for 24 hours under a nitrogen atmosphere. As a result, a polymer (polymer solution: P-1) having a concentration of 15% by mass and a viscosity of 220 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 37200.
 実施例4
 DI-2MG/NG4APhA、APC16
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG2.00g(6.75mmol)を測り取り、NMP20.12gを加え溶解させ、APC16 0.24g(0.68mmol)を加えた後、室温で1時間反応させた。更にNG4APhA1.31g(5.88mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度280mPas、の重合体(ポリマー溶液:P-2)を得た。得られた重合体の重量平均分子量はMw:39100であった。
Example 4
DI-2MG / NG4APhA, APC16
DI-2MG 2.00 g (6.75 mmol) was measured in a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, NMP 20.12 g was added and dissolved, and APC16 0.24 g (0.68 mmol) was added. Then, it was made to react at room temperature for 1 hour. Further, 1.31 g (5.88 mmol) of NG4APhA was added and reacted at 40 ° C. for 24 hours in a nitrogen atmosphere. As a result, a polymer (polymer solution: P-2) having a concentration of 15% by mass and a viscosity of 280 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 39100.
 実施例5
 DI-2MG/NG4ABA、PCH7
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG2.00g(6.75mmol)を測り取り、NMP20.57gを加え溶解させ、PCH7 0.52g(1.36mmol)を加えた後、室温で1時間反応させた。更にNG4ABA1.11g(5.34mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度230mPas、の重合体(ポリマー溶液:P-3)を得た。得られた重合体の重量平均分子量はMw:40200であった。
Example 5
DI-2MG / NG4ABA, PCH7
In a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, 2.00 g (6.75 mmol) of DI-2MG was measured, and 20.57 g of NMP was added and dissolved, and 0.52 g (1.36 mmol) of PCH7 was added. Then, it was made to react at room temperature for 1 hour. Further, 1.11 g (5.34 mmol) of NG4ABA was added and reacted at 40 ° C. for 24 hours under a nitrogen atmosphere. As a result, a polymer (polymer solution: P-3) having a concentration of 15% by mass and a viscosity of 230 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 40200.
 実施例6
 IDI、DI-2MG/NG4ABA、PCH7
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG1.00g(3.38mmol)、NMP14.05gを加え溶解させ、PCH7 0.37g(0.97mmol)を加えた後、室温で1時間反応させた。更にIDI0.32g(1.45mmol)、NG4ABA0.79g(3.81mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度300mPas、の重合体(ポリマー溶液:P-4)を得た。得られた重合体の重量平均分子量はMw:44200であった。
Example 6
IDI, DI-2MG / NG4ABA, PCH7
In a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, DI-2MG 1.00 g (3.38 mmol) and NMP 14.05 g were added and dissolved, and then PCH7 0.37 g (0.97 mmol) was added, followed by room temperature. For 1 hour. Further, 0.32 g (1.45 mmol) of IDI and 0.79 g (3.81 mmol) of NG4ABA were added and reacted at 40 ° C. for 24 hours in a nitrogen atmosphere. As a result, a polymer (polymer solution: P-4) having a concentration of 15% by mass and a viscosity of 300 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 44200.
 比較例1
 DI-2MG/Me4APhA、APC16
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG2.00g(6.75mmol)を測り取り、NMP17.73gを加え溶解させ、APC16 0.24g(0.68mmol)を加えた後、室温で1時間反応させた。更にMe4APhA0.89g(5.94mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度320mPas、の重合体(ポリマー溶液:PRef-1)を得た。得られた重合体の重量平均分子量はMw:39900あった。
Comparative Example 1
DI-2MG / Me4APhA, APC16
In a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, DI-2MG 2.00 g (6.75 mmol) was measured, NMP 17.73 g was added and dissolved, and APC16 0.24 g (0.68 mmol) was added. Then, it was made to react at room temperature for 1 hour. Further, Me9APhA (0.89 g, 5.94 mmol) was added and reacted at 40 ° C. for 24 hours under a nitrogen atmosphere. As a result, a polymer (polymer solution: PRef-1) having a concentration of 15% by mass and a viscosity of 320 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 39900.
 比較例2
 DI-2MG/Me4APhA、PCH7
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、DI-2MG2.00g(6.75mmol)を測り取り、NMP18.7gを加え溶解させ、PCH7 0.51g(1.35mmol)を加えた後、室温で1時間反応させた。更にMe4APhA0.79g(5.27mmol)を加え、窒素雰囲気下40℃で24時間反応させた。これにより、濃度15質量%、粘度280mPas、の重合体(ポリマー溶液:PRef-2)を得た。得られた重合体の重量平均分子量はMw:37200であった。
Comparative Example 2
DI-2MG / Me4APhA, PCH7
In a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirring bar, 2.00 g (6.75 mmol) of DI-2MG was measured, 18.7 g of NMP was added and dissolved, and 0.51 g (1.35 mmol) of PCH7 was added. Then, it was made to react at room temperature for 1 hour. Further, 0.79 g (5.27 mmol) of Me4APhA was added and reacted at 40 ° C. for 24 hours under a nitrogen atmosphere. As a result, a polymer (polymer solution: PRef-2) having a concentration of 15% by mass and a viscosity of 280 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 37200.
 比較例3
 CBDA/p-PDA、PCH7
 窒素導入管と撹拌子を備えた50mlの2口フラスコに、p-PDA1.00g(9.24mmol)、PCH7 0.88g(2.31mmol)を測り取り、NMP23.12gを加え溶解させた。その後、CBDA2.20g(11.20mmol)を加え、窒素雰囲気下室温で24時間反応させた。これにより、濃度15質量%、粘度380mPas、の重合体(ポリマー溶液:PRef-3)を得た。得られた重合体の重量平均分子量はMw:44200であった。
Comparative Example 3
CBDA / p-PDA, PCH7
In a 50 ml two-necked flask equipped with a nitrogen introduction tube and a stirring bar, p-PDA (1.00 g, 9.24 mmol) and PCH7 (0.88 g, 2.31 mmol) were weighed, and NMP (23.12 g) was added and dissolved. Then, 2.20 g (11.20 mmol) of CBDA was added and reacted at room temperature for 24 hours under a nitrogen atmosphere. As a result, a polymer (polymer solution: PRef-3) having a concentration of 15% by mass and a viscosity of 380 mPas was obtained. The weight average molecular weight of the obtained polymer was Mw: 44200.
 <液晶配向剤の調整>
 実施例7
 撹拌子を備えた50mlの三角フラスコに、実施例3で得られた重合体(P-1)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-1)を得た。
<Adjustment of liquid crystal alignment agent>
Example 7
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-1) obtained in Example 3 was weighed, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-1) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 実施例8
 撹拌子を備えた50mlの三角フラスコに、実施例4で得られた重合体(P-2)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-2)を得た。
Example 8
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-2) obtained in Example 4 was weighed, NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-2) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 実施例9
 撹拌子を備えた50mlの三角フラスコに、実施例5で得られた重合体(P-3)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-3)を得た。
Example 9
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-3) obtained in Example 5 was measured, and 2.5 g of NMP, 5.0 g of GBL and 7.5 g of BCS were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-3) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 実施例10
 撹拌子を備えた50mlの三角フラスコに、実施例6で得られた重合体(P-4)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-4)を得た。
Example 10
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (P-4) obtained in Example 6 was weighed, NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-4) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 比較例4
 撹拌子を備えた50mlの三角フラスコに、比較例1で得られた重合体(PRef-1)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-5)を得た。
Comparative Example 4
In a 50 ml Erlenmeyer flask equipped with a stirrer, 10.0 g of the polymer (PRef-1) obtained in Comparative Example 1 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-5) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 比較例5
 撹拌子を備えた50mlの三角フラスコに、比較例2で得られた重合体(PRef-2)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-6)を得た。
Comparative Example 5
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (PRef-2) obtained in Comparative Example 2 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-6) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 比較例6
 撹拌子を備えた50mlの三角フラスコに、比較例3で得られた重合体(PRef-3)10.0gを測りとり、NMP2.5g、GBL5.0g、BCS7.5gを加えた後、室温で30分撹拌した。これにより、固形分6.0質量%、NMP44質量%、GBL20質量%、BCS30質量%の、液晶配向剤(AL-7)を得た。
Comparative Example 6
In a 50 ml Erlenmeyer flask equipped with a stir bar, 10.0 g of the polymer (PRef-3) obtained in Comparative Example 3 was measured, and NMP 2.5 g, GBL 5.0 g, and BCS 7.5 g were added, and then at room temperature. Stir for 30 minutes. As a result, a liquid crystal aligning agent (AL-7) having a solid content of 6.0% by mass, NMP 44% by mass, GBL 20% by mass, and BCS 30% by mass was obtained.
 実施例7~10の液晶配向剤(AL-1~AL-4)及び比較例4~6の液晶配向剤(AL-5~AL-7)を用いて、下記手法に基づき、液晶配向膜を評価した。 Using the liquid crystal aligning agents (AL-1 to AL-4) of Examples 7 to 10 and the liquid crystal aligning agents (AL-5 to AL-7) of Comparative Examples 4 to 6, a liquid crystal aligning film was formed based on the following method. evaluated.
 <白化耐性及び塗布性(印刷性)の評価>
 得られた液晶配向剤を、よく洗浄したCr基板にそれぞれ1滴たらし、室温25℃、湿度60%で放置して、白くなる(白化する)までの時間を測定した。測定した時間に基づき、白化耐性を評価した。
<Evaluation of whitening resistance and applicability (printability)>
One drop of the obtained liquid crystal aligning agent was put on each well-cleaned Cr substrate and left at room temperature of 25 ° C. and humidity of 60%, and the time until whitening (whitening) was measured. Based on the measured time, whitening resistance was evaluated.
 液晶配向剤を1.0μmのフィルターで濾過した後、洗浄したCr板上に配向膜印刷機(日本写真印刷社製「オングストローマー」)を用いてフレキソ印刷を行うことにより、塗布性試験を行った。 After the liquid crystal aligning agent is filtered through a 1.0 μm filter, the applicability test is performed by performing flexographic printing on the washed Cr plate using an alignment film printing machine (“Nongstromer” manufactured by Nissha Printing Co., Ltd.). went.
 アニロックスロールに約1.0mlの液晶配向剤を滴下し、空運転を10回実施した後、10分間印刷機を止め、印刷版を乾燥させた。その後、Cr基板1枚に印刷を行い、印刷後の基板を70℃のホットプレート上に5分間放置して、塗膜の仮乾燥を行い、膜状態を観察した。目視と、光学顕微鏡(ニコン社製「ECLIPSE ME600」)での倍率50倍とで、主に膜厚ムラやエッジ部の膜厚ムラを観察した。 About 1.0 ml of the liquid crystal aligning agent was dropped on the anilox roll, and the blanking operation was performed 10 times. Then, the printing machine was stopped for 10 minutes, and the printing plate was dried. Thereafter, printing was performed on one Cr substrate, the printed substrate was left on a hot plate at 70 ° C. for 5 minutes, the coating film was temporarily dried, and the film state was observed. The film thickness unevenness and the film thickness unevenness of the edge portion were mainly observed by visual observation and magnification of 50 times with an optical microscope (“ECLIPSE ME600” manufactured by Nikon Corporation).
 <液晶配向性、電圧保持率、及びプレチルト角の評価>
 [液晶配向性の観察、及び液晶セルの作製]
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート印刷により塗布した。50℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中で1分間、超音波を照射して洗浄し、エアブローで水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
<Evaluation of liquid crystal orientation, voltage holding ratio, and pretilt angle>
[Observation of liquid crystal alignment and production of liquid crystal cell]
After filtering the liquid crystal aligning agent through a 1.0 μm filter, a substrate with an electrode (a glass substrate with a size of 30 mm wide × 40 mm long and 1.1 mm thick. The electrode is a rectangle 10 mm wide × 40 mm long, It was applied by spin coat printing to an ITO electrode having a thickness of 35 nm. After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 180 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This membrane is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Chemical Industries) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then in pure water for 1 minute. The substrate was washed by irradiating with ultrasonic waves, water droplets were removed by air blow, and then dried at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、MLC-2041(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、液晶配向性を観察した後、液晶セルを110℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用の液晶セルを得た。 Prepare two substrates with the above-mentioned liquid crystal alignment film, spray a 4 μm spacer on the surface of one liquid crystal alignment film, print a sealant on it, and reverse the rubbing direction of the other substrate. After laminating with the direction and the film surfaces facing each other, the sealing agent was cured to produce an empty cell. MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the liquid crystal alignment was observed, and then the liquid crystal cell was heated at 110 ° C. for 1 hour and left at 23 ° C. overnight to obtain a liquid crystal cell for measuring voltage holding ratio.
 上記の手順で得られた電圧保持率測定用の液晶セルを用いて、60℃の温度下で1Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。 Using the voltage holding ratio measurement liquid crystal cell obtained by the above procedure, a voltage of 1 V was applied for 60 μs at a temperature of 60 ° C., and the voltage after 166.7 ms was measured. Was calculated as a voltage holding ratio. The voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica.
 [プレチルト角の評価]
 プレチルト角の測定にはオプトメトリクス社製 Axo Scan ミュラーマトリクスポーラリメーターを用いた。
[Evaluation of pretilt angle]
For measurement of the pretilt angle, an Axo Scan Mueller matrix polarimeter manufactured by Optometrics was used.
 上記した各種評価の結果を表3に示す。 Table 3 shows the results of the various evaluations described above.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 実施例7~10の液晶配向剤は、比較例と比べて白化耐性に優れており、また印刷性も良好である。比較例6はポリアミック酸系の材料であるため、白化耐性や印刷性は良好な材料系ではある。実施例7~10は、白化耐性や印刷性について、比較例5と同等以上の特性を得ることができると期待される。 The liquid crystal aligning agents of Examples 7 to 10 have excellent whitening resistance and good printability as compared with the comparative examples. Since Comparative Example 6 is a polyamic acid-based material, it is a material system with good whitening resistance and printability. In Examples 7 to 10, it is expected that characteristics equivalent to or higher than those of Comparative Example 5 can be obtained in terms of whitening resistance and printability.
 また、実施例7~10の液晶配向剤を用いて得られた液晶セルでは、高プレチルト角かつ高い電圧保持率が得られている。例えば、本実施例で用いた側鎖含有モノマーは、液晶のプレチルト角を大きくすることに貢献するため、側鎖含有モノマーモノマーの構造や導入量を種々選択することにより、目的とするプレチルト角を得ることができると期待される。本発明の一態様である液晶配向膜は、低温での焼成で得ることができる液晶配向膜として非常に有望であると考えられる。なお、実施例7~10の何れの液晶配向剤を用いても、液晶配向膜及び液晶表示素子を好適に得ることができた。 Also, the liquid crystal cells obtained using the liquid crystal aligning agents of Examples 7 to 10 have a high pretilt angle and a high voltage holding ratio. For example, since the side chain-containing monomer used in this example contributes to increasing the pretilt angle of the liquid crystal, the target pretilt angle can be adjusted by variously selecting the structure and amount of the side chain-containing monomer monomer. Expected to be able to get. The liquid crystal alignment film which is one embodiment of the present invention is considered very promising as a liquid crystal alignment film that can be obtained by baking at a low temperature. It should be noted that the liquid crystal alignment film and the liquid crystal display element could be suitably obtained using any of the liquid crystal alignment agents of Examples 7 to 10.
 本発明の液晶配向剤を用いて作製した液晶表示素子は、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、VA液晶表示素子、OCB液晶表示素子等、種々の方式による表示素子に好適に用いることができる。 The liquid crystal display element produced using the liquid crystal aligning agent of this invention can be made into a highly reliable liquid crystal display device, TN liquid crystal display element, STN liquid crystal display element, TFT liquid crystal display element, VA liquid crystal display element, OCB. It can be suitably used for display elements of various systems such as liquid crystal display elements.

Claims (10)

  1.  下式(1)で表されるジアミン誘導体と、ジイソシアネート誘導体と、特定の側鎖を有する、ジアミン又はジイソシアネートから選ばれるモノマーと、から得られる重合体を用いた、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     式中、Aは脂肪族炭化水素基又は芳香族炭化水素基から選ばれる、二価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
    A liquid crystal aligning agent using a polymer obtained from a diamine derivative represented by the following formula (1), a diisocyanate derivative, and a monomer selected from diamine or diisocyanate having a specific side chain.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, A represents a divalent organic group selected from an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C each independently represent a single bond or an aliphatic carbon group having 1 to 5 carbon atoms. Indicates a hydrogen group. R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by the formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  2.  前記特定の側鎖を含有するモノマーが下式(2)で表される、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     式中、Nはアミノ基又はイソシアネート基を示し、Rは単結合、又は二価の有機基を示し、X1、X2、及びX3はそれぞれ独立して、ベンゼン環又はシクロヘキサン環を示し、p,q,rはそれぞれ独立して、0又は1の整数を示し、Rは水素原子、炭素数1~22のアルキル基、又はステロイド骨格を有する炭素数12~25である二価の有機基を示す。
    The liquid crystal aligning agent of Claim 1 with which the monomer containing the said specific side chain is represented by the following Formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula, N represents an amino group or an isocyanate group, R 3 represents a single bond or a divalent organic group, and X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring. , P, q and r each independently represents an integer of 0 or 1, and R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton. An organic group is shown.
  3.  前記ジアミン誘導体が、下式(3)で表されるジアミノ化合物である、請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
     式中、Arはアリール基を示し、Dは単結合、又は炭素数1~5の炭化水素基を示す。R、R、Ra及びRbは上記のR、R、Ra及びRbと同義である。
    The liquid crystal aligning agent of Claim 2 whose said diamine derivative is a diamino compound represented by the following Formula (3).
    Figure JPOXMLDOC01-appb-C000003
    In the formula, Ar represents an aryl group, and D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. R 1 , R 2 , Ra and Rb are synonymous with the above R 1 , R 2 , Ra and Rb.
  4.  前記ジアミン誘導体が、下式(3-a)で表されるジアミノ化合物である、請求項3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
     式中、D及びRは上記のD及びRと同義である。
    4. The liquid crystal aligning agent according to claim 3, wherein the diamine derivative is a diamino compound represented by the following formula (3-a).
    Figure JPOXMLDOC01-appb-C000004
    Wherein, D and R 1 have the same meanings as D and R 1 above.
  5.  下式(3-1)で表されるジアミノ化合物と、ジイソシアネート誘導体と、特定の側鎖を有する、ジアミン又はジイソシアネートから選ばれるモノマーと、から得られる、重合体。
    Figure JPOXMLDOC01-appb-C000005
     式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Bは単結合、又は炭素数1~5の脂肪族炭化水素基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
    A polymer obtained from a diamino compound represented by the following formula (3-1), a diisocyanate derivative, and a monomer selected from diamine or diisocyanate having a specific side chain.
    Figure JPOXMLDOC01-appb-C000005
    In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. B represents a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.
  6.  前記特定の側鎖を含有するモノマーが下式(2)で表される、請求項5に記載の重合体。
    Figure JPOXMLDOC01-appb-C000006
     式中、Nはアミノ基又はイソシアネート基を示し、Rは単結合、又は二価の有機基を示し、X1、X2、及びX3はそれぞれ独立して、ベンゼン環又はシクロヘキサン環を示し、p,q,rはそれぞれ独立して、0又は1の整数を示し、Rは水素原子、炭素数1~22のアルキル基、又はステロイド骨格を有する炭素数12~25である二価の有機基を示す。
    The polymer according to claim 5, wherein the monomer containing the specific side chain is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000006
    In the formula, N represents an amino group or an isocyanate group, R 3 represents a single bond or a divalent organic group, and X 1 , X 2 , and X 3 each independently represent a benzene ring or a cyclohexane ring. , P, q and r each independently represents an integer of 0 or 1, and R 4 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or a divalent having 12 to 25 carbon atoms having a steroid skeleton. An organic group is shown.
  7.  前記ジイソシアネート誘導体が、下式(4-1)~式(4-13)で表される構造の少なくとも1つである、請求項6に記載の重合体。
    Figure JPOXMLDOC01-appb-C000007
     式中、R及びRはそれぞれ独立して、炭素数1~10の脂肪族炭化水素基を示す。
    The polymer according to claim 6, wherein the diisocyanate derivative has at least one of structures represented by the following formulas (4-1) to (4-13).
    Figure JPOXMLDOC01-appb-C000007
    In the formula, R 5 and R 6 each independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  8.  請求項5~7の何れか一項に記載の重合体を用いた、液晶配向剤。 A liquid crystal aligning agent using the polymer according to any one of claims 5 to 7.
  9.  請求項1~4及び8の何れか一項に記載の液晶配向剤から得られる、液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 4 and 8.
  10.  請求項9に記載の液晶配向膜を用いた、液晶表示素子。 A liquid crystal display element using the liquid crystal alignment film according to claim 9.
PCT/JP2019/011907 2018-03-23 2019-03-20 Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same WO2019182071A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207029468A KR20200135404A (en) 2018-03-23 2019-03-20 Liquid crystal aligning agent, polymer for obtaining it, liquid crystal aligning film, and liquid crystal display element using same
JP2020507906A JP7235209B2 (en) 2018-03-23 2019-03-20 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
CN201980019479.4A CN111868618B (en) 2018-03-23 2019-03-20 Liquid crystal aligning agent, polymer for obtaining the same, liquid crystal alignment film, and liquid crystal display element using the same
JP2023004168A JP2023052403A (en) 2018-03-23 2023-01-13 Liquid crystal aligning agent, polymer for producing the same, liquid crystal alignment film, and liquid crystal display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057183 2018-03-23
JP2018057183 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182071A1 true WO2019182071A1 (en) 2019-09-26

Family

ID=67987389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011907 WO2019182071A1 (en) 2018-03-23 2019-03-20 Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same

Country Status (5)

Country Link
JP (2) JP7235209B2 (en)
KR (1) KR20200135404A (en)
CN (1) CN111868618B (en)
TW (1) TWI814796B (en)
WO (1) WO2019182071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410457B2 (en) 2018-03-23 2024-01-10 日産化学株式会社 Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552235A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Liquid crystal sandwiching substrate
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743460B2 (en) 1989-04-27 1998-04-22 日産化学工業株式会社 Liquid crystal cell alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
TWI348474B (en) * 2006-09-26 2011-09-11 Jsr Corp Liquid crystal alignment agent and liquid crystal display element
JP2010031163A (en) * 2008-06-27 2010-02-12 Sumitomo Chemical Co Ltd Compound, optical film containing the compound, and production method of the optical film
JP6213281B2 (en) * 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element
KR102040797B1 (en) * 2013-07-31 2019-11-05 동우 화인켐 주식회사 A retardation film and display device comprising the same
JP2016084464A (en) * 2014-10-24 2016-05-19 昭和電工株式会社 Curable resin composition, color filter, image display element and manufacturing method of color filter
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6274673B2 (en) * 2014-12-26 2018-02-07 富士フイルム株式会社 Composition for polarizing plate, protective film for polarizing plate, cellulose acylate film, polarizer, polarizing plate and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552235A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Liquid crystal sandwiching substrate
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUICHARD, G.: "Polymeric ureas and their phosphorus analogues", SCIENCE OF SYNTHESIS, vol. 18, 23 March 2005 (2005-03-23), Stuttgart New York, pages 759 - 820, ISSN: 2510-5469 *
HURNG-RERN LEE ET AL.: "Synthesis, Characteristics, and Thermal Behaviors of Photosensitive Aromatic Polyureidoester and the Corresponding Poly(Hydantoin", JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, vol. 24, 1993, pages 1 - 10, ISSN: 0368-1653 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410457B2 (en) 2018-03-23 2024-01-10 日産化学株式会社 Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Also Published As

Publication number Publication date
CN111868618A (en) 2020-10-30
TW201940539A (en) 2019-10-16
CN111868618B (en) 2023-09-22
TWI814796B (en) 2023-09-11
JP2023052403A (en) 2023-04-11
KR20200135404A (en) 2020-12-02
JP7235209B2 (en) 2023-03-08
JPWO2019182071A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
KR101518092B1 (en) Liquid crystal aligning agent and liquid crystal display device using the same
KR101536028B1 (en) Liquid crystal aligning agent and liquid crystal display device using the same
WO2014142168A1 (en) Liquid crystal aligning agent containing crosslinkable compound having photoreactive group
TW201211108A (en) Liquid crystal aligning agent, liquid crystal alignment film produced using same, and liquid crystal display element
JP2023052403A (en) Liquid crystal aligning agent, polymer for producing the same, liquid crystal alignment film, and liquid crystal display device using the same
JP7004958B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using it
JP2023052560A (en) Polymer, liquid crystal aligning agent produced using the same, liquid crystal alignment film, and liquid crystal display device using the same
JP7410457B2 (en) Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP5783166B2 (en) Liquid crystal aligning agent, liquid crystal display element and diamine compound
CN117384652A (en) Liquid crystal aligning agent, method for producing same, liquid crystal alignment film, and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029468

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19771164

Country of ref document: EP

Kind code of ref document: A1