JP7410457B2 - Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same - Google Patents

Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Download PDF

Info

Publication number
JP7410457B2
JP7410457B2 JP2020507907A JP2020507907A JP7410457B2 JP 7410457 B2 JP7410457 B2 JP 7410457B2 JP 2020507907 A JP2020507907 A JP 2020507907A JP 2020507907 A JP2020507907 A JP 2020507907A JP 7410457 B2 JP7410457 B2 JP 7410457B2
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
polyurea copolymer
carbon atoms
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020507907A
Other languages
Japanese (ja)
Other versions
JPWO2019182072A1 (en
Inventor
尚宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019182072A1 publication Critical patent/JPWO2019182072A1/en
Application granted granted Critical
Publication of JP7410457B2 publication Critical patent/JP7410457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3259Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts
    • C08G18/3262Reaction products of polyamines with inorganic or organic acids or derivatives thereof other than metallic salts with carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、ポリウレア共重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。 The present invention relates to a polyurea copolymer, a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element using the same.

液晶表示素子において液晶配向膜は、液晶を一定の方向に配向させる役割を担う。現在、工業的に利用されている主な液晶配向膜は、ポリアミド酸(ポリイミド前駆体やポリアミック酸ともいわれる。)やポリイミド溶液からなるポリイミド系の液晶配向剤を基板に塗布し、焼成することで成膜される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合、成膜した後、ラビングによる表面延伸処理(ラビング処理)が行われている。ラビング処理に代わる方法として、偏光紫外線の照射等による異方性光化学反応を利用する方法も提案されている。 In a liquid crystal display element, a liquid crystal alignment film plays a role of aligning liquid crystal in a certain direction. Currently, the main liquid crystal alignment films used industrially are made by coating a substrate with a polyimide-based liquid crystal alignment agent made of polyamic acid (also called polyimide precursor or polyamic acid) or polyimide solution, and then baking it. A film is formed. Further, when liquid crystal is aligned parallel or oblique to the substrate surface, a surface stretching process (rubbing process) by rubbing is performed after film formation. As an alternative to rubbing treatment, a method using an anisotropic photochemical reaction such as irradiation with polarized ultraviolet light has also been proposed.

液晶表示素子の表示特性の向上のために、数々の技術が提案されてきた。例えば、特許文献1(特開平2-287324号公報)では、高い電圧保持率(VHR)を得るために、特定の繰り返し構造を有するポリイミド樹脂を用いることが提案されている。また、特許文献2(特開平10-104633号公報)では、残像が消去されるまでの時間を短くするために、イミド基以外に窒素原子を有する可溶性ポリイミドを用いることが提案されている。 A number of techniques have been proposed to improve the display characteristics of liquid crystal display elements. For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2-287324) proposes the use of a polyimide resin having a specific repeating structure in order to obtain a high voltage holding ratio (VHR). Further, Patent Document 2 (Japanese Patent Laid-Open No. 10-104633) proposes the use of a soluble polyimide having a nitrogen atom in addition to the imide group in order to shorten the time until the afterimage is erased.

特開平2-287324号公報Japanese Patent Application Publication No. 2-287324 特開平10-104633号公報Japanese Patent Application Publication No. 10-104633

液晶配向膜に用いられる材料としては、ポリアミド酸やポリアミド酸エステル等のポリイミド前駆体や、それらを焼成により或いは化学反応により脱水することで得られるポリイミド等が挙げられる。このうち、ポリアミド酸は、その合成が容易であり、かつ溶媒への溶解性に優れるため、基板への塗布性・成膜性に優れる液晶配向剤を得ることができる。しかし、ポリアミド酸は、その構造上、加水分解等により分解しやすいため、これを用いて得た液晶配向膜では、長期に亘って信頼性(電圧保持率が高いこと、及び残留電圧が低いこと等)を確保することが難しい。 Examples of materials used for the liquid crystal alignment film include polyimide precursors such as polyamic acids and polyamic acid esters, and polyimides obtained by dehydrating them by firing or chemical reactions. Among these, polyamic acid is easy to synthesize and has excellent solubility in solvents, so it is possible to obtain a liquid crystal aligning agent with excellent coating properties and film-forming properties on substrates. However, due to its structure, polyamic acid is easily decomposed by hydrolysis, etc., so the liquid crystal alignment film obtained using it has long-term reliability (high voltage holding rate and low residual voltage). etc.) is difficult to secure.

一方、可溶性ポリイミド(ポリアミド酸の脱水反応により得られる溶媒に可溶なポリイミド)は、化学的安定性・耐熱性に優れるため、可溶性ポリイミドを用いて得た液晶配向膜では、長期に亘って信頼性を確保しやすくなる。しかし、可溶性ポリイミドは、溶解させることができる溶媒の選択肢が少なく、それゆえに、使用できる溶媒が限られ、その結果、可溶性ポリイミドを用いる場合、塗布中・成膜中に析出等が生じ、塗膜に欠陥ができやすい。 On the other hand, soluble polyimide (polyimide soluble in a solvent obtained by dehydration reaction of polyamic acid) has excellent chemical stability and heat resistance, so liquid crystal alignment films obtained using soluble polyimide can be used reliably over a long period of time. It becomes easier to secure sex. However, soluble polyimide has few choices of solvents that can be dissolved in it, and therefore, the solvents that can be used are limited.As a result, when soluble polyimide is used, precipitation occurs during coating and film formation, and the coating film are prone to defects.

ここで、電気抵抗の低いポリイミドを用いることで、得られる液晶表示膜の電気的特性を向上させるのに有利になる(例えば、液晶表示膜の蓄積電荷(電圧の印加を解除した後も電圧が残留し、その結果、蓄積する電荷をいう。)を緩和しやすくなる)場合がある。しかし、この場合、電荷移動錯体(CT錯体)が形成されることに起因して、液晶表示膜に着色が発生しやすくなるため、そのような液晶表示膜を用いて得られる液晶ディスプレイは、色再現性及びコントラストが低下しやすくなる。 Here, by using polyimide with low electrical resistance, it is advantageous to improve the electrical characteristics of the resulting liquid crystal display film (for example, the accumulated charge of the liquid crystal display film (voltage remains unchanged even after the voltage application is removed). This refers to the charge that remains and, as a result, accumulates. However, in this case, the liquid crystal display film is likely to be colored due to the formation of a charge transfer complex (CT complex), so the liquid crystal display obtained using such a liquid crystal display film is Reproducibility and contrast tend to deteriorate.

近年、4Kや8K等の超高精細の液晶ディスプレイに対する需要は益々高まってきており、液晶ディスプレイに対して、高コントラスト、及び高い色再現性等が益々求められている。更に、量子ドット(QD)等を用いた液晶ディスプレイの研究も進んでいる。従って、液晶配向膜を形成する材料として、例えば、使用環境により画質の劣化や不具合が引き起こされにくい材料、低温での焼成が可能な材料、透明度の高い材料、及び高温・低温での焼き付きを防止することができる材料が求められるようになってきた。今後の更なる、液晶ディスプレイの多機能化・大型化・高精細化・使用環境の多様化等に伴い、それぞれの問題を解決するとともに、各種特性を向上させることができる手法の探索が求められている。 In recent years, the demand for ultra-high definition liquid crystal displays such as 4K and 8K has been increasing, and liquid crystal displays are increasingly required to have high contrast, high color reproducibility, and the like. Furthermore, research on liquid crystal displays using quantum dots (QDs) and the like is also progressing. Therefore, the materials for forming the liquid crystal alignment film include, for example, materials that are unlikely to cause deterioration of image quality or defects depending on the usage environment, materials that can be fired at low temperatures, materials with high transparency, and materials that prevent burn-in at high and low temperatures. There is a growing demand for materials that can In the future, as liquid crystal displays become more multi-functional, larger, higher definition, and the environments in which they are used become more diverse, there will be a need to search for methods that can solve each problem and improve various characteristics. ing.

本発明は、上記の事情に鑑みなされたものであって、その課題は、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶配向膜を提供することにある。また、上記液晶配向膜を用いた液晶表示素子を提供することにある。また、上記液晶配向膜を得ることができ、しかも、低温での焼成が可能、かつ印刷性(得られる重合体の、有機溶媒への溶解性)が良好である液晶配向剤を提供することにある、更に、上記液晶配向剤を得ることができるポリウレア共重合体を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a liquid crystal alignment film that quickly relieves accumulated charges and is excellent in various properties including transparency. Another object of the present invention is to provide a liquid crystal display element using the above liquid crystal alignment film. Further, it is an object of the present invention to provide a liquid crystal aligning agent that can obtain the above-mentioned liquid crystal aligning film, can be fired at a low temperature, and has good printability (solubility of the resulting polymer in an organic solvent). Another object of the present invention is to provide a polyurea copolymer from which the above liquid crystal aligning agent can be obtained.

本発明者は、鋭意研究した結果、特定の構造を有するポリウレア共重合体、及びそれを用いた液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。なお、上記ポリウレア共重合体は新規であり、上記ポリウレア共重合体を得るためのモノマーも、新規化合物を含んでいる。 As a result of intensive research, the present inventor found that a polyurea copolymer having a specific structure and a liquid crystal aligning agent using the same are effective in achieving the above object, and completed the present invention. reached. Note that the above polyurea copolymer is new, and the monomer for obtaining the above polyurea copolymer also contains a new compound.

すなわち、本発明は以下1.~7.を要旨とする。 That is, the present invention provides the following 1. ~7. The gist is:

1. 下式(1)で表される構造を有する、ポリウレア共重合体。 1. A polyurea copolymer having a structure represented by the following formula (1).

Figure 0007410457000001
式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。
Figure 0007410457000001
In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms, which may be branched, and R 2 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or the following formula (1-1) Indicates an organic group represented by Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms. X represents a divalent organic group represented by the following formula (S), and Y represents a divalent organic group.

Figure 0007410457000002
式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure 0007410457000002
In the formula, the black dots mean bonding sites to the nitrogen atom, and R 1 , Ra and Rb have the same meanings as R 1 , Ra and Rb above.

Figure 0007410457000003
式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000003
In the formula, Q 1 and Q 2 represent one selected from formula (Q1-1), formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one type selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, and L 1 and L 2 represent a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond. Black dots indicate bonding points to nitrogen atoms.

Figure 0007410457000004
式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
Figure 0007410457000004
In the formula, R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms. When R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, form a ring, or have an unsaturated bond. E represents -NH-, -NMe-, -S-, or -O-, and F and G each independently represent CH or a nitrogen atom.

2. 前記Xは下式で表される二価の有機基を示す、1.に記載のポリウレア共重合体。 2. The above X represents a divalent organic group represented by the following formula, 1. The polyurea copolymer described in .

Figure 0007410457000005
式中、黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000005
In the formula, black dots mean bonding sites to nitrogen atoms.

3. 前記Yは前記式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基である、1.又は2.に記載のポリウレア共重合体。 3. 1. The above Y is a divalent organic group represented by the above formula (S) or a divalent organic group represented by the following formula (Q-1). Or 2. The polyurea copolymer described in .

Figure 0007410457000006
式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000006
In the formula, A represents a divalent organic group such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C are each independently a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. shows. Black dots indicate bonding points to nitrogen atoms.

4. 前記Yは下式(Q-2)で表される二価の有機基である、1.~3.の何れか1つに記載のポリウレア共重合体。 4. 1. Said Y is a divalent organic group represented by the following formula (Q-2). ~3. The polyurea copolymer according to any one of .

Figure 0007410457000007
式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000007
In the formula, D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. Black dots indicate bonding points to nitrogen atoms.

5. 1.~4.の何れか1つに記載のポリウレア共重合体を用いた、液晶配向剤。 5.1. ~4. A liquid crystal aligning agent using the polyurea copolymer described in any one of the above.

6. 5.に記載の液晶配向剤から得られる、液晶配向膜。 6. 5. A liquid crystal aligning film obtained from the liquid crystal aligning agent described in .

7. 6.に記載の液晶配向膜を用いた、液晶表示素子。 7.6. A liquid crystal display element using the liquid crystal alignment film described in .

本発明によれば、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶表示膜を提供することができる。また、本発明によれば、上記液晶表示膜を用いた液晶表示素子を提供することができる。また、本発明によれば、上記液晶表示素子及び上記液晶配向膜を得ることができ、しかも、低温での焼成が可能、かつ印刷性が良好である液晶配向剤を提供することができる。更に、本発明によれば、上記液晶配向剤を得るための新規なポリウレア共重合体を提供することができる。 According to the present invention, it is possible to provide a liquid crystal display film in which accumulated charges are quickly relaxed and which is excellent in various properties including transparency. Further, according to the present invention, it is possible to provide a liquid crystal display element using the above liquid crystal display film. Further, according to the present invention, it is possible to obtain the liquid crystal display element and the liquid crystal alignment film, and also to provide a liquid crystal aligning agent that can be fired at low temperatures and has good printability. Furthermore, according to the present invention, a novel polyurea copolymer for obtaining the above-mentioned liquid crystal aligning agent can be provided.

本発明の一態様であるポリウレア共重合体は、下式(1)で表される構造を有する。 A polyurea copolymer that is one embodiment of the present invention has a structure represented by the following formula (1).

Figure 0007410457000008
式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは二価の有機基を示す。
Figure 0007410457000008
In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms, which may be branched, and R 2 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or the following formula (1-1) Indicates an organic group represented by Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms. X represents a divalent organic group represented by the following formula (S), and Y represents a divalent organic group.

Figure 0007410457000009
式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure 0007410457000009
In the formula, the black dots mean bonding sites to the nitrogen atom, and R 1 , Ra and Rb have the same meanings as R 1 , Ra and Rb above.

Figure 0007410457000010
式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000010
In the formula, Q 1 and Q 2 represent one selected from formula (Q1-1), formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one type selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, and L 1 and L 2 represent a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond. Black dots indicate bonding points to nitrogen atoms.

Figure 0007410457000011
式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
Figure 0007410457000011
In the formula, R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms. When R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, form a ring, or have an unsaturated bond. E represents -NH-, -NMe-, -S-, or -O-, and F and G each independently represent CH or a nitrogen atom.

式(S)で表される有機基を有するポリウレア共重合体を用いることで、得られる液晶配向膜は、所望の特性(例えば、蓄積電荷の緩和が早い、透明性に優れる、等)を得やすくなる。 By using a polyurea copolymer having an organic group represented by formula (S), the resulting liquid crystal alignment film can obtain desired properties (e.g., quick relaxation of accumulated charges, excellent transparency, etc.). It becomes easier.

本発明の目的を達成しやすくする観点からは、式(1)中、Yは式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基であることが好ましく、Yは下式(Q-2)で表される二価の有機基であることがより好ましい。 From the viewpoint of easily achieving the object of the present invention, in formula (1), Y is a divalent organic group represented by formula (S) or a divalent organic group represented by formula (Q-1) below. It is preferably an organic group, and more preferably Y is a divalent organic group represented by the following formula (Q-2).

Figure 0007410457000012
式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000012
In the formula, A represents a divalent organic group such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C are each independently a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. shows. Black dots indicate bonding points to nitrogen atoms.

Figure 0007410457000013
式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000013
In the formula, D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. Black dots indicate bonding points to nitrogen atoms.

上記ポリウレア共重合体は、所定のジアミン誘導体(以下「ジアミン」と称することがある)と、所定のジイソシアネート誘導体(以下「ジイソシアネート」と称することがある)と、を反応させることで得ることができる。式(1)中、例えば、Xはジイソシアネートに由来し、Yはジアミンに由来する。従って、ポリウレア共重合体の原料となる、ジアミン及びジイソシアネートの構造に応じて、X及びYは種々な構造を採り得る。 The above polyurea copolymer can be obtained by reacting a predetermined diamine derivative (hereinafter sometimes referred to as "diamine") and a predetermined diisocyanate derivative (hereinafter sometimes referred to as "diisocyanate"). . In formula (1), for example, X is derived from diisocyanate and Y is derived from diamine. Therefore, X and Y can have various structures depending on the structures of the diamine and diisocyanate that are the raw materials for the polyurea copolymer.

<本発明で使用可能なジアミン(式(2)で表されるジアミン)>
本発明で使用可能なジアミンの一つは、式(2)で表される。
<Diamine usable in the present invention (diamine represented by formula (2))>
One of the diamines that can be used in the present invention is represented by formula (2).

Figure 0007410457000014
式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、二価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。Rは炭素数1~4のアルキル基を示し、分岐していてもよい。Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。
Figure 0007410457000014
In the formula, A represents a divalent organic group such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C are each independently a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. shows. R 1 represents an alkyl group having 1 to 4 carbon atoms and may be branched. R 2 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or an organic group represented by formula (1-1). Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms.

上記ジアミンを使用すれば、得られる液晶配向剤及び液晶配向膜は、目的とする特性を得やすくなると考えられる。モノマーの重合反応性や、耐熱性や液晶配向性に優れた液晶配向膜を得ることができる、等の観点からは、式(2)中、Aは芳香族炭化水素基、Bは炭素数1~3の脂肪族炭化水素基、Cは単結合、であると更に好ましい。式(2)の具体例としては、下式(3)が挙げられる。 It is thought that if the above-mentioned diamine is used, the obtained liquid crystal aligning agent and liquid crystal aligning film will be able to easily obtain the desired properties. From the viewpoint of being able to obtain a liquid crystal alignment film with excellent monomer polymerization reactivity, heat resistance, and liquid crystal alignment properties, in formula (2), A is an aromatic hydrocarbon group and B is a carbon number 1. -3 aliphatic hydrocarbon groups, C being a single bond, is more preferred. A specific example of formula (2) is the following formula (3).

Figure 0007410457000015
式中、Arはアリール基を示し、Dは単結合、炭素数1~5の炭化水素基を示す。R、R、Ra及びRbは上記のR、R、Ra及びRbと同義である。
Figure 0007410457000015
In the formula, Ar represents an aryl group, and D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. R 1 , R 2 , Ra and Rb have the same meanings as R 1 , R 2 , Ra and Rb above.

ジアミンを合成するための試薬を入手するのが容易である、ジイソシアネートとの反応性が良好である、得られる上記ポリウレア共重合体の物性が良好になる、等の観点を鑑みた場合、式(3)中、Arはフェニル基が好ましく、Rは水素原子が好ましい。従って、式(3)は、好ましくは下式(3-a)´で表される構造である。なかでも、式(3)中、Ra及びRbはそれぞれ水素原子であることが好ましい。従って、式(3)は、特に好ましくは、式(3-a)で表される。なお、式(Q-2)は、例えば、式(3-a)に由来の構造である。Considering the following aspects: it is easy to obtain a reagent for synthesizing diamine, the reactivity with diisocyanate is good, and the physical properties of the resulting polyurea copolymer are good, the formula ( In 3), Ar is preferably a phenyl group, and R 2 is preferably a hydrogen atom. Therefore, formula (3) preferably has a structure represented by the following formula (3-a)'. Among these, in formula (3), it is preferable that Ra and Rb are each hydrogen atoms. Therefore, formula (3) is particularly preferably represented by formula (3-a). Note that formula (Q-2) is, for example, a structure derived from formula (3-a).

Figure 0007410457000016
式中、D及びRは上記のD及びRと同義である。
Figure 0007410457000016
In the formula, D and R 1 have the same meanings as D and R 1 above.

目的とするモノマーを好適に得ることができる、上記の特性のすべてが良好になりやすい、等の観点からは、上記式(3-a)´は、好ましくは下式(3-1)で表される。 From the viewpoint of being able to obtain the desired monomer suitably and easily achieving all of the above characteristics, the above formula (3-a)' is preferably expressed by the following formula (3-1). be done.

Figure 0007410457000017
式中、B、R、Ra及びRbは上記のB、R、Ra及びRbと同義である。式(3-1)中、Bが炭素数1及び2であり、Ra及びRbがそれぞれ水素原子であると、式(3-1)は、式(3-1a)及び式(3-1b)で表される。
Figure 0007410457000017
In the formula, B, R 1 , Ra and Rb have the same meanings as B, R 1 , Ra and Rb above. In formula (3-1), when B has 1 and 2 carbon atoms, and Ra and Rb are hydrogen atoms, respectively, formula (3-1) can be converted to formula (3-1a) and formula (3-1b). It is expressed as

Figure 0007410457000018
式中、Rは上記のRと同義である。
Figure 0007410457000018
In the formula, R 1 has the same meaning as R 1 above.

上記ジアミンは、ポリウレア重合体の溶解性、液晶配向剤に含まれるワニスの保存安定性、液晶配向剤の印刷性、及び液晶配向膜にした際の信頼性等に重要な役割を担う。上記ジアミンの含有量は、本発明に使用するジアミン全量の内、例えば、10mol%~100mol%、より好ましくは、30mol%~70mol%程である。ただし、上記ジアミンは、ポリウレア重合体に含まれていればよく、その含有量は上記の値に限定されない。 The above-mentioned diamine plays an important role in the solubility of the polyurea polymer, the storage stability of the varnish contained in the liquid crystal aligning agent, the printability of the liquid crystal aligning agent, and the reliability when used as a liquid crystal aligning film. The content of the diamine is, for example, about 10 mol% to 100 mol%, more preferably about 30 mol% to 70 mol%, of the total amount of diamine used in the present invention. However, the above-mentioned diamine only needs to be included in the polyurea polymer, and its content is not limited to the above-mentioned value.

また、式(2)で表されるジアミンの具体例は、式(3)で表されるジアミンに限定されない。本発明の効果(例えば、蓄積電荷の緩和が早い上、透明性をはじめとする各種特性に優れる液晶配向膜を得ることができること)が損なわれない範囲であれば、上記ポリウレア重合体を合成するにあたり、式(2)又は式(3)で表されるジアミンの一部を、後述する式(5)で表されるジアミンに置き換えてもよい。 Moreover, the specific example of the diamine represented by Formula (2) is not limited to the diamine represented by Formula (3). The above polyurea polymer can be synthesized within a range that does not impair the effects of the present invention (for example, the ability to quickly relax accumulated charges and obtain a liquid crystal alignment film that has excellent various properties such as transparency). In this case, a part of the diamine represented by formula (2) or formula (3) may be replaced with a diamine represented by formula (5) described later.

<本発明で使用可能なジアミン(式(S)で表される構造を有するジアミン)>
本発明で使用可能なジアミンの一つは、式(S)で表される構造を有する。式(S)で表される構造を有するジアミンと、式(2)で表されるジアミンと、は併用することができる。
<Diamine that can be used in the present invention (diamine having a structure represented by formula (S))>
One of the diamines that can be used in the present invention has a structure represented by formula (S). The diamine having the structure represented by formula (S) and the diamine represented by formula (2) can be used in combination.

Figure 0007410457000019
式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、L及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000019
In the formula, Q 1 and Q 2 represent one selected from formula (Q1-1), formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one type selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, and L 1 and L 2 represent a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond. Black dots indicate bonding points to nitrogen atoms.

Figure 0007410457000020
式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
Figure 0007410457000020
In the formula, R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms. When R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, form a ring, or have an unsaturated bond. E represents -NH-, -NMe-, -S-, or -O-, and F and G each independently represent CH or a nitrogen atom.

式(S)で表される構造を有するジアミンは、該構造を含んでいれば特に限定はない。ただし、そのジアミンを容易に合成することができる、そのジアミンを合成するための試薬を容易に入手することができる、そのジアミンの溶解性が高い、等の観点からは、特に好ましいジアミンの具体例は、式(S-4)~式(S-13)が挙げられる。 The diamine having the structure represented by formula (S) is not particularly limited as long as it contains the structure. However, from the viewpoints that the diamine can be easily synthesized, the reagent for synthesizing the diamine can be easily obtained, the diamine has high solubility, etc., specific examples of diamines that are particularly preferred Examples of formulas (S-4) to (S-13) include formulas (S-4) to (S-13).

Figure 0007410457000021
Figure 0007410457000021

なお、後述するジイソシアネートが式(S)で表される構造を有する場合、これらのジアミンは使用しなくてもよい。式(S)で表される構造をポリウレア共重合体に導入することで、液晶配向膜の抵抗率を下げることができ、また、液晶配向膜の蓄積電荷の緩和速度を早くすることができる。一方、その導入量が多くなり過ぎると、返って蓄積電荷の増加等を招くおそれもある。好ましい導入量としては0mol%~90mol%、より好ましくは30mol%~70mol%程である。使用するジアミンの種類によっては、その使用量を増減させることで、更に良好な特性を有する、液晶配向剤及び液晶配向膜を得ることができる可能性がある。 Note that when the diisocyanate described below has a structure represented by formula (S), these diamines may not be used. By introducing the structure represented by formula (S) into the polyurea copolymer, the resistivity of the liquid crystal alignment film can be lowered, and the rate of relaxation of accumulated charges in the liquid crystal alignment film can be increased. On the other hand, if the amount introduced is too large, there is a risk that the accumulated charge will increase. The amount introduced is preferably about 0 mol% to 90 mol%, more preferably about 30 mol% to 70 mol%. Depending on the type of diamine used, there is a possibility that a liquid crystal alignment agent and a liquid crystal alignment film having even better properties can be obtained by increasing or decreasing the amount used.

<本発明に使用可能なジイソシアネート>
本発明に使用可能なジイソシアネートは、式(4)で表される。
<Diisocyanate that can be used in the present invention>
The diisocyanate that can be used in the present invention is represented by formula (4).

Figure 0007410457000022
式中、Xは2価の有機基を示す。Xは、例えば、ジアミンの項目で上述した式(S)で表される構造である。すなわち、本発明では、式(S)で表される構造を有するジイソシアネートを使用することができる。式(S)で表される構造を有するジイソシアネートは、式(S)で表される構造を有するジアミンにホスゲン等を反応させて誘導される。従って、式(S)で表される構造を有するジアミンを入手することができれば、上記ジイソシアネートは誘導可能である。
Figure 0007410457000022
In the formula, X represents a divalent organic group. X is, for example, a structure represented by the formula (S) described above in the diamine section. That is, in the present invention, a diisocyanate having a structure represented by formula (S) can be used. A diisocyanate having a structure represented by formula (S) is derived by reacting a diamine having a structure represented by formula (S) with phosgene or the like. Therefore, if a diamine having the structure represented by formula (S) can be obtained, the above diisocyanate can be derived.

本発明の効果を得る上で、式(S)で表される構造が重要な役割を担う。そのため、ジイソシアネートを用いることで、式(S)で表される構造を導入する場合、その導入される量は限定されない。ただ、好ましい導入量としては10mol%~100mol%であり、より好ましくは50mol%~80mol%である。使用するジイソシアネートの種類によっては、その使用量を増減させることで、更に良好な特性を有する、液晶配向剤及び液晶配向膜を得ることができる可能性がある。なお、上記ジアミンが式(S)で表される構造を有する場合、これらのジイソシアネートは使用しなくてもよい。 The structure represented by formula (S) plays an important role in obtaining the effects of the present invention. Therefore, when a structure represented by formula (S) is introduced by using a diisocyanate, the amount to be introduced is not limited. However, the amount introduced is preferably 10 mol% to 100 mol%, more preferably 50 mol% to 80 mol%. Depending on the type of diisocyanate used, there is a possibility that a liquid crystal alignment agent and a liquid crystal alignment film having even better properties can be obtained by increasing or decreasing the amount used. Note that when the diamine has a structure represented by formula (S), these diisocyanates may not be used.

<その他のジアミン>
上記ポリウレア共重合体を得るにあたり、本発明で使用可能な上記ジアミンの一部を、下式(5)で表されるジアミン(その他のジアミン)に置き換えてもよい。一般に、ジアミンは種類が豊富であり、また様々な機能を有する有機基を持つ化合物が多いため、他のジアミンを併用することで、上記ポリウレア共重合体に更なる効果を付与することができる場合がある。一方、その他のジアミンの導入量が多くなると、目的とする特性が得られなくなるおそれがあるため、その他のジアミンの導入率は、本発明で使用可能な上記ジアミンの全モルに対して、0~50mol%程度が好ましい。
<Other diamines>
In obtaining the above-mentioned polyurea copolymer, a part of the above-mentioned diamine that can be used in the present invention may be replaced with a diamine (other diamine) represented by the following formula (5). In general, there are many types of diamines, and many compounds have organic groups with various functions, so it is possible to add further effects to the polyurea copolymer by using other diamines in combination. There is. On the other hand, if the amount of other diamines introduced is too large, the desired properties may not be obtained. About 50 mol% is preferable.

Figure 0007410457000023
式中、Yは2価の有機基であり、Yの構造の例は、下式(Y-1)~式(Y-147)のように列挙されるが、これらに限定されない。Rはそれぞれ独立して、水素原子、メチル基、又はエチル基を示す。なお、ジアミンと、テトラカルボン酸二無水物と、の反応ではポリアミド酸を与え、ジアミンと、ジイソシアネートと、の反応ではポリウレアを与える。
Figure 0007410457000023
In the formula, Y is a divalent organic group, and examples of the structure of Y are listed as the following formulas (Y-1) to (Y-147), but are not limited to these. R 6 each independently represents a hydrogen atom, a methyl group, or an ethyl group. Note that the reaction between diamine and tetracarboxylic dianhydride gives polyamic acid, and the reaction between diamine and diisocyanate gives polyurea.

Figure 0007410457000024
Figure 0007410457000024

Figure 0007410457000025
Figure 0007410457000025

Figure 0007410457000026
Figure 0007410457000026

Figure 0007410457000027
式(Y-108)~式(Y-112)中、Aは炭素数2~24の、アルキル基又はフッ素含有アルキル基を示す。
Figure 0007410457000027
In formulas (Y-108) to (Y-112), A 1 represents an alkyl group or a fluorine-containing alkyl group having 2 to 24 carbon atoms.

Figure 0007410457000028
式(Y-113)~式(Y-114)中、Aは-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure 0007410457000028
In formulas (Y-113) to (Y-114), A 2 represents -O-, -OCH 2 -, -CH 2 O-, -COOCH 2 -, or -CH 2 OCO-, and A 3 is Indicates an alkyl group, alkoxy group, fluorine-containing alkyl group, or fluorine-containing alkoxy group having 1 to 22 carbon atoms.

Figure 0007410457000029
式(Y-115)~式(Y-117)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Aは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。
Figure 0007410457000029
In formulas (Y-115) to (Y-117), A 4 is -COO-, -OCO-, -CONH-, -NHCO-, -COOCH 2 -, -CH 2 OCO-, -CH 2 O- , -OCH 2 -, or -CH 2 -, and A 5 represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group having 1 to 22 carbon atoms.

Figure 0007410457000030
式(Y-118)~式(Y-119)中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基を示す。
Figure 0007410457000030
In formulas (Y-118) to (Y-119), A 6 is -COO-, -OCO-, -CONH-, -NHCO-, -COOCH 2 -, -CH 2 OCO-, -CH 2 O- , -OCH 2 -, -CH 2 -, -O-, or -NH-, and A 7 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, Or indicates a hydroxyl group.

Figure 0007410457000031
式(Y-120)~式(Y-121)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure 0007410457000031
In formulas (Y-120) to (Y-121), A 8 represents an alkyl group having 3 to 12 carbon atoms, and each of the cis-trans isomers of 1,4-cyclohexylene is a trans isomer.

Figure 0007410457000032
式(Y-122)~式(Y-123)中、Aは炭素数3~12のアルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
Figure 0007410457000032
In formulas (Y-122) to (Y-123), A 9 represents an alkyl group having 3 to 12 carbon atoms, and each of the cis-trans isomers of 1,4-cyclohexylene is a trans isomer.

Figure 0007410457000033
式(Y-132)~式(Y-137)中、A12は-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、A13は炭素数1~22の、アルキル基又はフッ素含有アルキル基を示す。
Figure 0007410457000033
In formulas (Y-132) to (Y-137), A 12 is -COO-, -OCO-, -CONH-, -NHCO-, -CH 2 -, -O-, -CO-, or -NH -, and A 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.

Figure 0007410457000034
式(Y-140)、式(Y-144)及び式(Y-145)中、nは1~10の整数を示す。
Figure 0007410457000034
In formula (Y-140), formula (Y-144) and formula (Y-145), n represents an integer of 1 to 10.

<その他のジイソシアネート>
上記ポリウレア共重合体を得るにあたり、本発明で使用可能なジイソシアネートの一部を、式(4-1)~式(4-11)及び式(4-13)で表されるジイソシアネート(その他のジイソシアネート)に置き換えてもよい。

Figure 0007410457000035
<Other diisocyanates>
In obtaining the above polyurea copolymer, some of the diisocyanates that can be used in the present invention are diisocyanates represented by formulas (4-1) to (4-11) and formula (4-13) (other diisocyanates). ) may be replaced.
Figure 0007410457000035

式(4-1)~式(4-5)で表される脂肪族ジイソシアネートを用いる場合は、式(4-6)~式(4-11)及び式(4-13)で表される芳香族ジイソシアネートを用いる場合に比べ、得られるポリウレア共重合体が溶媒に良好に溶解するようになる。一方、上記芳香族ジイソシアネートは、上記脂肪族ジイソシアネートに比べ、ジアミンと良好に反応する。例えば、式(4-6)や式(4-7)に示すような芳香族ジイソシアネートは、ジアミンと良好に反応し、得られる液晶配向膜の耐熱性を向上させることができる。 When using aliphatic diisocyanates represented by formulas (4-1) to (4-5), aromatic diisocyanates represented by formulas (4-6) to (4-11) and formula (4-13) are used. The resulting polyurea copolymer is better soluble in a solvent than when a group diisocyanate is used. On the other hand, the aromatic diisocyanate reacts better with diamines than the aliphatic diisocyanate. For example, aromatic diisocyanates as shown in formulas (4-6) and (4-7) react favorably with diamines and can improve the heat resistance of the resulting liquid crystal alignment film.

上記ポリウレア共重合体を得るのに汎用性が高い化合物である、得られる上記ポリウレア共重合体の特性が良好になる、等の観点からは、式(4)は、式(4-1)、式(4-7)、式(4-8)、式(4-9)、又は式(4-10)が好ましい。また、式(5)は、得られる液晶配向膜の液晶配向性が良好になる観点からは、式(4-13)が好ましい。 Formula (4) is a compound with high versatility for obtaining the polyurea copolymer, and the resulting polyurea copolymer has good properties. Formula (4-7), formula (4-8), formula (4-9), or formula (4-10) is preferred. Further, formula (5) is preferably formula (4-13) from the viewpoint of improving the liquid crystal orientation of the obtained liquid crystal alignment film.

得たい特性に応じて、種々のその他のジイソシアネートを使用することができる。ただ、本発明で使用可能なジイソシアネートをその他のジイソシアネートに置き換える量が多過ぎると、目的とする特性が得られなくなる可能性があるため、その他のジイソシアネートの導入率は、本発明で使用可能な上記ジイソシアネートの全モルに対して、0~50mol%程が好ましい。 Various other diisocyanates can be used depending on the properties desired. However, if the amount of diisocyanate that can be used in the present invention is replaced with other diisocyanates is too large, the desired properties may not be obtained. It is preferably about 0 to 50 mol% based on the total mole of diisocyanate.

<反応溶液>
反応溶液(上記ポリウレア共重合体を得る為の反応に用いる有機溶媒)としては、上記ポリウレア共重合体が溶解する溶液であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。上記ポリウレア共重合体が析出しない範囲であれば、上記ポリウレア共重合体を溶解させない溶液であっても、上記反応溶液に混合して使用することができる。
<Reaction solution>
The reaction solution (organic solvent used in the reaction to obtain the polyurea copolymer) is not particularly limited as long as it can dissolve the polyurea copolymer. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, Dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl Cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, Dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl Ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl Butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, Methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3- Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N,N-dimethylpropanamide, Examples include 3-ethoxy-N,N-dimethylpropanamide and 3-butoxy-N,N-dimethylpropanamide. These may be used alone or in combination of two or more. As long as the polyurea copolymer does not precipitate, even a solution that does not dissolve the polyurea copolymer can be used by mixing it with the reaction solution.

また、反応溶液中の水分は重合反応を阻害し、更には生成したポリウレア共重合体を加水分解させる原因となるので、脱水乾燥させた反応溶液を用いることが好ましい。ジイソシアネートとジアミンとを反応溶液中で反応させる際には、ジアミンを分散或いは溶解させた反応溶液を攪拌させ、ジイソシアネートをそのまま、又は反応溶液に分散或いは溶解させて添加する方法、逆にジイソシアネートを分散又は溶解させた反応溶液にジアミンを添加する方法、ジイソシアネートとジアミンとを反応溶液に交互に添加する方法等が挙げられ、これらの何れの方法を用いてもよい。 Further, since water in the reaction solution inhibits the polymerization reaction and further causes hydrolysis of the produced polyurea copolymer, it is preferable to use a reaction solution that has been dehydrated and dried. When diisocyanate and diamine are reacted in a reaction solution, the reaction solution in which the diamine is dispersed or dissolved is stirred, and the diisocyanate is added as it is or after being dispersed or dissolved in the reaction solution, or conversely, the diisocyanate is added by dispersing or dissolving it in the reaction solution. Alternatively, a method of adding diamine to the dissolved reaction solution, a method of alternately adding diisocyanate and diamine to the reaction solution, etc., and any of these methods may be used.

また、ジイソシアネート又はジアミンが複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。その際の重合温度は-20℃から150℃の任意の温度を選択することができるが、好ましくは-5℃から100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量のポリウレア共重合体を得ることが難しくなり、濃度が高すぎると反応溶液の粘性が高くなり過ぎて均一な攪拌が困難となるので、ジイソシアネートとジアミンの反応溶液中での合計濃度は、好ましくは1質量%から50質量%、より好ましくは5質量%から30質量%である。反応初期は高濃度で行い、その後、反応溶液を追加することもできる。 In addition, when the diisocyanate or diamine consists of multiple types of compounds, they may be reacted in a pre-mixed state, or may be reacted individually in sequence, and furthermore, low molecular weight compounds reacted individually may be mixed and reacted to form a high molecular weight compound. It can also be used as a body. The polymerization temperature at that time can be selected from any temperature from -20°C to 150°C, but preferably from -5°C to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polyurea copolymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the total concentration of diisocyanate and diamine in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. It is also possible to carry out the reaction at a high concentration in the initial stage, and then add the reaction solution.

ポリウレアの重合反応においては、ジイソシアネートの合計モル数と、ジアミンの合計モル数と、の比は0.8から1.2であることが好ましい。通常の重縮合反応と同様、このモル比が1.0に近いほど、生成するポリウレア共重合体の分子量は大きくなる。 In the polyurea polymerization reaction, the ratio between the total number of moles of diisocyanate and the total number of moles of diamine is preferably from 0.8 to 1.2. As in normal polycondensation reactions, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyurea copolymer produced.

[ポリウレア共重合体の回収]
反応溶液から、生成した上記ポリウレア共重合体を回収するには、反応溶液を貧溶媒に投入して上記ポリウレア共重合体を沈殿させればよい。貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させた上記ポリウレア共重合体は、濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥させることができる。また、回収した上記ポリウレア共重合体を有機溶媒に再溶解させ、再沈殿及び再回収する操作を2回から10回繰り返すと、上記ポリウレア共重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの内から選ばれる3種以上の貧溶媒を用いると、精製の効率がより一層上がるので好ましい。
[Recovery of polyurea copolymer]
In order to recover the produced polyurea copolymer from the reaction solution, the reaction solution may be poured into a poor solvent to precipitate the polyurea copolymer. Examples of the poor solvent include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water, and the like. The polyurea copolymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Furthermore, by repeating the operations of redissolving the recovered polyurea copolymer in an organic solvent, re-precipitating and re-recovering 2 to 10 times, the amount of impurities in the polyurea copolymer can be reduced. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.

上記ポリウレア共重合体の分子量は、上記ポリウレア共重合体から得られる塗膜の強度、及び、塗膜を形成する時の作業の容易性、塗膜の膜厚の均一性、等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000から1,000,000とするのが好ましく、より好ましくは、10,000から150,000である。 The molecular weight of the above-mentioned polyurea copolymer is determined by considering the strength of the coating film obtained from the above-mentioned polyurea copolymer, the ease of work when forming the coating film, the uniformity of the film thickness of the coating film, etc. The weight average molecular weight measured by GPC (Gel Permeation Chromatography) is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 150,000.

<液晶配向剤>
本発明の一態様である液晶配向剤は、液晶配向膜を形成するための塗布液であり、塗膜(樹脂被膜)を形成するための樹脂成分が有機溶媒に溶解している。樹脂成分は、少なくとも一種の上記ポリウレア共重合体を含む。液晶配向剤中の、樹脂成分の含有量は2質量%から20質量%が好ましく、より好ましくは3質量%から15質量%、特に好ましくは3質量%から10質量%である。本発明において、樹脂成分に含まれるポリウレア共重合体は、その全てが上記ポリウレア共重合体であってもよく、本発明の趣旨の範囲内であれば、それ以外の重合体(他の重合体)が含まれていてもよい。樹脂成分中、他の重合体の含有量は0.5質量%から15質量%、好ましくは1質量%から10質量%である。かかる他の重合体は、例えば、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース、ポリシロキサン等が挙げられる。
<Liquid crystal alignment agent>
The liquid crystal aligning agent that is one embodiment of the present invention is a coating liquid for forming a liquid crystal aligning film, and a resin component for forming a coating film (resin film) is dissolved in an organic solvent. The resin component contains at least one of the above polyurea copolymers. The content of the resin component in the liquid crystal aligning agent is preferably from 2% by mass to 20% by mass, more preferably from 3% by mass to 15% by mass, particularly preferably from 3% by mass to 10% by mass. In the present invention, the polyurea copolymer contained in the resin component may be entirely the above-mentioned polyurea copolymer, or other polymers (other polymers) may be used as long as the polyurea copolymer contained in the resin component is within the spirit of the present invention. ) may be included. The content of other polymers in the resin component is from 0.5% by mass to 15% by mass, preferably from 1% by mass to 10% by mass. Examples of such other polymers include acrylic polymers, methacrylic polymers, novolac resins, polyhydroxystyrene, polyimide precursors, polyimides, polyamides, polyesters, cellulose, polysiloxanes, and the like.

上記液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。 The organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it can dissolve the resin component. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2 - Examples include pentanone. These may be used alone or in combination of two or more.

上記液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布して形成される塗膜の、膜厚の均一性や表面の平滑性を向上させる溶媒や化合物、又は、液晶配向膜と基板との密着性を向上させる化合物等である。 The liquid crystal aligning agent may contain components other than those mentioned above. Examples include solvents and compounds that improve the uniformity of the film thickness and surface smoothness of the coating film formed by applying the liquid crystal alignment agent, or those that improve the adhesion between the liquid crystal alignment film and the substrate. Compounds, etc.

膜厚の均一性や表面の平滑性を向上させる溶媒(貧溶媒)としては、低表面張力を有する溶媒、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの貧溶媒は1種でも複数種を混合して用いてもよい。上記貧溶媒を用いる場合は、液晶配向剤に含まれる有機溶媒全体の5質量%から80質量%であることが好ましく、より好ましくは20質量%から60質量%である。 Examples of solvents (poor solvents) that improve the uniformity of film thickness and surface smoothness include solvents with low surface tension, such as isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, Ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether , dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, Isobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, Methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3- Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1- Phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2- Examples include ethoxypropoxy)propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, and isoamyl lactate. These poor solvents may be used alone or in combination. When using the above-mentioned poor solvent, it is preferably from 5% by mass to 80% by mass, more preferably from 20% by mass to 60% by mass of the entire organic solvent contained in the liquid crystal aligning agent.

膜厚の均一性や塗膜表面の平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤等が挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含まれる樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。 Examples of compounds that improve the uniformity of the film thickness and the smoothness of the coating surface include fluorosurfactants, silicone surfactants, and nonionic surfactants. More specifically, for example, FTOP EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink), Florado FC430, FC431 (manufactured by Sumitomo 3M) , Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The usage ratio of these surfactants is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass, per 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is.

液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane , N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl- 1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis(oxyethylene)-3-aminopropyltrimethoxy Silane, N-bis(oxyethylene)-3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neo Pentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol , N,N,N',N',-tetraglycidyl-m-xylene diamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N',-tetraglycidyl -4,4'-diaminodiphenylmethane and the like.

更に、基板と膜の密着性の向上に加え、バックライトによる光の照射が原因となる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系の添加剤を添加してもよい。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。

Figure 0007410457000036
Furthermore, in addition to improving the adhesion between the substrate and the film, the following phenoplast-based additives may be added for the purpose of preventing deterioration of electrical properties caused by light irradiation from a backlight. Specific phenoplast additives are shown below, but are not limited to this structure.
Figure 0007410457000036

基板と膜との密着性を向上させる化合物を使用する場合、その化合物の使用量は、液晶配向剤に含まれる樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が上記値未満であると密着性が向上しにくくなり、上記値よりも多くなると液晶配向性が悪くなる場合がある。 When using a compound that improves the adhesion between the substrate and the film, the amount of the compound used is 0.1 parts by mass to 30 parts by mass per 100 parts by mass of the resin component contained in the liquid crystal aligning agent. is preferable, and more preferably from 1 part by weight to 20 parts by weight. If the amount used is less than the above value, it will be difficult to improve the adhesion, and if it is more than the above value, the liquid crystal orientation may deteriorate.

上記液晶配向剤には、上記のような溶媒や化合物の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、更には、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、所定の架橋性化合物を添加してもよい。 In addition to the above-mentioned solvents and compounds, the liquid crystal alignment agent may contain dielectric materials for the purpose of changing the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired. A predetermined crosslinking compound may be added for the purpose of increasing the hardness and compactness of the body, conductive material, and even the film when it is made into a liquid crystal aligning film.

<液晶配向膜・液晶表示素子>
上記液晶配向剤を、基板上に塗布して焼成した後、ラビングや光照射等で配向処理をすることで、又は垂直配向用途等では配向処理無しで、本発明の一態様である液晶配向膜を得ることができる。基板としては、透明性の高いガラス基板、又はプラスチック基板(例えば、アクリル基板やポリカーボネート基板)等を用いることができる。また、液晶を駆動させるためのITO電極等が形成された基板を用いることが、液晶表示素子を製造するプロセスを簡素化させる観点から好ましい。また、反射型の液晶表示素子では、片側の基板にシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミ等の光を反射する材料も使用できる。液晶配向剤を塗布する方法は特に限定されないが、工業的には、スピンコート印刷、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット印刷等が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナー等があり、目的に応じてこれらの方法を用いてもよい。
<Liquid crystal alignment film/liquid crystal display element>
The liquid crystal aligning agent, which is an embodiment of the present invention, can be applied to a substrate and then baked, and then subjected to alignment treatment by rubbing, light irradiation, etc., or without alignment treatment in vertical alignment applications, etc. can be obtained. As the substrate, a highly transparent glass substrate, a plastic substrate (for example, an acrylic substrate or a polycarbonate substrate), or the like can be used. Further, it is preferable to use a substrate on which ITO electrodes and the like for driving the liquid crystal are formed, from the viewpoint of simplifying the process of manufacturing the liquid crystal display element. In addition, in a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as the substrate on one side, and a material that reflects light such as aluminum can also be used for the electrodes in this case. The method of applying the liquid crystal aligning agent is not particularly limited, but industrially, spin coat printing, screen printing, offset printing, flexo printing, inkjet printing, etc. are common. Other coating methods include dip, roll coater, slit coater, spinner, etc., and these methods may be used depending on the purpose.

焼成は、ホットプレート等の加熱手段により50℃から300℃、好ましくは80℃から250℃で行うことができる。液晶配向剤中の有機溶媒を蒸発させることで、塗膜を形成させることができる。塗膜の厚みは、厚すぎると液晶表示素子の消費電力が増えやすく、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nmから300nm、より好ましくは10nmから150nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜を、ラビング又は偏光紫外線照射等で配向処理する。 Firing can be carried out at 50°C to 300°C, preferably 80°C to 250°C using a heating means such as a hot plate. A coating film can be formed by evaporating the organic solvent in the liquid crystal aligning agent. The thickness of the coating film is preferably from 5 nm to 300 nm, more preferably from 10 nm to 150 nm, because if it is too thick, the power consumption of the liquid crystal display element tends to increase, and if it is too thin, the reliability of the liquid crystal display element may decrease. . When liquid crystals are to be aligned horizontally or obliquely, the coating film after firing is subjected to an alignment treatment such as rubbing or irradiation with polarized ultraviolet rays.

上記した手法により、上記液晶配向剤から、液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製することで、本発明の一態様である液晶表示素子を得ることができる。液晶セルを作製する手法の一例としては、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法が挙げられる。このときのスペーサーの厚みは、好ましくは1μmから30μm、より好ましくは2μmから10μmである。上記液晶配向剤を用いて作製された上記液晶表示素子は、信頼性に優れるため、大画面で高精細の液晶テレビ等に好適に利用できる。 After obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment agent by the above-described method, a liquid crystal display element which is one embodiment of the present invention can be obtained by producing a liquid crystal cell by a known method. An example of a method for manufacturing a liquid crystal cell is to prepare a pair of substrates on which a liquid crystal alignment film is formed, and sprinkle spacers on the liquid crystal alignment film of one substrate so that the liquid crystal alignment film surface is on the inside. One method is to bond the other substrate together and inject liquid crystal under reduced pressure to seal it. Alternatively, a method may be used in which liquid crystal is dropped onto the surface of a liquid crystal alignment film on which spacers have been sprinkled, and then the substrates are bonded together for sealing. The thickness of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. The liquid crystal display element produced using the liquid crystal aligning agent has excellent reliability and can be suitably used for large-screen, high-definition liquid crystal televisions and the like.

<ジアミンの合成>
合成例1
ethyl(4-aminobenzyl)glycinate[NG4ABA]の合成
<Synthesis of diamine>
Synthesis example 1
Synthesis of ethyl (4-aminobenzyl) glycinate [NG4ABA]

Figure 0007410457000037
Figure 0007410457000037

第1工程
窒素導入管と還流管を備えた1Lの4口フラスコに、グリシンエチル塩酸塩105.6g(0.757mol)、THF500g、トリエチルアミン93.6g(0.925mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌した後、THFが還流する温度(設定70℃)で加熱し、4-ニトロベンジルブロミド50.0g(0.231mol)をTHF500.0gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。4-ニトロベンジルブロミドが消失した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル300.0gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液300gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル300gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去して、目的物(ニトロ体)である薄黄色の粘体46.0g(0.193mol)を得た。目的物が得られたことを、H-NMRで確認した。
H NMR (500MHz、CDCl):δ 8.2(2H)、7.53(2H)、4.22(2H)、3.93(2H)、3.42(2H)、1.89(1H)、1.27(3H)
1st step: Add 105.6 g ( 0.757 mol ) of glycine ethyl hydrochloride, 500 g of THF, and 93.6 g (0.925 mol) of triethylamine to a 1 L 4-necked flask equipped with a nitrogen introduction tube and a reflux tube, and use a mechanical stirrer. After stirring at room temperature for 1 hour, the mixture was heated at a temperature at which THF refluxed (set at 70°C), 50.0 g (0.231 mol) of 4-nitrobenzyl bromide was dissolved in 500.0 g of THF, and this was slowly added dropwise. After the dropwise addition was completed, the reaction was continued for an additional 24 hours. The reaction was terminated when 4-nitrobenzyl bromide disappeared, the precipitated solid was removed by filtration, THF was removed using a rotary evaporator, and the resulting crude product was redissolved in 300.0 g of ethyl acetate. This solution was washed three times with 100 g of pure water, 300 g of a 10% aqueous hydrochloric acid solution was added, stirred for 1 hour, the aqueous layer was collected, and the aqueous layer was washed three times with 100 g of ethyl acetate. Further, 300 g of ethyl acetate was added to the aqueous layer, potassium carbonate was slowly added, the pH was adjusted to about 10, and the mixture was stirred for 1 hour. The organic phase was collected and washed three times with 100 g of pure water. Add anhydrous magnesium sulfate to this organic phase, dry it, filter it, add activated carbon and stir for a while, then remove the activated carbon by filtration, and remove the solvent with a rotary evaporator to obtain the target product (nitro compound), a light yellow. 46.0 g (0.193 mol) of viscous material was obtained. It was confirmed by 1 H-NMR that the target product was obtained.
1H NMR (500MHz, CDCl3 ): δ 8.2 (2H), 7.53 (2H), 4.22 (2H), 3.93 (2H), 3.42 (2H), 1.89 ( 1H), 1.27 (3H)

第2工程
窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体45.0g(0.19mol)、THF300.0g、鉄ドープ型白金カーボン4.5gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物である薄黄色の粘体35.4g(0.17mol:収率89%)を得た。目的物(NG4ABA)が得られたことを、H-NMRで確認した。
H NMR (500MHz、CDCl):δ 6.99(2H)、6.63(2H)、4.15(2H)、3.70(2H)、3.38(2H)、3.00(2H)、1.24(3H)
2nd step Add 45.0 g (0.19 mol) of the nitro compound obtained above, 300.0 g of THF, and 4.5 g of iron-doped platinum carbon to a 500 ml four-necked flask equipped with a nitrogen introduction tube and a stirrer. The inside of the container was carefully replaced with a hydrogen atmosphere, and the reaction was allowed to proceed at room temperature for 24 hours. The reaction was terminated when the raw materials disappeared, and the platinum carbon was removed with a membrane filter. Activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40°C for 30 minutes. Thereafter, it was filtered again, the solvent was removed using a rotary evaporator, and then dried using a high vacuum pump to obtain 35.4 g (0.17 mol, yield: 89%) of a pale yellow viscous substance, which was the desired product. It was confirmed by 1 H-NMR that the target product (NG4ABA) was obtained.
1H NMR (500MHz, CDCl3 ): δ 6.99 (2H), 6.63 (2H), 4.15 (2H), 3.70 (2H), 3.38 (2H), 3.00 ( 2H), 1.24 (3H)

合成例2
ethyl(4-aminophenethyl)glycinate[NG4APhA]の合成
Synthesis example 2
Synthesis of ethyl (4-aminophenethyl) glycinate [NG4APhA]

Figure 0007410457000038
Figure 0007410457000038

第1工程
窒素導入管と還流管を備えた1Lの4口フラスコに、4-ニトロフェネチルアミン塩酸塩50g(0.246mol)、THF500g、トリエチルアミン61.1g(0.604mol)を加え、メカニカルスターラーを用いて室温で1時間撹拌し、THFが還流する温度(設定70℃)で加熱し、2-クロロ酢酸エチル25.1g(0.205mol)をTHF300gに溶解させてこれをゆっくり滴下し、滴下終了後、更に24時間反応させた。2-クロロ酢酸エチルが消失(HPLCにて確認)した時点で反応終了とし、析出している固体を濾過により除去し、THFをロータリーエバポレーターで除去し、得られた粗物を酢酸エチル500gで再溶解させた。この溶液を純水100gで3回洗浄し、10%塩酸水溶液500gを加え、1時間撹拌し、水層側を回収して、その水層を酢酸エチル100gで3回洗浄した。水層に更に酢酸エチル500gを加え、炭酸カリウムをゆっくり加え、pHを10程にして1時間撹拌し、有機相側を回収し、純水100gで3回洗浄した。この有機相に無水硫酸マグネシウムを加えて乾燥させ、濾過し、活性炭を加えしばらく撹拌した後、濾過により活性炭を取り除き、ロータリーエバポレーターで溶媒を除去し、目的物である薄黄色の粘体34.2g(0.136mol:収率66%)を得た。目的物(ニトロ体)が得られたことを、H-NMRで確認した。
H NMR (500MHz、CDCl):δ 8.14(2H)、7.37(2H)、4.16(2H)、3.43(2H)、2.95(4H)、2.19(1H)、1.25(3H)
1st step: Add 50 g (0.246 mol) of 4-nitrophenethylamine hydrochloride, 500 g of THF, and 61.1 g (0.604 mol) of triethylamine to a 1 L 4-necked flask equipped with a nitrogen introduction tube and a reflux tube, and use a mechanical stirrer. Stir at room temperature for 1 hour, heat at a temperature at which THF refluxes (set at 70°C), dissolve 25.1 g (0.205 mol) of ethyl 2-chloroacetate in 300 g of THF, and slowly dropwise add this solution. , and further reacted for 24 hours. The reaction was terminated when 2-chloroethyl acetate disappeared (confirmed by HPLC), the precipitated solid was removed by filtration, THF was removed using a rotary evaporator, and the resulting crude product was re-distilled with 500 g of ethyl acetate. Dissolved. This solution was washed three times with 100 g of pure water, 500 g of a 10% aqueous hydrochloric acid solution was added, stirred for 1 hour, the aqueous layer side was collected, and the aqueous layer was washed three times with 100 g of ethyl acetate. Further, 500 g of ethyl acetate was added to the aqueous layer, potassium carbonate was slowly added, the pH was adjusted to about 10, and the mixture was stirred for 1 hour. The organic phase was collected and washed three times with 100 g of pure water. Anhydrous magnesium sulfate was added to this organic phase, it was dried, filtered, activated carbon was added and stirred for a while, the activated carbon was removed by filtration, and the solvent was removed using a rotary evaporator. 0.136 mol (yield 66%) was obtained. It was confirmed by 1 H-NMR that the target product (nitro compound) was obtained.
1H NMR (500MHz, CDCl3 ): δ 8.14 (2H), 7.37 (2H), 4.16 (2H), 3.43 (2H), 2.95 (4H), 2.19 ( 1H), 1.25 (3H)

第2工程
窒素導入管と撹拌子を備えた500mlの4口フラスコに、上記で得られたニトロ体30.0g、THF300g、鉄ドープ型白金カーボン3.0gを加え、容器内を注意深く水素雰囲気下に置換し、室温で24時間反応させた。原料が消失した時点で反応終了とし、白金カーボンをメンブランフィルターで除去し、ろ液に活性炭(白鷺製)を加え、40℃で30分撹拌した。その後、再び濾過し、ロータリーエバポレーターで溶媒を除去した後、高真空ポンプで乾燥させ、目的物(NG4APhA)である薄黄色の粘体25.1g(0.113mol:収率95%)を得た。目的物が得られたことをH-NMRで確認した。
H NMR (500MHz、CDCl):δ 6.99(2H)、6.60(2H)、4.18(2H)、3.42(2H)、2.89(2H)、2.86(2H)、2.75(2H)、1.24(3H)
2nd step: Add 30.0 g of the nitro compound obtained above, 300 g of THF, and 3.0 g of iron-doped platinum carbon to a 500 ml four-necked flask equipped with a nitrogen inlet tube and a stirrer, and carefully place the inside of the container under a hydrogen atmosphere. was substituted with , and the reaction was allowed to proceed at room temperature for 24 hours. The reaction was terminated when the raw materials disappeared, and the platinum carbon was removed with a membrane filter. Activated carbon (manufactured by Shirasagi) was added to the filtrate, and the mixture was stirred at 40°C for 30 minutes. Thereafter, it was filtered again, and the solvent was removed using a rotary evaporator, and then dried using a high vacuum pump to obtain 25.1 g (0.113 mol, yield 95%) of a pale yellow viscous substance, which was the target product (NG4APhA). It was confirmed by 1 H-NMR that the target product was obtained.
1H NMR (500MHz, CDCl3 ): δ 6.99 (2H), 6.60 (2H), 4.18 (2H), 3.42 (2H), 2.89 (2H), 2.86 ( 2H), 2.75 (2H), 1.24 (3H)

<略語>
液晶配向剤の調製で用いる略号は以下の通りである。
(ジイソシアネート)
Me-DIDPA:N,N-ビス(4-イソシアナトフェニル)-N-メチルアミン
<Abbreviation>
The abbreviations used in the preparation of the liquid crystal aligning agent are as follows.
(Diisocyanate)
Me-DIDPA: N,N-bis(4-isocyanatophenyl)-N-methylamine

Figure 0007410457000039
Figure 0007410457000039

(ジアミン)
NG4ABA:エチル(4-アミノベンジル)グリシネート
NG4APhA:エチル(4-アミノフェネチル)グリシネート
DADPA:4,4’-ジアミノジフェニルアミン
Me-DADPA:N-メチル-4,4’-ジアミノジフェニルアミン
Me-DPPDA:N-メチル-2,5-ジ-4-アミノフェニルピロール
DA-2MG:1,2-ビス(4-アミノフェノキシ)エタン
(diamine)
NG4ABA: Ethyl (4-aminobenzyl) glycinate NG4APhA: Ethyl (4-aminophenethyl) glycinate DADPA: 4,4'-diaminodiphenylamine Me-DADPA: N-methyl-4,4'-diaminodiphenylamine Me-DPPDA: N- Methyl-2,5-di-4-aminophenylpyrrole DA-2MG: 1,2-bis(4-aminophenoxy)ethane

Figure 0007410457000040
DADPA、Me-DADPA、Me-DPPDAは公知の化合物であり、文献記載の手法にて合成したものを用いた。
Figure 0007410457000040
DADPA, Me-DADPA, and Me-DPPDA are known compounds, and those synthesized by methods described in literature were used.

(テトラカルボン酸二無水物)
CBDA:1,2,3,4―シクロブタンテトラカルボン酸二無水物
13DMCBDA:1,3-ジメチル-1,2,3,4―シクロブタンテトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride 13DMCBDA: 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride

Figure 0007410457000041
Figure 0007410457000041

(溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γブチロラクトン
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve GBL: γ-butyrolactone

また、ポリイミドの分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)
カラム:Shodex社製カラム(KD-803、KD-805)
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、THFが10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)
Moreover, the conditions for measuring the molecular weight of polyimide are as follows.
Equipment: Room temperature gel permeation chromatography (GPC) equipment (SSC-7200) manufactured by Senshu Kagaku Co., Ltd.
Column: Shodex column (KD-803, KD-805)
Column temperature: 50℃
Eluent: N,N'-dimethylformamide (as additives, 30 mmol/L of lithium bromide hydrate (LiBr.H 2 O), 30 mmol/L of phosphoric acid anhydrous crystals (o-phosphoric acid), THF is 10ml/L)
Flow rate: 1.0 ml/min Standard samples for creating a calibration curve: TSK standard polyethylene oxide manufactured by Tosoh Corporation (molecular weight approx. 9000,000, 150,000, 100,000, 30,000) and polyethylene glycol manufactured by Polymer Laboratory Co., Ltd. Molecular weight approximately 12,000, 4,000, 1,000)

<ポリウレア共重合体の合成>
実施例1
Me-DIDPA/NG4ABA、DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.22g(15.92mmol)を測り取り、NMP29.9gを加え溶解させ、NG4ABA1.49g(7.16mmol)を加え室温で1時間反応させ、更にDADPA1.59g(7.96mmol)を加え、窒素雰囲気40℃で10時間反応させた。これにより、濃度15質量%、粘度420mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え、室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-1)を得た。
<Synthesis of polyurea copolymer>
Example 1
Me-DIDPA/NG4ABA, DADPA
Measure out 4.22 g (15.92 mmol) of Me-DIDPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, add 29.9 g of NMP to dissolve it, add 1.49 g (7.16 mmol) of NG4ABA, and let it cool at room temperature. The mixture was reacted for 1 hour, and 1.59 g (7.96 mmol) of DADPA was further added, and the mixture was reacted for 10 hours at 40° C. in a nitrogen atmosphere. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 420 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polyurea copolymer (polymer diluted solution: P-1) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

実施例2
Me-DIDPA/NG4ABA、Me-DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.22g(15.92mmol)を測り取り、NMP29.9gを加え溶解させ、NG4ABA1.59g(7.63mmol)を加え室温で1時間反応させ、更にMe-DADPA1.70g(7.96mmol)を加え、窒素雰囲気40℃で10時間反応させた。これにより、濃度15質量%、粘度380mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え、室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-2)を得た。
Example 2
Me-DIDPA/NG4ABA, Me-DADPA
Measure out 4.22 g (15.92 mmol) of Me-DIDPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, add 29.9 g of NMP to dissolve it, add 1.59 g (7.63 mmol) of NG4ABA, and let it cool at room temperature. The mixture was reacted for 1 hour, and 1.70 g (7.96 mmol) of Me-DADPA was further added, and the mixture was reacted for 10 hours at 40° C. in a nitrogen atmosphere. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 380 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polyurea copolymer (polymer diluted solution: P-2) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

実施例3
Me-DIDPA/NG4APhA、Me-DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.22g(15.92mmol)を測り取り、NMP30.5gを加え溶解させ、NG4APhA1.70g(7.63mmol)を加え室温で1時間反応させ、更にMe-DADPA1.70g(7.96mmol)を加え、窒素雰囲気40℃で24時間反応させた。これにより、濃度15質量%、粘度420mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-3)を得た。
Example 3
Me-DIDPA/NG4APhA, Me-DADPA
Weigh out 4.22 g (15.92 mmol) of Me-DIDPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirring bar, add 30.5 g of NMP to dissolve it, add 1.70 g (7.63 mmol) of NG4APhA, and let the mixture cool to room temperature. The mixture was reacted for 1 hour, and 1.70 g (7.96 mmol) of Me-DADPA was further added, and the mixture was reacted for 24 hours at 40° C. in a nitrogen atmosphere. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 420 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polyurea copolymer (polymer diluted solution: P-3) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

実施例4
Me-DIDPA/NG4ABA、Me-DPPDA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.22g(15.92mmol)を測り取り、NMP32.8gを加え溶解させ、NG4ABA1.59g(7.63mmol)を加え室温で1時間反応させ、更にMe-DPPDA2.09g(7.96mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度350mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、のポリウレア共重合体(ポリマー希釈溶液:P-4)を得た。
Example 4
Me-DIDPA/NG4ABA, Me-DPPDA
Weigh out 4.22 g (15.92 mmol) of Me-DIDPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, add 32.8 g of NMP to dissolve it, add 1.59 g (7.63 mmol) of NG4ABA, and let the mixture cool at room temperature. The mixture was reacted for 1 hour, and 2.09 g (7.96 mmol) of Me-DPPDA was further added, and the mixture was reacted for 24 hours at 23° C. in a nitrogen atmosphere. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 350 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polyurea copolymer (polymer diluted solution: P-4) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

比較例1
Me-DIDPA/Me-DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DIDPA4.22g(15.96mmol)を測り取り、NMP40.5gを加え溶解させ、Me-DADPA3.15g(14.78mmol)を加え、窒素雰囲気下40℃で24時間反応させた。しかし、反応進行に従い攪拌不可能になり、ポリマー希釈溶液(PRef-1)の調整はできなかった。
Comparative example 1
Me-DIDPA/Me-DADPA
Weighed 4.22 g (15.96 mmol) of Me-DIDPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, added 40.5 g of NMP and dissolved it, and added 3.15 g (14.78 mmol ) of Me-DADPA. was added and reacted at 40° C. for 24 hours under a nitrogen atmosphere. However, as the reaction progressed, stirring became impossible, and the diluted polymer solution (PRef-1) could not be prepared.

比較例2
CBDA/DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、DADPA4.00g(20.01mmol)を測り取り、NMP43.5gを加え溶解させ、CBDA3.67g(18.61mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度520mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-2)を得た。
Comparative example 2
CBDA/DADPA
Weigh out 4.00 g (20.01 mmol) of DADPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, add 43.5 g of NMP and dissolve it, add 3.67 g (18.61 mmol) of CBDA, and place in a nitrogen atmosphere. The reaction was carried out at ℃ for 24 hours. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 520 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polymer (polymer diluted solution: PRef-2) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

比較例3
CBDA/Me-DADPA
窒素導入管と撹拌子を備えた50mlの2口フラスコに、Me-DADPA4.00g(18.75mmol)を測り取り、NMP42.04gを加え溶解させ、CBDA3.42g(17.44mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度440mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-3)を得た。
Comparative example 3
CBDA/Me-DADPA
Weigh out 4.00 g (18.75 mmol) of Me-DADPA into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirrer, add 42.04 g of NMP and dissolve it, add 3.42 g (17.44 mmol) of CBDA, and add nitrogen The reaction was carried out at an atmosphere of 23° C. for 24 hours. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 440 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polymer (polymer diluted solution: PRef-3) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

比較例4
CBDA、13DMCBDA/DA-2MG
窒素導入管と撹拌子を備えた50mlの2口フラスコに、DA-2MG4.00g(16.38mmol)を測り取り、NMP40.91gを加え溶解させ、13DMCBDA1.84g(8.19mmol)とCBDA1.38g(7.04mmol)を加え、窒素雰囲気23℃で24時間反応させた。これにより、濃度15質量%、粘度470mPas、のポリマー溶液を得た。撹拌子を備えた100mlの三角フラスコに、上記ポリマー溶液20.0gを測り取り、NMP15.0g、BCS15.0gを加え室温で30分撹拌した。これにより、固形分6.0質量%、NMP64質量%、BCS30質量%、の重合体(ポリマー希釈溶液:PRef-4)を得た。
Comparative example 4
CBDA, 13DMCBDA/DA-2MG
Weigh out 4.00 g (16.38 mmol) of DA-2MG into a 50 ml two-necked flask equipped with a nitrogen inlet tube and a stirring bar, add 40.91 g of NMP and dissolve it, and add 1.84 g (8.19 mmol) of 13DMCBDA and 1.38 g of CBDA. (7.04 mmol) was added and reacted for 24 hours at 23° C. in a nitrogen atmosphere. As a result, a polymer solution having a concentration of 15% by mass and a viscosity of 470 mPas was obtained. 20.0 g of the above polymer solution was weighed into a 100 ml Erlenmeyer flask equipped with a stirrer, 15.0 g of NMP and 15.0 g of BCS were added, and the mixture was stirred at room temperature for 30 minutes. As a result, a polymer (polymer diluted solution: PRef-4) having a solid content of 6.0% by mass, NMP 64% by mass, and BCS 30% by mass was obtained.

<透過率の測定(膜の着色の評価)>
実施例で得られたポリウレア共重合体(P-1~P-4)及び比較例で得られた重合体(PRef-2~PRef-3)を、洗浄し乾燥させた石英ガラス基板(30mm×30mm、厚さ1.1mm)に、焼成後の膜厚が100nmの厚さになるようにスピンコート印刷により塗布し、ホットプレートで、80℃の温度で1分、220℃の温度で20分焼成した。これにより、透過率測定用のサンプル(透過率測定用の膜)を作成した。透過率の測定は、島津製作所製のUV-3600を用いて行い、350nm及び370nmの透過率と、UVスペクトルの吸収端の波長と、を評価することで、膜の着色を評価した。また、目視により色目を評価した。
<Measurement of transmittance (evaluation of film coloring)>
The polyurea copolymers (P-1 to P-4) obtained in the examples and the polymers (PRef-2 to PRef-3 ) obtained in the comparative examples were placed on a washed and dried quartz glass substrate (30 mm x 30mm, thickness 1.1mm) by spin coat printing so that the film thickness after firing is 100nm, and using a hot plate at 80°C for 1 minute and 220°C for 20 minutes. Fired. In this way, a sample for transmittance measurement (a membrane for transmittance measurement) was created. The transmittance was measured using UV-3600 manufactured by Shimadzu Corporation, and the coloration of the film was evaluated by evaluating the transmittance at 350 nm and 370 nm and the wavelength at the absorption edge of the UV spectrum. In addition, the odor was evaluated visually.

評価結果を表1に示す。UV透過率の項目は、その数値が大きいほど、膜の着色度合いが小さいことを意味する。また、UV吸収端の項目は、その数値が大きいほど、膜の着色度合いが小さいことを意味する。 The evaluation results are shown in Table 1. The item of UV transmittance means that the larger the value, the smaller the degree of coloring of the film. Further, in the item of UV absorption edge, the larger the value, the lower the degree of coloring of the film.

Figure 0007410457000042
Figure 0007410457000042

実施例1~4(P-1~P-4)は、重合体全体におけるジフェニルアミン類の比率が比較例2~3(PRef-2~PRef-3)より多いにも関わらず、得られた膜は無色であった。つまり、実施例1~4のポリウレア共重合体を用いることで、比較例2~3の重合体を用いる場合と比べて、透明性の高い膜が得られることが確認された。実施例1~4のポリウレア共重合体を用いて得られた膜と、比較例2~3の重合体を用いて得られた膜と、では、UV透過率及びUV吸収端でも差がみられ、特に、目視で観察した際は色の違いは顕著であった。 In Examples 1 to 4 (P-1 to P-4), although the ratio of diphenylamines in the entire polymer was higher than that of Comparative Examples 2 to 3 (PRef-2 to PRef-3), the obtained membranes was colorless. In other words, it was confirmed that by using the polyurea copolymers of Examples 1 to 4, a film with higher transparency could be obtained compared to the case of using the polymers of Comparative Examples 2 to 3. There were also differences in UV transmittance and UV absorption edge between the films obtained using the polyurea copolymers of Examples 1 to 4 and the films obtained using the polymers of Comparative Examples 2 to 3. The difference in color was particularly noticeable when visually observed.

<液晶配向剤の調製>
実施例5
撹拌子を備えた50mlの三角フラスコに、実施例1で得られたポリウレア共重合体(P-1)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-1)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-1)を得た。
<Preparation of liquid crystal alignment agent>
Example 5
In a 50 ml Erlenmeyer flask equipped with a stirrer, 21.0 g of the polyurea copolymer (P-1) obtained in Example 1 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. It was measured and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-1) having a mass ratio of polyurea copolymer ( P-1 ) and polymer (PRef-4) of 7:3 was obtained.

実施例6
撹拌子を備えた50mlの三角フラスコに、実施例2で得られたポリウレア共重合体(P-2)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-2)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-2)を得た。
Example 6
In a 50 ml Erlenmeyer flask equipped with a stirrer, 21.0 g of the polyurea copolymer (P-2) obtained in Example 2 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. It was measured and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-2) having a mass ratio of polyurea copolymer (P-2) and polymer (PRef-4) of 7:3 was obtained.

実施例7
撹拌子を備えた50mlの三角フラスコに、実施例3で得られたポリウレア共重合体(P-3)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-3)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-3)を得た。
Example 7
In a 50 ml Erlenmeyer flask equipped with a stirrer, 21.0 g of the polyurea copolymer (P-3) obtained in Example 3 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. It was measured and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-3) having a mass ratio of polyurea copolymer (P-3) and polymer (PRef-4) of 7:3 was obtained.

実施例8
撹拌子を備えた50mlの三角フラスコに、実施例4で得られたポリウレア共重合体(P-4)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、ポリウレア共重合体(P-4)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-4)を得た。
Example 8
In a 50 ml Erlenmeyer flask equipped with a stirrer, 21.0 g of the polyurea copolymer (P-4) obtained in Example 4 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 were added. It was measured and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-4) having a mass ratio of polyurea copolymer (P-4) and polymer (PRef-4) of 7:3 was obtained.

比較例5
撹拌子を備えた50mlの三角フラスコに、比較例2で得られた重合体(PRef-2)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、重合体(PRef-2)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-5)を得た。
Comparative example 5
Weigh out 21.0 g of the polymer (PRef-2) obtained in Comparative Example 2 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 into a 50 ml Erlenmeyer flask equipped with a stirrer. , and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-5) having a mass ratio of polymer (PRef-2) and polymer (PRef-4) of 7:3 was obtained.

比較例6
撹拌子を備えた50mlの三角フラスコに、比較例3で得られた重合体(PRef-3)21.0g、及び比較例4で得られた重合体(PRef-4)9.0gを測り取り、30分間攪拌した。これにより、重合体(PRef-3)と重合体(PRef-4)の質量比が7:3の、液晶配向剤(AL-6)を得た。
Comparative example 6
Weigh out 21.0 g of the polymer (PRef-3) obtained in Comparative Example 3 and 9.0 g of the polymer (PRef-4) obtained in Comparative Example 4 into a 50 ml Erlenmeyer flask equipped with a stirrer. , and stirred for 30 minutes. As a result, a liquid crystal aligning agent (AL-6) having a mass ratio of polymer (PRef-3) and polymer (PRef-4) of 7:3 was obtained.

実施例5~8の液晶配向剤(AL-1~AL-4)及び比較例5~6の液晶配向剤(AL-5~AL-6)を用いて、下記手法に基づき、液晶配向膜を評価した。 Using the liquid crystal alignment agents (AL-1 to AL-4) of Examples 5 to 8 and the liquid crystal alignment agents (AL-5 to AL-6) of Comparative Examples 5 to 6, a liquid crystal alignment film was formed based on the following method. evaluated.

<白化耐性及び塗布性(印刷性)の評価>
得られた液晶配向剤を、よく洗浄したCr基板にそれぞれ1滴たらし、室温25℃、湿度60%で放置して、白くなる(白化する)までの時間を測定した。測定した時間に基づき、白化耐性を評価した。
<Evaluation of whitening resistance and coatability (printability)>
One drop of each of the obtained liquid crystal alignment agents was placed on a well-cleaned Cr substrate, and the substrate was left at a room temperature of 25° C. and a humidity of 60%, and the time until it turned white was measured. Whitening resistance was evaluated based on the measured time.

液晶配向剤を1.0μmのフィルターで濾過した後、洗浄したCr板上に配向膜印刷機(日本写真印刷社製「オングストローマー」)を用いてフレキソ印刷を行うことにより、塗布性試験を行った。 After filtering the liquid crystal alignment agent through a 1.0 μm filter, a coating property test was performed by performing flexographic printing on a washed Cr plate using an alignment film printing machine (“Angstromer” manufactured by Nissha Printing Co., Ltd.). went.

アニロックスロールに約1.0mlの液晶配向剤を滴下し、空運転を10回実施した後、10分間印刷機を止め、印刷版を乾燥させた。その後、Cr基板1枚に印刷を行い、印刷後の基板を70℃のホットプレート上に5分間放置して、塗膜の仮乾燥を行い、膜状態を観察した。目視と、光学顕微鏡(ニコン社製「ECLIPSE ME600」)での倍率50倍とで、主に膜厚ムラやエッジ部の膜厚ムラを観察した。 About 1.0 ml of liquid crystal alignment agent was dropped onto the anilox roll, and after 10 idle runs, the printing press was stopped for 10 minutes and the printing plate was dried. Thereafter, printing was performed on one Cr substrate, and the printed substrate was left on a hot plate at 70° C. for 5 minutes to temporarily dry the coating film, and the state of the film was observed. The film thickness unevenness and the film thickness unevenness at the edge portion were mainly observed visually and with an optical microscope ("ECLIPSE ME600" manufactured by Nikon Corporation) at a magnification of 50 times.

<ラビング耐性の評価>
液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート印刷により塗布した。80℃のホットプレート上で5分間乾燥させた後、220℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.5mm)した後、膜の表面を共焦点レーザー顕微鏡により観察した。膜の剥離が見られず、かつ膜上に削れカスや傷が多く見られない場合は「良好」と評価し、何らかの不具合が確認された場合は「不良」と評価した。
<Evaluation of rubbing resistance>
After filtering the liquid crystal aligning agent with a 1.0 μm filter, a substrate with electrodes (a glass substrate with dimensions of 30 mm in width x 40 mm in height and a thickness of 1.1 mm.The electrodes are rectangular with a width of 10 mm x length of 40 mm, It was applied onto an ITO electrode (35 nm thick) by spin coat printing. After drying on a hot plate at 80°C for 5 minutes, baking was performed in an IR oven at 220°C for 20 minutes to form a coating film with a thickness of 100 nm. After rubbing this film with rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, indentation length: 0.5 mm), the surface of the film was confocal Observation was made using a laser microscope. If no peeling of the film was observed, and if there were not many scrapes or scratches on the film, it was evaluated as "good", and if any defects were confirmed, it was evaluated as "poor".

<電圧保持率>
[液晶配向性の観察、及び液晶セルの作製]
液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート印刷により塗布した。50℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この膜をレーヨン布(吉川化工製YA-20R)でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中で1分間、超音波を照射して洗浄し、エアブローで水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
<Voltage holding rate>
[Observation of liquid crystal orientation and fabrication of liquid crystal cell]
After filtering the liquid crystal aligning agent with a 1.0 μm filter, a substrate with electrodes (a glass substrate with dimensions of 30 mm in width x 40 mm in height and a thickness of 1.1 mm.The electrodes are rectangular with a width of 10 mm x length of 40 mm, It was applied onto an ITO electrode (35 nm thick) by spin coat printing. After drying on a hot plate at 50°C for 5 minutes, baking was performed in an IR oven at 180°C for 20 minutes to form a coating film with a thickness of 100 nm. This film was rubbed with rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, pushing length: 0.4 mm), and then immersed in pure water for 1 minute. After washing by irradiating ultrasonic waves and removing water droplets by air blowing, the substrate was dried at 80° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.

上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、MLC-2041(メルク株式会社製)を注入し、注入口を封止して液晶セルを得た。その後、液晶配向性を観察した後、液晶セルを110℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用の液晶セルを得た。 Prepare two substrates with the above liquid crystal alignment film, sprinkle 4 μm spacers on the surface of one of the liquid crystal alignment films, print a sealant on top of it, and rub the other substrate in the opposite direction. After pasting them together so that the film surfaces faced each other, the sealant was cured to create an empty cell. MLC-2041 (manufactured by Merck & Co., Ltd.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, after observing the liquid crystal orientation, the liquid crystal cell was heated at 110° C. for 1 hour and left at 23° C. overnight to obtain a liquid crystal cell for voltage holding rate measurement.

上記の手順で得られた電圧保持率測定用の液晶セルを用いて、60℃の温度下で1Vの電圧を60μs間印加し、166.7ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。 Using the liquid crystal cell for voltage retention measurement obtained in the above procedure, a voltage of 1V was applied for 60μs at a temperature of 60℃, the voltage after 166.7ms was measured, and how long the voltage could be maintained was measured. The voltage holding rate was calculated as the voltage holding rate. Note that a VHR-1 voltage holding rate measuring device manufactured by Toyo Technica Co., Ltd. was used to measure the voltage holding rate.

[RDC(残留電圧:電圧の印加を解除した後も残留する電圧をいう)の蓄積に関する特性、及び蓄積電荷の緩和に関する特性の測定]
上記の電圧保持率測定用の液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定した輝度(LEDバックライトを透過する光の輝度)が最小となるように、液晶セルの角度を調節した。
[Measurement of characteristics related to accumulation of RDC (residual voltage: voltage that remains even after voltage application is removed) and characteristics related to relaxation of accumulated charge]
The above liquid crystal cell for voltage holding rate measurement was installed between two polarizing plates arranged so that the polarization axes were perpendicular to each other, and the pixel electrode and the counter electrode were short-circuited to have the same potential. The LED backlight is irradiated from below the polarizing plate, and the angle of the liquid crystal cell is adjusted so that the brightness measured on the two polarizing plates (the brightness of the light transmitted through the LED backlight) is the minimum. did.

次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。この交流電圧は、電圧に対する輝度の変化が大きい領域に相当するため、RDCを評価するのに都合がよい。 Next, while applying a rectangular wave with a frequency of 30 Hz to this liquid crystal cell, the VT characteristics (voltage-transmittance characteristics) at a temperature of 23°C were measured, and the AC voltage at which the relative transmittance was 23% was determined. Calculated. This alternating current voltage corresponds to a region where the luminance changes significantly with respect to voltage, and is therefore convenient for evaluating RDC.

次に、相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を印加しながら、+3.0Vの直流電圧を重畳し1時間駆動させ、1時間後のフリッカー(チラつき)のレベルを測定し、それをRDCの蓄積レベルに変換することで、蓄積電荷の量を見積もった。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加し、このときに発生するフリッカーのレベルと、そのフリッカーが発生しなくなるまでの時間(回復時間)を測定した。 Next, while applying an AC voltage with a relative transmittance of 23% and a rectangular wave with a frequency of 30 Hz, +3.0 V DC voltage was superimposed and driven for 1 hour, and the flicker level after 1 hour was determined. The amount of accumulated charge was estimated by measuring and converting it to the RDC accumulation level. After that, the DC voltage was turned off, and an AC voltage with a relative transmittance of 23% and only a rectangular wave with a frequency of 30 Hz was applied for 30 minutes, and the level of flicker that occurred at this time and the time until the flicker stopped occurring. The time (recovery time) was measured.

蓄積電荷の緩和が速いほど、上記回復時間が短く、すなわち、RDCの緩和特性が良好である。なお、フリッカーの強度の算出は、フォトダイオードとAC-DCコンバータを用いて輝度を直流電圧に変換し、これをオシロスコープで読み取ることで行うことができる。フリッカーが発生した場合、30Hzの矩形波に相関した交流電圧としてモニターされるため、この交流電圧が直流になる時間を、RDCの緩和時間とみなすことができる。各種評価の結果を表2及び表3に示す。 The faster the accumulated charge is relaxed, the shorter the recovery time is, that is, the better the RDC relaxation characteristics are. Note that the flicker intensity can be calculated by converting the brightness into a DC voltage using a photodiode and an AC-DC converter, and reading this with an oscilloscope. When flicker occurs, it is monitored as an alternating current voltage correlated to a 30 Hz rectangular wave, so the time when this alternating current voltage becomes direct current can be regarded as the relaxation time of RDC. The results of various evaluations are shown in Tables 2 and 3.

Figure 0007410457000043
Figure 0007410457000043

Figure 0007410457000044
Figure 0007410457000044

なお、実施例1~4で得られたポリウレア共重合体(P-1~P-4)及び比較例2~3で得られた重合体(PRef-2~PRef-3)は、液晶配向性に乏しい。そのため、液晶配向性の評価を実施できるよう、便宜上、高配向成分として重合体(PRef-4)を配合した、実施例5~8の液晶配向剤(AL-1~AL-4)及び比較例5~6の液晶配向剤(AL-5~AL-6)を得ている。従って、実施例5~8において、重合体(PRef-4)を配合せずに液晶配向剤を得ることも可能であり、この場合の液晶配向剤であっても、例えば表3に示すような各種特性に優れると推察される。 The polyurea copolymers (P-1 to P-4) obtained in Examples 1 to 4 and the polymers (PRef-2 to PRef-3) obtained in Comparative Examples 2 to 3 have a liquid crystal alignment property. Poor. Therefore, in order to evaluate the liquid crystal alignment properties, for convenience, the liquid crystal aligning agents (AL-1 to AL-4) of Examples 5 to 8 and comparative examples were blended with a polymer (PRef-4) as a high alignment component. 5 to 6 liquid crystal alignment agents (AL-5 to AL-6) were obtained. Therefore, in Examples 5 to 8, it is also possible to obtain a liquid crystal aligning agent without blending the polymer (PRef-4), and even in this case, the liquid crystal aligning agent may be as shown in Table 3. It is presumed to have excellent various properties.

実施例5~8の液晶配向剤(AL-1~AL-4)は、ポリアミック酸とは大きく構造が異なるにもかかわらず、ポリアミック酸との相溶性がよく、それに伴いフレキソ印刷による塗布性(印刷性)も良好であった。しかも、それらの液晶配向剤(AL-1~AL-4)を用いて得られた液晶配向膜は、白化・凝集が起こりにくいことが確認された。 The liquid crystal alignment agents (AL-1 to AL-4) of Examples 5 to 8 have good compatibility with polyamic acid, although their structures are significantly different from that of polyamic acid, and accordingly, the coating properties by flexographic printing ( Printability) was also good. Furthermore, it was confirmed that the liquid crystal aligning films obtained using these liquid crystal aligning agents (AL-1 to AL-4) were less prone to whitening and aggregation.

ポリアミック酸については、ジアミンと酸二無水物との平衡状態にあること、及び加熱により該ポリアミック酸の一部分解を伴うこと、が知られており、特にRDCの高速緩和を示す材料を用いると、得られる液晶配向膜の電圧保持率(VHR)が悪化する傾向にある。しかし、本発明の一態様であるポリウレア共重合体は加熱による分解を伴わないため、高いVHRを示したと考えられる。 It is known that polyamic acids are in an equilibrium state with diamines and acid dianhydrides, and that heating causes partial decomposition of the polyamic acids. In particular, when a material exhibiting rapid RDC relaxation is used, The voltage holding ratio (VHR) of the resulting liquid crystal alignment film tends to deteriorate. However, the polyurea copolymer, which is one embodiment of the present invention, does not undergo decomposition due to heating, so it is thought that it exhibited a high VHR.

更に、実施例1~4で得られたポリウレア共重合体を用いて得られた液晶配向膜は、比較例と比べて低着色にも関わらず、RDCの蓄積を抑制できる点では、比較例と同様、又はそれ以上に良好である特性を示した。信頼性の悪い材料の場合、イオン性の不純物が液晶と配向膜界面に蓄積し、電気二重層のような状態を形成することが考えられ、RDCが緩和した後、再度蓄積するような挙動が確認されることがある。しかし、実施例5~8の液晶配向剤を用いて得られた液晶配向膜には、それが見られなかった。なお、実施例5~8の何れの液晶配向剤を用いても、液晶配向膜及び液晶表示素子を好適に得ることができた。 Furthermore, although the liquid crystal alignment films obtained using the polyurea copolymers obtained in Examples 1 to 4 are less colored than the comparative examples, they are superior to the comparative examples in terms of suppressing RDC accumulation. It showed similar or better properties. In the case of unreliable materials, ionic impurities may accumulate at the interface between the liquid crystal and the alignment film, forming a state similar to an electric double layer. May be confirmed. However, this was not observed in the liquid crystal aligning films obtained using the liquid crystal aligning agents of Examples 5 to 8. In addition, even if any of the liquid crystal alignment agents of Examples 5 to 8 was used, a liquid crystal alignment film and a liquid crystal display element could be suitably obtained.

本発明の液晶配向剤を用いて作製した液晶表示素子は、色再現性がよく、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、VA液晶表示素子、IPS液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いることができる。 The liquid crystal display element produced using the liquid crystal aligning agent of the present invention has good color reproducibility and can be made into a highly reliable liquid crystal display device, such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, It can be suitably used in display elements of various systems, such as VA liquid crystal display elements, IPS liquid crystal display elements, and OCB liquid crystal display elements.

Claims (6)

下式(1)で表される構造を有する、ポリウレア共重合体。
Figure 0007410457000045
式中、Rは炭素数1~4のアルキル基を示し、分岐していてもよく、Rは水素原子、炭素数1~4の脂肪族炭化水素基、又は下式(1-1)で表される有機基を示す。Ra及びRbはそれぞれ独立して、水素原子、又は炭素数1~2の脂肪族炭化水素基を示す。Xは下式(S)で表される二価の有機基を示し、Yは下式(S)で表される二価の有機基、又は下式(Q-1)で表される二価の有機基を示す。
Figure 0007410457000046
式中、黒点は窒素原子への結合箇所を意味し、R、Ra及びRbは上記のR、Ra及びRbと同義である。
Figure 0007410457000047
式中、Q及びQは式(Q1-1)、式(Q1-2)及び単結合から選ばれる一種を示す。ただし、Q及びQの少なくとも1つは、(Q1-1)及び(Q1-2)から選ばれる一種を示す。q1とq2はそれぞれ独立に0又は1を示し、q1とq2がともに0である場合、Q は(Q1-1)及び(Q1-2)から選ばれる一種であり、及びLは水素原子を示す。ただし、Qが式(Q1-1)である場合は、L及びLは一緒になって単結合を形成してもよい。黒点は窒素原子への結合箇所を意味する。
Figure 0007410457000048
式中、Rは水素原子、t-ブトキシカルボニル基、又は炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基を示す場合、分岐していてもよく、環を形成していてもよく、また不飽和結合を有していてもよい。Eは-NH-、-NMe-、-S-、又は-O-を示し、F及びGはそれぞれ独立して、CH、又は窒素原子を示す。
Figure 0007410457000049
式中、Aは脂肪族炭化水素基又は芳香族炭化水素基の、2価の有機基を示し、B及びCはそれぞれ独立して、単結合、又は炭素数1~5の脂肪族炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
A polyurea copolymer having a structure represented by the following formula (1).
Figure 0007410457000045
In the formula, R 1 represents an alkyl group having 1 to 4 carbon atoms, which may be branched, and R 2 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or the following formula (1-1) Indicates an organic group represented by Ra and Rb each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 2 carbon atoms. X represents a divalent organic group represented by the following formula (S), Y represents a divalent organic group represented by the following formula (S), or a divalent organic group represented by the following formula (Q-1) represents an organic group.
Figure 0007410457000046
In the formula, the black dots mean bonding sites to the nitrogen atom, and R 1 , Ra and Rb have the same meanings as R 1 , Ra and Rb above.
Figure 0007410457000047
In the formula, Q 1 and Q 2 represent one selected from formula (Q1-1), formula (Q1-2), and a single bond. However, at least one of Q 1 and Q 2 represents one type selected from (Q1-1) and (Q1-2). q1 and q2 each independently represent 0 or 1, and when q1 and q2 are both 0, Q 1 is one selected from (Q1-1) and (Q1-2), and L 1 and L 2 are Indicates a hydrogen atom. However, when Q 1 is the formula (Q1-1), L 1 and L 2 may be combined to form a single bond. Black dots indicate bonding points to nitrogen atoms.
Figure 0007410457000048
In the formula, R 5 represents a hydrogen atom, a t-butoxycarbonyl group, or an alkyl group having 1 to 6 carbon atoms. When R 5 represents an alkyl group having 1 to 6 carbon atoms, it may be branched, form a ring, or have an unsaturated bond. E represents -NH-, -NMe-, -S-, or -O-, and F and G each independently represent CH or a nitrogen atom.
Figure 0007410457000049
In the formula, A represents a divalent organic group such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and B and C are each independently a single bond or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. shows. Black dots indicate bonding points to nitrogen atoms.
前記Xは下式で表される二価の有機基を示す、請求項1に記載のポリウレア共重合体。
Figure 0007410457000050
式中、黒点は窒素原子への結合箇所を意味する。
The polyurea copolymer according to claim 1, wherein the X represents a divalent organic group represented by the following formula.
Figure 0007410457000050
In the formula, black dots mean bonding sites to nitrogen atoms.
前記Yは下式(Q-2)で表される二価の有機基である、請求項1又は2に記載のポリウレア共重合体。
Figure 0007410457000051
式中、Dは単結合、又は炭素数1~5の炭化水素基を示す。黒点は窒素原子への結合箇所を意味する。
The polyurea copolymer according to claim 1 or 2 , wherein Y is a divalent organic group represented by the following formula (Q-2).
Figure 0007410457000051
In the formula, D represents a single bond or a hydrocarbon group having 1 to 5 carbon atoms. Black dots indicate bonding points to nitrogen atoms.
請求項1~の何れか1項に記載のポリウレア共重合体を用いた、液晶配向剤。 A liquid crystal aligning agent using the polyurea copolymer according to any one of claims 1 to 3 . 請求項に記載の液晶配向剤から得られる、液晶配向膜。 A liquid crystal aligning film obtained from the liquid crystal aligning agent according to claim 4 . 請求項に記載の液晶配向膜を用いた、液晶表示素子。 A liquid crystal display element using the liquid crystal alignment film according to claim 5 .
JP2020507907A 2018-03-23 2019-03-20 Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same Active JP7410457B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018057184 2018-03-23
JP2018057184 2018-03-23
PCT/JP2019/011908 WO2019182072A1 (en) 2018-03-23 2019-03-20 Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Publications (2)

Publication Number Publication Date
JPWO2019182072A1 JPWO2019182072A1 (en) 2021-03-18
JP7410457B2 true JP7410457B2 (en) 2024-01-10

Family

ID=67987355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507907A Active JP7410457B2 (en) 2018-03-23 2019-03-20 Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Country Status (5)

Country Link
JP (1) JP7410457B2 (en)
KR (1) KR20200135405A (en)
CN (1) CN111886270B (en)
TW (1) TWI806996B (en)
WO (1) WO2019182072A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480713B (en) * 2021-06-30 2023-01-24 上海交通大学 Preparation method of polyurea quantum dot fluorescent microspheres

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133483A (en) 2004-11-05 2006-05-25 Fuji Photo Film Co Ltd Alignment layer, retardation plate, and its manufacturing method
WO2019182071A1 (en) 2018-03-23 2019-09-26 日産化学株式会社 Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same
WO2019182070A1 (en) 2018-03-23 2019-09-26 日産化学株式会社 Liquid crystal aligning agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1570552C3 (en) * 1965-03-23 1975-03-13 Bayer Ag, 5090 Leverkusen Process for the production of Polyhydantojnen
FR1536923A (en) * 1965-09-02 1968-09-02 Inst Francais Du Petrole Polyhydantoins and their manufacturing process
DE1595646A1 (en) * 1966-06-18 1970-04-30 Bayer Ag Process for the production of polymers
DE2318154C2 (en) * 1973-04-11 1982-01-21 Bayer Ag, 5090 Leverkusen Process for the preparation of compounds containing hydantoin rings
JPS50109291A (en) * 1974-02-05 1975-08-28
JPS552235A (en) * 1978-06-21 1980-01-09 Hitachi Ltd Liquid crystal sandwiching substrate
JP2743460B2 (en) 1989-04-27 1998-04-22 日産化学工業株式会社 Liquid crystal cell alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP6681712B2 (en) * 2013-07-05 2020-04-15 日産化学株式会社 Polymer composition and liquid crystal alignment film for in-plane switching type liquid crystal display device
KR102425044B1 (en) * 2014-11-12 2022-07-25 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017164335A1 (en) * 2016-03-25 2017-09-28 日産化学工業株式会社 Resin composition for forming porous film, and porous film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133483A (en) 2004-11-05 2006-05-25 Fuji Photo Film Co Ltd Alignment layer, retardation plate, and its manufacturing method
WO2019182071A1 (en) 2018-03-23 2019-09-26 日産化学株式会社 Liquid crystal alignment agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same
WO2019182070A1 (en) 2018-03-23 2019-09-26 日産化学株式会社 Liquid crystal aligning agent, polymer for obtaining same, liquid crystal alignment film, and liquid crystal display element using same

Also Published As

Publication number Publication date
CN111886270B (en) 2022-06-24
TWI806996B (en) 2023-07-01
TW201940552A (en) 2019-10-16
CN111886270A (en) 2020-11-03
WO2019182072A1 (en) 2019-09-26
KR20200135405A (en) 2020-12-02
JPWO2019182072A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5870487B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5382351B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP7027890B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6387957B2 (en) Liquid crystal aligning agent containing crosslinkable compound having photoreactive group
WO2014034790A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
JP6083388B2 (en) Method for producing liquid crystal aligning agent
JP7510119B2 (en) Polymer, liquid crystal alignment agent using same, liquid crystal alignment film, and liquid crystal display element using same
JP7410457B2 (en) Polyurea copolymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP2023052403A (en) Liquid crystal aligning agent, polymer for producing the same, liquid crystal alignment film, and liquid crystal display device using the same
KR20180129859A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP6319581B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5783166B2 (en) Liquid crystal aligning agent, liquid crystal display element and diamine compound
KR20150094711A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202244052A (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R151 Written notification of patent or utility model registration

Ref document number: 7410457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151