JP2004264354A - Method for forming liquid crystal alignment layer - Google Patents

Method for forming liquid crystal alignment layer Download PDF

Info

Publication number
JP2004264354A
JP2004264354A JP2003033087A JP2003033087A JP2004264354A JP 2004264354 A JP2004264354 A JP 2004264354A JP 2003033087 A JP2003033087 A JP 2003033087A JP 2003033087 A JP2003033087 A JP 2003033087A JP 2004264354 A JP2004264354 A JP 2004264354A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal alignment
alignment film
alignment layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033087A
Other languages
Japanese (ja)
Inventor
Hirotsugu Taki
博嗣 滝
Tetsuya Imamura
哲也 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2003033087A priority Critical patent/JP2004264354A/en
Priority to PCT/JP2004/001388 priority patent/WO2004072720A1/en
Priority to TW93103372A priority patent/TW200420982A/en
Publication of JP2004264354A publication Critical patent/JP2004264354A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a liquid crystal alignment layer excellent in uniformity and workability, and less in the accumulation of electric charges. <P>SOLUTION: The liquid crystal alignment layer is formed through a step to apply a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid to a substrate, and a step to irradiate the substrate with polarized ultraviolet rays . When using the liquid crystal alignment layer in a liquid crystal display element, the liquid crystal alignment layer less in the accumulation of electric charges is formed by a method excellent in uniformity and workability. Since the accumulation of electric charges in the liquid crystal display element using the liquid crystal alignment layer, even an image with high contrast is continuously displayed without causing sticking or the like. Furthermore, the liquid crystal alignment layer can highly improve electric characteristics thereby improving image quality of every liquid crystal device from a TFT liquid crystal display in prevailing use at present to a latest display device such as a VA (vertical alignment) or an IPS (in-plane switching) liquid crystal display device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は液晶の配向が均一で、焼き付きの少ない液晶表示素子を得ることが出来る液晶配向膜の形成方法に関するものである。
【0002】
【従来の技術】
液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在パソコンをはじめテレビやワープロなどに広く使用されている。液晶表示素子の表示特性は、用いる液晶材料はもとより、その液晶を均一に配向させるための液晶配向膜が重要となる。
【0003】
特に近年、液晶表示素子が大型化を進めるにつれて、液晶配向膜を効率よく均一に処理することが重要となっている。また、液晶表示素子の高精細化に伴って、表示画面に残像が残るいわゆる「焼き付き現象」が課題となっており、これを抑制するために電荷が蓄積しにくい液晶配向膜が強く求められている。
【0004】
現在、液晶配向膜は主に有機樹脂を用い、それらを基板に塗布した後、焼成を行い、その後レーヨンやナイロン布によってその表面に圧力をかけてこする、いわゆる“ラビング”処理を行って形成されている。ラビング処理による液晶配向膜については、特性向上のため可溶性ポリイミドとポリアミック酸を含有する液晶配向剤を用いて塗膜を形成し、ラビング処理する液晶配向膜の形成法が知られている(例えば、特許文献1参照。)。しかしながら、ラビング処理は物理的に処理するプロセスであるため、大面積の液晶配向膜を均一に処理することが難しく、また、発塵や静電気の発生など作業性も悪いという課題を抱えている。
【0005】
また近年、偏光紫外線照射による液晶配向膜の形成方法、即ち“光配向法”が各種提案されている(例えば、特許文献2参照)。光配向法による配向膜の形成方法は、偏光紫外線を用いるため液晶配向の均一性、作業性に優れるものの、焼き付き現象等の特性については満足できるものではなかった。
【特許文献1】
特開平08−220541号公報
【特許文献2】
特開平09−297313号公報
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みなされたものであり、均一性、作業性に優れ、電荷の蓄積が少ない液晶配向膜の形成方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、液晶配向剤としてポリアミック酸と可溶性ポリイミドを含む樹脂系を用い、これを基板に塗布した後、偏光紫外線を照射することで、均一性、作業性に優れ、かつ液晶表示素子とした際の残留電荷の蓄積が少ない優れた液晶配向膜を形成出来ることを見出した。
【0008】
すなわち本発明は、可溶性ポリイミドとポリアミック酸とを含有する液晶配向剤を、基板に塗布する工程と、該基板に偏光紫外線を照射する工程とを経て形成される液晶配向膜の形成方法である。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0010】
本発明において最も重要な点は、液晶配向剤として可溶性ポリイミドとポリアミック酸を含む樹脂を用い、これを基板に塗布した後に偏光紫外線を照射する、いわゆる光配向法を用いた点にある。これにより、均一性が高く作業性に優れた光配向法による液晶配向膜の形成方法において、液晶表示素子とした際の電気特性に優れ、とりわけ残留電荷が蓄積しにくいため、焼き付き現象が起こりにくい液晶配向膜が得られることを見出した。
【0011】
ここで本発明で用いるポリアミック酸とはジアミンと酸無水物を反応させて得られる縮合物を示す。ポリアミック酸を合成する際に原料として用いるジアミン化合物としては以下のものが挙げられる。
【0012】
脂環式ジアミンの例として、1,4−ジアミノシクロヘキサン、1,3−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3’−ジメチルジシクロヘキサン、およびイソホロンジアミンが、また炭素環式芳香族ジアミン類の例として、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、ジアミノトルエン類(例えば、2,4−ジアミノトルエン)、1,4−ジアミノ−2−メトキシベンゼン、2,5−ジアミノキシレン類、1,3−ジアミノ−4−クロロベンゼン、1,4−ジアミノ−2,5−ジクロロベンゼン、1,4−ジアミノ−3−イソプロピルベンゼン、2,2−ビス(4−アミノフェニル)プロパン、4,4’−ジアミノジフェニルメタン、2,2’−ジアミノスチルベン、4,4’−ジアミノスチルベン、4,4’−ジアミノジフェニルエーテル、4,4’−ジフェニルチオエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、2,4−ジアミノ安息香酸フェニルエステル、2,2’−ジアミノベンゾフェノン、4,4’−ジアミノベンジル、ビス(4−アミノフェニル)メチルホスフィンオキシド、ビス(3−アミノフェニル)スルホン、ビス(4−アミノフェニル)フェニルホスフィンオキシド、ビス(4−アミノフェニル)シクロヘキシルホスフィンオキシド、N,N−ビス(4−アミノフェニル)−N−フェニルアミン、N,N−ビス(4−アミノフェニル)−N−メチルアミン、4,4’−ジアミノジフェニル尿素、1,8−ジアミノナフタレン、1,5−ジアミノナフタレン、1,5−ジアミノアントラキノン、ジアミノフルオレン類(例えば2,6−ジアミノフルオレン)、ビス(4−アミノフェニル)ジエチルシラン、ビス(4−アミノフェニル)ジメチルシラン、ビス(4−アミノフェニル)テトラメチルジシロキサン、4−(3−アミノフェニル)アニリン、ベンジジン、2,2’−ジメチルベンジジン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼンなどが挙げられる。
【0013】
さらに複素環式ジアミン類としては、2,6−ジアミノピリジン、2,4−ジアミノピリジン、2,4−ジアミノ−s−トリアジン、2,5−ジアミノジベンゾフラン、2,7−ジアミノカルバゾール、3,6−ジアミノカルバゾール、3,7−ジアミノフェノチアジン、2,5−ジアミノ−1,3,4−チアジアゾール、2,4−ジアミノ−6−フェニル−s−トリアジンなどが、脂肪族ジアミンの例として、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,3−ジアミノ−2,2−ジメチルプロパン、1,6−ジアミノー2,5−ジメチルヘキサン、1,7−ジアミノ−2,5−ジメチルヘプタン、1,7−ジアミノ−4,4−ジメチルヘプタン、1,7−ジアミノ−3−メチルヘプタン、1,9−ジアミノ−5−メチルノナン、2,11−ジアミノドデカン、1,12−ジアミノオクタデカン、1,2−ビス(3−アミノプロポキシ)エタン等が、さらには、式(3)
【0014】
【化3】

Figure 2004264354
(Rは炭素数6以上の長鎖アルキル基、もしくはパーフルオロアルキル基を含む1価の有機基を示す)
【0015】
で表される長鎖アルキルもしくはパーフルオロ基を有する芳香族ジアミンなどが例示出来る。これらのジアミンはそれぞれ単独で、あるいは組み合わせて用いることが出来ることは当然であるが、式(3)で示される長鎖アルキルもしくはパーフルオロ基を有する芳香族ジアミンの少なくともどちらか一方を含有すると親水性が低下し、吸水性が向上するため好ましい。
【0016】
ポリアミック酸を合成する際に原料として用いる酸二無水物としては芳香族酸二無水物としてピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等が、また脂環式酸二無水物としては1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2−ジカルボキシ−1−(3,4−ジカルボキシシクロヘキシル)エタン二無水物、1,2−ジカルボキシ−1−(3,4−ジカルボキシ−1,2,3,4−テトラヒドロナフチル)エタン二無水物などが例示される。これらの酸二無水物は単独でも組み合わせても用いることが出来るのは当然であるが、耐熱性向上の観点から、ピロメリット酸を含む酸二無水物を含む酸無水物とジアミンを反応させて得られる一般式(2)で表される繰り返し構造を含むポリアミック酸であると好ましい。
【0017】
【化4】
Figure 2004264354
(式中Rは2価の有機基を表す)
【0018】
本発明のポリアミック酸は前述のジアミンと酸二無水物とを有機溶剤の存在下で−20℃〜150℃、好ましくは0〜80℃において30分〜24時間、好ましくは1〜10時間反応させることによって合成する事が出来る。反応の際に用いるジアミンと酸二無水物のモル比は、ジアミンが多くなりすぎると分子量が上がらず、また少なすぎると酸無水物が残存して保存安定性が悪くなることのために、ジアミン/酸二無水物=0.5〜3.0/1.0(モル比)であると好ましく、ジアミン/酸二無水物=0.8〜2.0/1.0(モル比)であるとより好ましく、中でもジアミン/酸二無水物=1.0〜1.2/1.0であるととりわけ好ましい。
【0019】
ポリアミック酸を合成する際に用いる溶媒と濃度については特に限定されない。溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジンおよびブチロラクトン類を用いると生成したポリマーの溶解性が高いことのために好ましい。重合時の濃度は高すぎるとワニスの取扱い性が悪くなり、低すぎると分子量が上がらないことのために、好ましくは1〜50重量%が、より好ましくは5〜30重量%が、とりわけ好ましくは8〜20重量%がよい。また、ポリマーが溶解する範囲内でブチルセルソルブやトルエン、メタノールなどの貧溶媒を加えても構わないことは言うまでもない。
【0020】
さらにポリマーの分子量が上がり易いことのため、反応系内を窒素雰囲気下としておくと好ましく、反応系中の溶媒に窒素をバブリングしながら反応を行うと更に好ましい。最終的な溶液の還元粘度は高いとワニスの取扱いが難しく、低いと配向膜とした際に特性が安定しないことのために、0.05〜3.0dl/gが好ましく、0.1〜2.5dl/gがより好ましい(温度30℃のN−メチル−2−ピロリドン中、濃度0.5g/dl)。
【0021】
本発明における可溶性ポリイミドとは上記ポリアミック酸と同様の方法でポリアミック酸を合成した後、それらを全部、もしくは部分的に閉環(イミド化)して得られる縮合物を示す。ここで、本発明に用いる可溶性ポリイミドは透明性向上の観点から、ポリマー中に脂環式構造を含んでいることが好ましく、中でも1,2−ジカルボキシ−1−(3,4−ジカルボキシ−1,2,3,4−テトラヒドロナフチル)エタン二無水物を含む酸二無水物とジアミンを反応させてポリアミック酸を合成し、さらにそれをイミド化して得られる一般式(1)で表される繰り返し構造を含む可溶性ポリイミドを含んでいると、液晶表示素子とした際の電気特性に優れるためにとりわけ好ましい。
【0022】
【化5】
Figure 2004264354
(式中Rは2価の有機基を表す)
【0023】
本発明において可溶性ポリイミドを合成する、すなわち、ポリアミック酸を閉環(イミド化)させて可溶性ポリイミドを得る方法については特に制限されず、加熱によってイミド化を進行させる方法や、触媒を用いて化学的にイミド化を行う方法などが例示できる。なかでも、容易に反応が進行し副反応が起こりにくいため触媒によって化学的にイミド化して得られる可溶性ポリイミドを用いることが好ましい。すなわち、ポリアミック酸を合成した後、アミック酸の2〜20モル倍の塩基触媒とアミック酸の3〜30モル倍の酸無水物の存在下で、−20〜300℃、好ましくは0〜250℃の温度において、1〜100時間反応させると好ましい。塩基触媒や酸無水物の量が少ないと反応が十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。また、この時に用いる塩基触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等が例示でき、中でもピリジンは反応を進行させるのに適度な塩基性を持つために好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などが例示でき、中でも無水酢酸を用いると反応終了後の精製が容易となるために好ましい。
【0024】
また、ポリアミック酸をイミド化する際のアミック酸の反応率(イミド化率)は低すぎると液晶表示とした際の電気特性が悪くなり高すぎると合成に時間がかかるため、1〜99.9%が好ましく、20〜99.5%がより好ましく、50〜99%がとりわけ好ましい。このようにして得られた可溶性ポリイミドのワニスは、よく攪拌させながら貧溶媒に注入し、再沈殿させることによって精製することが出来る。この際に用いる貧溶媒としては特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどが例示できる。再沈殿によって得られたポリイミド樹脂は濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱乾燥してパウダーとすることが出来る。このパウダーを更に良溶媒に溶解して、再沈殿する操作を2〜10回繰り返すと、ポリマー中の不純物が少なくなり、液晶配向膜とした際の電気特性が優れるために好ましい。また、この際貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。こうして得られたポリイミド樹脂は合成時に用いた良溶媒を含む溶媒に再度溶かして用いることが出来る。
【0025】
本発明ではこうして得られた可溶性ポリイミドとポリアミック酸とを配合して、液晶配向剤とすることが出来る。この際、配合の順序や方法は特に制限されないが、配合量は重要である。本発明者らが鋭意検討した結果、可溶性ポリイミドとポリアミック酸の割合を可溶性ポリイミド/ポリアミック酸=0.01〜99.0/1(重量部)、好ましくは0.03〜1.0/1(重量部)、とりわけ好ましくは0.05〜0.8/1(重量部)とすると、液晶表示素子とした際の電気特性に優れた配向膜が得られることを見い出した。
【0026】
また、液晶配向膜を形成する際の膜厚均一性を向上させるために、配合の際に用いる溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、およびブチロラクトン類などの良溶媒30〜99.9重量%とブチルセルソルブやトルエン、メタノールなどの貧溶媒0.1〜70重量%とを含む溶媒を用いることが好ましい。
【0027】
本発明における液晶配向剤の溶液濃度は、低過ぎると液晶配向膜が薄くなって液晶表示素子とした際の信頼性が悪くなることがあり、高すぎると基板に塗布する際の膜厚均一性が損なわれるため、樹脂分濃度が0.1〜30重量%が好ましく、より好ましくは1〜10重量%である。
【0028】
本発明ではこのようにして得られた液晶配向剤をそのまま用いることも出来るが、更にカップリング剤を添加すると液晶配向膜と基板との密着性が向上するため好ましい。ここで本発明におけるカップリング剤とはケイ素および1〜3族に属するすべての典型金属元素ならびにすべての遷移金属元素から選ばれる少なくとも1つ以上の元素と酸素原子との共有結合を有する化合物を示すが、アルコキシシラン、アルコキシアルミニウム、アルコキシジルコニウム、アルコキシチタン構造を有するカップリング剤は入手が容易でコスト的にも優れているために好ましく、なかでも3−アミノプロピルトリメトキシシランは液晶表示素子とした際の電気特性が向上するためにとりわけ好ましい。またカップリング剤の添加量は多いと配向膜の強度が弱くなり、少ないと密着性向上の効果が少なくなるため、液晶配向剤中の固形分の0.01〜30重量%、より好ましくは0.1〜20重量%、とりわけ好ましくは0.5〜10重量%である。
【0029】
上記のカップリング剤を配合するにあたって、あらかじめカップリング剤を溶媒で希釈した後、それらを−5〜80℃の温度で液晶配向剤中に少しずつ注入すると、増粘や樹脂の不溶化が起こりにくく均一な液晶配向剤となるために好ましい。また、この時カップリング剤を希釈する溶媒と濃度は特に制限されないが、例えばN−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、トルエン、ヘキサン、γ−ブチロラクトンなどの溶媒を用いて1〜50重量%、より好ましくは3〜30重量%の濃度に希釈してから用いることができる。
【0030】
このようにして得られた液晶配向剤に、さらに架橋剤などの各種添加剤を加えて使用してもかまわないことは言うまでもない。また、得られた液晶配向剤は、濾過した後に使用することが好ましい。
【0031】
本発明の液晶配向膜の形成方法は、以上のようにして得られた可溶性ポリイミドとポリアミック酸とを含有する液晶配向剤を、基板に塗布する工程と、該基板に偏光紫外線を照射する工程とを経て形成される液晶配向膜の形成方法である。
【0032】
液晶配向剤を基板に塗布する工程は、スピンコート法、印刷法、インクジェット法などの手法を用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましいことは言うまでもない。これらの基板に塗布された液晶配向剤は、50〜300℃、好ましくは80〜200℃の温度において1〜200分間乾燥することによって液晶配向剤の塗膜が形成される。形成する塗膜の厚みは厚すぎるとコスト面で不利となり、薄すぎると液晶表示素子の信頼性が低下することのために、5〜300nm、より好ましくは7〜100nm、とりわけ好ましくは10〜80nmがよい。
【0033】
基板に偏光紫外線を照射する工程は、上記のようにして得られた基板の塗膜表面に、偏光紫外線を照射することにより配向処理して、該塗膜を液晶配向膜とする工程である。照射する偏光紫外線の照射波長は150〜400nm、より好ましくは190〜380nm、とりわけ好ましくは220〜350nmであり、照射強度は1J〜60J/ cm、より好ましくは20J〜50J/cm、とりわけ好ましくは25J〜40J/ cmである。偏光紫外線の照射波長は短すぎると形成した液晶配向膜の液晶配向能が悪くなり、長すぎると耐光性が悪くなる。また、照射強度が弱いと液晶配向能が悪くなり、強すぎると電気特性が悪くなる。得られた液晶配向膜の配向方向は、照射した紫外線の偏光方向によって決定される。
【0034】
以上のように、本発明の方法を用いて形成された液晶配向膜は、液晶を均一に配向させることができ、蓄積電荷が少ないので、この液晶配向膜を用いることで、液晶の配向が均一で、焼き付きの少ない液晶表示素子を得ることができる。
【0035】
本発明の方法を用いて形成された液晶配向膜を用いて液晶表示素子を得る方法は、公知の方法を用いることができる。その例としては、1対の液晶配向膜付き基板を1〜30μm、好ましくは2〜10μmのスペーサーを挟んで、配向方向を0〜270°の角度で設置し、液晶を注入して封止することで液晶表示素子とする方法が挙げられる。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。こうして本発明を用いて作製した液晶表示素子は、液晶の配向が均一で焼き付きの起こり難い液晶表示デバイスとすることが出来る。続いて以下に本発明を具体的に説明するが、本発明はこれに限定されるものではない。
【0036】
【実施例】
(合成例1)
500mlの3つ口フラスコに窒素導入管、塩化カルシウム管を連結し、p−フェニレンジアミン9.73g(0.09モル)、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン3.49g(0.01モル)をN−メチル−2−ピロリドン(以下、NMPと略す)245g中でよく攪拌させて完全に溶解させた。その後、1,2−ジカルボキシ−1−(3,4−ジカルボキシ−1,2,3,4−テトラヒドロナフチル)エタン二無水物30.03g(0.1モル)を加え、室温で10時間反応させてポリアミック酸を合成した。このポリアミック酸溶液100gに、イミド化触媒として無水酢酸21.6g(0.212モル)、ピリジン9.97g(0.126モル)を加え、50℃で3時間反応させ、ポリイミド樹脂溶液を調整した。この溶液を1000mlのメタノール中に投入し、得られた白色沈殿を濾別し、乾燥し、白色のポリイミド樹脂を得た。この樹脂を再びNMPに溶解した後、アセトンに投入し、同様にして得られた白色沈殿を濾別して乾燥し、白色のポリイミド樹脂を得た。得られたポリイミドの還元粘度は0.64dl/g(0.5重量%NMP溶液、30℃)であった。この粉末7.2gをγ−ブチロラクトン112.8gに溶解し固形分濃度6%の溶媒可溶性ポリイミド樹脂溶液を得た。
【0037】
(合成例2)
500mlの3つ口フラスコに窒素導入管、塩化カルシウム管を連結し、窒素雰囲気下で4,4’−ジアミノジフェニルメタン19.827g(0.1モル)をNMP226g中で溶解させ、続いてピロメリット酸二無水物10.687g(0.049モル)、1,2,3,4−テトラカルボキシシクロブタン二無水物9.609g(0.049モル)を添加して、室温で10時間反応させてポリアミック酸を合成した。得られたポリアミック酸の還元粘度は1.18dl/g(0.5重量%NMP溶液、30℃)であった。この溶液をγ−ブチロラクトンで溶液濃度6%に希釈し、ポリアミック酸溶液を得た。
【0038】
(配合例1)
合成例1で得られた濃度6%の可溶性ポリイミド溶液20gと合成例2で得られた濃度6%のポリアミック酸溶液80gとを300ml三角フラスコ中室温で12時間攪拌した後、濃度4%になるようNMPで希釈した。この溶液にカップリング剤LS−3450(信越化学製、商品名)を0.12gを2gのNMPに希釈してから加え、更に12時間攪拌した。得られたワニスを液晶配向剤とした。
【0039】
(配合例2)
合成例1で得られた濃度6%の可溶性ポリイミド溶液100gを濃度4%になるようNMPで希釈した。この溶液にカップリング剤LS−3450(信越化学製、商品名)を0.12gを2gのNMPに希釈してから加え、更に12時間攪拌した。得られたワニスを液晶配向剤とした。
【0040】
(配合例3)
合成例2で得られた濃度6%のポリアミック酸溶液100gを濃度4%になるようNMPで希釈した。この溶液にカップリング剤LS−3450(信越化学製、商品名)を0.12gを2gのNMPに希釈してから加え、更に12時間攪拌した。得られたワニスを液晶配向剤とした。
【0041】
(実施例1)
配合例1により得られた液晶配向剤を透明電極付きガラス基板にスピンコートし、210℃で1時間、熱風循環式乾燥機で焼成を行い、膜厚50nmのポリイミド膜を得た。この塗膜に30J/ cmの偏光紫外線を照射し、液晶配向膜付き基板を得た。この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したところ、表面に傷やムラはなく均一な液晶配向膜が形成できていることが分かった。
【0042】
また、液晶セルの電気特性を測定するために、これらの基板を2枚作成し、6μmのスペーサーを散布した後、その片方にシール剤を印刷し、光照射方向をほぼ直交させ2枚の基板をポリイミド膜の面をそれぞれ内に向けてシールした。このセル内を減圧したのち液晶MLC―2003(メルク・ジャパン製、商品名)を注入することによって液晶セルを作製した。この液晶セルの上下に偏光板を置き、下にバックライトを置いて、液晶セルを90度回転させると光の透過率が変化し、はっきりとした明暗が現われ、液晶がきちんと配向していることが確認された。この液晶セルに、直流3Vの電圧を重畳した30Hz/±3Vの短形波を60℃で20分間印加し、20分後直流3Vを切った直後の液晶セル内に残る残留電圧を光学的フリッカー消去法で測定したところ、直後の残留DC電圧は0Vであり、20分後の残留DC電圧は0.05Vであった。また、液晶セル・イオン密度測定システム(株式会社東陽テクニカ製、機種名MTR−1)を用いて、この液晶セルに周波数0.01Hz、振幅10Vの電圧をかけ、液晶セルを流れる電流と液晶セルにかかる電圧から液晶セル抵抗を測定したところ、46.6×10Ωだった。
【0043】
(比較例1)
配合例2により得られた液晶配向剤を用いて、実施例1と同様にして液晶配向膜付き基板を作製した。この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したところ、表面に傷やムラはなく均一な液晶配向膜が形成できていることが分かった。また、実施例1と同様にして液晶セルを作製した。この液晶セルの上下に偏光板を置き、下にバックライトを置いて、液晶セルを90度回転させると光の透過率が変化し、はっきりとした明暗が現われ、液晶がきちんと配向していることが確認された。この液晶セルに、直流3Vの電圧を重畳した30Hz/±3Vの短形波を60℃で20分間印加し、20分後直流3Vを切った直後の液晶セル内に残る残留電圧を光学的フリッカー消去法で測定したところ、直後の残留DC電圧値は0.12Vであり、20分後の残留DC電圧は0.30Vであった。また、液晶セル・イオン密度測定システム(株式会社東陽テクニカ製、機種名MTR−1)を用いて、この液晶セルに周波数0.01Hz、振幅10Vの電圧をかけ、液晶セルを流れる電流と液晶セルにかかる電圧から液晶セル抵抗を測定したところ、210×10Ωだった。
【0044】
(比較例2)
配合例3により得られた液晶配向剤を用いて、実施例1と同様にして液晶配向膜付き基板を作製した。この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したところ、表面に傷やムラはなく均一な液晶配向膜が形成できていることが分かった。さらに、実施例1と同様にして液晶セルを作製したが、液晶は均一に配向せず、液晶セルを90°回転させても透過率のはっきりした変化は現れなかった。
【0045】
(比較例3)
配合例1により得られた液晶配向剤を透明電極付きガラス基板にスピンコートし、210℃で1時間、熱風循環式乾燥機で焼成を行い、膜厚50nmのポリイミド膜を得た。この塗膜をレーヨン布を用いてロールの回転数500rpm、ロールの進行速度20mm/秒、押し込み量0.6mmでラビングして液晶配向膜付き基板を得た。この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したところ、表面にラビングに伴う筋状の傷が確認された。さらに、液晶セルの電気特性を測定するために、これらの基板を2枚作成し、実施例1と同様にして液晶セルを作製した。この液晶セルの上下に偏光板を置き、下にバックライトを置いて、液晶セルを90度回転させると光の透過率が変化し、はっきりとした明暗が現われ、液晶がきちんと配向していることが確認された。この液晶セルに、直流3Vの電圧を重畳した30Hz/±3Vの短形波を60℃で20分間印加し、20分後直流3Vを切った直後の液晶セル内に残る残留電圧を光学的フリッカー消去法で測定したところ、直後の残留DC電圧は0Vであり、20分後の残留DC電圧は0.00Vであった。また、液晶セル・イオン密度測定システム(株式会社東陽テクニカ製、機種名MTR−1)を用いて、この液晶セルに周波数0.01Hz、振幅10Vの電圧をかけ、液晶セルを流れる電流と液晶セルにかかる電圧から液晶セル抵抗を測定したところ、106×10Ωだった。
【0046】
【発明の効果】
本発明によれば、液晶表示素子とした際に電荷の蓄積が少ない液晶配向膜を、作業性、均一性に優れた手法で形成できる。また、本発明により形成した液晶配向膜を用いた液晶表示素子は電荷の蓄積が少ないため、コントラストの高い画像でも焼き付きなどを起こさずに表示させ続けることができる。さらに本発明は電気特性を向上させるための汎用性の高い技術であり、現在主流に用いられているTFT液晶ディスプレイのみならず、VAやIPS液晶ディスプレイデバイスなど最新のディスプレイデバイスまで、あらゆる液晶デバイスの画質を向上させることが可能になる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a liquid crystal alignment film capable of obtaining a liquid crystal display element with uniform liquid crystal alignment and less image sticking.
[0002]
[Prior art]
2. Description of the Related Art Liquid crystal display elements are now widely used in personal computers, televisions, word processors, and the like as display devices that are thin and lightweight. Regarding the display characteristics of the liquid crystal display element, not only the liquid crystal material to be used, but also a liquid crystal alignment film for uniformly aligning the liquid crystal becomes important.
[0003]
In particular, in recent years, as the size of liquid crystal display elements has increased, it has become important to efficiently and uniformly treat a liquid crystal alignment film. Also, with the increase in the definition of liquid crystal display elements, the so-called "burn-in phenomenon" in which afterimages remain on the display screen has become a problem, and in order to suppress this, a liquid crystal alignment film that does not easily accumulate charges has been strongly demanded. I have.
[0004]
Currently, the liquid crystal alignment film is formed mainly by using organic resins, applying them to the substrate, baking, and then applying pressure to the surface with rayon or nylon cloth, so-called "rubbing" treatment. ing. For a liquid crystal alignment film obtained by rubbing, there is known a method of forming a coating film using a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid to improve properties, and performing a rubbing treatment on the liquid crystal alignment film (for example, See Patent Document 1.). However, since the rubbing treatment is a physical treatment, it is difficult to uniformly treat a large-area liquid crystal alignment film, and there is a problem of poor workability such as generation of dust and static electricity.
[0005]
In recent years, various methods for forming a liquid crystal alignment film by irradiating polarized ultraviolet rays, that is, a “photo alignment method” have been proposed (for example, see Patent Document 2). The method of forming an alignment film by the photo-alignment method is excellent in uniformity of liquid crystal alignment and workability since polarized ultraviolet light is used, but is not satisfactory in characteristics such as image sticking.
[Patent Document 1]
JP 08-220541 A
[Patent Document 2]
JP-A-09-297313
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and provides a method for forming a liquid crystal alignment film that is excellent in uniformity and workability and has little charge accumulation.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, using a resin system containing a polyamic acid and a soluble polyimide as a liquid crystal aligning agent, applying this to a substrate, and then irradiating polarized ultraviolet light, uniformity, excellent workability, In addition, it has been found that an excellent liquid crystal alignment film with little accumulation of residual charges when formed into a liquid crystal display element can be formed.
[0008]
That is, the present invention is a method for forming a liquid crystal alignment film formed through a step of applying a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid to a substrate and a step of irradiating the substrate with polarized ultraviolet light.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
The most important point in the present invention is that a so-called photo-alignment method is used in which a resin containing soluble polyimide and polyamic acid is used as a liquid crystal aligning agent, and this is applied to a substrate and then irradiated with polarized ultraviolet light. As a result, in the method for forming a liquid crystal alignment film by a photoalignment method having high uniformity and excellent workability, the electric characteristics when a liquid crystal display element is used are excellent, and in particular, since residual charges are unlikely to accumulate, the image sticking phenomenon hardly occurs. It has been found that a liquid crystal alignment film can be obtained.
[0011]
Here, the polyamic acid used in the present invention refers to a condensate obtained by reacting a diamine with an acid anhydride. Examples of the diamine compound used as a raw material when synthesizing the polyamic acid include the following.
[0012]
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexane, and isophorone diamine But also as examples of carbocyclic aromatic diamines, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminotoluenes (eg 2,4-diaminotoluene), 1,4-diamino-2 -Methoxybenzene, 2,5-diaminoxylenes, 1,3-diamino-4-chlorobenzene, 1,4-diamino-2,5-dichlorobenzene, 1,4-diamino-3-isopropylbenzene, 2,2- Bis (4-aminophenyl) propane, 4,4'-diaminodiphenylmethane, 2,2'-dia Nostilbene, 4,4'-diaminostilbene, 4,4'-diaminodiphenylether, 4,4'-diphenylthioether, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,4-diaminobenzoic Acid phenyl ester, 2,2'-diaminobenzophenone, 4,4'-diaminobenzyl, bis (4-aminophenyl) methylphosphine oxide, bis (3-aminophenyl) sulfone, bis (4-aminophenyl) phenylphosphine oxide , Bis (4-aminophenyl) cyclohexylphosphine oxide, N, N-bis (4-aminophenyl) -N-phenylamine, N, N-bis (4-aminophenyl) -N-methylamine, 4,4 ′ -Diaminodiphenylurea, 1,8-diaminonaphthalene, 1,5 Diaminonaphthalene, 1,5-diaminoanthraquinone, diaminofluorenes (for example, 2,6-diaminofluorene), bis (4-aminophenyl) diethylsilane, bis (4-aminophenyl) dimethylsilane, bis (4-aminophenyl) Tetramethyldisiloxane, 4- (3-aminophenyl) aniline, benzidine, 2,2′-dimethylbenzidine, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4- Aminophenoxy) phenyl] sulfone, 4,4'-bis (4-aminophenoxy) biphenylene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-amino Phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, and the like. Can be
[0013]
Further, examples of the heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-s-triazine, 2,5-diaminodibenzofuran, 2,7-diaminocarbazole, 3,6 -Diaminocarbazole, 3,7-diaminophenothiazine, 2,5-diamino-1,3,4-thiadiazole, 2,4-diamino-6-phenyl-s-triazine, etc. 2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9 -Diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5 Dimethylhexane, 1,7-diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylnonane, 2,11-diaminododecane, 1,12-diaminooctadecane, 1,2-bis (3-aminopropoxy) ethane and the like, furthermore, a compound represented by the formula (3)
[0014]
Embedded image
Figure 2004264354
(R 3 Represents a long-chain alkyl group having 6 or more carbon atoms or a monovalent organic group containing a perfluoroalkyl group)
[0015]
And an aromatic diamine having a long-chain alkyl or perfluoro group represented by Of course, these diamines can be used alone or in combination. However, when at least one of the long-chain alkyl or aromatic diamine having a perfluoro group represented by the formula (3) is contained, the diamine becomes hydrophilic. This is preferable because the water-absorbing property is reduced and the water absorption is improved.
[0016]
As the acid dianhydride used as a raw material when synthesizing the polyamic acid, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic dianhydride, 3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, etc. As the cyclic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofuran Tetra Rubonic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2-dicarboxy-1- (3,4-dicarboxycyclohexyl) ethane dianhydride, 1,2-di Examples thereof include carboxy-1- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride. Of course, these acid dianhydrides can be used alone or in combination, but from the viewpoint of improving heat resistance, an acid anhydride containing an acid dianhydride containing pyromellitic acid is reacted with a diamine. It is preferable that the obtained polyamic acid has a repeating structure represented by the general formula (2).
[0017]
Embedded image
Figure 2004264354
(Where R 2 Represents a divalent organic group)
[0018]
The polyamic acid of the present invention reacts the above-mentioned diamine and acid dianhydride in the presence of an organic solvent at -20 ° C to 150 ° C, preferably at 0 to 80 ° C for 30 minutes to 24 hours, preferably 1 to 10 hours. Can be combined. The molar ratio between the diamine and the acid dianhydride used in the reaction is such that if the amount of the diamine is too large, the molecular weight does not increase, and if the amount is too small, the acid anhydride remains and storage stability deteriorates. / Acid dianhydride = 0.5-3.0 / 1.0 (molar ratio), and diamine / acid dianhydride = 0.8-2.0 / 1.0 (molar ratio) And more preferably, diamine / acid dianhydride = 1.0 to 1.2 / 1.0.
[0019]
The solvent and the concentration used for synthesizing the polyamic acid are not particularly limited. As a solvent, use of N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine and butyrolactone to form a polymer It is preferable because of high performance. If the concentration at the time of polymerization is too high, the handleability of the varnish becomes poor, and if it is too low, the molecular weight does not increase. Therefore, the concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight, and particularly preferably. 8-20% by weight is preferred. Needless to say, a poor solvent such as butyl cellosolve, toluene, or methanol may be added as long as the polymer is dissolved.
[0020]
Further, since the molecular weight of the polymer tends to increase, it is preferable to keep the inside of the reaction system under a nitrogen atmosphere, and it is more preferable to carry out the reaction while bubbling nitrogen through the solvent in the reaction system. If the reduced viscosity of the final solution is high, it is difficult to handle the varnish, and if the reduced viscosity is low, the characteristics are not stable when the alignment film is formed. Therefore, the reduced viscosity is preferably 0.05 to 3.0 dl / g, and 0.1 to 2 dl / g. 0.5 dl / g is more preferable (in N-methyl-2-pyrrolidone at a temperature of 30 ° C., the concentration is 0.5 g / dl).
[0021]
The soluble polyimide in the present invention refers to a condensate obtained by synthesizing a polyamic acid in the same manner as the above-mentioned polyamic acid, and then completely or partially cyclizing (imidizing) them. Here, the soluble polyimide used in the present invention preferably contains an alicyclic structure in the polymer from the viewpoint of improving transparency, and among them, 1,2-dicarboxy-1- (3,4-dicarboxy-) is particularly preferable. A polyamic acid is synthesized by reacting an acid dianhydride containing 1,2,3,4-tetrahydronaphthyl) ethane dianhydride with a diamine, and further represented by the general formula (1) obtained by imidizing the polyamic acid. It is particularly preferable to include a soluble polyimide having a repeating structure, since the liquid crystal display element has excellent electrical characteristics.
[0022]
Embedded image
Figure 2004264354
(Where R 1 Represents a divalent organic group)
[0023]
In the present invention, a method for synthesizing a soluble polyimide, that is, a method for obtaining a soluble polyimide by ring-closing (imidizing) a polyamic acid is not particularly limited, and a method of promoting imidization by heating or a method of chemically using a catalyst may be used. A method of imidization can be exemplified. Among them, a soluble polyimide obtained by chemically imidizing with a catalyst is preferably used because the reaction easily proceeds and a side reaction hardly occurs. That is, after synthesizing the polyamic acid, in the presence of 2 to 20 mol times of the base catalyst and 3 to 30 mol times of the acid anhydride of the amic acid, -20 to 300 ° C, preferably 0 to 250 ° C. The reaction is preferably performed at a temperature of 1 to 100 hours. If the amount of the base catalyst or the acid anhydride is small, the reaction does not proceed sufficiently, and if the amount is too large, it is difficult to completely remove the reaction after the reaction is completed. Examples of the base catalyst used at this time include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride, and among them, acetic anhydride is preferred because purification after the reaction is facilitated.
[0024]
In addition, when the reaction rate (imidization rate) of the amic acid at the time of imidizing the polyamic acid is too low, the electrical characteristics of the liquid crystal display are deteriorated, and when it is too high, the synthesis takes time. % Is preferable, 20 to 99.5% is more preferable, and 50 to 99% is particularly preferable. The varnish of the soluble polyimide thus obtained can be purified by pouring it into a poor solvent with good stirring and reprecipitating. The poor solvent used at this time is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene. After the polyimide resin obtained by reprecipitation is recovered by filtration, it can be dried at normal temperature or under reduced pressure at normal temperature or under heat to form a powder. It is preferable to repeat the operation of further dissolving the powder in a good solvent and reprecipitating it 2 to 10 times because impurities in the polymer are reduced and the electrical characteristics of the liquid crystal alignment film are excellent. In this case, it is preferable to use three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent because the purification efficiency is further improved. The polyimide resin thus obtained can be used by re-dissolving it in a solvent containing a good solvent used in the synthesis.
[0025]
In the present invention, the soluble polyimide thus obtained and the polyamic acid can be blended to form a liquid crystal aligning agent. At this time, the order and method of compounding are not particularly limited, but the compounding amount is important. As a result of intensive studies by the present inventors, the ratio of soluble polyimide to polyamic acid was determined to be soluble polyimide / polyamic acid = 0.01 to 99.0 / 1 (parts by weight), preferably 0.03 to 1.0 / 1 (parts by weight). (Parts by weight), particularly preferably 0.05 to 0.8 / 1 (parts by weight), it has been found that an alignment film having excellent electric properties when a liquid crystal display element is obtained can be obtained.
[0026]
In addition, in order to improve the film thickness uniformity when forming a liquid crystal alignment film, as a solvent used for compounding, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, Contains 30 to 99.9% by weight of a good solvent such as N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine and butyrolactone and 0.1 to 70% by weight of a poor solvent such as butylcellosolve, toluene and methanol. It is preferable to use a solvent.
[0027]
If the solution concentration of the liquid crystal aligning agent in the present invention is too low, the liquid crystal alignment film becomes thin and the reliability of the liquid crystal display device may be deteriorated. If the solution concentration is too high, the film thickness uniformity when applied to a substrate may be reduced. Therefore, the resin component concentration is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight.
[0028]
In the present invention, the liquid crystal aligning agent thus obtained can be used as it is, but it is preferable to further add a coupling agent since the adhesion between the liquid crystal aligning film and the substrate is improved. Here, the coupling agent in the present invention refers to a compound having a covalent bond between an oxygen atom and at least one or more elements selected from silicon and all typical metal elements belonging to group 1 to 3, and all transition metal elements. However, a coupling agent having an alkoxysilane, an alkoxyaluminum, an alkoxyzirconium, or an alkoxytitanium structure is preferable because it is easily available and excellent in cost, and among them, 3-aminopropyltrimethoxysilane is used as a liquid crystal display device. It is particularly preferable because the electrical characteristics at that time are improved. When the amount of the coupling agent is large, the strength of the alignment film is weakened, and when the amount is small, the effect of improving the adhesion is reduced. Therefore, 0.01 to 30% by weight, more preferably 0 to 30% by weight of the solid content in the liquid crystal alignment agent. 0.1 to 20% by weight, particularly preferably 0.5 to 10% by weight.
[0029]
In formulating the above coupling agent, after diluting the coupling agent with a solvent in advance, and then injecting them little by little into the liquid crystal alignment agent at a temperature of -5 to 80 ° C, the thickening and the insolubilization of the resin hardly occur. It is preferable because it becomes a uniform liquid crystal aligning agent. Further, at this time, the solvent for diluting the coupling agent and the concentration thereof are not particularly limited, but may be 1 to 50 using a solvent such as N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, toluene, hexane, and γ-butyrolactone. It can be used after being diluted to a concentration of 3% by weight, more preferably 3 to 30% by weight.
[0030]
It goes without saying that various additives such as a cross-linking agent may be added to the liquid crystal aligning agent thus obtained and used. Moreover, it is preferable to use the obtained liquid crystal aligning agent after filtering.
[0031]
The method for forming a liquid crystal alignment film of the present invention includes the steps of applying a liquid crystal alignment agent containing the soluble polyimide and polyamic acid obtained as described above to a substrate, and irradiating the substrate with polarized ultraviolet light. This is a method for forming a liquid crystal alignment film formed through the following steps.
[0032]
In the step of applying the liquid crystal aligning agent to the substrate, a method such as a spin coating method, a printing method, and an inkjet method can be used. At this time, the substrate to be used is not particularly limited as long as it is a substrate having high transparency, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. Needless to say, it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal is formed from the viewpoint of simplifying the process. The liquid crystal aligning agent applied to these substrates is dried at a temperature of 50 to 300 ° C., preferably 80 to 200 ° C. for 1 to 200 minutes to form a coating film of the liquid crystal aligning agent. If the thickness of the coating film to be formed is too thick, it is disadvantageous in terms of cost, and if it is too thin, the reliability of the liquid crystal display element is reduced. Therefore, the thickness is 5 to 300 nm, more preferably 7 to 100 nm, particularly preferably 10 to 80 nm. Is good.
[0033]
The step of irradiating the substrate with polarized ultraviolet light is a step of subjecting the coating film surface of the substrate obtained as described above to an alignment treatment by irradiating polarized ultraviolet light to make the coating film a liquid crystal alignment film. The irradiation wavelength of the polarized ultraviolet light to be irradiated is 150 to 400 nm, more preferably 190 to 380 nm, particularly preferably 220 to 350 nm, and the irradiation intensity is 1 J to 60 J / cm. 2 , More preferably 20 J to 50 J / cm 2 And particularly preferably 25 J to 40 J / cm. 2 It is. If the irradiation wavelength of the polarized ultraviolet light is too short, the liquid crystal alignment ability of the formed liquid crystal alignment film is deteriorated, and if it is too long, the light resistance is deteriorated. In addition, when the irradiation intensity is low, the liquid crystal alignment ability deteriorates, and when the irradiation intensity is too high, the electric characteristics deteriorate. The alignment direction of the obtained liquid crystal alignment film is determined by the polarization direction of the irradiated ultraviolet light.
[0034]
As described above, the liquid crystal alignment film formed by using the method of the present invention can uniformly align the liquid crystal and has a small accumulated charge. Therefore, by using this liquid crystal alignment film, the alignment of the liquid crystal is uniform. Thus, a liquid crystal display element with less image sticking can be obtained.
[0035]
As a method for obtaining a liquid crystal display element using the liquid crystal alignment film formed by using the method of the present invention, a known method can be used. As an example, a pair of substrates with a liquid crystal alignment film is placed at an angle of 0 to 270 ° with a spacer of 1 to 30 μm, preferably 2 to 10 μm, and liquid crystal is injected and sealed. Thus, a method for forming a liquid crystal display element can be given. The method of sealing liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure in the manufactured liquid crystal cell, and a dropping method in which liquid crystal is dropped and then sealed. Thus, the liquid crystal display element manufactured by using the present invention can be a liquid crystal display device in which the orientation of the liquid crystal is uniform and seizure hardly occurs. Subsequently, the present invention will be specifically described below, but the present invention is not limited thereto.
[0036]
【Example】
(Synthesis example 1)
A nitrogen inlet tube and a calcium chloride tube were connected to a 500 ml three-necked flask, and 9.73 g (0.09 mol) of p-phenylenediamine and 3.49 g of 1-hexadecyloxy-2,4-diaminobenzene (0.49 g) were added. 01 mol) was thoroughly stirred in 245 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) and completely dissolved. Thereafter, 30.03 g (0.1 mol) of 1,2-dicarboxy-1- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride was added, and the mixture was added at room temperature for 10 hours. The reaction was performed to synthesize a polyamic acid. To 100 g of the polyamic acid solution, 21.6 g (0.212 mol) of acetic anhydride and 9.97 g (0.126 mol) of pyridine were added as imidation catalysts, and reacted at 50 ° C. for 3 hours to prepare a polyimide resin solution. . This solution was poured into 1000 ml of methanol, and the obtained white precipitate was separated by filtration and dried to obtain a white polyimide resin. After dissolving this resin in NMP again, it was poured into acetone, and the white precipitate obtained in the same manner was filtered off and dried to obtain a white polyimide resin. The reduced viscosity of the obtained polyimide was 0.64 dl / g (0.5% by weight NMP solution, 30 ° C.). 7.2 g of this powder was dissolved in 112.8 g of γ-butyrolactone to obtain a solvent-soluble polyimide resin solution having a solid content of 6%.
[0037]
(Synthesis example 2)
A nitrogen inlet tube and a calcium chloride tube were connected to a 500 ml three-necked flask, and under nitrogen atmosphere, 19.827 g (0.1 mol) of 4,4′-diaminodiphenylmethane was dissolved in 226 g of NMP, followed by pyromellitic acid 10.687 g (0.049 mol) of dianhydride and 9.609 g (0.049 mol) of 1,2,3,4-tetracarboxycyclobutane dianhydride were added and reacted at room temperature for 10 hours to obtain polyamic acid. Was synthesized. The reduced viscosity of the obtained polyamic acid was 1.18 dl / g (0.5% by weight NMP solution, 30 ° C.). This solution was diluted with γ-butyrolactone to a solution concentration of 6% to obtain a polyamic acid solution.
[0038]
(Formulation Example 1)
20 g of the 6% -concentration soluble polyimide solution obtained in Synthesis Example 1 and 80 g of the 6% -concentration polyamic acid solution obtained in Synthesis Example 2 were stirred at room temperature for 12 hours in a 300 ml Erlenmeyer flask, and the concentration became 4%. And diluted with NMP. To this solution, 0.12 g of coupling agent LS-3450 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added after diluting to 2 g of NMP, and the mixture was further stirred for 12 hours. The obtained varnish was used as a liquid crystal aligning agent.
[0039]
(Formulation Example 2)
100 g of the 6% concentration soluble polyimide solution obtained in Synthesis Example 1 was diluted with NMP to a concentration of 4%. To this solution, 0.12 g of coupling agent LS-3450 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added after diluting to 2 g of NMP, and the mixture was further stirred for 12 hours. The obtained varnish was used as a liquid crystal aligning agent.
[0040]
(Formulation Example 3)
100 g of the 6% concentration polyamic acid solution obtained in Synthesis Example 2 was diluted with NMP to a concentration of 4%. To this solution, 0.12 g of coupling agent LS-3450 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added after diluting to 2 g of NMP, and the mixture was further stirred for 12 hours. The obtained varnish was used as a liquid crystal aligning agent.
[0041]
(Example 1)
The liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked at 210 ° C. for 1 hour with a hot-air circulating drier to obtain a 50-nm-thick polyimide film. 30 J / cm 2 Was irradiated to obtain a substrate with a liquid crystal alignment film. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface.
[0042]
In order to measure the electrical characteristics of the liquid crystal cell, two of these substrates were prepared, a 6-μm spacer was sprayed, a sealant was printed on one of the substrates, and the light irradiation direction was made substantially orthogonal to the two substrates. Were sealed with the surfaces of the polyimide films facing each other. After decompressing the inside of the cell, liquid crystal MLC-2003 (trade name, manufactured by Merck Japan) was injected to prepare a liquid crystal cell. A polarizing plate is placed above and below this liquid crystal cell, and a backlight is placed below. When the liquid crystal cell is rotated by 90 degrees, the light transmittance changes, a clear light and dark appears, and the liquid crystal is properly aligned. Was confirmed. A 30 Hz / ± 3 V rectangular wave superimposed with a DC 3 V voltage is applied to this liquid crystal cell at 60 ° C. for 20 minutes, and the residual voltage remaining in the liquid crystal cell immediately after the DC 3 V is cut off after 20 minutes is determined by optical flicker. When measured by the erasing method, the residual DC voltage immediately after was 0 V, and the residual DC voltage after 20 minutes was 0.05 V. Further, by using a liquid crystal cell / ion density measurement system (manufactured by Toyo Technica Co., Ltd., model name: MTR-1), a voltage having a frequency of 0.01 Hz and an amplitude of 10 V was applied to the liquid crystal cell, and the current flowing through the liquid crystal cell and the liquid crystal cell were measured. The liquid crystal cell resistance was measured from the voltage applied to 46.6 × 10 9 Was Ω.
[0043]
(Comparative Example 1)
Using the liquid crystal aligning agent obtained in Formulation Example 2, a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. Further, a liquid crystal cell was produced in the same manner as in Example 1. A polarizing plate is placed above and below this liquid crystal cell, and a backlight is placed below. When the liquid crystal cell is rotated by 90 degrees, the light transmittance changes, a clear light and dark appears, and the liquid crystal is properly aligned. Was confirmed. A 30 Hz / ± 3 V rectangular wave superimposed with a DC 3 V voltage is applied to this liquid crystal cell at 60 ° C. for 20 minutes, and the residual voltage remaining in the liquid crystal cell immediately after the DC 3 V is cut off after 20 minutes is determined by optical flicker. When measured by the erasing method, the residual DC voltage value immediately after was 0.12 V, and the residual DC voltage value after 20 minutes was 0.30 V. A voltage of 0.01 Hz and an amplitude of 10 V was applied to the liquid crystal cell using a liquid crystal cell ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), and the current flowing through the liquid crystal cell and the liquid crystal cell were measured. The liquid crystal cell resistance was measured from the voltage applied to 9 Was Ω.
[0044]
(Comparative Example 2)
Using the liquid crystal aligning agent obtained in Formulation Example 3, a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. Further, a liquid crystal cell was prepared in the same manner as in Example 1. However, the liquid crystal was not uniformly aligned, and even when the liquid crystal cell was rotated by 90 °, a clear change in transmittance did not appear.
[0045]
(Comparative Example 3)
The liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked at 210 ° C. for 1 hour with a hot-air circulating drier to obtain a 50-nm-thick polyimide film. This coating film was rubbed using rayon cloth at a roll rotation speed of 500 rpm, a roll advance speed of 20 mm / sec, and a pushing amount of 0.6 mm to obtain a substrate with a liquid crystal alignment film. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, streak-like scratches due to rubbing were confirmed on the surface. Further, in order to measure the electric characteristics of the liquid crystal cell, two substrates were prepared, and a liquid crystal cell was prepared in the same manner as in Example 1. A polarizing plate is placed above and below this liquid crystal cell, and a backlight is placed below. When the liquid crystal cell is rotated by 90 degrees, the light transmittance changes, a clear light and dark appears, and the liquid crystal is properly aligned. Was confirmed. A 30 Hz / ± 3 V rectangular wave superimposed with a DC voltage of 3 V is applied to this liquid crystal cell at 60 ° C. for 20 minutes. When measured by the erasing method, the residual DC voltage immediately after was 0 V, and the residual DC voltage after 20 minutes was 0.00 V. A voltage of 0.01 Hz and an amplitude of 10 V was applied to the liquid crystal cell using a liquid crystal cell ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), and the current flowing through the liquid crystal cell and the liquid crystal cell were measured. The liquid crystal cell resistance was measured from the voltage applied to 9 Was Ω.
[0046]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal alignment film with little accumulation | storage of a liquid crystal display element can be formed by the method excellent in workability and uniformity. Further, the liquid crystal display element using the liquid crystal alignment film formed according to the present invention has a small charge accumulation, so that it is possible to continue displaying an image having a high contrast without causing image sticking or the like. Furthermore, the present invention is a highly versatile technology for improving electrical characteristics, and is applicable not only to the currently mainstream TFT liquid crystal display but also to the latest display devices such as VA and IPS liquid crystal display devices. Image quality can be improved.

Claims (4)

可溶性ポリイミドとポリアミック酸とを含有する液晶配向剤を、基板に塗布する工程と、該基板に偏光紫外線を照射する工程とを経て形成される液晶配向膜の形成方法。A method for forming a liquid crystal alignment film formed through a step of applying a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid to a substrate, and a step of irradiating the substrate with polarized ultraviolet light. 液晶配向剤が少なくとも脂環式構造を有する酸二無水物とジアミンとを反応させて得られる可溶性ポリイミド樹脂を含有することを特徴とする請求項1に記載の液晶配向膜の形成方法。The method for forming a liquid crystal alignment film according to claim 1, wherein the liquid crystal alignment agent contains a soluble polyimide resin obtained by reacting at least an acid dianhydride having an alicyclic structure with a diamine. 可溶性ポリイミド化合物が一般式(1)で表される繰り返し単位を含むことを特徴とする、請求項1または請求項2に記載の液晶配向膜の形成方法。
Figure 2004264354
(式中Rは2価の有機基を表す)
The method for forming a liquid crystal alignment film according to claim 1, wherein the soluble polyimide compound contains a repeating unit represented by the general formula (1). 4.
Figure 2004264354
(Wherein R 1 represents a divalent organic group)
ポリアミック酸化合物が一般式(2)で表される繰り返し単位を含むことを特徴とする請求項1〜請求項3のいずれかに記載の液晶配向膜の形成方法。
Figure 2004264354
(式中Rは2価の有機基を表す)
The method for forming a liquid crystal alignment film according to any one of claims 1 to 3, wherein the polyamic acid compound contains a repeating unit represented by the general formula (2).
Figure 2004264354
(Wherein R 2 represents a divalent organic group)
JP2003033087A 2003-02-12 2003-02-12 Method for forming liquid crystal alignment layer Pending JP2004264354A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003033087A JP2004264354A (en) 2003-02-12 2003-02-12 Method for forming liquid crystal alignment layer
PCT/JP2004/001388 WO2004072720A1 (en) 2003-02-12 2004-02-10 Liquid crystal alignment layer forming method
TW93103372A TW200420982A (en) 2003-02-12 2004-02-12 Liquid crystal alignment layer forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033087A JP2004264354A (en) 2003-02-12 2003-02-12 Method for forming liquid crystal alignment layer

Publications (1)

Publication Number Publication Date
JP2004264354A true JP2004264354A (en) 2004-09-24

Family

ID=32866213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033087A Pending JP2004264354A (en) 2003-02-12 2003-02-12 Method for forming liquid crystal alignment layer

Country Status (3)

Country Link
JP (1) JP2004264354A (en)
TW (1) TW200420982A (en)
WO (1) WO2004072720A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076921A (en) * 2006-09-25 2008-04-03 Hitachi Displays Ltd Liquid crystal display device
US9715144B2 (en) 2007-12-21 2017-07-25 Rolic Ag Photoalignment composition
US10031382B2 (en) 2015-12-25 2018-07-24 Japan Display Inc. Liquid crystal display device
JP2018526675A (en) * 2015-11-11 2018-09-13 エルジー・ケム・リミテッド Method for producing liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759189B1 (en) * 2005-12-01 2007-09-14 주식회사 엘지화학 Process for preparing of liquid crystal aligning layer, liquid crystal aligning prepared by the same, and liquid crystal display including liquid crystal aligning layer
TWI386730B (en) * 2008-04-30 2013-02-21 Au Optronics Corp Liquid crystal alignment process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289271B2 (en) * 1995-02-13 2002-06-04 日産化学工業株式会社 Liquid crystal alignment agent and liquid crystal device using the same
JP3893659B2 (en) * 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP4514247B2 (en) * 1998-11-12 2010-07-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076921A (en) * 2006-09-25 2008-04-03 Hitachi Displays Ltd Liquid crystal display device
US9715144B2 (en) 2007-12-21 2017-07-25 Rolic Ag Photoalignment composition
US10558089B2 (en) 2007-12-21 2020-02-11 Rolic Ag Photoalignment composition
JP2018526675A (en) * 2015-11-11 2018-09-13 エルジー・ケム・リミテッド Method for producing liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element using the same
US10696901B2 (en) 2015-11-11 2020-06-30 Lg Chem, Ltd. Method of manufacturing liquid crystal alignment layer, liquid crystal alignment layer manufactured by using the same, and liquid crystal display device
US10031382B2 (en) 2015-12-25 2018-07-24 Japan Display Inc. Liquid crystal display device

Also Published As

Publication number Publication date
TW200420982A (en) 2004-10-16
WO2004072720A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP5773177B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4404090B2 (en) Liquid crystal aligning agent for photo-alignment and liquid crystal display device using the same
JP4052308B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP4052307B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
KR101616143B1 (en) Liquid-crystal alignment material, liquid-crystal display element employing same, and novel diamine
JP5151478B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5282573B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP5109371B2 (en) Liquid crystal aligning agent for vertical alignment, liquid crystal alignment film, and liquid crystal display device using the same
JP5109979B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
KR101589328B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
TWI750165B (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method thereof, liquid crystal element, polymer and compound
JP4013052B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
JP4605016B2 (en) Liquid crystal aligning agent for vertical alignment and liquid crystal display element
JP5434821B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5434927B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
TW201823308A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2004264354A (en) Method for forming liquid crystal alignment layer
JP5219233B2 (en) Liquid crystal alignment agent
JP4016257B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP2006176543A (en) Liquid crystal aligning agent
JP5326355B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
WO2021182267A1 (en) Polyimide varnish
JP2004163724A (en) Novel liquid crystal aligning agent

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090406