WO2017170483A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2017170483A1
WO2017170483A1 PCT/JP2017/012535 JP2017012535W WO2017170483A1 WO 2017170483 A1 WO2017170483 A1 WO 2017170483A1 JP 2017012535 W JP2017012535 W JP 2017012535W WO 2017170483 A1 WO2017170483 A1 WO 2017170483A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
formula
crystal aligning
polymer
Prior art date
Application number
PCT/JP2017/012535
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 巴
泰宏 宮本
玲久 小西
秀則 石井
英之 磯貝
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018508033A priority Critical patent/JP7008946B2/en
Priority to CN201780033634.9A priority patent/CN109196410B/en
Priority to KR1020187030163A priority patent/KR102350408B1/en
Publication of WO2017170483A1 publication Critical patent/WO2017170483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • C08G59/3245Heterocylic compounds containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34926Triazines also containing heterocyclic groups other than triazine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent for producing a liquid crystal aligning film, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
  • the liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates.
  • the liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to the electrode provided between the substrate and the liquid crystal alignment film.
  • the liquid crystal display element displays a desired image by utilizing the orientation change due to the response of the liquid crystal molecules.
  • the liquid crystal alignment film is a major constituent member together with liquid crystal molecules and the like in a liquid crystal display element or the like.
  • the rubbing process is known as a method of forming a liquid crystal alignment film from a polymer film formed on a substrate in a manufacturing process of a liquid crystal display element, and is still widely used industrially today.
  • an alignment process is performed by rubbing the surface of the polymer film such as polyimide formed on the substrate with a cloth.
  • the liquid crystal alignment film is required to have resistance to rubbing treatment (hereinafter also referred to as rubbing resistance).
  • a polymer obtained by reacting tetracarboxylic dianhydride and a diamine compound and / or an imidized polymer thereof, and two in a molecule It is disclosed that a liquid crystal alignment film having a constant pretilt angle can be obtained regardless of rubbing conditions by using a liquid crystal aligning agent containing a compound containing the above epoxy group (see Patent Documents 1 and 2). .
  • JP 7-234410 A Japanese Patent Laid-Open No. 10-338880
  • An object of the present invention is to provide a liquid crystal alignment film having high mechanical strength and a liquid crystal alignment agent for obtaining the same.
  • the present inventor has intensively studied to achieve the above object, and as a result, a polyimide precursor obtained from an additive having a specific structure and a diamine compound having a specific structure, and an imidized polymer of the polyimide precursor. It has been found that the above object can be achieved by a liquid crystal aligning agent containing at least one polymer selected from the group consisting of: Thus, the present invention has the following gist.
  • a polymer comprising at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, a compound represented by the following formula (3) And a liquid crystal aligning agent containing an organic solvent.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from diamine and having the structure of formula (2)
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 2 is a single bond or a divalent organic group
  • R 3 is a structure represented by — (CH 2 ) n — (where n is an integer of 2 to 20, Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under non-adjacent conditions.)
  • R 4 is a single bond or a divalent organic group on the benzene ring Any hydrogen atom may be replaced with a monovalent organic group.
  • p is an integer of 1 to 6.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can achieve both the mechanical strength of the film and the liquid crystal alignment of the film, the film is scraped not only in the rubbing process but also in the slimming process. As a result, a liquid crystal display element having good display characteristics can be obtained.
  • the liquid crystal aligning agent of the present invention is a polymer containing at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor (hereinafter, A liquid crystal aligning agent containing a compound represented by the above formula (3) (hereinafter also referred to as a specific compound) and an organic solvent.
  • a polyimide precursor having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor hereinafter, A liquid crystal aligning agent containing a compound represented by the above formula (3) (hereinafter also referred to as a specific compound) and an organic solvent.
  • the specific polymer contained in the liquid crystal aligning agent of this invention is a polymer containing the structural unit of following formula (1).
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative.
  • the specific structure is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-45).
  • R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group or a phenyl group, which may be the same or different.
  • R 5 , R 6 , R 7 , and R 8 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably, At least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • the structural unit represented by the formula (1) and the imidized polymer of the polyimide precursor the structural unit represented by the formula (1) and a structural unit obtained by imidizing the structural unit are selected.
  • the ratio of at least one structural unit is preferably 20 mol% to 100 mol% with respect to 1 mol of all structural units in the polymer. From the viewpoint of achieving both liquid crystal alignment and reliability, 70 mol% is more preferable, and 50 mol% to 70 mol% is more preferable.
  • Y 1 is a divalent organic group derived from a diamine and having a structure of the following formula (2).
  • R 2 is a single bond or a divalent organic group, preferably a single bond.
  • R 3 is a structure represented by — (CH 2 ) n —. n is an integer of 2 to 10, preferably 3 to 7.
  • Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under the condition that they are not adjacent to each other.
  • R 4 is a single bond or a divalent organic group. Any hydrogen atom on the benzene ring may be replaced with a monovalent organic group, and a fluorine atom or a methyl group is preferred. Specific examples include the following structures, but are not limited thereto.
  • the specific polymer contained in the liquid crystal aligning agent of the present invention may contain a structural unit represented by the following formula (4) in addition to the structural unit represented by the above formula (1).
  • R 1 has the same definition as R 1 in the formula (1).
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Specific examples include the structures of the above formulas (X1-1) to (X-45).
  • Y 2 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of Y 2 include structures of the following formulas (Y-1) to (Y-137).
  • p is an integer of 1 to 6, preferably 1 to 3, more preferably 1. Specific examples include the following structures.
  • the content of the compound represented by the above formula (3) is preferably 1-20 parts by weight, more preferably 1-10 parts by weight. Moreover, in the range which does not impair the effect of this invention, you may use 2 or more types of compounds of the said Formula (3).
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the method (1), (2) or (3) shown below.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution.
  • cleaning with a poor solvent, and normal temperature or heat-drying can be obtained.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process. Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent.
  • the molecular weight of at least one polymer selected from the polyimide precursor having the structural unit represented by the above formula (1) and the imidized polymer of the polyimide precursor is 2,000 to 500,000 in weight average molecular weight. Is more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the liquid crystal aligning agent used in the present invention may contain a polymer other than the polymer described in the present invention.
  • a specific polymer containing at least one selected from the group consisting of a polyimide having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor and a polyimide other than the specific polymer
  • a polymer containing at least one selected from the group consisting of a precursor and an imidized polymer of the polyimide precursor is included because the effects of the present invention can be further expressed.
  • the polymer is selected from the group consisting of a polyamic acid other than the specific polymer including at least one selected from the group consisting of a polyimide having a structural unit represented by the above formula (1) and a polyamic acid ester. It is more preferable that a polymer containing at least one kind is included.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention is the setting of the thickness of the coating film to be formed. However, it is preferably 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film, and preferably 10% by weight or less from the viewpoint of storage stability of the solution. .
  • the organic solvent contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer having a specific structure is uniformly dissolved (hereinafter also referred to as a good solvent).
  • a good solvent include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam
  • Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the good solvent in the liquid crystal aligning agent is preferably 20 to 99% by mass of the total solvent, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass.
  • the liquid crystal aligning agent can contain a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired.
  • a solvent also referred to as a poor solvent
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
  • a poor solvent is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • liquid crystal aligning agent of the present invention has a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, as long as the effects of the present invention are not impaired.
  • Silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and polyimide for firing the coating film
  • An imidization accelerator for the purpose of efficiently proceeding imidization by heating the precursor may be added.
  • the liquid crystal alignment film of the present invention is produced through a step of applying a liquid crystal aligning agent to a substrate and baking, and a step of applying an alignment treatment to the obtained film.
  • (1) Step of applying liquid crystal aligning agent to substrate and baking The liquid crystal aligning agent obtained as described above is applied to the substrate, dried and fired to form a polyimide film or a polyimide precursor imidized film. Is obtained.
  • the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, and the like can be used.
  • a substrate on which an ITO electrode or the like for driving a liquid crystal is formed is preferable from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate.
  • the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent used in the present invention.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • Anisotropy is imparted to the film obtained by the method (1) by irradiating polarized ultraviolet rays (hereinafter also referred to as photo-alignment treatment).
  • a higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the photo-alignment treatment there is a method in which the surface of the coating film is irradiated with linearly polarized ultraviolet rays, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. It is done.
  • ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention has good characteristics as a liquid crystal alignment film by cleaning with a cleaning liquid mainly composed of water or 2-propanol. It is characterized by expressing. Since 2-propanol dissolves organic substances in the film more easily than water, a cleaning liquid containing 2-propanol is more preferable as the cleaning liquid for the liquid crystal alignment film of the present invention.
  • a treatment such that the film and the liquid are sufficiently in contact with each other such as an immersion treatment or a spraying treatment, is preferable.
  • a method of immersing the film in the cleaning solution preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • After the contact treatment for the purpose of removing the organic solvent used, either or both of rinsing with water, 2-propanol, acetone and other low boiling solvents, drying, or both may be performed.
  • the drying temperature is preferably 80 to 250 ° C, more preferably 80 to 150 ° C.
  • the liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
  • a liquid crystal cell is prepared by a known method. In this way, a liquid crystal display element is obtained.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present embodiment is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • DA- 1 The following structural formula (DA-1) DA-2: Structural formula below (DA-2) DA-3: Structural formula below (DA-3) DA-4: Structural formula below (DA-4) DA-5: Structural formula below (DA-5) DA-6: Structural formula below (DA-6) DA-7: Structural formula below (DA-7) DA-8: Structural formula below (DA-8) DA-9: Structural formula below (DA-9) CA-1: Structural formula below (CA-1) CA-2: Structural formula below (CA-2) CA-3: Structural formula shown below (CA
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)) (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • NMR nuclear magnetic resonance
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • This polyamic acid ester solution was put into 1700 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. In a 200 mL Erlenmeyer flask containing a stirrer, 16.0 g of this polyamic acid ester powder was taken, 117 g of NMP was added, and stirred at 50 ° C. for 30 hours to dissolve, so that a polyamic acid ester solution (PAE- 1) was obtained.
  • PAE- 1 polyamic acid ester solution
  • Example 1 In a 50 mL Erlenmeyer flask containing a stir bar, 15.2 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 9.44 g of NMP, and 1-glycidoxypropyltriethoxysilane were added. 1.48 g of an NMP solution containing 10% by mass, 0.357 g of an NMP solution containing 10% by mass of AD-1, and 6.62 g of BCS were added, and the mixture was stirred for 2 hours with a magnetic stirrer. )
  • Example 2 In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.18 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.422 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-2) was obtained.
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 2 was collected, 3.18 g of NMP, 1.75 g of GBL, 3-glycidide.
  • Example 3 In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.24 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.362 g of NMP solution containing 10% by mass of AD-2, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-3) was obtained.
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 2 was collected, 3.24 g of NMP, 1.75 g of GBL, 3-glycidide.
  • Example 4 In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.00 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.596 g of NMP solution containing 10% by mass of AD-2, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-4) was obtained.
  • PAE-1 polyamic acid ester solution obtained in Synthesis Example 2 was collected, 3.00 g of NMP, 1.75 g of GBL, 3-glycidide.
  • Example 5 In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. , 3.79 g of NMP, 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.100 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-5).
  • PAE-1 polyimide solution obtained in Synthesis Example 2
  • PAA-2 polyamic acid solution obtained in Synthesis Example 3 were fractionated.
  • 3.79 g of NMP 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxys
  • Example 6 In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. , 3.69 g of NMP, 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.210 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-6).
  • PAE-1 polyimide solution obtained in Synthesis Example 2
  • PAA-2 polyamic acid solution obtained in Synthesis Example 3 were fractionated.
  • 3.69 g of NMP 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxys
  • Example 7 In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.72 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-2 10 wt% NMP solution 0.180 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-7).
  • PAE-1 polyimide solution obtained in Synthesis Example 2
  • PAA-2 polyamic acid solution
  • Example 8 In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.54 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-2 10 wt% NMP solution 0.360 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-8).
  • PAE-1 polyimide solution obtained in Synthesis Example 2
  • PAA-2 polyamic acid solution
  • Example 9 In a 50 mL Erlenmeyer flask containing a stir bar, 2.63 g of the polyimide solution (SPI-1) obtained in Synthesis Example 4 and 4.62 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 were collected. , 3.32 g of NMP, 3.45 g of GBL, 0.297 g of NMP solution containing 10% by weight of AD-1, 3.60 g of PB, 0.139 g of AD-4, and 0.139 g of AD-4. By stirring for a while, a liquid crystal aligning agent (A-9) was obtained.
  • Example 10 In a 50 mL Erlenmeyer flask containing a stirring bar, 2.79 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and 3.60 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 7 were taken. . 0.45 g of NMP solution containing 5.85 g of NMP, 10% by mass of AD-1 and 5.40 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-10).
  • PAA-5 polyamic acid solution obtained in Synthesis Example 6
  • PAA-6 polyamic acid solution obtained in Synthesis Example 7
  • Example 11 In a 50 mL Erlenmeyer flask containing a stir bar, 9.97 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and 7.43 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 8 were taken. . Add 2.29 g of NMP, 2.20 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 1.10 g of NMP solution containing 10% by mass of AD-3, and 12.0 g of BCS. The mixture was stirred with a tic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-11).
  • Example 12 The liquid crystal aligning agent (A-1) obtained in Example 1 was subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was adjusted to 80 ° C. Dry on hot plate for 2 minutes. Thereafter, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • a liquid crystal cell having a configuration of an FFS liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode constituting the counter electrode as the first layer is formed on the entire surface.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film is arranged as a third layer on the second layer SiN film to form two pixels, a first pixel and a second pixel. is doing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a bow shape with a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold, bent, bent at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
  • the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm.
  • This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third-layer IZO comb-teeth electrode Then, ultrasonic cleaning was performed for 1 minute in pure water for cleaning, and water droplets were removed by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board
  • a substrate with a liquid crystal alignment film was obtained.
  • One set of these two substrates with a liquid crystal alignment film is printed, and the sealant is printed on the substrate leaving the liquid crystal injection port.
  • the other substrate has the liquid crystal alignment film surface facing and the rubbing direction is antiparallel. They were pasted together.
  • the sealing agent was cured to produce an empty cell having a cell gap of 4 ⁇ m.
  • Liquid crystal MLC-7026-100 manufactured by Merck & Co., Inc.
  • was injected into this empty cell by a reduced pressure injection method was sealed to obtain an FFS liquid crystal cell.
  • the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • the value of the angle ⁇ of the liquid crystal cell exceeded 0.6 degrees, it was defined as “defective” and evaluated.
  • the value of the angle ⁇ of the liquid crystal cell did not exceed 0.6 degrees it was defined as “good” and evaluated.
  • was 0.10 °, which was favorable.
  • Example 13 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.15 °, which was favorable.
  • Example 14 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.13 °, which was favorable.
  • Example 15 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.17 °, which was favorable.
  • Example 16 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-5) obtained in Example 5 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.41 °, which was favorable.
  • Example 17 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-6) obtained in Example 6 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.45 °, which was favorable.
  • Example 18 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-7) obtained in Example 7 was used. Further, when the liquid crystal orientation was evaluated in the same manner as in Example 12, ⁇ was 0.43 °, which was favorable.
  • Example 19 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-8) obtained in Example 8 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.49 °, which was favorable.
  • Example 20 The liquid crystal aligning agent (A-9) obtained in Example 9 was subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was 80 ° C. For 2 minutes on a hot plate. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was irradiated with 200 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate.
  • Example 12 Thereafter, in the same manner as described in Example 12, two substrates with a liquid crystal alignment film were prepared, and empty cells having a cell gap of 4 ⁇ m were prepared.
  • Liquid crystal MLC-7026-100 manufactured by Merck & Co., Inc.
  • the injection port was sealed to obtain an FFS liquid crystal cell.
  • the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
  • was 0.10 °, which was favorable.
  • Example 21 The liquid crystal aligning agent (A-10) obtained in Example 10 was subjected to pressure filtration with a membrane filter having a pore size of 1 ⁇ m, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was 80 ° C. For 2 minutes on a hot plate. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained. As a result of evaluating the pencil hardness in the same manner as in Example 12, it was 4H, which was favorable.
  • the liquid crystal aligning agent (A-10) obtained in Example 10 was filtered through a 1.0 ⁇ m filter, and then spin-coated on the electrode-attached substrate described in Example 11, and 2 on a hot plate at a temperature of 80 ° C. Let dry for minutes. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
  • Example 12 Thereafter, in the same manner as described in Example 12, two substrates with a liquid crystal alignment film were prepared, and empty cells having a cell gap of 4 ⁇ m were prepared.
  • Liquid crystal MLC-7026-100 manufactured by Merck & Co., Inc.
  • the injection port was sealed to obtain an FFS liquid crystal cell.
  • the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
  • was 0.21 ° and was good.
  • Example 22 The pencil hardness was evaluated in the same manner as in Example 21 except that the liquid crystal aligning agent (A-11) obtained in Example 11 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 21, ⁇ was 0.13 °, which was favorable.
  • Comparative Example 7 The pencil hardness was evaluated by the same method as in Example 12 except that the liquid crystal aligning agent (B-1) obtained in Comparative Example 1 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.05 °, which was favorable.
  • Comparative Example 8 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-2) obtained in Comparative Example 2 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 1.5 °, which was poor.
  • Comparative Example 9 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-3) obtained in Comparative Example 3 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.11 °, which was favorable.
  • Comparative Example 10 The pencil hardness was evaluated by the same method as in Example 12 except that the liquid crystal aligning agent (B-4) obtained in Comparative Example 4 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.45 °, which was favorable.
  • Example 11 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-5) obtained in Comparative Example 5 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.86 °, which was poor.
  • Example 12 The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-6) obtained in Comparative Example 4 was used. Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, ⁇ was 0.65 °, which was poor. Table 1 shows the results of evaluation of pencil hardness and evaluation of liquid crystal orientation when the liquid crystal aligning agents obtained in Examples and Comparative Examples are used.

Abstract

The present invention provides: a liquid crystal aligning agent for obtaining a liquid crystal alignment film that has achieved a good balance between liquid crystal aligning properties and mechanical strength of the film; a liquid crystal alignment film which is obtained using this liquid crystal aligning agent; and a liquid crystal display element which is provided with this liquid crystal alignment film. The present invention provides a liquid crystal aligning agent which contains: a polymer that contains at least one polymer selected from the group consisting of polyimide precursors having a structural unit represented by formula (1) and imidized polymers of the polyimide precursors; a compound represented by formula (3); and an organic solvent. (In formulae (1)-(3), the symbols are as defined in the description.)

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
 本発明は、液晶配向膜を作製するための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent for producing a liquid crystal aligning film, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
 液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板等において、液晶分子の配向を一定方向に制御するための膜である。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そして、液晶表示素子では、液晶分子が、液晶配向膜によってプレチルト角を伴って一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答をする。その結果、液晶表示素子は、液晶分子の応答による配向変化を利用して所望とする画像の表示を行う。液晶配向膜は、液晶表示素子等において、液晶分子等とともに主要な構成部材となる。 The liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates. In the liquid crystal display element, the liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to the electrode provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the orientation change due to the response of the liquid crystal molecules. The liquid crystal alignment film is a major constituent member together with liquid crystal molecules and the like in a liquid crystal display element or the like.
 液晶配向膜に求められる特性は種々存在する。ラビング処理に対する高い耐性はそのうち重要な特性の一つである。ラビング処理は、液晶表示素子の製造工程において、基板上に形成された高分子膜から液晶配向膜を形成する方法として知られ、現在も工業的に広く用いられている。ラビング処理では、基板上に形成されたポリイミド等の高分子膜に対し、その表面を布で擦る配向処理が行われる。 There are various properties required for liquid crystal alignment films. High resistance to rubbing is one of the important characteristics. The rubbing process is known as a method of forming a liquid crystal alignment film from a polymer film formed on a substrate in a manufacturing process of a liquid crystal display element, and is still widely used industrially today. In the rubbing process, an alignment process is performed by rubbing the surface of the polymer film such as polyimide formed on the substrate with a cloth.
 こうしたラビング処理においては、液晶配向膜が削れることで発生する粉塵や液晶配向膜に付いた傷が、表示品位を低下させるという問題が知られている。そのため、液晶配向膜にはラビング処理に対する耐性(以下、ラビング耐性とも言う。)が求められている。 In such rubbing treatment, there is a known problem that dust generated by scraping the liquid crystal alignment film or scratches on the liquid crystal alignment film deteriorates display quality. For this reason, the liquid crystal alignment film is required to have resistance to rubbing treatment (hereinafter also referred to as rubbing resistance).
 高いラビング耐性を有する液晶配向膜を形成するための方法としては、テトラカルボン酸二無水物及びジアミン化合物とを反応させて得られる重合体及び/またはそのイミド化重合体と、分子内に2個以上のエポキシ基を含有する化合物を含有する液晶配向剤を用いることで、ラビング条件によらず一定のプレチルト角を示す液晶配向膜が得られることが開示されている(特許文献1、2参照)。 As a method for forming a liquid crystal alignment film having high rubbing resistance, a polymer obtained by reacting tetracarboxylic dianhydride and a diamine compound and / or an imidized polymer thereof, and two in a molecule It is disclosed that a liquid crystal alignment film having a constant pretilt angle can be obtained regardless of rubbing conditions by using a liquid crystal aligning agent containing a compound containing the above epoxy group (see Patent Documents 1 and 2). .
特開平7-234410号公報JP 7-234410 A 特開平10-338880号公報Japanese Patent Laid-Open No. 10-338880
 近年では、スマートフォン等の液晶表示素子における軽量化、薄型化が急速に進んでいる。それに伴い、液晶パネル製造において、作製後の液晶パネルのガラス基板を研磨する、いわゆる「スリミング工程」が行われることが多い。この工程では、フッ酸などを用いた化学的な方法と、研磨剤を用い物理的に研磨する方法がある。
 物理的に研磨する場合、研磨に用いる装置によっては、作製した液晶パネルが曲げられることもあり、結果、液晶配向膜に対し、あらゆる方向から応力がかかる。そのため、液晶配向膜の機械的強度が弱い場合、特にカラムスペーサーまわりで膜の破断が起こり、不良の原因となることがある。ラビングに対して充分な耐性を持つこれまでの液晶配向膜も、このスリミング工程に対する耐性が不充分であることが多い。
 以上のことから、機械的強度を更に強化した液晶配向膜が求められている。
 本発明の課題は、機械的強度の高い液晶配向膜及び、それを得るための液晶配向剤を提供することにある。
In recent years, liquid crystal display elements such as smartphones are rapidly becoming lighter and thinner. Accordingly, in the production of liquid crystal panels, a so-called “sliming process” is often performed in which the glass substrate of the liquid crystal panel after production is polished. In this step, there are a chemical method using hydrofluoric acid and a physical polishing method using an abrasive.
When physically polishing, the produced liquid crystal panel may be bent depending on the apparatus used for polishing, and as a result, stress is applied to the liquid crystal alignment film from all directions. Therefore, when the mechanical strength of the liquid crystal alignment film is weak, the film breaks particularly around the column spacer, which may cause defects. Conventional liquid crystal alignment films having sufficient resistance to rubbing often have insufficient resistance to the slimming process.
In view of the above, a liquid crystal alignment film having further enhanced mechanical strength is demanded.
An object of the present invention is to provide a liquid crystal alignment film having high mechanical strength and a liquid crystal alignment agent for obtaining the same.
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、特定構造の添加剤と特定構造を有するジアミン化合物から得られるポリイミド前駆体、及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤により、上記の目的を達成し得ることを見出した。
 かくして、本発明は、下記を要旨とするものである。
The present inventor has intensively studied to achieve the above object, and as a result, a polyimide precursor obtained from an additive having a specific structure and a diamine compound having a specific structure, and an imidized polymer of the polyimide precursor. It has been found that the above object can be achieved by a liquid crystal aligning agent containing at least one polymer selected from the group consisting of:
Thus, the present invention has the following gist.
1.下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種を含む重合体、下記式(3)で表される化合物、及び有機溶媒を含有する液晶配向剤。 1. A polymer comprising at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, a compound represented by the following formula (3) And a liquid crystal aligning agent containing an organic solvent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、
 Yはジアミンに由来し、式(2)の構造を有する2価の有機基であり、
 Rは水素原子又は炭素数1~5のアルキル基である。
 式(2)中、Rは単結合又は2価の有機基であり、Rは-(CH-で表される構造であり(ただし、nは2~20の整数であり、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよい。)、Rは単結合又は2価の有機基であり、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。
 式(3)中、pは1~6の整数である。
In formula (1), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative,
Y 1 is a divalent organic group derived from diamine and having the structure of formula (2),
R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
In the formula (2), R 2 is a single bond or a divalent organic group, and R 3 is a structure represented by — (CH 2 ) n — (where n is an integer of 2 to 20, Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under non-adjacent conditions.), R 4 is a single bond or a divalent organic group on the benzene ring Any hydrogen atom may be replaced with a monovalent organic group.
In the formula (3), p is an integer of 1 to 6.
 本発明の液晶配向剤から得られる液晶配向膜は、膜の機械的強度と、膜の液晶配向性を両立させることができるため、ラビング工程は元より、スリミング工程に対しても、膜の削れや破断等が発生せず、結果として、良好な表示特性を持つ液晶表示素子を得ることができる。 Since the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can achieve both the mechanical strength of the film and the liquid crystal alignment of the film, the film is scraped not only in the rubbing process but also in the slimming process. As a result, a liquid crystal display element having good display characteristics can be obtained.
 本発明の液晶配向剤は、上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種を含む重合体(以下、特定重合体とも言う。)、上記式(3)で表される化合物(以下、特定化合物とも言う。)及び有機溶媒を含有する液晶配向剤である。以下、各構成要件につき詳述する。 The liquid crystal aligning agent of the present invention is a polymer containing at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor (hereinafter, A liquid crystal aligning agent containing a compound represented by the above formula (3) (hereinafter also referred to as a specific compound) and an organic solvent. Hereinafter, each constituent requirement will be described in detail.
<特定重合体>
 本発明の液晶配向剤に含有される特定重合体とは、下記式(1)の構造単位を含有する重合体である。
<Specific polymer>
The specific polymer contained in the liquid crystal aligning agent of this invention is a polymer containing the structural unit of following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)中、Xはテトラカルボン酸誘導体に由来する4価の有機基である。具体的な構造としては、下記式(X1-1)~(X1-45)で表される構造からなる群から選ばれる少なくとも1種類である。 In the formula (1), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative. The specific structure is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-45).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(X1-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R、R、R、及びRは、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましく、さらに好ましくは、下記式(X1-10)~(X1-11)で表される構造からなる群から選ばれる少なくとも1種類である。 In the formula (X1-1), R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 5 , R 6 , R 7 , and R 8 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably, At least one selected from the group consisting of structures represented by the following formulas (X1-10) to (X1-11).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 これらの構造の中でも、液晶配向性、信頼性の観点から、(X1-10)、(X1-11)、(X1-29)が好ましく、(X1-10)、(X1-11)がより好ましい。
 式(1)において、Rは、水素原子、又は炭素数1~5のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。
 上記式(1)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(1)で表される構造単位及びそれをイミド化した構造単位から選ばれる少なくとも1種の構造単位の比率は、重合体中の全構造単位1モルに対して、20モル%~100モル%が好ましく、液晶配向性と信頼性の両立の観点から、30モル%~70モル%がより好ましく、50モル%~70モル%がさらに好ましい。
 Yはジアミンに由来し、下記式(2)の構造を有する2価の有機基である。
Among these structures, (X1-10), (X1-11), and (X1-29) are preferable, and (X1-10) and (X1-11) are more preferable from the viewpoint of liquid crystal alignment and reliability. .
In the formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
In the polyimide precursor containing the structural unit represented by the formula (1) and the imidized polymer of the polyimide precursor, the structural unit represented by the formula (1) and a structural unit obtained by imidizing the structural unit are selected. The ratio of at least one structural unit is preferably 20 mol% to 100 mol% with respect to 1 mol of all structural units in the polymer. From the viewpoint of achieving both liquid crystal alignment and reliability, 70 mol% is more preferable, and 50 mol% to 70 mol% is more preferable.
Y 1 is a divalent organic group derived from a diamine and having a structure of the following formula (2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Rは単結合又は2価の有機基であり、単結合が好ましい。
 Rは-(CH-で表される構造である。nは2~10の整数であり、3~7が好ましい。また、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよい。
 Rは単結合又は2価の有機基である。
 ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよく、フッ素原子又はメチル基が好ましい。
 具体的には、以下のような構造が挙げられるがこれらに限定されない。
R 2 is a single bond or a divalent organic group, preferably a single bond.
R 3 is a structure represented by — (CH 2 ) n —. n is an integer of 2 to 10, preferably 3 to 7. Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under the condition that they are not adjacent to each other.
R 4 is a single bond or a divalent organic group.
Any hydrogen atom on the benzene ring may be replaced with a monovalent organic group, and a fluorine atom or a methyl group is preferred.
Specific examples include the following structures, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の液晶配向剤に含有される特定重合体は、上記式(1)で表される構造単位以外に下記式(4)で表される構造単位を含有してもよい。 The specific polymer contained in the liquid crystal aligning agent of the present invention may contain a structural unit represented by the following formula (4) in addition to the structural unit represented by the above formula (1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(4)において、Rは上記式(1)のRと同様の定義である。Xはテトラカルボン酸誘導体に由来する4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、上記式(X1-1)~(X-45)の構造が挙げられる。
 上記式(4)において、Yはジアミンに由来する2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式(Y-1)~(Y-137)の構造が挙げられる。
In formula (4), R 1 has the same definition as R 1 in the formula (1). X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Specific examples include the structures of the above formulas (X1-1) to (X-45).
In the above formula (4), Y 2 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of Y 2 include structures of the following formulas (Y-1) to (Y-137).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<特定化合物>
 本発明の液晶配向剤に含有される特定化合物は、下記式(3)で表される。
<Specific compounds>
The specific compound contained in the liquid crystal aligning agent of this invention is represented by following formula (3).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(3)中、pは1~6、好ましくは1~3の整数であり、より好ましくは1である。
具体例としては、以下の構造が挙げられる。
In the formula (3), p is an integer of 1 to 6, preferably 1 to 3, more preferably 1.
Specific examples include the following structures.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(3)で表される化合物の好ましい含有量としては、1-20重量部が好ましく、1-10重量部がより好ましい。
 また、本発明の効果を損ねない範囲において、上記式(3)の化合物は、2種類以上用いてもよい。
The content of the compound represented by the above formula (3) is preferably 1-20 parts by weight, more preferably 1-10 parts by weight.
Moreover, in the range which does not impair the effect of this invention, you may use 2 or more types of compounds of the said Formula (3).
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で合成することができる。
<Method for producing polyamic acid ester>
The polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the method (1), (2) or (3) shown below.
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
(2) When synthesized by reaction of tetracarboxylic acid diester dichloride and diamine Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
(3) When synthesizing polyamic acid ester from tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize | combine by making it react for time.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. It may be used. The concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。 The temperature during the imidation reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、特定構造の重合体が有機溶媒中に溶解された溶液の形態を有する。上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体から選ばれる少なくとも1種の重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer having a specific structure is dissolved in an organic solvent. The molecular weight of at least one polymer selected from the polyimide precursor having the structural unit represented by the above formula (1) and the imidized polymer of the polyimide precursor is 2,000 to 500,000 in weight average molecular weight. Is more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明に用いられる液晶配向剤には、本発明に記載の重合体以外の重合体が含有されていてもよい。その中でも、上記式(1)で表される構造単位を有するポリイミド及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種を含む特定重合体と、特定重合体以外の、ポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種を含む重合体が含まれていると、本発明の効果をより発現できるため好ましい。さらに、上記式(1)で表される構造単位を有するポリイミド及びポリアミック酸エステルからなる群から選ばれる少なくとも1種を含む特定重合体と、特定重合体以外の、ポリアミック酸からなる群から選ばれる少なくとも1種を含む重合体が含まれていると、より好ましい。 The liquid crystal aligning agent used in the present invention may contain a polymer other than the polymer described in the present invention. Among them, a specific polymer containing at least one selected from the group consisting of a polyimide having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor, and a polyimide other than the specific polymer It is preferable that a polymer containing at least one selected from the group consisting of a precursor and an imidized polymer of the polyimide precursor is included because the effects of the present invention can be further expressed. Further, the polymer is selected from the group consisting of a polyamic acid other than the specific polymer including at least one selected from the group consisting of a polyimide having a structural unit represented by the above formula (1) and a polyamic acid ester. It is more preferable that a polymer containing at least one kind is included.
 本発明に用いられる液晶配向剤の重合体の濃度(特定重合体以外の重合体が含まれる場合は、それらの合計の濃度を意味する。)は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。 The concentration of the polymer of the liquid crystal aligning agent used in the present invention (when a polymer other than the specific polymer is included, it means the total concentration thereof) is the setting of the thickness of the coating film to be formed. However, it is preferably 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film, and preferably 10% by weight or less from the viewpoint of storage stability of the solution. .
<有機溶媒>
 本発明に用いられる液晶配向剤に含有される有機溶媒は、特定構造の重合体が均一に溶解するもの(以下、良溶媒ともいう)であれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。液晶配向剤における良溶媒は、溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、30~80質量%が特に好ましい。
<Organic solvent>
The organic solvent contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer having a specific structure is uniformly dissolved (hereinafter also referred to as a good solvent). Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer uniformly independently, if it is a range which a polymer does not precipitate, you may mix with said organic solvent. The good solvent in the liquid crystal aligning agent is preferably 20 to 99% by mass of the total solvent, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass.
 液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を含有することができる。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましい。なかでも、10~80質量%が好ましい。より好ましいのは20~70質量%である。 The liquid crystal aligning agent can contain a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
 下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は下記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
Although the specific example of a poor solvent is given to the following, it is not limited to these examples. For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate Tar, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol Monoethyl ether, milk Methyl, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl acetate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, lactic acid Examples thereof include isoamyl esters and solvents represented by the following formulas [D-1] to [D-3].
In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3] In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート又はジプロピレングリコールジメチルエーテルを用いることが好ましい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加してもよい。
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, or dipropylene glycol dimethyl ether is preferably used.
In addition to the above, the liquid crystal aligning agent of the present invention has a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, as long as the effects of the present invention are not impaired. Silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and polyimide for firing the coating film An imidization accelerator for the purpose of efficiently proceeding imidization by heating the precursor may be added.
<液晶配向膜の製造方法>
 本発明の液晶配向膜は、液晶配向剤を基板に塗布し、焼成する工程、得られた膜に配向処理を施す工程を経て製造される。
(1)液晶配向剤を基板に塗布し、焼成する工程
 上記のようにして得られた液晶配向剤を基板に塗布し、乾燥、焼成することによりポリイミド膜、又はポリイミド前駆体がイミド化した膜が得られる。
 本発明に用いられる液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明に用いられる液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
<Method for producing liquid crystal alignment film>
The liquid crystal alignment film of the present invention is produced through a step of applying a liquid crystal aligning agent to a substrate and baking, and a step of applying an alignment treatment to the obtained film.
(1) Step of applying liquid crystal aligning agent to substrate and baking The liquid crystal aligning agent obtained as described above is applied to the substrate, dried and fired to form a polyimide film or a polyimide precursor imidized film. Is obtained.
The substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, and the like can be used. The use of a substrate on which an ITO electrode or the like for driving a liquid crystal is formed is preferable from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. Examples of the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
 本発明に用いられる液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。 Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent used in the present invention. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
(2)得られた膜に配向処理を施す工程
 配向処理としては、公知の方法で行われるラビング処理の他、偏光紫外線を照射し、膜中の光反応性基の光反応によって膜に液晶配向性を付与する光配向処理が挙げられる。
 光配向処理の場合、偏光された紫外線を照射する工程、紫外線を照射した膜を水や2-プロパノールを主成分とする洗浄液で洗浄する工程を含む液晶配向膜の製造方法によって、製造されることが好ましい。具体的には以下のような工程である。
(2) Step of applying alignment treatment to the obtained film As alignment treatment, in addition to rubbing treatment performed by a known method, polarized ultraviolet rays are irradiated and liquid crystal alignment is performed on the film by photoreaction of photoreactive groups in the film. The photo-alignment process which provides property is mentioned.
In the case of the photo-alignment treatment, it is manufactured by a method for manufacturing a liquid crystal alignment film, which includes a step of irradiating polarized ultraviolet rays, and a step of cleaning the film irradiated with ultraviolet rays with a cleaning liquid mainly containing water or 2-propanol. Is preferred. Specifically, the process is as follows.
 上記(1)の方法で得られた膜に、偏光された紫外線を照射する(以下、光配向処理とも言う)ことにより、異方性が付与される。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 光配向処理の具体例としては、前記塗膜表面に、直線に偏光された紫外線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。紫外線の波長としては、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。
 前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
Anisotropy is imparted to the film obtained by the method (1) by irradiating polarized ultraviolet rays (hereinafter also referred to as photo-alignment treatment).
A higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
As a specific example of the photo-alignment treatment, there is a method in which the surface of the coating film is irradiated with linearly polarized ultraviolet rays, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. It is done. As the wavelength of ultraviolet rays, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
Dose of the radiation is preferably in the range of 1 ~ 10,000mJ / cm 2, and particularly preferably in the range of 100 ~ 5,000mJ / cm 2.
(3)紫外線を照射した膜を洗浄する工程
 本発明の液晶配向剤から得られる液晶配向膜は、水や2-プロパノールを主成分とする洗浄液で洗浄することによって、液晶配向膜として良好な特性を発現することを特徴とする。2-プロパノールは、水よりも膜中の有機物を溶解しやすいため、本発明の液晶配向膜の洗浄液としては、2-プロパノールを含有する洗浄液がより好ましい。
 液晶配向膜の洗浄方法としては、浸漬処理、噴霧(スプレー)処理などの、膜と液とが十分に接触するような処理が好ましい。なかでも、洗浄液に膜を、好ましくは10秒~1時間、より好ましくは1分~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
 上記接触処理の後に、使用した有機溶媒を除去する目的で、水、2-プロパノール、アセトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。乾燥温度としては、80~250℃が好ましく、80~150℃がより好ましい。
(3) Step of cleaning the film irradiated with ultraviolet rays The liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention has good characteristics as a liquid crystal alignment film by cleaning with a cleaning liquid mainly composed of water or 2-propanol. It is characterized by expressing. Since 2-propanol dissolves organic substances in the film more easily than water, a cleaning liquid containing 2-propanol is more preferable as the cleaning liquid for the liquid crystal alignment film of the present invention.
As a method for cleaning the liquid crystal alignment film, a treatment such that the film and the liquid are sufficiently in contact with each other, such as an immersion treatment or a spraying treatment, is preferable. Among them, a method of immersing the film in the cleaning solution, preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes is preferable. The contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C. Moreover, a means for enhancing contact such as ultrasonic waves can be applied as necessary.
After the contact treatment, for the purpose of removing the organic solvent used, either or both of rinsing with water, 2-propanol, acetone and other low boiling solvents, drying, or both may be performed. The drying temperature is preferably 80 to 250 ° C, more preferably 80 to 150 ° C.
<液晶表示素子>
 本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備することを特徴とする。
 本発明の液晶表示素子は、上記した手法によって本発明に記載の液晶配向処理剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
 液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
In the liquid crystal display element of the present invention, after obtaining the substrate with the liquid crystal alignment film by the method for producing the liquid crystal alignment film from the liquid crystal alignment treatment agent described in the present invention by the method described above, a liquid crystal cell is prepared by a known method. In this way, a liquid crystal display element is obtained.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本実施の形態の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present embodiment is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。この液晶表示素子は、液晶配向膜として本発明の液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。 Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained. Since this liquid crystal display element uses the liquid crystal alignment film of the present invention as the liquid crystal alignment film, the liquid crystal display element has excellent afterimage characteristics and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、化合物、溶媒の略号は、以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples. In addition, the symbol of a compound and a solvent is as follows.
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
PB:プロピレングリコールモノブチルエーテル
IPA:イソプロパノール
DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート
DA-1:下記構造式(DA-1)
DA-2:下記構造式(DA-2)
DA-3:下記構造式(DA-3)
DA-4:下記構造式(DA-4)
DA-5:下記構造式(DA-5)
DA-6:下記構造式(DA-6)
DA-7:下記構造式(DA-7)
DA-8:下記構造式(DA-8)
DA-9:下記構造式(DA-9)
CA-1:下記構造式(CA-1)
CA-2:下記構造式(CA-2)
CA-3:下記構造式(CA-3)
CA-4:下記構造式(CA-4)
CA-5:下記構造式(CA-5)
CA-6:下記構造式(CA-6)
AD-1:下記構造式(AD-1)
AD-2:下記構造式(AD-2)
AD-3:下記構造式(AD-3)
AD-4:下記構造式(AD-4)
AD-5:下記構造式(AD-5)
AD-6:下記構造式(AD-6)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone BCS: butyl cellosolve PB: propylene glycol monobutyl ether IPA: isopropanol DBOP: diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate DA- 1: The following structural formula (DA-1)
DA-2: Structural formula below (DA-2)
DA-3: Structural formula below (DA-3)
DA-4: Structural formula below (DA-4)
DA-5: Structural formula below (DA-5)
DA-6: Structural formula below (DA-6)
DA-7: Structural formula below (DA-7)
DA-8: Structural formula below (DA-8)
DA-9: Structural formula below (DA-9)
CA-1: Structural formula below (CA-1)
CA-2: Structural formula below (CA-2)
CA-3: Structural formula shown below (CA-3)
CA-4: Structural formula below (CA-4)
CA-5: Structural formula below (CA-5)
CA-6: Structural formula below (CA-6)
AD-1: Structural formula below (AD-1)
AD-2: Structural formula below (AD-2)
AD-3: Structural formula below (AD-3)
AD-4: Structural formula below (AD-4)
AD-5: Structural formula below (AD-5)
AD-6: Structural formula below (AD-6)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[粘度]
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
In the synthesis example, the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
[ポリイミドのイミド化率の測定]
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末30mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization ratio of polyimide]
The imidation ratio of polyimide in the synthesis example was measured as follows. 30 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)) (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
(合成例1)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-1を11.2g(46.0mmol)量り取り、NMPを129g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を8.38g(43.0mmol)添加し、さらにNMPを47.4g加え、窒素雰囲気下23℃で5時間撹拌してポリアミック酸の溶液(PAA-1)を得た。このポリアミック酸の溶液の温度25℃における粘度は154mPa・sであった。
(Synthesis Example 1)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 11.2 g (46.0 mmol) of DA-1 was weighed, 129 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 8.38 g (43.0 mmol) of CA-1 was added, 47.4 g of NMP was further added, and the mixture was stirred at 23 ° C. for 5 hours under a nitrogen atmosphere to obtain a polyamic acid solution ( PAA-1) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 154 mPa · s.
(合成例2)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、CA-2を9.97g(38.3mmol)投入した後、NMPを197g加えて撹拌して溶解させた。次いで、トリエチルアミンを12.1g(120mmol)、DA-2を5.06g(22.0mmol)、DA-3を1.79g(6.00mmol)、DA-4を4.09g(12.0mmol)加えて、撹拌して溶解させた。
 この溶液を水冷下で撹拌しながら、DBOPを30.1g(78.6mmol)添加し、更にNMPを27.1g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリアミック酸エステルの溶液の温度25℃における粘度は39.3mPa・sであった。
(Synthesis Example 2)
Into a 200 mL four-necked flask equipped with a stirrer and a nitrogen introducing tube, 9.97 g (38.3 mmol) of CA-2 was added, and 197 g of NMP was added and stirred to dissolve. Next, 12.1 g (120 mmol) of triethylamine, 5.06 g (22.0 mmol) of DA-2, 1.79 g (6.00 mmol) of DA-3, and 4.09 g (12.0 mmol) of DA-4 were added. And dissolved by stirring.
While stirring this solution under water cooling, 30.1 g (78.6 mmol) of DBOP was added, 27.1 g of NMP was further added, and the mixture was stirred at room temperature for 12 hours to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 39.3 mPa · s.
 このポリアミック酸エステル溶液を1700gのIPA中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミック酸エステルの粉末を得た。
 撹拌子の入った200mL三角フラスコに、このポリアミック酸エステルの粉末を16.0g分取し、NMPを117g加えて、50℃にて30時間攪拌して溶解させ、ポリアミック酸エステルの溶液(PAE-1)を得た。
This polyamic acid ester solution was put into 1700 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder.
In a 200 mL Erlenmeyer flask containing a stirrer, 16.0 g of this polyamic acid ester powder was taken, 117 g of NMP was added, and stirred at 50 ° C. for 30 hours to dissolve, so that a polyamic acid ester solution (PAE- 1) was obtained.
(合成例3)
 撹拌装置付きおよび窒素導入管付きの500mLの四つ口フラスコにDA-1を7.32g(30.0mmol)、DA-5を23.9g(120mmol)取り、NMP、GBLをそれぞれ158g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を12.8g(65.0mmol)、NMP、GBLをそれぞれ40.0g加えて、窒素雰囲気下、23℃で3時間撹拌した。さらに、CA-3を16.3g(75.0mmol)、NMP、GBLをそれぞれ23.0g加え、50℃で15時間反応させポリアミック酸の溶液(PAA-2)を得た。このポリアミック酸の溶液の温度25℃における粘度は370mPa・sであった。
(Synthesis Example 3)
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 7.32 g (30.0 mmol) of DA-1 and 23.9 g (120 mmol) of DA-5 were added, and 158 g of NMP and GBL were added, and nitrogen was added. Was dissolved by stirring while feeding. While stirring this diamine solution under water cooling, 12.8 g (65.0 mmol) of CA-1 and 40.0 g of NMP and GBL were added, respectively, and the mixture was stirred at 23 ° C. for 3 hours under a nitrogen atmosphere. Further, 16.3 g (75.0 mmol) of CA-3, 23.0 g of NMP and GBL were added and reacted at 50 ° C. for 15 hours to obtain a polyamic acid solution (PAA-2). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 370 mPa · s.
(合成例4)
 撹拌装置付き及び窒素導入管付きの1Lセパラブルフラスコに、DA-1を42.7g(175mmol)、 DA-4を59.7g(175mmol)取り、NMPを586g加えて、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらCA-4を74.5g(332mmol)添加し、さらにNMPを230g加え、室温で24時間撹拌してポリアミック酸の溶液(PAA-3)を得た。このポリアミック酸の溶液の温度25℃における粘度は832mPa・sであった。
 撹拌子の入った1L三角フラスコに、このポリアミック酸の溶液(PAA-3)を200g分取し、NMPを100g、無水酢酸を21.8g、ピリジンを2.81g加え、室温で30分間撹拌した後、60℃で3時間反応させた。この反応溶液を700gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドの粉末のイミド化率は、68%であった。
 撹拌子の入った200mL三角フラスコに、このポリイミドの粉末を32.7g分取し、NMPを240g加えて、70℃にて20時間攪拌して溶解させ、ポリイミドの溶液(SPI-1)を得た。
(Synthesis Example 4)
To a 1 L separable flask equipped with a stirrer and a nitrogen introduction tube, 42.7 g (175 mmol) of DA-1 and 59.7 g (175 mmol) of DA-4 were added, 586 g of NMP was added, and the mixture was stirred while feeding nitrogen. And dissolved. While stirring this diamine solution, 74.5 g (332 mmol) of CA-4 was added, 230 g of NMP was further added, and the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid solution (PAA-3). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 832 mPa · s.
Into a 1 L Erlenmeyer flask containing a stir bar, 200 g of this polyamic acid solution (PAA-3) was taken, 100 g of NMP, 21.8 g of acetic anhydride and 2.81 g of pyridine were added, and the mixture was stirred at room temperature for 30 minutes. Then, it was made to react at 60 degreeC for 3 hours. This reaction solution was put into 700 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide powder was 68%.
Into a 200 mL Erlenmeyer flask containing a stir bar, 32.7 g of this polyimide powder was taken, 240 g of NMP was added, and the mixture was stirred and dissolved at 70 ° C. for 20 hours to obtain a polyimide solution (SPI-1). It was.
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-2を7.14g(31.0mmol)取り、NMP、GBLをそれぞれ32g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-5を2.33g(9.30mmol)、NMP、GBLをそれぞれ6.00g加えて、窒素雰囲気下、40℃で12時間撹拌した。さらに、CA-6を6.13g(20.8mmol)、NMP、GBLをそれぞれ6.00g加え、23℃で5時間撹拌してポリアミック酸の溶液(PAA-4)を得た。このポリアミック酸の溶液の温度25℃における粘度は787mPa・sであった。
(Synthesis Example 5)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 7.14 g (31.0 mmol) of DA-2 was added, 32 g of NMP and GBL were added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.33 g (9.30 mmol) of CA-5, 6.00 g of NMP and GBL were added, and the mixture was stirred at 40 ° C. for 12 hours under a nitrogen atmosphere. Further, 6.13 g (20.8 mmol) of CA-6, 6.00 g of NMP and GBL were added, respectively, and stirred at 23 ° C. for 5 hours to obtain a polyamic acid solution (PAA-4). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 787 mPa · s.
(合成例6)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を1.37g(5.60mmol)、DA-6を0.908g(8.40mmol)、DA-7を2.17g(8.40mmol)、DA-8を2.23g(5.60mmol)取り、NMPを76.8g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-4を5.99g(26.7mmol)添加し、さらにNMPを16.1g加え、室温で24時間撹拌してポリアミック酸の溶液(PAA-5)を得た。このポリアミック酸の溶液の温度25℃における粘度は397mPa・sであった。
(Synthesis Example 6)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.37 g (5.60 mmol) of DA-1, 0.908 g (8.40 mmol) of DA-6, 2.17 g of DA-7 ( 8.40 mmol) and 2.23 g (5.60 mmol) of DA-8 were added, 76.8 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.99 g (26.7 mmol) of CA-4 was added, and 16.1 g of NMP was further added, followed by stirring at room temperature for 24 hours to obtain a polyamic acid solution (PAA-5). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 397 mPa · s.
(合成例7)
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-5を15.9g(80.0mmol)、DA-3を5.96g(20.0mmol)取り、NMPを230g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を4.41g(22.5mmol)添加し、NMPを12.3g加えて40℃で12時間撹拌した。さらに、CA-5を18.8g(75.0mmol)、NMPを13.2加え、50℃で10時間撹拌してポリアミック酸の溶液(PAA-6)を得た。このポリアミック酸の溶液の温度25℃における粘度は1405mPa・sであった。
(Synthesis Example 7)
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 15.9 g (80.0 mmol) of DA-5 and 5.96 g (20.0 mmol) of DA-3 were added, 230 g of NMP was added, and nitrogen was added. The solution was stirred and dissolved while feeding. While stirring this diamine solution under water cooling, 4.41 g (22.5 mmol) of CA-1 was added, 12.3 g of NMP was added, and the mixture was stirred at 40 ° C. for 12 hours. Further, 18.8 g (75.0 mmol) of CA-5 and 13.2 of NMP were added, and stirred at 50 ° C. for 10 hours to obtain a polyamic acid solution (PAA-6). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 1405 mPa · s.
(合成例8)
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-3を26.8g(89.8mmol)、DA-9を9.01g(60.0mmol)取り、NMPを290g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を27.9g(142mmol)添加し、NMPを71.4g加えて23℃で2時間撹拌してポリアミック酸の溶液(PAA-7)を得た。このポリアミック酸の溶液の温度25℃における粘度は750mPa・sであった。
(Synthesis Example 8)
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 26.8 g (89.8 mmol) of DA-3 and 9.01 g (60.0 mmol) of DA-9 were added, 290 g of NMP was added, and nitrogen was added. The solution was stirred and dissolved while feeding. While stirring this diamine solution under water cooling, 27.9 g (142 mmol) of CA-1 was added, 71.4 g of NMP was added and stirred at 23 ° C. for 2 hours to obtain a polyamic acid solution (PAA-7). . The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 750 mPa · s.
(合成例9)
 撹拌装置及び窒素導入管付きの200mLの四つ口フラスコに、DA-5を9.96g(50.0mmol)量り取り、NMPを132g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を8.82g(45.0mmol)添加し、さらにNMPを36.0g加え、窒素雰囲気下23℃で5時間撹拌してポリアミック酸の溶液(PAA-8)を得た。このポリアミック酸の溶液の温度25℃における粘度は164mPa・sであった。
(Synthesis Example 9)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 9.96 g (50.0 mmol) of DA-5 was weighed, 132 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 8.82 g (45.0 mmol) of CA-1 was added, 36.0 g of NMP was further added, and the mixture was stirred at 23 ° C. for 5 hours under a nitrogen atmosphere to obtain a polyamic acid solution ( PAA-8) was obtained. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 164 mPa · s.
(実施例1)
 撹拌子の入った50mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を15.2g分取し、NMPを9.44g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.48g、AD-1を10質量%含むNMP溶液を0.357g、およびBCSを6.62g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。
Example 1
In a 50 mL Erlenmeyer flask containing a stir bar, 15.2 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 9.44 g of NMP, and 1-glycidoxypropyltriethoxysilane were added. 1.48 g of an NMP solution containing 10% by mass, 0.357 g of an NMP solution containing 10% by mass of AD-1, and 6.62 g of BCS were added, and the mixture was stirred for 2 hours with a magnetic stirrer. )
(実施例2)
 撹拌子の入った50mL三角フラスコに、合成例2で得られたポリアミック酸エステル溶液(PAE-1)を7.30g分取し、NMPを3.18g、GBLを1.75g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-1を10質量%含むNMP溶液を0.422g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
(Example 2)
In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.18 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.422 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-2) was obtained.
(実施例3)
 撹拌子の入った50mL三角フラスコに、合成例2で得られたポリアミック酸エステル溶液(PAE-1)を7.30g分取し、NMPを3.24g、GBLを1.75g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-2を10質量%含むNMP溶液を0.362g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
(Example 3)
In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.24 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.362 g of NMP solution containing 10% by mass of AD-2, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-3) was obtained.
(実施例4)
 撹拌子の入った50mL三角フラスコに、合成例2で得られたポリアミック酸エステル溶液(PAE-1)を7.30g分取し、NMPを3.00g、GBLを1.75g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-2を10質量%含むNMP溶液を0.596g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-4)を得た。
(Example 4)
In a 50 mL Erlenmeyer flask containing a stir bar, 7.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.00 g of NMP, 1.75 g of GBL, 3-glycidide. Add 0.750 g of NMP solution containing 1% by mass of xylpropyltriethoxysilane, 0.596 g of NMP solution containing 10% by mass of AD-2, and 3.35 g of BCS, and stir with a magnetic stirrer for 2 hours. A liquid crystal aligning agent (A-4) was obtained.
(実施例5)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.79g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-1を10質量%含むNMP溶液を0.100g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-5)を得た。
(Example 5)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. , 3.79 g of NMP, 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.100 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-5).
(実施例6)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.69g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-1を10質量%含むNMP溶液を0.210g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-6)を得た。
(Example 6)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. , 3.69 g of NMP, 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.210 g of NMP solution containing 10% by mass of AD-1, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-6).
(実施例7)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.72g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-2を10質量%含むNMP溶液を0.180g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-7)を得た。
(Example 7)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.72 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-2 10 wt% NMP solution 0.180 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-7).
(実施例8)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.54g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-2を10質量%含むNMP溶液を0.360g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-8)を得た。
(Example 8)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.54 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-2 10 wt% NMP solution 0.360 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-8).
(実施例9)
 撹拌子を入れた50mL三角フラスコに、合成例4で得られたポリイミド溶液(SPI-1)2.63g、合成例5で得られたポリアミック酸溶液(PAA-4)を4.62g分取し、NMPを3.32g、GBLを3.45g、AD-1を10質量%含むNMP溶液を0.297g、PBを3.60g加え、さらにAD-4を0.139g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-9)を得た。
Example 9
In a 50 mL Erlenmeyer flask containing a stir bar, 2.63 g of the polyimide solution (SPI-1) obtained in Synthesis Example 4 and 4.62 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 were collected. , 3.32 g of NMP, 3.45 g of GBL, 0.297 g of NMP solution containing 10% by weight of AD-1, 3.60 g of PB, 0.139 g of AD-4, and 0.139 g of AD-4. By stirring for a while, a liquid crystal aligning agent (A-9) was obtained.
(実施例10)
 撹拌子を入れた50mL三角フラスコに、合成例6で得られたポリアミック酸溶液(PAA-5)2.79g、合成例7で得られたポリアミック酸溶液(PAA-6)を3.60g取った。NMPを5.85g、AD-1を10質量%含むNMP溶液を0.450g、BCSを5.40g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-10)を得た。
(Example 10)
In a 50 mL Erlenmeyer flask containing a stirring bar, 2.79 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and 3.60 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 7 were taken. . 0.45 g of NMP solution containing 5.85 g of NMP, 10% by mass of AD-1 and 5.40 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-10).
(実施例11)
 撹拌子を入れた50mL三角フラスコに、合成例6で得られたポリアミック酸溶液(PAA-5)9.97g、合成例8で得られたポリアミック酸溶液(PAA-7)を7.43g取った。NMPを7.29g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を2.20g、AD-3を10質量%含むNMP溶液を1.10g、BCSを12.0g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-11)を得た。
(Example 11)
In a 50 mL Erlenmeyer flask containing a stir bar, 9.97 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 and 7.43 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 8 were taken. . Add 2.29 g of NMP, 2.20 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 1.10 g of NMP solution containing 10% by mass of AD-3, and 12.0 g of BCS. The mixture was stirred with a tic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-11).
(比較例1)
 撹拌子の入った50mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を15.2g分取し、NMPを9.80g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.48g、およびBCSを6.62g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-1)を得た。
(Comparative Example 1)
In a 50 mL Erlenmeyer flask containing a stir bar, 15.2 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was fractioned, 9.80 g of NMP, and 1 of 3-glycidoxypropyltriethoxysilane. 1.48 g of NMP solution containing 5% by mass and 6.62 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-1).
(比較例2)
 撹拌子の入った50mL三角フラスコに、合成例9で得られたポリアミック酸溶液(PAA-8)を15.2g分取し、NMPを10.2g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.58g、AD-1を10質量%含むNMP溶液を0.316g、およびBCSを7.04g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-2)を得た。
(Comparative Example 2)
In a 50 mL Erlenmeyer flask containing a stir bar, 15.2 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 9 was collected, 10.2 g of NMP, and 1 of 3-glycidoxypropyltriethoxysilane. Add 1.58 g of NMP solution containing 10% by mass, 0.316 g of NMP solution containing 10% by mass of AD-1, and 7.04 g of BCS, and stir with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-2 )
(比較例3)
 撹拌子の入った50mL三角フラスコに、合成例2で得られたポリアミック酸エステル溶液(PAE-1)を7.72g分取し、NMPを3.18g、GBLを1.75g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-3)を得た。
(Comparative Example 3)
In a 50 mL Erlenmeyer flask containing a stir bar, 7.72 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 2 was collected, 3.18 g of NMP, 1.75 g of GBL, 3-glycidide. 0.750 g of an NMP solution containing 1% by mass of xylpropyltriethoxysilane and 3.35 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-3).
(比較例4)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.89g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-4)を得た。
(Comparative Example 4)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. Then, 3.89 g of NMP, 2.05 g of GBL, 0.750 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, and 3.35 g of BCS were added, and the mixture was stirred with a magnetic stirrer for 2 hours. As a result, a liquid crystal aligning agent (B-4) was obtained.
(比較例5)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.64g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-5を10質量%含むNMP溶液を0.260g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-5)を得た。
(Comparative Example 5)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.64 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-5 10 wt% NMP solution 0.260 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-5).
(比較例6)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(PAE-1)2.19g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.51g分取し、NMPを3.60g、GBLを2.05g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.750g、AD-6を10質量%含むNMP溶液を0.300g、およびBCSを3.35g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-6)を得た。
(Comparative Example 6)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.19 g of the polyimide solution (PAE-1) obtained in Synthesis Example 2 and 4.51 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were fractionated. NMP 3.60 g, GBL 2.05 g, 3-glycidoxypropyltriethoxysilane 1 wt% NMP solution 0.750 g, AD-6 10 wt% NMP solution 0.300 g, and 3.35 g of BCS was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (B-6).
(実施例12)
 実施例1で得られた液晶配向剤(A-1)を、細孔径1μmのメンブランフィルタで加圧濾過した後、全面にITO電極が付いたガラス基板のITO面にスピンコートし、80℃のホットプレート上で2分間乾燥させた。その後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。
(Example 12)
The liquid crystal aligning agent (A-1) obtained in Example 1 was subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was adjusted to 80 ° C. Dry on hot plate for 2 minutes. Thereafter, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
<鉛筆硬度の評価>
 得られた液晶配向膜付き基板をこの基板を鉛筆硬度試験法(JIS K5400)で測定した結果、2Hであり良好であった。
 以下に、液晶配向性を評価するための液晶セルの作製方法を示す。
 FFS方式の液晶表示素子の構成を備えた液晶セルを作製する。初めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、IZO電極が全面に形成されている。第1層目の対向電極の上には、第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、IZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mm、横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。
<Evaluation of pencil hardness>
The obtained substrate with a liquid crystal alignment film was measured with a pencil hardness test method (JIS K5400), and the result was 2H, which was good.
A method for manufacturing a liquid crystal cell for evaluating the liquid crystal alignment will be described below.
A liquid crystal cell having a configuration of an FFS liquid crystal display element is manufactured. First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode constituting the counter electrode as the first layer is formed on the entire surface. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. A comb-like pixel electrode formed by patterning an IZO film is arranged as a third layer on the second layer SiN film to form two pixels, a first pixel and a second pixel. is doing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された、櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の、くの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a bow shape with a bent central portion. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold, bent, bent at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
 次に、実施例1で得られた液晶配向剤(A-1)を、1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にしてポリイミド膜を形成し、上記と同様の手順で、配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。 Next, the liquid crystal aligning agent (A-1) obtained in Example 1 was filtered through a 1.0 μm filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm. This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third-layer IZO comb-teeth electrode Then, ultrasonic cleaning was performed for 1 minute in pure water for cleaning, and water droplets were removed by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board | substrate with a liquid crystal aligning film. Also, as a counter substrate, a polyimide film is formed on a glass substrate having an ITO electrode on the back surface and having a columnar spacer with a height of 4 μm in the same manner as described above. A substrate with a liquid crystal alignment film was obtained. One set of these two substrates with a liquid crystal alignment film is printed, and the sealant is printed on the substrate leaving the liquid crystal injection port. The other substrate has the liquid crystal alignment film surface facing and the rubbing direction is antiparallel. They were pasted together. Thereafter, the sealing agent was cured to produce an empty cell having a cell gap of 4 μm. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
<液晶配向性の評価>
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.6度を越える場合には、「不良」と定義し評価した。この液晶セルの角度Δの値が0.6度を越えない場合には、「良好」と定義し評価した。
 また、上記のように処理を行った液晶セルにて液晶配向性の評価を行ったところ、Δは0.10°であり良好であった。
<Evaluation of liquid crystal alignment>
Using this liquid crystal cell, an AC voltage of 10 VPP was applied at a frequency of 30 Hz in a constant temperature environment of 60 ° C. for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. When the value of the angle Δ of the liquid crystal cell exceeded 0.6 degrees, it was defined as “defective” and evaluated. When the value of the angle Δ of the liquid crystal cell did not exceed 0.6 degrees, it was defined as “good” and evaluated.
Further, when the liquid crystal alignment was evaluated in the liquid crystal cell treated as described above, Δ was 0.10 °, which was favorable.
(実施例13)
 実施例2で得られた液晶配向剤(A-2)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.15°であり良好であった。
(Example 13)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.15 °, which was favorable.
(実施例14)
 実施例3で得られた液晶配向剤(A-3)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.13°であり良好であった。
(Example 14)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.13 °, which was favorable.
(実施例15)
 実施例4で得られた液晶配向剤(A-4)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、3Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.17°であり良好であった。
(Example 15)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.17 °, which was favorable.
(実施例16)
 実施例5で得られた液晶配向剤(A-5)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.41°であり良好であった。
(Example 16)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-5) obtained in Example 5 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.41 °, which was favorable.
(実施例17)
 実施例6で得られた液晶配向剤(A-6)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、3Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.45°であり良好であった。
(Example 17)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-6) obtained in Example 6 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.45 °, which was favorable.
(実施例18)
 実施例7で得られた液晶配向剤(A-7)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.43°であり良好であった。
(Example 18)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-7) obtained in Example 7 was used.
Further, when the liquid crystal orientation was evaluated in the same manner as in Example 12, Δ was 0.43 °, which was favorable.
(実施例19)
 実施例8で得られた液晶配向剤(A-8)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、3Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.49°であり良好であった。
(Example 19)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (A-8) obtained in Example 8 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.49 °, which was favorable.
(実施例20)
 実施例9で得られた液晶配向剤(A-9)を、細孔径1μmのメンブランフィルタで加圧濾過した後、全面にITO電極が付いたガラス基板のITO面にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで20分間の焼成を経て、膜厚110nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を200mJ/cm照射を行った。その後IPA/水=1:1混合溶媒で5分間基板洗浄し、さらに230℃の熱風循環式オーブンで20分間焼成を行った。これにより、液晶配向膜付き基板を得た。
 実施例12と同様に鉛筆硬度を評価した結果、2Hであり良好であった。
(Example 20)
The liquid crystal aligning agent (A-9) obtained in Example 9 was subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was 80 ° C. For 2 minutes on a hot plate. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was irradiated with 200 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate. Thereafter, the substrate was washed with a mixed solvent of IPA / water = 1: 1 for 5 minutes and further baked for 20 minutes in a 230 ° C. hot air circulation oven. Thereby, a substrate with a liquid crystal alignment film was obtained.
As a result of evaluating the pencil hardness in the same manner as in Example 12, it was 2H, which was favorable.
 実施例9で得られた液晶配向剤(A-9)を1.0μmのフィルターで濾過した後、実施例12に記載の電極付き基板上にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで20分間の焼成を経て、膜厚110nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を200mJ/cm照射を行った。その後IPA/水=1:1混合溶媒で5分間基板洗浄し、さらに230℃の熱風循環式オーブンで20分間焼成を行った。これにより、液晶配向膜付き基板を得た。 After the liquid crystal aligning agent (A-9) obtained in Example 9 was filtered through a 1.0 μm filter, it was spin-coated on the electrode-attached substrate described in Example 12, and 2 on a hot plate at a temperature of 80 ° C. Let dry for minutes. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was irradiated with 200 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate. Thereafter, the substrate was washed with a mixed solvent of IPA / water = 1: 1 for 5 minutes and further baked for 20 minutes in a 230 ° C. hot air circulation oven. Thereby, a substrate with a liquid crystal alignment film was obtained.
 あとは実施例12に記載と同様に、上記液晶配向膜付き基板を2枚用意しセルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。
 実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.10°であり良好であった。
Thereafter, in the same manner as described in Example 12, two substrates with a liquid crystal alignment film were prepared, and empty cells having a cell gap of 4 μm were prepared. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
When the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.10 °, which was favorable.
(実施例21)
 実施例10で得られた液晶配向剤(A-10)を、細孔径1μmのメンブランフィルタで加圧濾過した後、全面にITO電極が付いたガラス基板のITO面にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで30分間の焼成を経て、膜厚100nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を150mJ/cm照射を行った。その後さらに230℃の熱風循環式オーブンで30分間焼成を行った。これにより、液晶配向膜付き基板を得た。
 実施例12と同様に鉛筆硬度を評価した結果、4Hであり良好であった。
(Example 21)
The liquid crystal aligning agent (A-10) obtained in Example 10 was subjected to pressure filtration with a membrane filter having a pore size of 1 μm, and then spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and the temperature was 80 ° C. For 2 minutes on a hot plate. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
As a result of evaluating the pencil hardness in the same manner as in Example 12, it was 4H, which was favorable.
 実施例10で得られた液晶配向剤(A-10)を1.0μmのフィルターで濾過した後、実施例11に記載の電極付き基板上にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで30分間の焼成を経て、膜厚100nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を150mJ/cm照射を行った。その後さらに230℃の熱風循環式オーブンで30分間焼成を行った。これにより、液晶配向膜付き基板を得た。 The liquid crystal aligning agent (A-10) obtained in Example 10 was filtered through a 1.0 μm filter, and then spin-coated on the electrode-attached substrate described in Example 11, and 2 on a hot plate at a temperature of 80 ° C. Let dry for minutes. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
 あとは実施例12に記載と同様に、上記液晶配向膜付き基板を2枚用意しセルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。
 実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.21°であり良好であった。
Thereafter, in the same manner as described in Example 12, two substrates with a liquid crystal alignment film were prepared, and empty cells having a cell gap of 4 μm were prepared. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand at 23 ° C. overnight, and then used for evaluation of liquid crystal alignment.
When the liquid crystal orientation was evaluated in the same manner as in Example 12, Δ was 0.21 ° and was good.
(実施例22)
 実施例11で得られた液晶配向剤(A-11)を用いた以外は、実施例21と同様の方法で鉛筆硬度を評価した結果、4Hであり良好であった。
 また、実施例21と同様の方法で液晶配向性の評価を行ったところ、Δは0.13°であり良好であった。
(Example 22)
The pencil hardness was evaluated in the same manner as in Example 21 except that the liquid crystal aligning agent (A-11) obtained in Example 11 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 21, Δ was 0.13 °, which was favorable.
(比較例7)
 比較例1で得られた液晶配向剤(B-1)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、Hであり不良であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.05°であり良好であった。
(Comparative Example 7)
The pencil hardness was evaluated by the same method as in Example 12 except that the liquid crystal aligning agent (B-1) obtained in Comparative Example 1 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.05 °, which was favorable.
(比較例8)
 比較例2で得られた液晶配向剤(B-2)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは1.5°であり不良であった。
(Comparative Example 8)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-2) obtained in Comparative Example 2 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 1.5 °, which was poor.
(比較例9)
 比較例3で得られた液晶配向剤(B-3)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、Fであり不良であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.11°であり良好であった。
(Comparative Example 9)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-3) obtained in Comparative Example 3 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.11 °, which was favorable.
(比較例10)
 比較例4で得られた液晶配向剤(B-4)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、HBであり不良であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.45°であり良好であった。
(Comparative Example 10)
The pencil hardness was evaluated by the same method as in Example 12 except that the liquid crystal aligning agent (B-4) obtained in Comparative Example 4 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.45 °, which was favorable.
(比較例11)
 比較例5で得られた液晶配向剤(B-5)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.86°であり不良であった。
(Comparative Example 11)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-5) obtained in Comparative Example 5 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.86 °, which was poor.
(比較例12)
 比較例4で得られた液晶配向剤(B-6)を用いた以外は、実施例12と同様の方法で鉛筆硬度を評価した結果、2Hであり良好であった。
 また、実施例12と同様の方法で液晶配向性の評価を行ったところ、Δは0.65°であり不良であった。
 表1に、実施例および比較例で得られた液晶配向剤を用いた際の、鉛筆硬度の評価、および液晶配向性の評価の結果を示す。
(Comparative Example 12)
The pencil hardness was evaluated in the same manner as in Example 12 except that the liquid crystal aligning agent (B-6) obtained in Comparative Example 4 was used.
Further, when the liquid crystal alignment was evaluated in the same manner as in Example 12, Δ was 0.65 °, which was poor.
Table 1 shows the results of evaluation of pencil hardness and evaluation of liquid crystal orientation when the liquid crystal aligning agents obtained in Examples and Comparative Examples are used.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042

Claims (8)

  1.  下記式(1)(式(1)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yはジアミンに由来し、下記式(2)(式(2)中、Rは単結合又は2価の有機基であり、Rは-(CH-で表される構造であり(ただし、nは2~20の整数であり、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられてもよい。)、Rは単結合又は2価の有機基であり、ベンゼン環上の任意の水素原子は1価の有機基で置き換えられてもよい。)の構造を有する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種を含む重合体、
     下記式(3)(式(3)中、pは1~6の整数である)で表される化合物、及び
     有機溶媒
    を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    The following formula (1) (in formula (1), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, Y 1 is derived from diamine, and the following formula (2) (in formula (2): R 2 is a single bond or a divalent organic group, and R 3 has a structure represented by — (CH 2 ) n — (where n is an integer of 2 to 20, and any —CH 2 — Each may be replaced with an ether, ester, amide, urea, or carbamate bond under non-adjacent conditions.), R 4 is a single bond or a divalent organic group, and any hydrogen atom on the benzene ring is 1 And a polyimide having a structural unit represented by the following formula: R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) Selected from the group consisting of a precursor and an imidized polymer of the polyimide precursor Polymer comprising at least one that,
    A liquid crystal aligning agent comprising a compound represented by the following formula (3) (wherein p is an integer of 1 to 6 in formula (3)) and an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式(1)中のXが、以下の構造から選ばれる、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent of Claim 1 with which X1 in the said Formula (1) is chosen from the following structures.
    Figure JPOXMLDOC01-appb-C000002
  3.  前記式(2)が、以下の構造から選ばれる、請求項1または請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    The liquid crystal aligning agent of Claim 1 or Claim 2 from which the said Formula (2) is chosen from the following structures.
    Figure JPOXMLDOC01-appb-C000003
  4.  上記式(1)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(1)で表される構造単位及びそれをイミド化した構造単位から選ばれる少なくとも1種の構造単位の比率が、重合体中の全構造単位1モルに対して、20モル%~100モル%である、請求項1から請求項3のいずれか1項に記載の液晶配向剤。 In the polyimide precursor containing the structural unit represented by the formula (1) and the imidized polymer of the polyimide precursor, the structural unit represented by the formula (1) and a structural unit obtained by imidizing the structural unit are selected. The liquid crystal according to any one of claims 1 to 3, wherein a ratio of at least one structural unit is 20 mol% to 100 mol% with respect to 1 mol of all structural units in the polymer. Alignment agent.
  5.  上記式(3)の化合物が、以下の構造から選ばれる少なくとも1種である、請求項1から請求項4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal aligning agent of any one of Claims 1-4 whose compound of the said Formula (3) is at least 1 sort (s) chosen from the following structures.
    Figure JPOXMLDOC01-appb-C000004
  6.  上記式(3)で表される化合物が、重合体全体の重量に対して、1~20重量部含有される、請求項1から請求項5のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the compound represented by the formula (3) is contained in an amount of 1 to 20 parts by weight based on the weight of the whole polymer.
  7.  請求項1から請求項6のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項7に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 7.
PCT/JP2017/012535 2016-03-29 2017-03-28 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2017170483A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018508033A JP7008946B2 (en) 2016-03-29 2017-03-28 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201780033634.9A CN109196410B (en) 2016-03-29 2017-03-28 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020187030163A KR102350408B1 (en) 2016-03-29 2017-03-28 A liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066421 2016-03-29
JP2016-066421 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170483A1 true WO2017170483A1 (en) 2017-10-05

Family

ID=59965670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012535 WO2017170483A1 (en) 2016-03-29 2017-03-28 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7008946B2 (en)
KR (1) KR102350408B1 (en)
CN (1) CN109196410B (en)
TW (1) TWI811190B (en)
WO (1) WO2017170483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375804A4 (en) * 2015-11-10 2019-07-31 Nissan Chemical Corporation Long-chain alkylene group-containing epoxy resin composition
CN111971617A (en) * 2018-04-09 2020-11-20 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN115343886A (en) * 2022-10-18 2022-11-15 广州华星光电半导体显示技术有限公司 Liquid crystal alignment layer, preparation method thereof and liquid crystal display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210116592A (en) * 2019-01-22 2021-09-27 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068535A1 (en) * 2004-01-20 2005-07-28 Asahi Kasei Emd Corporation Resin and resin composition
JP2007139949A (en) * 2005-11-16 2007-06-07 Hitachi Cable Ltd Liquid crystal aligning agent
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JP2016170409A (en) * 2015-03-11 2016-09-23 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135678A (en) * 1988-10-05 1992-08-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Liquid crystal device
JPH0776268B2 (en) * 1991-06-25 1995-08-16 ソマール株式会社 Method for producing epoxy resin powder composition
JP3049699B2 (en) * 1994-02-24 2000-06-05 ジェイエスアール株式会社 Liquid crystal alignment agent
JPH10111514A (en) * 1996-10-04 1998-04-28 Nissan Chem Ind Ltd Forming method of liquid crystal orienting film
JP3968823B2 (en) 1997-06-09 2007-08-29 Jsr株式会社 Liquid crystal alignment agent
JP2003295194A (en) * 2002-03-29 2003-10-15 Jsr Corp Vertical alignment type liquid crystal aligning agent
TWI386434B (en) * 2005-01-19 2013-02-21 Jsr Corp Liquid crystal orientation agent and liquid crystal display element
TW200804937A (en) * 2006-06-02 2008-01-16 Jsr Corp Liquid crystal alignment agent and liquid crystal display device
TWI367233B (en) * 2008-02-01 2012-07-01 Liquid crystal alignment solution
JP5365780B2 (en) * 2008-03-18 2013-12-11 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
CN101717648B (en) * 2009-11-13 2013-06-05 四川大学 Soluble polyimide liquid crystal vertical alignment agent, prepration method and liquid crystal box prepared thereby
JP6421412B2 (en) * 2013-03-19 2018-11-14 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104194802A (en) * 2014-08-22 2014-12-10 深圳市飞世尔实业有限公司 Low-pretilt angle polyimide liquid crystal aligning agent and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068535A1 (en) * 2004-01-20 2005-07-28 Asahi Kasei Emd Corporation Resin and resin composition
JP2007139949A (en) * 2005-11-16 2007-06-07 Hitachi Cable Ltd Liquid crystal aligning agent
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JP2016170409A (en) * 2015-03-11 2016-09-23 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375804A4 (en) * 2015-11-10 2019-07-31 Nissan Chemical Corporation Long-chain alkylene group-containing epoxy resin composition
US10669369B2 (en) 2015-11-10 2020-06-02 Nissan Chemical Industries, Ltd. Long-chain alkylene group-containing epoxy resin composition
CN111971617A (en) * 2018-04-09 2020-11-20 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN115343886A (en) * 2022-10-18 2022-11-15 广州华星光电半导体显示技术有限公司 Liquid crystal alignment layer, preparation method thereof and liquid crystal display device
CN115343886B (en) * 2022-10-18 2023-01-10 广州华星光电半导体显示技术有限公司 Liquid crystal alignment layer, preparation method thereof and liquid crystal display device

Also Published As

Publication number Publication date
KR102350408B1 (en) 2022-01-11
TWI811190B (en) 2023-08-11
KR20180128442A (en) 2018-12-03
CN109196410B (en) 2022-05-31
JP7008946B2 (en) 2022-02-10
CN109196410A (en) 2019-01-11
JPWO2017170483A1 (en) 2019-02-07
TW201805336A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6711443B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102241786B1 (en) Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
JP7276666B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JPWO2016152928A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7008946B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN110325902B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6202006B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7243628B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP7196847B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2020171128A1 (en) Liquid crystal alignment agent and liquid crystal display element using same
WO2019181878A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508033

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030163

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775020

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775020

Country of ref document: EP

Kind code of ref document: A1