WO2004072720A1 - Liquid crystal alignment layer forming method - Google Patents

Liquid crystal alignment layer forming method Download PDF

Info

Publication number
WO2004072720A1
WO2004072720A1 PCT/JP2004/001388 JP2004001388W WO2004072720A1 WO 2004072720 A1 WO2004072720 A1 WO 2004072720A1 JP 2004001388 W JP2004001388 W JP 2004001388W WO 2004072720 A1 WO2004072720 A1 WO 2004072720A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
alignment film
polyamic acid
soluble polyimide
Prior art date
Application number
PCT/JP2004/001388
Other languages
French (fr)
Japanese (ja)
Inventor
Hirotsugu Taki
Tetsuya Imamura
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Publication of WO2004072720A1 publication Critical patent/WO2004072720A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a method for forming a liquid crystal alignment film capable of obtaining a liquid crystal display element with uniform liquid crystal alignment and little image sticking.
  • Liquid crystal display devices are now widely used in personal computers, televisions, and word processors as thin and lightweight display devices.
  • display characteristics of the liquid crystal display element not only the liquid crystal material used but also a liquid crystal alignment film for uniformly aligning the liquid crystal is important.
  • liquid crystal alignment films are mainly made of organic resins, applied to the substrate, baked, and then subjected to a so-called "rubbing" treatment in which pressure is applied to the surface with rayon or nylon cloth. Is formed.
  • the liquid crystal alignment film formed by rubbing there is known a method of forming a liquid crystal alignment film by performing a rubbing treatment by forming a coating film using a liquid crystal aligning agent containing a soluble polyimide and a polyamic acid in order to improve characteristics (for example, See Japanese Patent Application Laid-Open No. 08-222,541.
  • the rubbing process is a physical process, and it is difficult to uniformly treat a large-area liquid crystal alignment film, and the workability is poor, such as generation of dust and static electricity. I have.
  • the present invention has been made in view of such circumstances, and has as its object to provide a method for forming a liquid crystal alignment film having excellent uniformity and workability and having less charge accumulation.
  • polyamic acid is soluble as a liquid crystal aligning agent.
  • the present invention has the following features.
  • the soluble polyimide comprises a soluble polyimide resin obtained by reacting an acid dianhydride having an alicyclic structure with diamine.
  • R 2 represents a divalent organic group
  • the most important point in the present invention is that a so-called photo-alignment method is used, in which a resin containing soluble polyimide and polyamic acid is used as a liquid crystal aligning agent, and this is applied to a substrate and then irradiated with polarized ultraviolet light.
  • the present inventors formed a liquid crystal alignment film by a photoalignment method having high uniformity and excellent workability, and a liquid crystal display device using the liquid crystal alignment film had excellent electric characteristics, It has been found that since the electric charge is not easily accumulated, the burn-in phenomenon does not easily occur.
  • the polyamic acid used in the present invention refers to a condensate obtained by reacting diamine with an acid anhydride.
  • Examples of the diamine compound used as a raw material when synthesizing the polyamic acid include the following.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4,1-diaminodicyclohexylmethane, 4,4'-diamino 3,3'-dimethyl Dicyclohexane, and isophorone diamine.
  • carbocyclic aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, and diaminotoluenes.
  • heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-s-triazine, 2,5-diaminodibenzofuran, 2,7-diaminocarbazole, 3, 6—diaminocarbazole,
  • Examples thereof include 3,7-diaminophenothiazine, 2,5-diamino-1,3,4-thiadiazol, and 2,4-diamino-16-phenyl-2-s-triazine.
  • aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 8-diaminooctane, 1,9 diaminononane, 1,10 diaminodecane, 1,3-diamino-1,2,2-dimethylpropane bread, 1,6-diamino2,5-dimethylhexane, 1,7-diamino-2, 5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1, 1,2-
  • R 3 represents a monovalent organic group having 6 or more carbon atoms, including a long-chain alkyl group or a perfluoroalkyl group, and is preferably an alkyl group having 6 to 18 carbon atoms, or It is a monovalent organic group containing a monofluoroalkyl group.
  • the above diamines used as a raw material of the polyamic acid can be used alone or in combination, of course, but the long chain represented by the formula (3) can be used. It is preferable to contain at least one of an aromatic diamine having an alkyl or a perfluoro group, since hydrophilicity is reduced and P and water are improved.
  • the acid dianhydride used as a raw material when synthesizing the polyamic acid is, as an aromatic dianhydride, pyromellitic dianhydride, 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride , 2,3,3 ', 4'-Biphenyltetracarboxylic dianhydride, 3,3', 4,4'-Benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ) Ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride Examples thereof include anhydrides.
  • 1,2,3,4-cyclobutanetetracarbonic anhydride 1,2,3,4-cyclopentenetetracarboxylic dianhydride, 2,3,3 4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2-dicarboxy-11- (3,4-dicarboxycyclohexyl)
  • 1,2 dicarboxy-11- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride and the like are exemplified.
  • boriamic acid having a repeating structure represented by the general formula (2) obtained by reacting an acid anhydride containing an acid dianhydride containing pyromellitic acid with a diamine is preferable from the viewpoint of improving heat resistance.
  • R 2 represents a divalent organic group
  • the polyamic acid used in the present invention is obtained by mixing the above-described diamine and acid dianhydride in the presence of an organic solvent at a temperature of from 120 to 150 ° C., preferably from 0 to 80 for 30 minutes to 24 hours, preferably from 1 to 80 hours. It can be synthesized by reacting for 10 hours.
  • the molar ratio of the diamine to the acid dianhydride used in the reaction is such that the molecular weight does not increase if the amount of diamine is too large, and that if it is too small, the acid anhydride remains and storage stability deteriorates.
  • Solvents and concentrations used when synthesizing polyamic acid by polymerization are particularly limited. Not determined. Produced when using N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-12-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, or butyrolactones as solvents This is preferred because the solubility of the polymer is high. If the concentration at the time of polymerization is too high, the handleability of the varnish deteriorates, and if it is too low, the molecular weight does not increase. Therefore, the concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight, and particularly preferably. Or 8 to 20% by weight. It goes without saying that a poor solvent such as butylcell solvent-toluene and methanol may be added as long as the polymer is dissolved.
  • a poor solvent such as butylcell solvent-toluene and methanol
  • the molecular weight of the polyamic acid tends to increase, it is preferable to keep the inside of the reaction system under a nitrogen atmosphere, and it is more preferable to carry out the reaction while bubbling nitrogen through the solvent in the reaction system. If the final reduced viscosity of the polyamic acid is high, it is difficult to handle the glass, and if it is low, the properties are not stable when the alignment film is formed. Therefore, 0.05 to 3.O dl Zg is preferable. 0.1 to 2.5 dl / g is more preferable (in N-methyl-2-pyrrolidone at a temperature of 30 ° C., a concentration of 0.5 g / d 1).
  • the soluble polyimide in the present invention refers to a condensate obtained by synthesizing a polyamic acid in the same manner as the above-mentioned polyamic acid and then completely or partially cyclizing (imidizing) them.
  • the soluble polyimide used in the present invention preferably contains an alicyclic structure in the polymer from the viewpoint of improving transparency.
  • 1,2-dicarboxy-1- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride including dianhydride is reacted with diamine to synthesize polyamic acid, Further, it is particularly preferable to include a soluble polyimide having a repeating structure represented by the general formula (1) obtained by imidizing the same, since the liquid crystal display element has excellent electric characteristics.
  • a method for synthesizing a soluble polyimide that is, a method for obtaining a soluble polyimide by ring-closing (imidizing) a polyamic acid is not particularly limited, and a method of promoting imidization by heating or a method of chemically using a catalyst.
  • a method of imidizing the compound can be exemplified.
  • the reaction proceeds easily and side reactions are unlikely to occur Therefore, it is preferable to use a soluble polyimide obtained by chemically imidizing with a catalyst. That is, after synthesizing the polyamic acid, the reaction is carried out at a temperature of 120 to 300 ° C.
  • a base catalyst of 2 to 20 mol times of the acid of the acid and an acid anhydride of 3 to 30 times of the acid of the acid of the acid is preferably conducted at a temperature of 0 to 250 ° C. for 1 to 100 hours. If the amount of the base catalyst or the acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it is difficult to completely remove the reaction after the reaction is completed.
  • the base catalyst used at this time include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed.
  • the acid anhydride include acetic anhydride, anhydrous trimellitic acid, and pyromellitic anhydride. Among them, acetic anhydride is preferred because purification after the reaction is easy.
  • reaction rate (imidization rate) of the amic acid at the time of imidizing the polyamic acid is too low, the electrical characteristics of the liquid crystal display will be poor, and if it is too high, the synthesis will take a long time. 9% is preferred, 20 to 99.5% is more preferred, and 50 to 99% is particularly preferred.
  • the soluble polyimide thus obtained can be purified by injecting it into a poor solvent while stirring well and reprecipitating it.
  • the poor solvent used at this time is not particularly limited, but examples thereof include methanol, acetone, hexane, butylcellosolve, heptane, methylethylketone, methylisobutylketone, ethanol, toluene, and benzene.
  • the polyimide resin obtained by reprecipitation can be recovered by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under heat to form a powder. Repeating the operation of dissolving the powder in a good solvent and reprecipitating 2 to L 0 times is preferable because the impurities in the polymer are reduced and the electrical characteristics of the liquid crystal alignment film are excellent.
  • the polyimide resin thus obtained can be used by re-dissolving it in a solvent containing a good solvent used in the synthesis.
  • the thus obtained soluble polyimide and polyamic acid can be blended to form a liquid crystal aligning agent.
  • the order and method of blending are not particularly limited, but as a result of intensive studies by the present inventors, the blending ratio is preferably the weight ratio of soluble polyimide Z polyamic acid, preferably from 0.01 to 9%.
  • the ratio is 9.0, preferably 0.3 to 1.0 Z1, and particularly preferably 0.05 to 0.8 Z1, an orientation having excellent electric characteristics when a liquid crystal display element is formed. It has been found that a film is obtained.
  • N, N-dimethylformamide, N, N-dimethylacetate may be used as a solvent when compounding.
  • Good solvents such as amide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, and butyrolactone: 30 to 99.9% by weight, and butylcellosolve toluene, methanol And the like. It is preferable to use a mixed solvent containing 0.1 to 70% by weight.
  • the concentration of the soluble polyimide and the polyamic acid in the liquid crystal aligning agent of the present invention is too low, the liquid crystal alignment film becomes too thin and the reliability of the liquid crystal display device may be deteriorated.
  • the thickness is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, since the film thickness uniformity is impaired.
  • the liquid crystal aligning agent thus obtained can be used as it is, but it is preferable to further add a force coupling agent since the adhesion between the liquid crystal aligning film and the substrate is improved.
  • the coupling agent means a covalent bond between an oxygen atom and at least one element selected from the group consisting of silicon and all typical metal elements belonging to groups 1 to 3 of the periodic table and all transition metal elements.
  • a coupling agent having an alkoxysilane, alkoxyaluminum, alkoxyzirconium, or alkoxytitanium structure is preferable because it is easily available and is excellent in cost. It is particularly preferable because the electrical characteristics in the above case are improved. Further, if the content of the force coupling agent is large, the strength of the alignment film is weakened, and if the content is small, the effect of improving the adhesiveness is reduced, so that the solid content in the liquid crystal alignment agent is preferably 0.01 to 30% by weight. It is more preferably 0.1 to 20% by weight, particularly preferably 0.5 to 10% by weight.
  • the solvent and the concentration for diluting the coupling agent are not particularly limited, but include, for example, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, toluene, hexane, and r-butylamine.
  • the solvent can be used after diluting to a concentration of preferably 1 to 50% by weight, more preferably 3 to 30% by weight.
  • liquid crystal aligning agent thus obtained and used.
  • additives such as a cross-linking agent may be added to the liquid crystal aligning agent thus obtained and used.
  • the method for forming a liquid crystal alignment film of the present invention comprises the steps of: applying a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid obtained as described above to a substrate; and irradiating the substrate with polarized ultraviolet light.
  • This is a method for forming a liquid crystal alignment film formed through the above steps.
  • the process of applying the liquid crystal aligning agent to the substrate includes spin coating, printing, ink jet A method such as the G method can be used.
  • the substrate to be used is not particularly limited as long as it is a substrate having high transparency, and a glass substrate, an acrylic substrate, a plastic substrate such as a poly-carbon substrate, or the like can be used.
  • a substrate on which the IT0 electrode for driving the liquid crystal is formed from the viewpoint of simplifying the process.
  • the liquid crystal aligning agent applied to these substrates is dried at a temperature of 50 to 300 ° C., preferably 80 to 200 ° C. for 1 to 200 minutes to form a coating of the liquid crystal aligning agent. Is formed. If the thickness of the coating film to be formed is too thick, it is disadvantageous in terms of cost, and if it is too thin, the reliability of the liquid crystal display element is reduced. Therefore, it is preferably 5 to 30 nm, more preferably 7 to L 0. O nm, particularly preferably 10 to 8 O nm.
  • the step of irradiating the substrate with polarized ultraviolet light includes a step of irradiating polarized ultraviolet light to the surface of the coating film of the substrate obtained as described above to thereby perform an alignment treatment, thereby forming the coating film as a liquid crystal alignment film. is there.
  • the irradiation wavelength of the polarized ultraviolet light to be applied is preferably 150 to 40 nm, more preferably 190 to 380 nm, and particularly preferably 220 to 350 nm. It is preferably 1 to 60 J / cm 2 , more preferably 20 to 50 J / cm 2 , and particularly preferably 25 to 40 J / cm 2 .
  • the alignment direction of the obtained liquid crystal alignment film is determined by the polarization direction of the irradiated ultraviolet light.
  • the liquid crystal alignment film formed by using the method of the present invention can uniformly align the liquid crystal and has a small accumulated charge. Therefore, by using this liquid crystal alignment film, the alignment of the liquid crystal is uniform. Thus, a liquid crystal display element with less image sticking can be obtained.
  • a method for obtaining a liquid crystal display element using the liquid crystal alignment film formed by using the method of the present invention a known method can be used.
  • a pair of substrates with a liquid crystal alignment film is preferably sandwiched by a spacer of 1 to 30 °, more preferably 2 to 10 m, and the alignment direction is preferably 0 to 270 °.
  • a liquid crystal display element is formed by installing the liquid crystal at an angle, injecting liquid crystal, and sealing the liquid crystal.
  • the method of sealing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which the pressure in the manufactured liquid crystal cell is reduced and then the liquid crystal is injected, and a dropping method in which the liquid crystal is dropped and then sealed.
  • the liquid crystal display device manufactured by using the present invention can be a liquid crystal display device in which liquid crystal orientation is uniform and image sticking is unlikely.
  • NMP N-methyl-2-pyrrolidone
  • the reaction was performed to synthesize a polyamic acid.
  • 21.6 g (0.212 mol) of acetic anhydride and 9.97 g (0.126 mol) of pyridine were added as imidation catalysts and reacted at 50 ⁇ for 3 hours to obtain a polyimide resin solution.
  • This solution was poured into 1000 ml of methanol, and the obtained white precipitate was separated by filtration and dried to obtain a white polyimide resin. After dissolving this resin again in NMP, it was poured into acetone, and the white precipitate obtained in the same manner was separated by filtration and dried to obtain a white polyimide resin.
  • the reduced viscosity of the obtained polyimide was 0.64 dl / g (0.5% by weight NMP solution, 30 V). 7.2 g of this powder was dissolved in 11.2 g of Lactone mouth lactone to obtain a solvent-soluble polyimide resin solution having a solid content of 6%.
  • a 500 ml three-necked flask was connected to a nitrogen inlet tube and a chloride tube, and under nitrogen atmosphere, 4,9.8 g of diaminodiphenylmethane (0.1 mol) was added to 226 g of NMP. Then, 10.687 g (0.049 mol) of pyromellitic dianhydride and 9.609 g (0.049 mol) of 1,2,3,4-tetracarboxycyclobutane dianhydride were added. The reaction was carried out at room temperature for 10 hours to synthesize a polyamic acid.
  • the reduced viscosity of the obtained boramic acid was 1.18 dl / g (0.5% by weight NMP solution, 3.) This solution was diluted to a solution concentration of 6% with arctyrolactone to obtain a polyamic acid solution.
  • This solution was diluted to a solution concentration of 6% with arctyrolactone to obtain a polyamic acid solution.
  • the liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked at 210 ° C for 1 hour in a hot air circulating dryer to obtain a 5 um thick polyimide film.
  • the coating film was irradiated with polarized ultraviolet light of 30 J / cm 2 to obtain a substrate having a liquid crystal alignment film.
  • polarized ultraviolet light 30 J / cm 2
  • the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface.
  • two of these substrates were prepared, a 6-meter spacer was sprayed, and a sealant was printed on one of the two substrates.
  • liquid crystal MLC-2003 (trade name, manufactured by Merck Japan) was injected to prepare a liquid crystal cell.
  • a 30 Hz / soil 3 V rectangular wave superimposed with a 3 V DC voltage is applied to this liquid crystal cell at 60 for 20 minutes.After 20 minutes, the residual voltage remaining in the liquid crystal cell immediately after the 3 V DC is cut off. Was measured by an optical flicker elimination method, and the residual DC voltage immediately after was 0 V, and the residual DC voltage after 20 minutes was 0.05 V. Also, using a liquid crystal cell and ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), a voltage of 0.01 Hz and an amplitude of 10 V was applied to this liquid crystal cell, and the liquid crystal cell was mounted. When the liquid crystal cell resistance was measured from the flowing current and the voltage applied to the liquid crystal cell, it was 46.6 ⁇ 10 9 ⁇ . (Comparative Example 1)
  • a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1.
  • a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface.
  • a liquid crystal cell was produced in the same manner as in Example 1. When a polarizing plate is placed above and below this liquid crystal cell, and a backlight is placed below, and the liquid crystal cell is rotated 90 degrees, the light transmittance changes, clear light and dark appear, and the liquid crystal is properly aligned. This was confirmed.
  • Example 3 Using the liquid crystal aligning agent obtained in Formulation Example 3, a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1. When the surface of the alignment film of the substrate with the liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. Further, a liquid crystal cell was fabricated in the same manner as in Example 1, but the liquid crystal was not uniformly aligned, and a clear change in transmittance did not appear even when the liquid crystal cell was rotated 90 °.
  • the liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked in a hot-air circulating drier at 210 for 1 hour to obtain a 50-nm-thick polyimide film. .
  • This coating film was rubbed using rayon cloth at a roll rotation speed of 500 rpm, a roll advance speed of 20 mm / sec, and a pushing amount of 0.6 mm to obtain a substrate with a liquid crystal alignment film.
  • the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, streak-like scratches due to rubbing were confirmed on the surface.
  • two of these substrates were prepared, and a liquid crystal cell was prepared in the same manner as in Example 1.
  • storage of a liquid crystal display element can be formed by the method excellent in workability and uniformity.
  • the liquid crystal display element using the liquid crystal orientation film formed according to the present invention has little charge accumulation, it can continue to display an image with a high contrast without causing burn-in.
  • the present invention is a highly versatile technology for improving electrical characteristics, and not only the TF (Liquid Crystal Display) currently used in the mainstream, but also the latest display resolutions such as VA and IPS LCD displays. Therefore, the image quality of all liquid crystal devices can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A liquid crystal alignment layer forming method comprises a step of coating a substrate with a liquid crystal aligning agent containing soluble polyimide and polyamic acid and a step of irradiating the substrate with polarized ultraviolet radiation. According to the invention, a liquid crystal alignment layer can be formed with excellent workability and with excellent uniformness and used for a liquid crystal display device with little stored charge. Therefore a liquid crystal display device having this liquid crystal alignment layer can continue to display an image of high contrast without causing image persistence because of the little charge storage. The invention is a high versatility technique leading to improvement of electrical characteristics, and further leading to improvement of the quality of image of any type of liquid crystal device including display devices such as of not only the TFT liquid crystal currently used in the mainstream, but also the VA liquid crystal and the IPS liquid crystal.

Description

明細書 液晶配向膜の形成方法 技術分野  Description Method for forming liquid crystal alignment film
本発明は液晶の配向が均一で、 焼き付きの少ない液晶表示素子を得ることが出 来る液晶配向膜の形成方法に関するものである。 背景技術  The present invention relates to a method for forming a liquid crystal alignment film capable of obtaining a liquid crystal display element with uniform liquid crystal alignment and little image sticking. Background art
液晶表示素子は、 薄型 ·軽量を実現する表示デバイスとして、 現在パソコンを はじめテレビやワープロなどに広く使用されている。 液晶表示素子の表示特性は 、 用いる液晶材料はもとより、 その液晶を均一に配向させるための液晶配向膜が 重要となる。  Liquid crystal display devices are now widely used in personal computers, televisions, and word processors as thin and lightweight display devices. Regarding the display characteristics of the liquid crystal display element, not only the liquid crystal material used but also a liquid crystal alignment film for uniformly aligning the liquid crystal is important.
特に近年、 液晶表示素子が大型化を進めるにつれて、 液晶配向膜を効率よく均 一に処理することが重要となっている。 また、 液晶表示素子の高精細化に伴って 、 表示画面に残像が残るいわゆる 「焼き付き現象」 が課題となっており、 これを 抑制するために電荷が蓄積しにくい液晶配向膜が強く求められている。  In particular, in recent years, as the size of liquid crystal display devices has increased, it has become important to efficiently and uniformly treat liquid crystal alignment films. Also, with the increase in the definition of liquid crystal display elements, the so-called "burn-in phenomenon" in which afterimages remain on the display screen has become an issue. To suppress this, there is a strong demand for a liquid crystal alignment film that does not easily accumulate charges. I have.
現在、 液晶配向膜は主に有機樹脂を用い、 それらを基板に塗布した後、 焼成を 行い、 その後レーヨンやナイロン布によってその表面に圧力をかけてこする、 い わゆる "ラビング"処理を行って形成されている。 ラビング処理による液晶配向 膜については、 特性向上のため可溶性ボリイミドとポリアミック酸を含有する液 晶配向剤を用いて塗膜を形成し、 ラビング処理する液晶配向膜の形成法が知られ ている (例えば、 特開平 0 8— 2 2 0 5 4 1号公報参照。 ) 。 しかしながら、 ラ ビング処理は物理的に処理するプロセスであるため、 大面積の液晶配向膜を均一 に処理することが難しく、 また、 発塵や静電気の発生など作業性も悪いという課 題を抱えている。  At present, liquid crystal alignment films are mainly made of organic resins, applied to the substrate, baked, and then subjected to a so-called "rubbing" treatment in which pressure is applied to the surface with rayon or nylon cloth. Is formed. As for the liquid crystal alignment film formed by rubbing, there is known a method of forming a liquid crystal alignment film by performing a rubbing treatment by forming a coating film using a liquid crystal aligning agent containing a soluble polyimide and a polyamic acid in order to improve characteristics (for example, See Japanese Patent Application Laid-Open No. 08-222,541. However, the rubbing process is a physical process, and it is difficult to uniformly treat a large-area liquid crystal alignment film, and the workability is poor, such as generation of dust and static electricity. I have.
また近年、 偏光紫外線照射による液晶配向膜の形成方法、 即ち "光配向法" が 各種提案されている (例えば、 特開平 0 9— 2 9 7 3 1 3号公報) 。 光配向法に よる配向膜の形成方法は、 偏光紫外線を用いるため液晶配向の均一性、 作業性に 優れるものの、 焼き付き現象等の特性については満足できるものではなかった。 発明の開示  In recent years, various methods of forming a liquid crystal alignment film by irradiating polarized ultraviolet rays, that is, a “photo alignment method” have been proposed (for example, Japanese Patent Application Laid-Open No. 09-297313). The method of forming the alignment film by the photo-alignment method is excellent in uniformity of liquid crystal alignment and workability because polarized ultraviolet light is used, but the characteristics such as image sticking are not satisfactory. Disclosure of the invention
本発明はかかる事情に鑑みなされたものであり、 均一性、 作業性に優れ、 電荷 の蓄積が少ない液晶配向膜の形成方法を提供するものである。  The present invention has been made in view of such circumstances, and has as its object to provide a method for forming a liquid crystal alignment film having excellent uniformity and workability and having less charge accumulation.
本発明者らは、 鋭意検討した結果、 液晶配向剤としてポリアミック酸と可溶性 ポリイミドを含む樹脂系を用い、 これを基板に塗布した後、 偏光紫外線を照射す ることで、 均一性、 作業性に優れ、 かつ液晶表示素子とした際の残留電荷の蓄積 が少ない優れた液晶配向膜を形成出来ることを見出した。 As a result of intensive studies, the present inventors have found that polyamic acid is soluble as a liquid crystal aligning agent. An excellent liquid crystal with excellent uniformity and workability and low residual charge accumulation when used as a liquid crystal display device by irradiating polarized ultraviolet light after applying it to a substrate using a resin system containing polyimide. It has been found that an alignment film can be formed.
すなわち、 本発明は、 以下の特徴を要旨とするものである。  That is, the present invention has the following features.
(1) 可溶性ポリイミドとポリアミック酸とを含有する液晶配向剤を基板に塗 布する工程と、 上記基板上に得られた塗膜に偏光紫外線を照射する工程と、 を経 て液晶配向膜を形成することを特徴とする液晶配向膜の形成方法。  (1) A step of applying a liquid crystal aligning agent containing a soluble polyimide and a polyamic acid to a substrate, and a step of irradiating the coating film obtained on the substrate with polarized ultraviolet rays to form a liquid crystal aligning film. Forming a liquid crystal alignment film.
(2) 可溶性ポリイミドが、 脂環式構造を有する酸二無水物とジァミンとを反応 させて得られる可溶性ポリイミド樹脂を含む上記 (1) に記載の液晶配向膜の形 成方法。  (2) The method for forming a liquid crystal alignment film according to (1), wherein the soluble polyimide comprises a soluble polyimide resin obtained by reacting an acid dianhydride having an alicyclic structure with diamine.
(3) 可溶性ポリイミドが、 一般式(1)で表される繰り返し単位を含むこ上記 ( 1) または (2) に記載の液晶配向膜の形成方法。  (3) The method for forming a liquid crystal alignment film according to (1) or (2), wherein the soluble polyimide contains a repeating unit represented by the general formula (1).
Figure imgf000003_0001
Figure imgf000003_0001
(式中、 は 2価の有機基を表す)  (Wherein, represents a divalent organic group)
(4) ポリアミック酸が、 一般式(2)で表される繰り返し単位を含む上記 (1) 〜 (3) のいずれかに記載の液晶配向膜の形成方法。 (4) The method for forming a liquid crystal alignment film according to any one of the above (1) to (3), wherein the polyamic acid contains a repeating unit represented by the general formula (2).
Figure imgf000003_0002
Figure imgf000003_0002
(式中、 R2は 2価の有機基を表す) (Wherein, R 2 represents a divalent organic group)
(5) 液晶配向剤に含有される、 可溶性ポリイミド/ポリアミック酸の重量比が 0. 01〜99. 0/1である上記 (1) 〜 (4) のいずれかに記載の液晶配向 膜の形成方法。 (5) The formation of the liquid crystal alignment film according to any one of the above (1) to (4), wherein the weight ratio of the soluble polyimide / polyamic acid contained in the liquid crystal alignment agent is 0.01 to 99.0 / 1. Method.
(6) 液晶配向剤に含有される、 可溶性ポリイミド及びポリアミック酸の濃度は 0. 1〜30重量%であることを特徴とする上記 (1) 〜 (5) のいずれかに記 載の液晶配向膜の形成方法。 ( 7 ) 偏光紫外線の照射波長が 150〜 400 であり、 かつ照射強度が 1〜 6 01/ cm2であることを特徴とする上記 (1) 〜 (6) のいずれかに記載の液 晶配向膜の形成方法。 (6) The liquid crystal alignment described in any one of (1) to (5) above, wherein the concentration of the soluble polyimide and polyamic acid contained in the liquid crystal alignment agent is 0.1 to 30% by weight. The method of forming the film. (7) The liquid crystal orientation according to any one of (1) to (6) above, wherein the irradiation wavelength of the polarized ultraviolet light is 150 to 400, and the irradiation intensity is 1 to 600 / cm 2. The method of forming the film.
(8) 塗膜の厚みが 5〜30 Onmである上記 (1) 〜(7) のいずれかに記載の 液晶配向膜の形成方法。 発明を実施するための最良の形態  (8) The method for forming a liquid crystal alignment film according to any one of the above (1) to (7), wherein the thickness of the coating film is 5 to 30 Onm. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において最も重要な点は、 液晶配向剤として可溶性ポリイミドとポリア ミック酸を含む樹脂を用い、 これを基板に塗布した後に偏光紫外線を照射する、 いわゆる光配向法を用いた点にある。 本発明者らは、 これにより、 均一性が高く 作業性に優れた光配向法による液晶配向膜が形成され、 また、 該液晶配向膜を使 用した液晶表示素子は電気特性に優れ、 とりわけ残留電荷が蓄積しにくいため、 焼き付き現象が起こりにくいことを見出した。  The most important point in the present invention is that a so-called photo-alignment method is used, in which a resin containing soluble polyimide and polyamic acid is used as a liquid crystal aligning agent, and this is applied to a substrate and then irradiated with polarized ultraviolet light. Thus, the present inventors formed a liquid crystal alignment film by a photoalignment method having high uniformity and excellent workability, and a liquid crystal display device using the liquid crystal alignment film had excellent electric characteristics, It has been found that since the electric charge is not easily accumulated, the burn-in phenomenon does not easily occur.
本発明で用いるポリアミック酸とはジァミンと酸無水物を反応させて得られる 縮合物を示す。 ポリアミック酸を合成する際に原料として用いるジァミン化合物 としては以下のものが挙げられる。  The polyamic acid used in the present invention refers to a condensate obtained by reacting diamine with an acid anhydride. Examples of the diamine compound used as a raw material when synthesizing the polyamic acid include the following.
脂環式ジァミンの例として、 1, 4一ジァミノシク口へキサン、 1, 3—ジァ ミノシクロへキサン、 4, 4, 一ジアミノジシクロへキシルメタン、 4, 4' 一 ジァミノー 3, 3 ' 一ジメチルジシクロへキサン、 およびイソホロンジァミンが 挙げられる。 また、 炭素環式芳香族ジァミン類の例として、 o—フエ二レンジァ ミン、 m—フエ二レンジァミン、 p—フエ二レンジァミン、 ジァミノトルエン類 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4,1-diaminodicyclohexylmethane, 4,4'-diamino 3,3'-dimethyl Dicyclohexane, and isophorone diamine. Examples of carbocyclic aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, and diaminotoluenes.
(例えば、 2, 4—ジァミノトルエン) 、 1, 4ージアミノー 2—メトキシベン ゼン、 2, 5—ジアミノキシレン類、 1, 3—ジァミノ一 4—クロ口ベンゼン、 1, 4ージアミノー 2, 5—ジクロロベンゼン、 1, 4ージアミノー 3—イソプ 口ピルベンゼン、 2, 2—ビス (4ーァミノフエニル) プロパン、 4, 4, 一ジ アミノジフエニルメタン、 2, 2' —ジアミノスチルベン、 4, 4' —ジァミノ スチルベン、 4, 4' ージアミノジフエニルエーテル、 4, 4' ージフエニルチ ォエーテル、 4, 4' ージアミノジフエニルスルホン、 3, 3 ' —ジアミノジフ ェニルスルホン、 2, 4—ジァミノ安息香酸フエニルエステル、 2, 2' ージァ ミノべンゾフエノン、 4, 4' ージァミノベンジル、 ビス (4ーァミノフエニル ) メチルホスフィンォキシド、 ビス (3—ァミノフエニル) スルホン、 ビス (4 ーァミノフエニル) フエニルホスフィンォキシド、 ビス (4ーァミノフエニル) シクロへキシルホスフィンォキシド、 N, N—ビス (4—ァミノフエ二ル) 一 N— フエニルァミン、 N, N—ビス (4—ァミノフエ二ル) 一 N—メチルァミン、 4, 4' ージアミノジフエニル尿素、 1, 8—ジァミノナフ夕レン、 1, 5—ジアミ ノナフタレン、 1, 5—ジァミノアントラキノン、 ジァミノフルオレン類 (例え ば 2, 6—ジァミノフルオレン) 、 ビス (4ーァミノフエニル) ジェチルシラン 、 ビス (4ーァミノフエニル) ジメチルシラン、 ビス (4ーァミノフエニル) テ トラメチルジシロキサン、 4一 (3—ァミノフエニル) ァニリン、 ベンジジン、(For example, 2,4-diaminotoluene), 1,4-diamino-2-methoxybenzene, 2,5-diaminoxylenes, 1,3-diamino-1-chlorobenzene, 1,4-diamino-2,5-dichlorobenzene, 1,4-diamino-3-isopropylpyrubenzene, 2,2-bis (4-aminophenyl) propane, 4,4,1-diaminodiphenylmethane, 2, 2'-diaminostilbene, 4, 4'-diaminostilbene, 4, 4 'diamino diphenyl ether, 4, 4' diphenyl thioether, 4, 4 'diamino diphenyl sulfone, 3, 3'-diamino diphenyl sulfone, 2, 4- diamino benzoic acid phenyl ester, 2, 2 'jia Minobenzophenone, 4,4 'diaminobenzyl, bis (4-aminophenyl) methylphosphinoxide, bis (3-aminophenyl) sulfone Bis (4-aminophenyl) phenylphosphinoxide, bis (4-aminophenyl) cyclohexylphosphinoxide, N, N-bis (4-aminophenyl) 1 N-phenylamine, N, N-bis (4-aminophenyl) 1) N-methylamine, 4,4'-diaminodiphenylurea, 1,8-diaminonaphthylene, 1,5-diamine Nonaphthalene, 1,5-diaminoanthraquinone, diaminofluorenes (eg, 2,6-diaminofluorene), bis (4-aminophenyl) getylsilane, bis (4-aminophenyl) dimethylsilane, bis (4-aminophenyl) Tetramethyldisiloxane, 4- (3-aminophenyl) aniline, benzidine,
2, 2, 一ジメチルペンジジン、 2, 2_ビス [4— (4一アミノフエノキシ) フエニル] プロパン、 ビス [4一 (4一アミノフエノキシ) フエ二レ] スルホン 、 4, 4, 一ビス (4—アミノフエノキシ) ビフエ二レン、 2, 2—ビス [4一2,2,1-dimethylpendidine, 2,2-bis [4 -— (4-aminophenoxy) phenyl] propane, bis [4-1 (4-aminophenoxy) phenyl] sulfone, 4,4,1-bis (4— Aminophenoxy) biphenylene, 2,2-bis [4-1
(4一アミノフエノキシ) フエニル] へキサフルォロプロパン、 1, 4—ビス ( 4一アミノフエノキシ) ベンゼン、 1, 3—ビス (4一アミノフエノキシ) ベン ゼンなどが挙げられる。 (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, and the like.
さらに、 複素環式ジァミン類としては、 2, 6—ジァミノピリジン、 2, 4- ジァミノピリジン、 2, 4—ジァミノ一 s—卜リアジン、 2, 5—ジアミノジべ ンゾフラン、 2, 7—ジァミノカルバゾール、 3, 6—ジァミノカルバゾ一ル、 Further, the heterocyclic diamines include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-s-triazine, 2,5-diaminodibenzofuran, 2,7-diaminocarbazole, 3, 6—diaminocarbazole,
3, 7—ジアミノフエノチアジン、 2, 5—ジァミノー 1, 3, 4ーチアジアゾ ール、 2, 4—ジァミノ一 6—フエ二ルー s—トリァジンなどが挙げられる。 脂 肪族ジァミンの例として、 1, 2ージアミノエタン、 1, 3—ジァミノプロパン 、 1, 4ージアミノブタン、 1, 5—ジァミノペンタン、 1, 6—ジァミノへキ サン、 1, 7ージァミノヘプタン、 1, 8—ジァミノオクタン、 1, 9ージアミ ノノナン、 1, 1 0ージァミノデカン、 1, 3—ジァミノ一 2, 2—ジメチルプ 口パン、 1, 6—ジァミノー 2, 5—ジメチルへキサン、 1, 7—ジアミノー 2 , 5ージメチルヘプタン、 1, 7—ジァミノー 4, 4—ジメチルヘプタン、 1,Examples thereof include 3,7-diaminophenothiazine, 2,5-diamino-1,3,4-thiadiazol, and 2,4-diamino-16-phenyl-2-s-triazine. Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 8-diaminooctane, 1,9 diaminononane, 1,10 diaminodecane, 1,3-diamino-1,2,2-dimethylpropane bread, 1,6-diamino2,5-dimethylhexane, 1,7-diamino-2, 5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,
7—ジアミノー 3—メチルヘプタン、 1, 9—ジァミノー 5—メチルノナン、 2 , 1 1ージァミノドデカン、 1, 1 2—ジアミノォクタデカン、 1, 2—ビス ( 3—ァミノプロボキシ) ェタン等が挙げられる、 さらには、 式 (3) 7-Diamino-3-methylheptane, 1,9-Diamino 5-methylnonane, 2,11 Diaminododecane, 1,12-Diaminooctadecane, 1,2-Bis (3-aminopropoxy) ethane, etc. In addition, the formula (3)
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 R3は炭素数 6以上の、 長鎖アルキル基もしくはパーフルォロアルキル 基を含む 1価の有機基を表し、 好ましくは炭素数 6〜1 8のアルキル基、 もしく はパ一フルォロアルキル基を含む 1価の有機基である) (In the formula, R 3 represents a monovalent organic group having 6 or more carbon atoms, including a long-chain alkyl group or a perfluoroalkyl group, and is preferably an alkyl group having 6 to 18 carbon atoms, or It is a monovalent organic group containing a monofluoroalkyl group.)
で表される長鎖アルキルもしくはパーフルォロ基を有する芳香族ジァミンなどが 例示出来る。 And an aromatic diamine having a long-chain alkyl or perfluoro group represented by
ポリアミック酸の原料として用いる上記ジァミンはそれぞれ単独で、 あるいは 組み合わせて用いることが出来ることは当然であるが、 式 (3) で示される長鎖 アルキルもしくはパーフルォロ基を有する芳香族ジアミンの少なくともどちらか 一方を含有すると親水性が低下し、 P及水性が向上するため好ましい。 The above diamines used as a raw material of the polyamic acid can be used alone or in combination, of course, but the long chain represented by the formula (3) can be used. It is preferable to contain at least one of an aromatic diamine having an alkyl or a perfluoro group, since hydrophilicity is reduced and P and water are improved.
ポリアミック酸を合成する際に原料として用いる酸二無水物は、 芳香族酸二無 水物として、 ピロメリット酸二無水物、 3, 3' , 4, 4, ービフエニルテトラ カルボン酸二無水物、 2, 3, 3' , 4' —ビフエニルテトラカルボン酸二無水 物、 3, 3' , 4, 4' —ベンゾフエノンテトラカルボン酸二無水物、 ビス (3 , 4ージカルポキシフエニル) エーテル二無水物、 ビス (3, 4—ジカルポキシ フエニル) スルホン二無水物、 1, 2, 5, 6—ナフタレンテトラ力ルポン酸ニ 無水物、 2, 3, 6, 7一ナフタレンテトラカルボン酸二無水物等が例示される 。 また、 脂環式酸二無水物として、 1, 2, 3, 4ーシクロブタンテトラカルボ ン酸ニ無水物、 1, 2, 3, 4—シクロペン夕ンテトラ力ルポン酸ニ無水物、 2 , 3, 4, 5—テトラヒドロフランテトラカルボン酸二無水物、 1, 2, 4, 5 ーシクロへキサンテ卜ラカルボン酸二無水物、 1, 2—ジカルボキシ— 1一 (3 , 4一ジカルポキシシクロへキシル) ェ夕ン二無水物、 1, 2ージカルボキシー 1一 (3, 4ージカルボキシー 1, 2, 3, 4ーテトラヒドロナフチル) ェタン 二無水物などが例示される。 これらの酸二無水物は単独でも組み合わせても用い ることが出来るのは当然である。 なかでも、 耐熱性向上の観点から、 ピロメリッ ト酸を含む酸二無水物を含む酸無水物とジアミンを反応させて得られる一般式 ( 2) で表される繰り返し構造を含むボリアミツク酸が好ましい。  The acid dianhydride used as a raw material when synthesizing the polyamic acid is, as an aromatic dianhydride, pyromellitic dianhydride, 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride , 2,3,3 ', 4'-Biphenyltetracarboxylic dianhydride, 3,3', 4,4'-Benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ) Ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride Examples thereof include anhydrides. Further, as alicyclic dianhydrides, 1,2,3,4-cyclobutanetetracarbonic anhydride, 1,2,3,4-cyclopentenetetracarboxylic dianhydride, 2,3,3 4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2-dicarboxy-11- (3,4-dicarboxycyclohexyl) Even dianhydride, 1,2 dicarboxy-11- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride and the like are exemplified. Of course, these acid dianhydrides can be used alone or in combination. Among them, boriamic acid having a repeating structure represented by the general formula (2) obtained by reacting an acid anhydride containing an acid dianhydride containing pyromellitic acid with a diamine is preferable from the viewpoint of improving heat resistance.
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 R2は 2価の有機基を表す) (Wherein, R 2 represents a divalent organic group)
本発明で使用されるポリアミツク酸は前述のジアミンと酸二無水物とを有機溶 剤の存在下で一 20°C〜150で、 好ましくは 0〜 80 において 30分〜 24 時間、 好ましくは 1〜10時間反応させることによって合成する事が出来る。 反 応の際に用いるジアミンと酸二無水物のモル比は、 ジァミンが多くなりすぎると 分子量が上がらず、 また少なすぎると酸無水物が残存して保存安定性が悪くなる ことのために、 ジァミンノ酸ニ無水物 =0. 5〜3. 0/1. 0 (モル比) であ ると好ましく、 ジァミン/酸二無水物 =0. 8〜2. 0/1. 0 (モル比) であ るとより好ましく、 中でもジァミン/酸二無水物 =1. 0〜1. 2Z1. 0であ るととりわけ好ましい。  The polyamic acid used in the present invention is obtained by mixing the above-described diamine and acid dianhydride in the presence of an organic solvent at a temperature of from 120 to 150 ° C., preferably from 0 to 80 for 30 minutes to 24 hours, preferably from 1 to 80 hours. It can be synthesized by reacting for 10 hours. The molar ratio of the diamine to the acid dianhydride used in the reaction is such that the molecular weight does not increase if the amount of diamine is too large, and that if it is too small, the acid anhydride remains and storage stability deteriorates. It is preferable that the diamine dianhydride = 0.5-3.0 / 1.0 (molar ratio), and that the diamine / acid dianhydride = 0.8-2.0 / 1.0 (molar ratio). It is more preferable, and especially preferred is diamine / acid dianhydride = 1.0 to 1.2Z1.0.
ポリアミック酸を重合により合成する際に用いる溶媒と濃度については特に限 定されない。 溶媒としては、 N, N—ジメチルホルムアミド、 N, N—ジメチル ァセトアミド、 N—メチル一 2—ピロリドン、 N—メチルカプロラクタム、 ジメ チルスルホキシド、 テトラメチル尿素、 ピリジン、 またはプチロラクトン類を用 いると生成したポリマ一の溶解性が高いことのために好ましい。 重合時の濃度は 高すぎるとワニスの取扱い性が悪くなり、 低すぎると分子量が上がらないために 、 好ましくは 1〜5 0重量%が、 より好ましくは 5〜3 0重量%が、 とりわけ好 ましくは 8〜2 0重量%がよい。 また、 ポリマ一が溶解する範囲内でブチルセル ソルブゃトルエン、 メ夕ノールなどの貧溶媒を加えても構わないことは言うまで もない。 Solvents and concentrations used when synthesizing polyamic acid by polymerization are particularly limited. Not determined. Produced when using N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-12-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, or butyrolactones as solvents This is preferred because the solubility of the polymer is high. If the concentration at the time of polymerization is too high, the handleability of the varnish deteriorates, and if it is too low, the molecular weight does not increase. Therefore, the concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight, and particularly preferably. Or 8 to 20% by weight. It goes without saying that a poor solvent such as butylcell solvent-toluene and methanol may be added as long as the polymer is dissolved.
さらに、 ポリアミック酸の分子量が上がり易いことのため、 反応系内を窒素雰 囲気下としておくと好ましく、 反応系中の溶媒に窒素をバブリングしながら反応 を行うと更に好ましい。 ポリアミック酸の最終的な溶液の還元粘度が髙いとヮニ スの取扱いが難しく、 低いと配向膜とした際に特性が安定しないことのために、 0 . 0 5〜3. O d l Zgが好ましく、 0. 1〜2. 5 d l / gがより好ましい (温度 3 0 °Cの N—メチルー 2—ピロリドン中、 濃度 0 · 5 g/ d 1 ) 。  Furthermore, since the molecular weight of the polyamic acid tends to increase, it is preferable to keep the inside of the reaction system under a nitrogen atmosphere, and it is more preferable to carry out the reaction while bubbling nitrogen through the solvent in the reaction system. If the final reduced viscosity of the polyamic acid is high, it is difficult to handle the glass, and if it is low, the properties are not stable when the alignment film is formed. Therefore, 0.05 to 3.O dl Zg is preferable. 0.1 to 2.5 dl / g is more preferable (in N-methyl-2-pyrrolidone at a temperature of 30 ° C., a concentration of 0.5 g / d 1).
本発明における可溶性ボリイミドとは、 上記ポリアミック酸と同様の方法でポ リアミック酸を合成した後、 それらを全部、 もしくは部分的に閉環 (イミド化) して得られる縮合物を示す。 ここで、 本発明に用いる可溶性ポリイミドは透明性 向上の観点から、 ポリマー中に脂環式構造を含んでいることが好ましい。 中でも 1 , 2—ジカルポキシ— 1— ( 3 , 4—ジカルボキシ— 1 , 2 , 3, 4ーテトラ ヒドロナフチル) エタンニ無水物を含む酸二無水物とジァミンを反応させてボリ ァミック酸を合成し、 さらにそれをイミド化して得られる一般式 ( 1 ) で表され る繰り返し構造を含む可溶性ポリイミドを含んでいると、 液晶表示素子とした際 の電気特性に優れるためにとりわけ好ましい。  The soluble polyimide in the present invention refers to a condensate obtained by synthesizing a polyamic acid in the same manner as the above-mentioned polyamic acid and then completely or partially cyclizing (imidizing) them. Here, the soluble polyimide used in the present invention preferably contains an alicyclic structure in the polymer from the viewpoint of improving transparency. Among them, 1,2-dicarboxy-1- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) ethane dianhydride including dianhydride is reacted with diamine to synthesize polyamic acid, Further, it is particularly preferable to include a soluble polyimide having a repeating structure represented by the general formula (1) obtained by imidizing the same, since the liquid crystal display element has excellent electric characteristics.
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 は 2価の有機基を表す)  (Wherein represents a divalent organic group)
本発明において可溶性ポリイミドを合成する、 すなわち、 ポリアミック酸を閉 環 (イミド化) させて可溶性ポリイミドを得る方法については特に制限されず、 加熱によってイミド化を進行させる方法や、 触媒を用いて化学的にイミド化を行 う方法などが例示できる。 なかでも、 容易に反応が進行し副反応が起こりにくい ため触媒によって化学的にイミド化して得られる可溶性ポリイミドを用いること が好ましい。 すなわち、 ポリアミック酸を合成した後、 ァミック酸の 2〜2 0モ ル倍の塩基触媒とアミック酸の 3〜 3 0モル倍の酸無水物の存在下で、 一 2 0〜 3 0 0 °C、 好ましくは 0〜2 5 0 °Cの温度において、 1〜1 0 0時間反応させる と好ましい。 塩基触媒や酸無水物の量が少ないと反応が十分に進行せず、 また多 すぎると反応終了後に完全に除去することが困難となる。 また、 この時に用いる 塩基触媒としてはピリジン、 卜リエチルァミン、 トリメチルァミン、 トリブチル ァミン、 卜リォクチルアミン等が例示でき、 中でもピリジンは反応を進行させる のに適度な塩基性を持っために好ましい。 また、 酸無水物としては無水酢酸、 無 水トリメリット酸、 無水ピロメリット酸などが例示でき、 中でも無水酢酸を用い ると反応終了後の精製が容易となるために好ましい。 In the present invention, a method for synthesizing a soluble polyimide, that is, a method for obtaining a soluble polyimide by ring-closing (imidizing) a polyamic acid is not particularly limited, and a method of promoting imidization by heating or a method of chemically using a catalyst. For example, a method of imidizing the compound can be exemplified. Among them, the reaction proceeds easily and side reactions are unlikely to occur Therefore, it is preferable to use a soluble polyimide obtained by chemically imidizing with a catalyst. That is, after synthesizing the polyamic acid, the reaction is carried out at a temperature of 120 to 300 ° C. in the presence of a base catalyst of 2 to 20 mol times of the acid of the acid and an acid anhydride of 3 to 30 times of the acid of the acid of the acid. The reaction is preferably conducted at a temperature of 0 to 250 ° C. for 1 to 100 hours. If the amount of the base catalyst or the acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it is difficult to completely remove the reaction after the reaction is completed. Examples of the base catalyst used at this time include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed. Examples of the acid anhydride include acetic anhydride, anhydrous trimellitic acid, and pyromellitic anhydride. Among them, acetic anhydride is preferred because purification after the reaction is easy.
また、 ポリアミック酸をイミド化する際のァミック酸の反応率 (イミド化率) は低すぎると液晶表示とした際の電気特性が悪くなり高すぎると合成に時間がか かるため、 1〜9 9 . 9 %が好ましく、 2 0〜9 9 . 5 %がより好ましく、 5 0 〜9 9 %がとりわけ好ましい。 このようにして得られた可溶性ポリイミドのヮ二 スは、 よく攪拌させながら貧溶媒に注入し、 再沈殿させることによって精製する ことが出来る。 この際に用いる貧溶媒としては特に限定されないが、 メタノール 、 アセトン、 へキサン、 ブチルセルソルブ、 ヘプタン、 メチルェチルケトン、 メ チルイソプチルケトン、 エタノール、 トルエン、 ベンゼンなどが例示できる。 再 沈殿によって得られたポリイミド樹脂は濾過して回収した後、 常圧あるいは減圧 下で、 常温あるいは加熱乾燥してパゥダーとすることが出来る。 このパウダーを 更に良溶媒に溶解して、 再沈殿する操作を 2〜: L 0回繰り返すと、 ポリマ一中の 不純物が少なくなり、 液晶配向膜とした際の電気特性が優れるために好ましい。 また、 この際貧溶媒として例えばアルコール類、 ケトン類、 炭化水素など 3種類 以上の貧溶媒を用いると、 より一層精製の効率が上がるので好ましい。 こうして 得られたポリィミド樹脂は合成時に用いた良溶媒を含む溶媒に再度溶かして用い ることが出来る。  Also, if the reaction rate (imidization rate) of the amic acid at the time of imidizing the polyamic acid is too low, the electrical characteristics of the liquid crystal display will be poor, and if it is too high, the synthesis will take a long time. 9% is preferred, 20 to 99.5% is more preferred, and 50 to 99% is particularly preferred. The soluble polyimide thus obtained can be purified by injecting it into a poor solvent while stirring well and reprecipitating it. The poor solvent used at this time is not particularly limited, but examples thereof include methanol, acetone, hexane, butylcellosolve, heptane, methylethylketone, methylisobutylketone, ethanol, toluene, and benzene. The polyimide resin obtained by reprecipitation can be recovered by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under heat to form a powder. Repeating the operation of dissolving the powder in a good solvent and reprecipitating 2 to L 0 times is preferable because the impurities in the polymer are reduced and the electrical characteristics of the liquid crystal alignment film are excellent. In this case, it is preferable to use three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent, because the purification efficiency is further improved. The polyimide resin thus obtained can be used by re-dissolving it in a solvent containing a good solvent used in the synthesis.
本発明ではこうして得られた可溶性ポリイミドとポリアミック酸とを配合して 、 液晶配向剤とすることが出来る。 この際、 配合の順序や方法は特に制限されな いが、 本発明者らが鋭意検討した結果、 配合量としては、 可溶性ポリイミド Zポ リアミック酸の重量比が、 好ましくは 0 . 0 1〜9 9 . 0ノ 1、 より好ましくは 0 . 0 3〜1 . 0 Z 1、 とりわけ好ましくは 0 . 0 5〜0 . 8 Z 1とすると、 液 晶表示素子とした際の電気特性に優れた配向膜が得られることが見出された。 また、 液晶配向膜を形成する際の膜厚均一性を向上させるために、 配合の際に 用いる溶媒としては、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセト アミド、 N—メチルー 2—ピロリドン、 N—メチルカプロラクタム、 ジメチルス ルホキシド、 テトラメチル尿素、 ピリジン、 およびプチロラクトン類などの良溶 媒: 3 0〜9 9 . 9重量%と、 ブチルセルソルブゃトルエン、 メタノールなどの 貧溶媒: 0 . 1〜 7 0重量%と、 を含む混合溶媒を用いることが好ましい。 本発明の液晶配向剤における可溶性ポリイミドとポリアミック酸の濃度は、 低 過ぎると液晶配向膜が薄くなつて液晶表示素子とした際の信頼性が悪くなること があり、 高すぎると基板に塗布する際の膜厚均一性が損なわれるため、 好ましく は 0 . 1〜3 0重量%、 より好ましくは 1〜1 0重量%であるのが好適である。 本発明ではこのようにして得られた液晶配向剤をそのまま用いることも出来る が、 更に力ップリング剤を添加すると液晶配向膜と基板との密着性が向上するた め好ましい。 ここでカップリング剤とは、 ケィ素および周期表 1〜 3族に属する すべての典型金属元素及びすベての遷移金属元素から選ばれる少なくとも 1っ以 上の元素と酸素原子との共有結合を有する化合物を示す。 特に、 アルコキシシラ ン、 アルコキシアルミニウム、 アルコキシジルコニウム、 アルコキシチタン構造 を有するカツプリング剤は入手が容易でコス卜的にも優れているために好ましく 、 なかでも 3—ァミノプロピルトリメ卜キシシランは液晶表示素子とした際の電 気特性が向上するためにとりわけ好ましい。 また力ップリング剤の含有量は多い と配向膜の強度が弱くなり、 少ないと密着性向上の効果が少なくなるため、 液晶 配向剤中の固形分の好ましくは 0 . 0 1〜3 0重量%、 より好ましくは 0 . 1〜 2 0重量%、 とりわけ好ましくは 0 . 5〜1 0重量%でぁる。 In the present invention, the thus obtained soluble polyimide and polyamic acid can be blended to form a liquid crystal aligning agent. At this time, the order and method of blending are not particularly limited, but as a result of intensive studies by the present inventors, the blending ratio is preferably the weight ratio of soluble polyimide Z polyamic acid, preferably from 0.01 to 9%. When the ratio is 9.0, preferably 0.3 to 1.0 Z1, and particularly preferably 0.05 to 0.8 Z1, an orientation having excellent electric characteristics when a liquid crystal display element is formed. It has been found that a film is obtained. In addition, in order to improve the uniformity of the film thickness when forming the liquid crystal alignment film, N, N-dimethylformamide, N, N-dimethylacetate may be used as a solvent when compounding. Good solvents such as amide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, and butyrolactone: 30 to 99.9% by weight, and butylcellosolve toluene, methanol And the like. It is preferable to use a mixed solvent containing 0.1 to 70% by weight. If the concentration of the soluble polyimide and the polyamic acid in the liquid crystal aligning agent of the present invention is too low, the liquid crystal alignment film becomes too thin and the reliability of the liquid crystal display device may be deteriorated. The thickness is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, since the film thickness uniformity is impaired. In the present invention, the liquid crystal aligning agent thus obtained can be used as it is, but it is preferable to further add a force coupling agent since the adhesion between the liquid crystal aligning film and the substrate is improved. Here, the coupling agent means a covalent bond between an oxygen atom and at least one element selected from the group consisting of silicon and all typical metal elements belonging to groups 1 to 3 of the periodic table and all transition metal elements. Shown are compounds having. In particular, a coupling agent having an alkoxysilane, alkoxyaluminum, alkoxyzirconium, or alkoxytitanium structure is preferable because it is easily available and is excellent in cost. It is particularly preferable because the electrical characteristics in the above case are improved. Further, if the content of the force coupling agent is large, the strength of the alignment film is weakened, and if the content is small, the effect of improving the adhesiveness is reduced, so that the solid content in the liquid crystal alignment agent is preferably 0.01 to 30% by weight. It is more preferably 0.1 to 20% by weight, particularly preferably 0.5 to 10% by weight.
上記のカツプリング剤を配合するにあたって、 あらかじめカツプリング剤を溶 媒で希釈した後、 それらを— 5〜 8 0 °Cの温度で液晶配向剤中に少しずつ注入す ると、 増粘や樹脂の不溶化が起こりにくく均一な液晶配向剤となるために好まし い。 また、 この時カップリング剤を希釈する溶媒と濃度は特に制限されないが、 例えば N—メチルー 2—ピロリドン、 ジメチルァセトアミド、 ジメチルホルムァ ミド、 トルエン、 へキサン、 r一プチ口ラク卜ンなどの溶媒を用いて好ましくは 1〜5 0重量%、 より好ましくは 3〜 3 0重量%の濃度に希釈してから用いるこ とができる。  When compounding the above-mentioned coupling agents, dilute the coupling agents in advance with a solvent, then inject them little by little into the liquid crystal alignment agent at a temperature of -5 to 80 ° C to increase the viscosity and insolubilize the resin. This is preferable because a uniform liquid crystal aligning agent hardly occurs. At this time, the solvent and the concentration for diluting the coupling agent are not particularly limited, but include, for example, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, toluene, hexane, and r-butylamine. The solvent can be used after diluting to a concentration of preferably 1 to 50% by weight, more preferably 3 to 30% by weight.
このようにして得られた液晶配向剤に、 さらに架橋剤などの各種添加剤を加え て使用してもかまわないことは言うまでもない。 また、 得られた液晶配向剤は、 濾過した後に使用することが好ましい。  It goes without saying that various additives such as a cross-linking agent may be added to the liquid crystal aligning agent thus obtained and used. Moreover, it is preferable to use the obtained liquid crystal aligning agent after filtering.
本発明の液晶配向膜の形成方法は、 以上のようにして得られた可溶性ポリイミ ドとポリアミック酸とを含有する液晶配向剤を、 基板に塗布する工程と、 該基板 に偏光紫外線を照射する工程とを経て形成される液晶配向膜の形成方法である。 液晶配向剤を基板に塗布する工程は、 スピンコート法、 印刷法、 インクジエツ ト法などの手法を用いることができる。 この際、 用いる基板としては透明性の高 い基板であれば特に限定されず、 ガラス基板、 アクリル基板やポリ力一ポネ一卜 基板などのプラスチック基板などを用いることができる。 また、 液晶駆動のため の IT0電極などが形成された基板を用いることがプロセスの簡素化の観点から好 ましい。 これらの基板に塗布された液晶配向剤は、 5 0〜3 0 0 °C、 好ましくは 8 0〜 2 0 0 °Cの温度において 1〜 2 0 0分間乾燥することによって液晶配向剤 の塗膜が形成される。 形成する塗膜の厚みは厚すぎるとコスト面で不利となり、 薄すぎると液晶表示素子の信頼性が低下することのために、 好ましくは 5〜3 0 O nm、 より好ましくは 7〜: L 0 O nm、 とりわけ好ましくは 1 0 ~ 8 O nmがよい。 基板に偏光紫外線を照射する工程は、 上記のようにして得られた基板の塗膜表 面に、 偏光紫外線を照射することにより配向処理して、 該塗膜を液晶配向膜とす る工程である。 照射する偏光紫外線の照射波長は、 好ましくは 1 5 0〜4 0 O nm 、 より好ましくは 1 9 0〜3 8 0 nm、 とりわけ好ましくは 2 2 0〜 3 5 0 nmであ り、 照射強度は、 好ましくは 1〜6 0 J / c m2、 より好ましくは 2 0〜5 0 J / c m2 , とりわけ好ましくは 2 5〜4 0 J / c m2である。 偏光紫外線の照射波 長は短すぎると形成した液晶配向膜の液晶配向能が悪くなり、 長すぎると耐光性 が悪くなる。 また、 照射強度が弱いと液晶配向能が悪くなり、 強すぎると電気特 性が悪くなる。 得られた液晶配向膜の配向方向は、 照射した紫外線の偏光方向に よって決定される。 The method for forming a liquid crystal alignment film of the present invention comprises the steps of: applying a liquid crystal alignment agent containing a soluble polyimide and a polyamic acid obtained as described above to a substrate; and irradiating the substrate with polarized ultraviolet light. This is a method for forming a liquid crystal alignment film formed through the above steps. The process of applying the liquid crystal aligning agent to the substrate includes spin coating, printing, ink jet A method such as the G method can be used. In this case, the substrate to be used is not particularly limited as long as it is a substrate having high transparency, and a glass substrate, an acrylic substrate, a plastic substrate such as a poly-carbon substrate, or the like can be used. It is preferable to use a substrate on which the IT0 electrode for driving the liquid crystal is formed from the viewpoint of simplifying the process. The liquid crystal aligning agent applied to these substrates is dried at a temperature of 50 to 300 ° C., preferably 80 to 200 ° C. for 1 to 200 minutes to form a coating of the liquid crystal aligning agent. Is formed. If the thickness of the coating film to be formed is too thick, it is disadvantageous in terms of cost, and if it is too thin, the reliability of the liquid crystal display element is reduced. Therefore, it is preferably 5 to 30 nm, more preferably 7 to L 0. O nm, particularly preferably 10 to 8 O nm. The step of irradiating the substrate with polarized ultraviolet light includes a step of irradiating polarized ultraviolet light to the surface of the coating film of the substrate obtained as described above to thereby perform an alignment treatment, thereby forming the coating film as a liquid crystal alignment film. is there. The irradiation wavelength of the polarized ultraviolet light to be applied is preferably 150 to 40 nm, more preferably 190 to 380 nm, and particularly preferably 220 to 350 nm. It is preferably 1 to 60 J / cm 2 , more preferably 20 to 50 J / cm 2 , and particularly preferably 25 to 40 J / cm 2 . If the irradiation wavelength of the polarized ultraviolet light is too short, the liquid crystal alignment ability of the formed liquid crystal alignment film is deteriorated, and if it is too long, the light resistance is deteriorated. In addition, if the irradiation intensity is low, the liquid crystal alignment ability deteriorates, and if it is too high, the electric characteristics deteriorate. The alignment direction of the obtained liquid crystal alignment film is determined by the polarization direction of the irradiated ultraviolet light.
以上のように、 本発明の方法を用いて形成された液晶配向膜は、 液晶を均一に 配向させることができ、 蓄積電荷が少ないので、 この液晶配向膜を用いることで 、 液晶の配向が均一で、 焼き付きの少ない液晶表示素子を得ることができる。 本発明の方法を用いて形成された液晶配向膜を用いて液晶表示素子を得る方法 は、 公知の方法を用いることができる。 その例としては、 1対の液晶配向膜付き 基板を好ましくは 1〜3 0 ΠΚ より好ましくは 2〜1 0 mのスぺーサ一を挟ん で、 配向方向を好ましくは 0〜 2 7 0 ° の角度で設置し、 液晶を注入して封止す ることで液晶表示素子とする方法が挙げられる。 液晶封入の方法については特に 制限されず、 作製した液晶セル内を減圧にした後液晶を注入する真空法、 液晶を 滴下した後封止を行う滴下法などが例示できる。 こうして本発明を用いて作製し た液晶表示素子は、 液晶の配向が均一で焼き付きの起こり難い液晶表示デバイス とすることが出来る。  As described above, the liquid crystal alignment film formed by using the method of the present invention can uniformly align the liquid crystal and has a small accumulated charge. Therefore, by using this liquid crystal alignment film, the alignment of the liquid crystal is uniform. Thus, a liquid crystal display element with less image sticking can be obtained. As a method for obtaining a liquid crystal display element using the liquid crystal alignment film formed by using the method of the present invention, a known method can be used. As an example, a pair of substrates with a liquid crystal alignment film is preferably sandwiched by a spacer of 1 to 30 °, more preferably 2 to 10 m, and the alignment direction is preferably 0 to 270 °. There is a method in which a liquid crystal display element is formed by installing the liquid crystal at an angle, injecting liquid crystal, and sealing the liquid crystal. The method of sealing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which the pressure in the manufactured liquid crystal cell is reduced and then the liquid crystal is injected, and a dropping method in which the liquid crystal is dropped and then sealed. Thus, the liquid crystal display device manufactured by using the present invention can be a liquid crystal display device in which liquid crystal orientation is uniform and image sticking is unlikely.
以下に実施例を挙げて本発明をさらに具体的に説明するが、 本発明はこれに限 定して解釈されるものではないことはもちろんである。 実施例 (合成例 1) Hereinafter, the present invention will be described in more detail with reference to Examples, but it should be understood that the present invention is not construed as being limited thereto. Example (Synthesis example 1)
500mlの 3つ口フラスコに窒素導入管、 塩化カルシウム管を連結し、 P-フエ 二レンジァミン 9. 73g (0. 09モル) 、 1一へキサデシルォキシー 2, 4 ージァミノベンゼン 3. 49g (0. 01モル) を N—メチルー 2—ピロリドン (以下、 NMPと略す) 245g中でよく攪拌させて完全に溶解させた。 その後 、 1, 2—ジカルポキシー 1一 (3, 4—ジカルポキシ— 1, 2, 3, 4ーテト ラヒドロナフチル) ェ夕ン二無水物 30. 03g (0. 1モル) を加え、 室温で 10時間反応させてポリアミック酸を合成した。 このポリアミック酸溶液 100 gに、 イミド化触媒として無水酢酸 21. 6 g (0. 212モル) 、 ピリジン 9 . 97 g (0. 126モル) を加え、 50^で 3時間反応させ、 ポリイミド樹脂 溶液を調製した。 この溶液を 1000mlのメタノール中に投入し、 得られた白色 沈殿を濾別し、 乾燥し、 白色のボリイミド樹脂を得た。 この樹脂を再び NMPに 溶解した後、 アセトンに投入し、 同様にして得られた白色沈殿を濾別して乾燥し 、 白色のポリイミド樹脂を得た。 得られたポリイミドの還元粘度は 0. 64dl/ g (0. 5重量% NMP溶液、 30V) であった。 この粉末 7. 2gをァープチ口 ラクトン 1 12. 8gに溶解し固形分濃度 6%の溶媒可溶性ポリイミド樹脂溶液 を得た。  Connect a nitrogen inlet tube and a calcium chloride tube to a 500 ml three-necked flask, and add 9.73 g (0.09 mol) of P-phenylenediamine, 1-hexadecyloxy 2,4 diaminobenzene. 49 g (0.01 mol) was thoroughly dissolved in 245 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) by thoroughly stirring. Thereafter, 30.03 g (0.1 mol) of 1,2-dicarboxy-l- (3,4-dicarboxy-1,2,3,4-tetrahydronaphthyl) dianhydride was added, and the mixture was added at room temperature for 10 hours. The reaction was performed to synthesize a polyamic acid. To 100 g of this polyamic acid solution, 21.6 g (0.212 mol) of acetic anhydride and 9.97 g (0.126 mol) of pyridine were added as imidation catalysts and reacted at 50 ^ for 3 hours to obtain a polyimide resin solution. Was prepared. This solution was poured into 1000 ml of methanol, and the obtained white precipitate was separated by filtration and dried to obtain a white polyimide resin. After dissolving this resin again in NMP, it was poured into acetone, and the white precipitate obtained in the same manner was separated by filtration and dried to obtain a white polyimide resin. The reduced viscosity of the obtained polyimide was 0.64 dl / g (0.5% by weight NMP solution, 30 V). 7.2 g of this powder was dissolved in 11.2 g of Lactone mouth lactone to obtain a solvent-soluble polyimide resin solution having a solid content of 6%.
(合成例 2 ) (Synthesis example 2)
500mlの 3つ口フラスコに窒素導入管、 .塩化力ルシゥム管を連結し、 窒素雰 囲気下で 4, 4, ージアミノジフエニルメタン 1 9. 827 g (0. 1モル) を NMP 226 g中で溶解させ、 続いてピロメリッ卜酸二無水物 10. 687g (0 . 049モル) 、 1, 2, 3, 4—テトラカルボキシシクロブタン二無水物 9. 609g (0. 049モル) を添加して、 室温で 10時間反応させてポリァミツ ク酸を合成した。 得られたボリアミック酸の還元粘度は 1. 1 8dl/g (0. 5 重量% NMP溶液、 3 であった。 この溶液をァ—プチロラクトンで溶液濃 度 6 %に希釈し、 ポリアミック酸溶液を得た。  A 500 ml three-necked flask was connected to a nitrogen inlet tube and a chloride tube, and under nitrogen atmosphere, 4,9.8 g of diaminodiphenylmethane (0.1 mol) was added to 226 g of NMP. Then, 10.687 g (0.049 mol) of pyromellitic dianhydride and 9.609 g (0.049 mol) of 1,2,3,4-tetracarboxycyclobutane dianhydride were added. The reaction was carried out at room temperature for 10 hours to synthesize a polyamic acid. The reduced viscosity of the obtained boramic acid was 1.18 dl / g (0.5% by weight NMP solution, 3.) This solution was diluted to a solution concentration of 6% with arctyrolactone to obtain a polyamic acid solution. Was.
(配合例 1 ) (Formulation Example 1)
合成例 1で得られた濃度 6%の可溶性ポリイミド溶液 20gと合成例 2で得ら れた濃度 6 %のポリアミック酸溶液 80gとを 30 Oml三角フラスコ中室温で 1 2時間攪拌した後、 濃度 4%になるよう NMPで希釈した。 この溶液にカツプリ ング剤 LS- 3450 (信越化学社製、 商品名) 0. 12gを 2 gの NMPに希釈してか ら加え、 更に 12時間攪拌した。 得られたワニスを液晶配向剤とした。 (配合例 2) After stirring 20 g of the soluble polyimide solution having a concentration of 6% obtained in Synthesis Example 1 and 80 g of the polyamic acid solution having a concentration of 6% obtained in Synthesis Example 2 in a 30 Oml Erlenmeyer flask at room temperature for 12 hours, the concentration was changed to 4%. It was diluted with NMP to%. To this solution, 0.12 g of a cutting agent LS-3450 (manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with 2 g of NMP, and the mixture was further stirred for 12 hours. The obtained varnish was used as a liquid crystal aligning agent. (Formulation Example 2)
合成例 1で得られた濃度 6%の可溶性ポリイミド溶液 10 Ogを濃度 4%にな るよう NMPで希釈した。 この溶液にカップリング剤 LS- 3450 (信越化学社製、 商品名) 0. 12gを 2 gの NMPに希釈してから加え、 更に 12時間攪拌した 。 得られたワニスを液晶配向剤とした。  10 Og of the 6% concentration soluble polyimide solution obtained in Synthesis Example 1 was diluted with NMP to a concentration of 4%. 0.12 g of coupling agent LS-3450 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with 2 g of NMP and added to this solution, followed by stirring for further 12 hours. The obtained varnish was used as a liquid crystal aligning agent.
(配合例 3) (Formulation 3)
合成例 2で得られた濃度 6%のポリアミック酸溶液 100 gを濃度 4 %になる よう NMPで希釈した。 この溶液にカップリング剤 LS- 3450 (信越化学社製、 商 品名) 0. 12gを 2 gの NMPに希釈してから加え、 更に 12時間攪捽した。 得られたワニスを液晶配向剤とした。  100 g of the 6% polyamic acid solution obtained in Synthesis Example 2 was diluted with NMP to a concentration of 4%. To this solution, 0.12 g of coupling agent LS-3450 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with 2 g of NMP, and the mixture was further stirred for 12 hours. The obtained varnish was used as a liquid crystal aligning agent.
(実施例 1 ) (Example 1)
配合例 1により得られた液晶配向剤を透明電極付きガラス基板にスピンコート し、 210°Cで 1時間、 熱風循環式乾燥機で焼成を行レゝ、 膜厚 5 Onmのボリイ ミド膜を得た。 この塗膜に 30 J/ cm2の偏光紫外線を照射し、 液晶配向膜付 き基板を得た。 この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したところ 、 表面に傷やムラはなく均一な液晶配向膜が形成できていることが分かった。 また、 液晶セルの電気特性を測定するために、 これらの基板を 2枚作成し、 6 mのスぺーサーを散布した後、 その片方にシール剤を印刷し、 光照射方向をほ ぼ直交させ 2枚の基板をポリイミド膜の面をそれぞれ内に向けてシールした。 こ のセル内を減圧したのち液晶 ML C— 2003 (メルク ·ジャパン製、 商品名) を注入することによつて液晶セルを作製した。 この液晶セルの上下に偏光板を置 き、 下にバックライ卜を置いて、 液晶セルを 90度回転させると光の透過率が変 化し、 はつきりとした明暗が現われ、 液晶がきちんと配向していることが確認さ れた。 The liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked at 210 ° C for 1 hour in a hot air circulating dryer to obtain a 5 um thick polyimide film. Was. The coating film was irradiated with polarized ultraviolet light of 30 J / cm 2 to obtain a substrate having a liquid crystal alignment film. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. In order to measure the electrical characteristics of the liquid crystal cell, two of these substrates were prepared, a 6-meter spacer was sprayed, and a sealant was printed on one of the two substrates. The two substrates were sealed with the polyimide films facing inward. After decompressing the inside of the cell, a liquid crystal MLC-2003 (trade name, manufactured by Merck Japan) was injected to prepare a liquid crystal cell. When polarizing plates are placed above and below this liquid crystal cell, and a backlight is placed below, and the liquid crystal cell is rotated 90 degrees, the light transmittance changes, and a bright and dark appearance appears, and the liquid crystal is aligned properly. Was confirmed.
この液晶セルに、 直流 3 Vの電圧を重畳した 30 Hz /土 3 Vの短形波を 60 で 20分間印加し、 20分後直流 3 Vを切つた直後の液晶セル内に残る残留電 圧を光学的フリッカー消去法で測定したところ、 直後の残留 DC電圧は 0Vであり 、 20分後の残留 DC電圧は 0. 05Vであった。 また、 液晶セル ·イオン密度測定 システム (株式会社東陽テク二力製、 機種名 MTR- 1) を用いて、 この液晶セルに 周波数 0. 01 H z、 振幅 10 Vの電圧をかけ、 液晶セルを流れる電流と液晶セ ルにかかる電圧から液晶セル抵抗を測定したところ、 46. 6 X 109 Ωであつ た。 (比較例 1 ) A 30 Hz / soil 3 V rectangular wave superimposed with a 3 V DC voltage is applied to this liquid crystal cell at 60 for 20 minutes.After 20 minutes, the residual voltage remaining in the liquid crystal cell immediately after the 3 V DC is cut off. Was measured by an optical flicker elimination method, and the residual DC voltage immediately after was 0 V, and the residual DC voltage after 20 minutes was 0.05 V. Also, using a liquid crystal cell and ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), a voltage of 0.01 Hz and an amplitude of 10 V was applied to this liquid crystal cell, and the liquid crystal cell was mounted. When the liquid crystal cell resistance was measured from the flowing current and the voltage applied to the liquid crystal cell, it was 46.6 × 10 9 Ω. (Comparative Example 1)
配合例 2により得られた液晶配向剤を用いて、 実施例 1と同様にして液晶配向 膜付き基板を作製した。 この液晶配向膜付き基板の配向膜表面を顕微鏡で観察し たところ、 表面に傷ゃムラはなく均一な液晶配向膜が形成できていることが分か つた。 また、 実施例 1と同様にして液晶セルを作製した。 この液晶セルの上下に 偏光板を置き、 下にバックライトを置いて、 液晶セルを 9 0度回転させると光の 透過率が変化し、 はっきりとした明暗が現われ、 液晶がきちんと配向しているこ とが確認された。  Using the liquid crystal aligning agent obtained in Formulation Example 2, a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. Further, a liquid crystal cell was produced in the same manner as in Example 1. When a polarizing plate is placed above and below this liquid crystal cell, and a backlight is placed below, and the liquid crystal cell is rotated 90 degrees, the light transmittance changes, clear light and dark appear, and the liquid crystal is properly aligned. This was confirmed.
この液晶セルに、 直流 3 Vの電圧を重畳した 3 0 Hz /土 3 Vの短形波を 6 0 °Cで 2 0分間印加し、 2 0分後直流 3 Vを切つた直後の液晶セル内に残る残留電 圧を光学的フリッカー消去法で測定したところ、 直後の残留 DC電圧値は 0 . 1 2 Vであり、 20分後の残留 DC電圧は 0 . 3 0 Vであった。 また、 液晶セル ·イオン密 度測定システム (株式会社東陽テク二力製、 機種名 MTR-1) を用いて、 この液晶 セルに周波数 0 . 0 1 H z、 振幅 1 0 Vの電圧をかけ、 液晶セルを流れる電流と 液晶セルにかかる電圧から液晶セル抵抗を測定したところ、 2 1 0 X 1 0 9 Ωで あつに。 A 30 Hz / soil 3 V rectangular wave superimposed with a 3 V DC voltage was applied to this liquid crystal cell at 60 ° C for 20 minutes, and 20 minutes later, the liquid crystal cell immediately after the 3 V DC was cut off When the residual voltage remaining inside was measured by an optical flicker elimination method, the residual DC voltage value immediately after was 0.12 V, and the residual DC voltage after 20 minutes was 0.30 V. Using a liquid crystal cell / ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), a voltage of 0.01 Hz and an amplitude of 10 V was applied to this liquid crystal cell. measurement of the liquid crystal cell resistance from current and voltage applied to the liquid crystal cell through the liquid crystal cell, the thickness is 2 1 0 X 1 0 9 Ω .
(比較例 2 ) (Comparative Example 2)
配合例 3により得られた液晶配向剤を用いて、 実施例 1と同様にして液晶配向 膜付き基板を作製した。 この液晶配向膜付き基板の配向膜表面を顕微鏡で観察し たところ、 表面に傷やムラはなく均一な液晶配向膜が形成できていることが分か つた。 さらに、 実施例 1と同様にして液晶セルを作製したが、 液晶は均一に配向 せず、 液晶セルを 9 0 ° 回転させても透過率のはっきりした変化は現れなかつた  Using the liquid crystal aligning agent obtained in Formulation Example 3, a substrate with a liquid crystal alignment film was produced in the same manner as in Example 1. When the surface of the alignment film of the substrate with the liquid crystal alignment film was observed with a microscope, it was found that a uniform liquid crystal alignment film was formed without any scratches or unevenness on the surface. Further, a liquid crystal cell was fabricated in the same manner as in Example 1, but the liquid crystal was not uniformly aligned, and a clear change in transmittance did not appear even when the liquid crystal cell was rotated 90 °.
(比較例 3 ) (Comparative Example 3)
配合例 1により得られた液晶配向剤を透明電極付きガラス基板にスピンコート し、 2 1 0 で 1時間、 熱風循環式乾燥機で焼成を行い、 膜厚 5 0 n mのポリイ ミド膜を得た。 この塗膜をレーヨン布を用いてロールの回転数 5 0 0 r p m、 口 ールの進行速度 2 0 mm/秒、 押し込み量 0 . 6 mmでラビングして液晶配向膜 付き基板を得た。 この液晶配向膜付き基板の配向膜表面を顕微鏡で観察したとこ ろ、 表面にラビングに伴う筋状の傷が確認された。 さらに、 液晶セルの電気特性 を測定するために、 これらの基板を 2枚作成し、 実施例 1と同様にして液晶セル を作製した。  The liquid crystal aligning agent obtained in Formulation Example 1 was spin-coated on a glass substrate with a transparent electrode, and baked in a hot-air circulating drier at 210 for 1 hour to obtain a 50-nm-thick polyimide film. . This coating film was rubbed using rayon cloth at a roll rotation speed of 500 rpm, a roll advance speed of 20 mm / sec, and a pushing amount of 0.6 mm to obtain a substrate with a liquid crystal alignment film. When the surface of the alignment film of the substrate with a liquid crystal alignment film was observed with a microscope, streak-like scratches due to rubbing were confirmed on the surface. Further, in order to measure the electrical characteristics of the liquid crystal cell, two of these substrates were prepared, and a liquid crystal cell was prepared in the same manner as in Example 1.
この液晶セルの上下に偏光板を置き、 下にバックライトを置いて、 液晶セルを 9 0度回転させると光の透過率が変化し、 はっきりとした明暗が現われ、 液晶が きちんと配向していることが確認された。 この液晶セルに、 直流 3 Vの電圧を重 畳した 3 0 Hz/士 3 Vの短形波を 6 0 °Cで 2 0分間印加し、 2 0分後直流 3 V を切った直後の液晶セル内に残る残留電圧を光学的フリッカー消去法で測定した ところ、 直後の残留 DC電圧は 0 Vであり、 20分後の残留 DC電圧は 0 . 0 0 Vであつ た。 また、 液晶セル ·イオン密度測定システム (株式会社東陽テク二力製、 機種 名 MTR- 1) を用いて、 この液晶セルに周波数 0 . 0 1 H z、 振幅 1 0 Vの電圧を かけ、 液晶セルを流れる電流と液晶セルにかかる電圧から液晶セル抵抗を測定し たところ、 1 0 6 X 1 0 9 Ωであった。 産業上の利用可能性 Place the polarizers above and below this liquid crystal cell, place the backlight below, and remove the liquid crystal cell. When rotated 90 degrees, the transmittance of light changed, and clear light and dark appeared, confirming that the liquid crystal was properly aligned. A 30 Hz / 3 V square wave obtained by superimposing a 3 V DC voltage was applied to this liquid crystal cell at 60 ° C for 20 minutes.After 20 minutes, the liquid crystal immediately after the 3 V DC was cut off was applied. When the residual voltage remaining in the cell was measured by the optical flicker elimination method, the residual DC voltage immediately after was 0 V, and the residual DC voltage after 20 minutes was 0.000 V. Using a liquid crystal cell / ion density measurement system (manufactured by Toyo Corp., model name: MTR-1), a voltage of 0.01 Hz and an amplitude of 10 V was applied to this liquid crystal cell, measurement of the liquid crystal cell resistance from the voltage applied to the current and the liquid crystal cell through the cell was 1 0 6 X 1 0 9 Ω . Industrial applicability
本発明によれば、 液晶表示素子とした際に電荷の蓄積が少ない液晶配向膜を、 作業性、 均一性に優れた手法で形成できる。 また、 本発明により形成した液晶配 向膜を用いた液晶表示素子は電荷の蓄積が少ないため、 コントラス卜の高い画像 でも焼き付きなどを起こさずに表示させ続けることができる。 さらに本発明は電 気特性を向上させるための汎用性の高い技術であり、 現在主流に用いられている T F Τ液晶ディフヽプレイのみならず、 VAや IPS液晶ディスプレイデパイスなど最 新のディスプレイデパイスまで、 あらゆる液晶デバィスの画質を向上させること が可能になる。  ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal alignment film with little accumulation | storage of a liquid crystal display element can be formed by the method excellent in workability and uniformity. In addition, since the liquid crystal display element using the liquid crystal orientation film formed according to the present invention has little charge accumulation, it can continue to display an image with a high contrast without causing burn-in. Furthermore, the present invention is a highly versatile technology for improving electrical characteristics, and not only the TF (Liquid Crystal Display) currently used in the mainstream, but also the latest display resolutions such as VA and IPS LCD displays. Therefore, the image quality of all liquid crystal devices can be improved.

Claims

請求の範囲 The scope of the claims
1 . 可溶性ポリイミドとポリアミック酸とを含有する液晶配向剤を基板に塗 布する工程と、 上記基板上に得られた塗膜に偏光紫外線を照射する工程と、 を経 て液晶配向膜を形成することを特徴とする液晶配向膜の形成方法。 1. A step of applying a liquid crystal aligning agent containing a soluble polyimide and a polyamic acid to a substrate, and a step of irradiating the coating film obtained on the substrate with polarized ultraviolet rays to form a liquid crystal aligning film. A method for forming a liquid crystal alignment film, comprising:
2 . 可溶性ポリイミドが、 脂環式構造を有する酸二無水物とジァミンとを反応 させて得られる可溶性ポリイミド樹脂を含むことを特徴とする請求項 1に記載の 液晶配向膜の形成方法。  2. The method for forming a liquid crystal alignment film according to claim 1, wherein the soluble polyimide contains a soluble polyimide resin obtained by reacting an acid dianhydride having an alicyclic structure with diamine.
3 . 可溶性ポリイミドが、 一般式(1 )で表される繰り返し単位を含むことを特 徵とする、 請求項 1または 2に記載の液晶配向膜の形成方法。  3. The method for forming a liquid crystal alignment film according to claim 1, wherein the soluble polyimide contains a repeating unit represented by the general formula (1).
Figure imgf000015_0001
Figure imgf000015_0001
(式中、 は 2価の有機基を表す)  (Wherein, represents a divalent organic group)
4. ポリアミック酸が、 一般式(2 )で表される繰り返し単位を含む, とを特徴 とする請求項 1〜 3のいずれかに記載の液」配向膜の形成方法。 4. The method for forming a liquid "alignment film according to any one of claims 1 to 3, wherein the polyamic acid includes a repeating unit represented by the general formula (2).
Figure imgf000015_0002
Figure imgf000015_0002
(式中、 R ,は 2価の有機基を表す)  (Wherein, R, represents a divalent organic group)
5 . 液晶配向剤に含有される、 可溶性ポリイミド/ポリアミック酸の重量比が 0 . 0 1〜9 9. 0 Z 1であることを特徴とする請求項 1〜4のいずれかに記載の 液晶配向膜の形成方法。 5. The liquid crystal alignment according to any one of claims 1 to 4, wherein the weight ratio of the soluble polyimide / polyamic acid contained in the liquid crystal alignment agent is 0.01 to 99.0 Z1. Method of forming a film.
6 . 液晶配向剤に含有される、 可溶性ポリイミド及びポリアミック酸の濃度が 0 . 1〜3 0重量%であることを特徴とする請求項 1〜 5のいずれかに記載の液晶 配向膜の形成方法。  6. The method for forming a liquid crystal alignment film according to any one of claims 1 to 5, wherein the concentration of the soluble polyimide and polyamic acid contained in the liquid crystal alignment agent is 0.1 to 30% by weight. .
7 . 偏光紫外線の照射波長が 1 5 0〜 4 0 0 mnであり、 かつ照射強度が 1〜 6 0 J I c m2であることを特徴とする請求項 1〜 6のいずれかに記載の液晶配向膜 の形成方法。 7. A radiation wavelength of 1 5 0~ 4 0 0 mn of polarized ultraviolet, and liquid crystal alignment according to any one of claims 1 to 6, wherein the irradiation intensity is 1-6 0 JI cm 2 film Formation method.
8 · 塗膜の厚みが 5〜 3 0 0皿である請求項 1〜 7のいずれかに記載の液晶配向 膜の形成方法。  8. The method for forming a liquid crystal alignment film according to any one of claims 1 to 7, wherein the thickness of the coating film is 5 to 300 dishes.
PCT/JP2004/001388 2003-02-12 2004-02-10 Liquid crystal alignment layer forming method WO2004072720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003033087A JP2004264354A (en) 2003-02-12 2003-02-12 Method for forming liquid crystal alignment layer
JP2003-033087 2003-02-12

Publications (1)

Publication Number Publication Date
WO2004072720A1 true WO2004072720A1 (en) 2004-08-26

Family

ID=32866213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001388 WO2004072720A1 (en) 2003-02-12 2004-02-10 Liquid crystal alignment layer forming method

Country Status (3)

Country Link
JP (1) JP2004264354A (en)
TW (1) TW200420982A (en)
WO (1) WO2004072720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064160A1 (en) * 2005-12-01 2007-06-07 Lg Chem. Ltd. Method of producing liquid crystal aligning layer, liquid crystal aligning layer produced using the same, and liquid crystal display including liquid crystal aligning layer
US10696901B2 (en) * 2015-11-11 2020-06-30 Lg Chem, Ltd. Method of manufacturing liquid crystal alignment layer, liquid crystal alignment layer manufactured by using the same, and liquid crystal display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076921A (en) * 2006-09-25 2008-04-03 Hitachi Displays Ltd Liquid crystal display device
EP2222815B1 (en) 2007-12-21 2019-05-29 ROLIC Technologies AG Photoalignment composition
TWI386730B (en) * 2008-04-30 2013-02-21 Au Optronics Corp Liquid crystal alignment process
JP2017116819A (en) 2015-12-25 2017-06-29 株式会社ジャパンディスプレイ Liquid crystal display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220541A (en) * 1995-02-13 1996-08-30 Nissan Chem Ind Ltd Liquid crystal orientation treatment agent
JPH09297313A (en) * 1996-03-05 1997-11-18 Nissan Chem Ind Ltd Method for orienting liquid crystal
JP2000204250A (en) * 1998-11-12 2000-07-25 Jsr Corp Liquid crystal alignment agent and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220541A (en) * 1995-02-13 1996-08-30 Nissan Chem Ind Ltd Liquid crystal orientation treatment agent
JPH09297313A (en) * 1996-03-05 1997-11-18 Nissan Chem Ind Ltd Method for orienting liquid crystal
JP2000204250A (en) * 1998-11-12 2000-07-25 Jsr Corp Liquid crystal alignment agent and liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064160A1 (en) * 2005-12-01 2007-06-07 Lg Chem. Ltd. Method of producing liquid crystal aligning layer, liquid crystal aligning layer produced using the same, and liquid crystal display including liquid crystal aligning layer
US10696901B2 (en) * 2015-11-11 2020-06-30 Lg Chem, Ltd. Method of manufacturing liquid crystal alignment layer, liquid crystal alignment layer manufactured by using the same, and liquid crystal display device

Also Published As

Publication number Publication date
JP2004264354A (en) 2004-09-24
TW200420982A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
JP5773177B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4404090B2 (en) Liquid crystal aligning agent for photo-alignment and liquid crystal display device using the same
JP5151478B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5109979B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5282573B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
KR101616143B1 (en) Liquid-crystal alignment material, liquid-crystal display element employing same, and novel diamine
KR101589328B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
JPWO2004021076A1 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP4561631B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JPWO2004053583A1 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5434821B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP4013052B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP2012093642A (en) Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
WO2011129414A1 (en) Liquid crystal aligning agent, liquid crystal alignment film produced using same, and liquid crystal display element
JP5434927B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
CN111592891A (en) Liquid crystal aligning agent, liquid crystal alignment film prepared from same and liquid crystal display element
WO2004072720A1 (en) Liquid crystal alignment layer forming method
JP5219233B2 (en) Liquid crystal alignment agent
JP2006176543A (en) Liquid crystal aligning agent
JP4016257B2 (en) Liquid crystal alignment agent and liquid crystal alignment film using the same
JP5326355B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
WO2021182267A1 (en) Polyimide varnish
JP2008216495A (en) Liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase