TWI386730B - Liquid crystal alignment process - Google Patents

Liquid crystal alignment process Download PDF

Info

Publication number
TWI386730B
TWI386730B TW97116023A TW97116023A TWI386730B TW I386730 B TWI386730 B TW I386730B TW 97116023 A TW97116023 A TW 97116023A TW 97116023 A TW97116023 A TW 97116023A TW I386730 B TWI386730 B TW I386730B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
exposure process
light
substrate
monomer material
Prior art date
Application number
TW97116023A
Other languages
Chinese (zh)
Other versions
TW200944901A (en
Inventor
Chen Wei Huang
Chao Yuan Chen
Chia Hsuan Pai
Chung Ching Hsieh
Te Sheng Chen
Norio Sugiura
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW97116023A priority Critical patent/TWI386730B/en
Publication of TW200944901A publication Critical patent/TW200944901A/en
Application granted granted Critical
Publication of TWI386730B publication Critical patent/TWI386730B/en

Links

Description

液晶配向製程Liquid crystal alignment process

本發明是有關於一種液晶顯示面板的製程,且特別是有關於一種液晶配向製程。The present invention relates to a process for a liquid crystal display panel, and more particularly to a liquid crystal alignment process.

隨著平面顯示技術的進步加上平面顯示器具有重量輕、體積小及省電等優點,平面顯示器已愈來愈普及。常見的平面顯示器有液晶顯示器(liquid crystal display, LCD)、電漿顯示器(plasma display panel, PDP)、有機發光二極體顯示器(organic light emitting diode display, OLED display)以及電泳顯示器(electrophoretic display, EPD)等,其中又以液晶顯示器的普及率最高。With the advancement of flat display technology and the advantages of flat panel display, such as light weight, small size and power saving, flat panel displays have become more and more popular. Common flat panel displays include liquid crystal display (LCD), plasma display panel (PDP), organic light emitting diode display (OLED display), and electrophoretic display (EPD). ), among them, the popularity of liquid crystal displays is the highest.

液晶顯示器包括一液晶顯示面板(LCD panel)與一背光模組(backlight module),其中背光模組是用以提供一顯示光源至液晶顯示面板。此外,液晶顯示面板是利用電場控制液晶分子的幾何變化來改變光的傳輸路徑與相位,而為了控制液晶分子的排列次序及方向,一般會進行一液晶配向製程。液晶配向製程可區分為多種,其中一種為高分子聚合液晶配向製程。The liquid crystal display includes a liquid crystal display panel (LCD panel) and a backlight module, wherein the backlight module is used to provide a display light source to the liquid crystal display panel. In addition, the liquid crystal display panel uses an electric field to control the geometrical changes of the liquid crystal molecules to change the transmission path and phase of the light, and in order to control the order and direction of the liquid crystal molecules, a liquid crystal alignment process is generally performed. The liquid crystal alignment process can be divided into a plurality of types, one of which is a polymerized liquid crystal alignment process.

高分子聚合液晶配向製程是先添加一單體材料(monomer material)於一液晶層,之後再進行第一次曝光製程,以使單體材料聚合形成一聚合物穩定配向層。此外,由於單體材料在第一次曝光製程中無法完全聚合,因此在習知技術中會進行第二次曝光製程,以期能使剩餘的單體材料聚合。The polymerized liquid crystal alignment process first adds a monomer material to a liquid crystal layer, and then performs a first exposure process to polymerize the monomer material to form a polymer stable alignment layer. In addition, since the monomer material cannot be completely polymerized in the first exposure process, a second exposure process is performed in the prior art in order to polymerize the remaining monomer material.

圖1是兩種單體材料的吸收波長之曲線圖,其橫軸為波長,縱軸為消光係數(extinction)。由圖1中可看出單體材料的吸收波長約介於220奈米(nm)至340奈米之間,但上述 兩次曝光製程是使用主要波長約為365奈米的紫外光,所以即使進行兩次曝光製程,單體材料的殘留量仍然過高。如此,將導致液晶顯示面板在殘像測試(image sticking test)的表現不佳。Figure 1 is a graph of the absorption wavelengths of two monomer materials, with the horizontal axis being the wavelength and the vertical axis being the extinction. It can be seen from Fig. 1 that the absorption wavelength of the monomer material is between about 220 nm (nm) and 340 nm, but the above The double exposure process uses ultraviolet light having a dominant wavelength of about 365 nm, so even if the exposure process is performed twice, the residual amount of the monomer material is still too high. As such, the liquid crystal display panel will be poorly performing in the image sticking test.

本發明提供一種液晶配向製程,以提升液晶顯示面板的信賴性。The invention provides a liquid crystal alignment process to improve the reliability of the liquid crystal display panel.

為達上述優點,本發明提出一種液晶配向製程,其包括下列步驟。首先,提供一第一基板與一第二基板。接著,提供一液晶層於第一基板與第二基板之間,其中液晶層包括一液晶組成物、一單體材料以及一聚合起始劑(polymerization initiator)。接著,進行一第一曝光製程,以使部份的單體材料聚合形成二聚合物穩定配向層於液晶層中,其二聚合物穩定配向層分別位於液晶層與第一基板之間的一第一接觸面以及液晶層與第二基板之間的一第二接觸面,使液晶組成物中的多個液晶分子沿一預傾角度排列。然後,進行一第二曝光製程,以使剩餘的單體材料聚合,其中第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線來照射剩餘的單體材料。In order to achieve the above advantages, the present invention provides a liquid crystal alignment process comprising the following steps. First, a first substrate and a second substrate are provided. Next, a liquid crystal layer is provided between the first substrate and the second substrate, wherein the liquid crystal layer comprises a liquid crystal composition, a monomer material, and a polymerization initiator. Then, a first exposure process is performed to polymerize a portion of the monomer material to form a dipolymer stable alignment layer in the liquid crystal layer, and the second polymer stable alignment layer is respectively located between the liquid crystal layer and the first substrate. A contact surface and a second contact surface between the liquid crystal layer and the second substrate cause the plurality of liquid crystal molecules in the liquid crystal composition to be aligned along a pretilt angle. Then, a second exposure process is performed to polymerize the remaining monomer material, wherein the second exposure process uses light having a dominant wavelength between 290 nm and 340 nm to illuminate the remaining monomer material.

在本發明之一實施例中,上述之第二曝光製程是藉由一燈源搭配至少一濾光片來提供主要波長介於290奈米至340奈米之間的光線。In an embodiment of the invention, the second exposure process is performed by using a light source with at least one filter to provide light having a dominant wavelength between 290 nm and 340 nm.

在本發明之一實施例中,上述之濾光片為鈉鈣(soda-lime)玻璃。In an embodiment of the invention, the filter is a soda-lime glass.

在本發明之一實施例中,上述之第二曝光製程是藉由一燈源來提供主要波長介於290奈米至340奈米之間的光線,而燈源之一管體的材質為鈉鈣玻璃。In an embodiment of the present invention, the second exposure process is to provide light having a main wavelength between 290 nm and 340 nm by a light source, and the material of the light source is sodium. Calcium glass.

在本發明之一實施例中,上述之第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線持續地照射剩餘的單體材料。In one embodiment of the invention, the second exposure process described above is to continuously illuminate the remaining monomer material using light having a dominant wavelength between 290 nm and 340 nm.

在本發明之一實施例中,上述之第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線間歇地照射剩餘的單體材料。In one embodiment of the invention, the second exposure process described above intermittently illuminates the remaining monomer material using light having a dominant wavelength between 290 nm and 340 nm.

在本發明之一實施例中,量測第二曝光製程所使用的光線之光度計所測得的光強度大於0毫瓦/平方公分(mW/cm2 ),且光度計對於313奈米的光有最大相對感度。In one embodiment of the invention, the light intensity measured by the photometer for measuring the light used in the second exposure process is greater than 0 milliwatts per square centimeter (mW/cm 2 ), and the photometer is for 313 nm. Light has the greatest relative sensitivity.

在本發明之液晶配向製程中,由於第二曝光製程使用主要波長介於290奈米至340奈米之間的光線來照射剩餘的單體材料,所以可避免對液晶分子造成傷害,並使絕大部份的單體材料聚合,進而大幅降低單體材料的殘留量。因此,本發明之液晶配向製程可提升液晶顯示面板的信賴性。In the liquid crystal alignment process of the present invention, since the second exposure process uses light having a main wavelength between 290 nm and 340 nm to illuminate the remaining monomer material, damage to the liquid crystal molecules can be avoided, and Most of the monomer materials are polymerized, which in turn greatly reduces the amount of residual monomer material. Therefore, the liquid crystal alignment process of the present invention can improve the reliability of the liquid crystal display panel.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖2A至圖2E是本發明一實施例之液晶配向製程的流程圖。請先參照圖2A,本實施例之液晶配向製程包括下列步驟。首先,提供一第一基板110與一第二基板120。第一基板110例如是一主動元件陣列基板,而第二基板120例如是一對向基板。2A to 2E are flow charts of a liquid crystal alignment process according to an embodiment of the present invention. Referring first to FIG. 2A, the liquid crystal alignment process of this embodiment includes the following steps. First, a first substrate 110 and a second substrate 120 are provided. The first substrate 110 is, for example, an active device array substrate, and the second substrate 120 is, for example, a pair of substrates.

接著,如圖2B所示,提供一液晶層130於第一基板110與第二基板120之間,其中液晶層130包括一液晶組成物132、一單體材料134以及一聚合起始劑(圖未示)。此外,液晶組成物132包括多個液晶分子133。Next, as shown in FIG. 2B, a liquid crystal layer 130 is provided between the first substrate 110 and the second substrate 120, wherein the liquid crystal layer 130 includes a liquid crystal composition 132, a monomer material 134, and a polymerization initiator (Fig. Not shown). Further, the liquid crystal composition 132 includes a plurality of liquid crystal molecules 133.

接著,施加一電場以使液晶組成物132中的液晶分子133沿一預傾角度排列,並藉由施加一電場的同時一起進行一第一曝光製程,以使部份的單體材料134聚合形成二聚合物穩定配向層140於液晶層130內,其二聚合物穩定配向層140分別位於液晶層130與第一基板110之間的一第一接觸面以及液晶層130與第二基板120之間的一第二接觸面,如圖2C所示。在本實施例中,第一曝光製程所使用的光線50為紫外光,而一般在第一曝光製程所使用的光線50之主要波長大約是365奈米,但不以此為限。具體而言,為了避免對液晶分子133造成傷害,所以在第一曝光製程中可選用波長大於290奈米的光線50。Next, an electric field is applied to align the liquid crystal molecules 133 in the liquid crystal composition 132 along a pretilt angle, and a first exposure process is performed together while applying an electric field to polymerize a portion of the monomer material 134. The two polymer stable alignment layer 140 is in the liquid crystal layer 130, and the two polymer stable alignment layer 140 is respectively located between a first contact surface between the liquid crystal layer 130 and the first substrate 110 and between the liquid crystal layer 130 and the second substrate 120. A second contact surface is shown in Figure 2C. In the present embodiment, the light 50 used in the first exposure process is ultraviolet light, and the main wavelength of the light 50 generally used in the first exposure process is about 365 nm, but not limited thereto. Specifically, in order to avoid damage to the liquid crystal molecules 133, light rays 50 having a wavelength greater than 290 nm may be selected in the first exposure process.

然後,如圖2D所示,進行一第二曝光製程,以使剩餘的單體材料134聚合,其中第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線62來照射剩餘的單體材料134。此外,照射剩餘的單體材料134之方法可為持續地照射或是間歇地照射。另外,在本實施例中,可藉由限定光線62之光強度來提升單體材料134的聚合效果。具體而言,藉由對於313奈米的光有最大相對感度的一光度計來量測第二曝光製程所使用的光線62時,所測得的光強度例如是大於0毫瓦/平方公分。Then, as shown in FIG. 2D, a second exposure process is performed to polymerize the remaining monomer material 134, wherein the second exposure process is performed using light 62 having a dominant wavelength between 290 nm and 340 nm. The remaining monomer material 134. Further, the method of irradiating the remaining monomer material 134 may be continuous irradiation or intermittent irradiation. Further, in the present embodiment, the polymerization effect of the monomer material 134 can be enhanced by limiting the light intensity of the light 62. Specifically, when the light 62 used in the second exposure process is measured by a photometer having a maximum relative sensitivity to 313 nm of light, the measured light intensity is, for example, greater than 0 mW/cm 2 .

單體材料134的吸收波長的範圍約介於220奈米至340奈米之間,而此範圍與液晶分子133的吸收波長大部份重疊。為了避免對液晶分子133造成傷害,本實施例在第二曝光製程中所使用的光線62之主要波長需大於290奈米,如此可大幅減輕第二曝光製程對液晶分子133造成的傷害。因此,經過第二曝光製程後,液晶分子133的電壓保持率(voltage holding ratio, VHR)在60赫茲(Hz),1伏特(volt)的條件下,仍可高於98%。The absorption wavelength of the monomer material 134 ranges from about 220 nm to about 340 nm, and this range largely overlaps with the absorption wavelength of the liquid crystal molecules 133. In order to avoid damage to the liquid crystal molecules 133, the main wavelength of the light 62 used in the second exposure process in this embodiment needs to be greater than 290 nm, which can greatly reduce the damage caused by the second exposure process to the liquid crystal molecules 133. Therefore, after the second exposure process, the voltage holding ratio of the liquid crystal molecules 133 (voltage holding ratio, VHR) can still be higher than 98% at 60 Hz and 1 volt.

此外,由於第二曝光製程中所使用的光線62之主要波長的範圍是位於單體材料134的吸收波長的範圍內,所以可有效地使剩餘的單體材料134聚合,以大幅減少單體材料134的殘留量。因此,經過第二曝光製程後所得到的液晶顯示面板100(如圖2E示)在殘像測試時能具有良好的表現。換言之,本實施例之液晶配向製程可提升液晶顯示面板100的信賴性。In addition, since the range of the main wavelength of the light 62 used in the second exposure process is in the range of the absorption wavelength of the monomer material 134, the remaining monomer material 134 can be effectively polymerized to substantially reduce the monomer material. 134 residual amount. Therefore, the liquid crystal display panel 100 (shown in FIG. 2E) obtained after the second exposure process can perform well in the afterimage test. In other words, the liquid crystal alignment process of the embodiment can improve the reliability of the liquid crystal display panel 100.

請再參照圖2D,在第二曝光製程中,可藉由燈源60來提供光線62,並藉由至少一濾光片70來濾除光線62的部份波段,使照射至液晶層130的光線62之主要波長大於290奈米。具體而言,濾光片70可為鈉鈣玻璃,其穿透波長如圖3所示。Referring to FIG. 2D again, in the second exposure process, the light source 62 is provided by the light source 60, and a portion of the wavelength band of the light 62 is filtered by the at least one filter 70 to be irradiated to the liquid crystal layer 130. The primary wavelength of light 62 is greater than 290 nm. Specifically, the filter 70 may be soda lime glass having a penetration wavelength as shown in FIG.

此外,請參照圖4,在第二曝光製程中,亦可使用管體82之材質為鈉鈣玻璃的燈管80來提供光線84,以照射液晶層130。由於燈管80的管體82之材質為鈉鈣玻璃,所以可使照射至液晶層130的光線84之主要波長大於290奈米。In addition, referring to FIG. 4, in the second exposure process, the tube 82 of the tube body 82 made of soda lime glass may be used to provide the light 84 to illuminate the liquid crystal layer 130. Since the material of the tube 82 of the bulb 80 is soda lime glass, the main wavelength of the light 84 irradiated to the liquid crystal layer 130 can be greater than 290 nm.

綜上所述,本發明之液晶配向製程中,由於第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線來照射剩餘的單體材料,所以可避免對液晶分子造成傷害,並能使絕大部份的單體材料聚合,進而大幅降低單體材料的殘留量。如此,不僅可使液晶分子具有高電壓保持率,還可使液晶顯示面板在殘像測試時具有良好的表現。因此,本發明之液晶配向製程可提升液晶顯示面板的顯示品質。In summary, in the liquid crystal alignment process of the present invention, since the second exposure process uses light having a main wavelength between 290 nm and 340 nm to illuminate the remaining monomer material, liquid crystal molecules can be avoided. Damage, and can make the majority of monomer materials polymerize, thereby significantly reducing the residual amount of monomer materials. Thus, not only the liquid crystal molecules can have a high voltage holding ratio, but also the liquid crystal display panel can perform well in the afterimage test. Therefore, the liquid crystal alignment process of the present invention can improve the display quality of the liquid crystal display panel.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above in terms of the preferred embodiments, it is not intended to limit the invention, and those of ordinary skill in the art can make a few changes and modifications without departing from the spirit and scope of the invention. Therefore the protection of the present invention The scope is subject to the definition of the scope of the patent application attached.

50、62、84‧‧‧光線50, 62, 84‧‧‧ rays

60、80‧‧‧燈管60, 80‧‧‧ lamps

70‧‧‧濾光片70‧‧‧Filter

82‧‧‧管體82‧‧‧ tube body

100‧‧‧液晶顯示面板100‧‧‧LCD panel

110‧‧‧第一基板110‧‧‧First substrate

120‧‧‧第二基板120‧‧‧second substrate

130‧‧‧液晶層130‧‧‧Liquid layer

132‧‧‧液晶組成物132‧‧‧Liquid composition

133‧‧‧液晶分子133‧‧‧liquid crystal molecules

134‧‧‧單體材料134‧‧‧Single material

140‧‧‧聚合物穩定配向層140‧‧‧Polymer stable alignment layer

圖1是兩種單體材料的吸收波長之曲線圖。Figure 1 is a graph of the absorption wavelengths of two monomer materials.

圖2A至圖2E是本發明一實施例之液晶配向製程的流程圖。2A to 2E are flow charts of a liquid crystal alignment process according to an embodiment of the present invention.

圖3是鈉鈣玻璃的穿透波長之曲線圖。Figure 3 is a graph of the penetration wavelength of soda lime glass.

圖4是本發明另一實施例之液晶配向製程的第二曝光製程之示意圖。4 is a schematic view showing a second exposure process of a liquid crystal alignment process according to another embodiment of the present invention.

60‧‧‧燈管60‧‧‧ lamps

62‧‧‧光線62‧‧‧Light

70‧‧‧濾光片70‧‧‧Filter

110‧‧‧第一基板110‧‧‧First substrate

120‧‧‧第二基板120‧‧‧second substrate

130‧‧‧液晶層130‧‧‧Liquid layer

132‧‧‧液晶組成物132‧‧‧Liquid composition

133‧‧‧液晶分子133‧‧‧liquid crystal molecules

134‧‧‧單體材料134‧‧‧Single material

140‧‧‧聚合物穩定配向層140‧‧‧Polymer stable alignment layer

Claims (8)

一種液晶配向製程,包括:提供一第一基板與一第二基板;提供一液晶層於該第一基板與該第二基板之間,其中該液晶層包括一液晶組成物、一單體材料以及一聚合起始劑;施加一電場的同時一起進行一第一曝光製程,以使部份的該單體材料聚合形成二聚合物穩定配向層分別位於液晶層與第一基板之間的一第一接觸面以及液晶層與第二基板之間的一第二接觸面,以使該液晶組成物中的多個液晶分子沿一預傾角度排列,其中該第一曝光製程是使用主要波長大約是365奈米的光線;以及進行一第二曝光製程,以使剩餘的該單體材料聚合,其中該第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線來照射剩餘的該單體材料,該第二曝光製程藉由一燈源搭配至少一濾光片以提供主要波長介於290奈米至340奈米之間的光線,該濾光片為鈉鈣玻璃。 A liquid crystal alignment process includes: providing a first substrate and a second substrate; providing a liquid crystal layer between the first substrate and the second substrate, wherein the liquid crystal layer comprises a liquid crystal composition, a single material, and a polymerization initiator; applying an electric field while performing a first exposure process to polymerize a portion of the monomer material to form a dipolymer stable alignment layer respectively located between the liquid crystal layer and the first substrate a contact surface and a second contact surface between the liquid crystal layer and the second substrate, so that the plurality of liquid crystal molecules in the liquid crystal composition are aligned along a pretilt angle, wherein the first exposure process uses a dominant wavelength of about 365 Light of the nano; and performing a second exposure process to polymerize the remaining monomer material, wherein the second exposure process uses light having a dominant wavelength between 290 nm and 340 nm to illuminate the remaining The monomer material, the second exposure process is coupled with at least one filter by a light source to provide light having a dominant wavelength between 290 nm and 340 nm, the filter being soda lime glass. 如申請專利範圍第1項所述之液晶配向製程,其中該第二曝光製程使用主要波長介於290奈米至340奈米之間的光線持續地照射剩餘的該單體材料。 The liquid crystal alignment process of claim 1, wherein the second exposure process continuously irradiates the remaining monomer material with light having a dominant wavelength between 290 nm and 340 nm. 如申請專利範圍第1項所述之液晶配向製程,其中該第二曝光製程使用主要波長介於290奈米至340奈米之間的光線間歇地照射剩餘的該單體材料。 The liquid crystal alignment process of claim 1, wherein the second exposure process intermittently illuminates the remaining monomer material using light having a dominant wavelength between 290 nm and 340 nm. 如申請專利範圍第1項所述之液晶配向製程,其中量測該第二曝光製程所使用的光線之光度計所測得的光強度大於0毫瓦/平方公分,且該光度計對於313奈米的光有最大相對感度。 The liquid crystal alignment process of claim 1, wherein the photometric measured by the photometer used in the second exposure process is greater than 0 mW/cm 2 , and the photometer is for 313 Nai The light of rice has the greatest relative sensitivity. 一種液晶配向製程,包括: 提供一第一基板與一第二基板;提供一液晶層於該第一基板與該第二基板之間,其中該液晶層包括一液晶組成物、一單體材料以及一聚合起始劑;施加一電場的同時一起進行一第一曝光製程,以使部份的該單體材料聚合形成二聚合物穩定配向層分別位於液晶層與第一基板之間的一第一接觸面以及液晶層與第二基板之間的一第二接觸面,以使該液晶組成物中的多個液晶分子沿一預傾角度排列,其中該第一曝光製是程使用主要波長大約是365奈米的光線;以及進行一第二曝光製程,以使剩餘的該單體材料聚合,其中該第二曝光製程是使用主要波長介於290奈米至340奈米之間的光線來照射剩餘的該單體材料,該第二曝光製程是藉由一燈源來提供主要波長介於290奈米至340奈米之間的光線,而該燈源之一管體的材質為鈉鈣玻璃。 A liquid crystal alignment process comprising: Providing a first substrate and a second substrate; providing a liquid crystal layer between the first substrate and the second substrate, wherein the liquid crystal layer comprises a liquid crystal composition, a monomer material, and a polymerization initiator; Simultaneously performing a first exposure process together with an electric field to polymerize a portion of the monomer material to form a dipolymer stable alignment layer, a first contact surface between the liquid crystal layer and the first substrate, and a liquid crystal layer and a first a second contact surface between the two substrates such that the plurality of liquid crystal molecules in the liquid crystal composition are aligned along a pretilt angle, wherein the first exposure process uses light having a dominant wavelength of approximately 365 nm; Performing a second exposure process to polymerize the remaining monomer material, wherein the second exposure process irradiates the remaining monomer material with light having a dominant wavelength between 290 nm and 340 nm. The second exposure process is to provide light having a main wavelength between 290 nm and 340 nm by a light source, and one of the light sources is made of soda lime glass. 如申請專利範圍第5項所述之液晶配向製程,其中該第二曝光製程使用主要波長介於290奈米至340奈米之間的光線持續地照射剩餘的該單體材料。 The liquid crystal alignment process of claim 5, wherein the second exposure process continuously irradiates the remaining monomer material with light having a dominant wavelength between 290 nm and 340 nm. 如申請專利範圍第5項所述之液晶配向製程,其中該第二曝光製程使用主要波長介於290奈米至340奈米之間的光線間歇地照射剩餘的該單體材料。 The liquid crystal alignment process of claim 5, wherein the second exposure process intermittently illuminates the remaining monomer material using light having a dominant wavelength between 290 nm and 340 nm. 如申請專利範圍第5項所述之液晶配向製程,其中量測該第二曝光製程所使用的光線之光度計所測得的光強度大於0毫瓦/平方公分,且該光度計對於313奈米的光有最大相對感度。The liquid crystal alignment process of claim 5, wherein the photometric measured by the photometer used in the second exposure process is greater than 0 mW/cm 2 , and the photometer is for 313 Nai The light of rice has the greatest relative sensitivity.
TW97116023A 2008-04-30 2008-04-30 Liquid crystal alignment process TWI386730B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116023A TWI386730B (en) 2008-04-30 2008-04-30 Liquid crystal alignment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116023A TWI386730B (en) 2008-04-30 2008-04-30 Liquid crystal alignment process

Publications (2)

Publication Number Publication Date
TW200944901A TW200944901A (en) 2009-11-01
TWI386730B true TWI386730B (en) 2013-02-21

Family

ID=44869552

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116023A TWI386730B (en) 2008-04-30 2008-04-30 Liquid crystal alignment process

Country Status (1)

Country Link
TW (1) TWI386730B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417618B (en) * 2009-11-20 2013-12-01 Chunghwa Picture Tubes Ltd Fabricating method of liquid crystal display panel
TW201215970A (en) 2010-10-04 2012-04-16 Chunghwa Picture Tubes Ltd Liquid crystal alignment process
TWI466987B (en) 2011-06-09 2015-01-01 Chunghwa Picture Tubes Ltd Photopolymerizable liquid crystal mixture and manufacturing method thereof
CN102321205B (en) * 2011-06-16 2013-04-10 华映视讯(吴江)有限公司 Photopolymerisable liquid crystal mixture and photopolymerisable liquid crystal manufacture method
TWI508347B (en) * 2013-02-23 2015-11-11 Chunghwa Picture Tubes Ltd Method of manufacturing photo-electric device
TWI510847B (en) * 2013-12-24 2015-12-01 Innolux Corp Liquid crystal display device
CN110068960A (en) * 2019-04-04 2019-07-30 深圳市华星光电技术有限公司 Aggregation stablizes the manufacturing method of homeotropic liquid crystal display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200420982A (en) * 2003-02-12 2004-10-16 Nissan Chemical Ind Ltd Liquid crystal alignment layer forming method
US6894742B2 (en) * 2001-10-02 2005-05-17 Fujitsu Display Technologies Corporation Liquid crystal display device and method of fabricating the same
TW200600933A (en) * 2004-05-28 2006-01-01 Fujitsu Display Tech Liquid crystal display device and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894742B2 (en) * 2001-10-02 2005-05-17 Fujitsu Display Technologies Corporation Liquid crystal display device and method of fabricating the same
TW200420982A (en) * 2003-02-12 2004-10-16 Nissan Chemical Ind Ltd Liquid crystal alignment layer forming method
TW200600933A (en) * 2004-05-28 2006-01-01 Fujitsu Display Tech Liquid crystal display device and method of producing the same

Also Published As

Publication number Publication date
TW200944901A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
TWI386730B (en) Liquid crystal alignment process
TWI333109B (en) Liquid crystal display device and method of producing the same
TW201109802A (en) Manufacturing method and equipment for liquid crystal panel
KR101383930B1 (en) Light irradiation apparatus
US8928842B2 (en) Curing device and method for curing frame of liquid crystal panel
TW200722830A (en) Manufacturing method of liquid crystal display device
CN109581757B (en) Ultraviolet curing equipment and frame glue curing method
US8610872B2 (en) Liquid crystal alignment process
TW201126234A (en) Manufacturing device for liquid crystal display panel
WO2010137200A1 (en) Liquid crystal display device and method for manufacturing same
US8089591B2 (en) Liquid crystal display device and method of aligning liquid crystal molecules utilized thereby
TW200502595A (en) Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display
JP4930542B2 (en) Manufacturing method of liquid crystal panel
TWI466987B (en) Photopolymerizable liquid crystal mixture and manufacturing method thereof
JP4387931B2 (en) Polymer network type liquid crystal display device and manufacturing method thereof
WO2015018155A1 (en) Method for manufacturing display apparatus
TWI471648B (en) Transparent liquid crystal display device and manufacturing method for the same
WO2020191835A1 (en) Optical alignment apparatus and optical alignment method
WO2013159413A1 (en) Method and device for optical alignment of liquid crystal material
JP2006195112A (en) Liquid crystal element, and dimmer element and liquid crystal display device using the same
JP2011146363A (en) Fluorescent lamp
CN114527591B (en) Preparation method of liquid crystal display panel and liquid crystal display panel
JP5556489B2 (en) Liquid crystal panel manufacturing apparatus and manufacturing method
WO2020215392A1 (en) Flexible liquid crystal display panel and preparation method thereof
US8953140B2 (en) Method for setting pre-tilt angle of liquid crystal molecule