JP2005251870A - 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置 - Google Patents

酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置 Download PDF

Info

Publication number
JP2005251870A
JP2005251870A JP2004058008A JP2004058008A JP2005251870A JP 2005251870 A JP2005251870 A JP 2005251870A JP 2004058008 A JP2004058008 A JP 2004058008A JP 2004058008 A JP2004058008 A JP 2004058008A JP 2005251870 A JP2005251870 A JP 2005251870A
Authority
JP
Japan
Prior art keywords
silicon
gas
fluorine compound
compound gas
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004058008A
Other languages
English (en)
Inventor
Tetsuya Okamoto
哲也 岡本
Yukihiko Nakada
行彦 中田
Kazufumi Azuma
東  和文
Atsushi Sasaki
厚 佐々木
Tetsuya Ide
哲也 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2004058008A priority Critical patent/JP2005251870A/ja
Publication of JP2005251870A publication Critical patent/JP2005251870A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】イオン損傷が少なく、しかも、シリコン部材中に不純物が混入するのを抑制しながら、シリコン部材に形成されている酸化シリコンをエッチングすることができる酸化シリコンのエッチング方法を提供する。
【解決手段】自然酸化膜32が形成されているシリコンウエハ31を、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に配置する。自然酸化膜32及びフッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射する。このようにすることにより、自然酸化膜32をエッチングする。
【選択図】 図1

Description

本発明は、例えば、半導体デバイスの製造工程等において酸化シリコンをエッチングする際に好適に用いることができる酸化シリコンのエッチング方法、酸化シリコンをエッチングした後に絶縁膜を形成する際に好適に用いることができる基板処理方法、及び、酸化シリコンのエッチング方法を実施する際に好適に用いることができるエッチング装置に関する。
Si基板上に形成されたSiO膜をエッチングする方法としては、フッ素を含む第1のガス、水素を含む第2のガスおよび窒素を含む第3のガスのいずれか1種類のガスまたは2種類の混合ガスもしくは3種類の混合ガスをプラズマまたは光で励起し、これにより得られる活性種を常温以下に冷却したSi基板に供給することで、SiO膜をエッチングする方法が知られている。
この方法では、以下のようにして、SiO膜をエッチングする。まず、第1のガスとしてNFガス、第2のガスとしてHガスを選択する。プラズマ励起による活性種F,H,NをSi基板に供給する。プラズマの代わりにArFエキシマレーザを用いることも可能であるが、プラズマの方が効果的である。Si基板上に活性種F,H,Nが吸着され、SiO膜と反応する。これにより、SiO膜がエッチングされる。なお、Siがエッチングされないのは、Si上に(NHSiFなる堆積層が形成され、それがエッチング保護膜となるためである。また、基板温度を常温以下に冷却すると、SiO膜に対するエッチング特性、特に、SiO/Si選択比が向上する。
さらに、NFガスとHガスとの混合比を1:160とすると、SiのみならずSiOもエッチングが停止する。これは、Hの添加によってSiO膜表面に安定層が形成されるとともに、さらにその上に、Si上と同様、(NHSiFと考えられる堆積層が形成されるためである。したがって、活性種F,H,NはSi基板に吸着された状態となる。この状態で、アルゴン等の不活性プラズマまたは低エネルギーイオンをSi基板に一定時間だけ照射すると、Siはエッチングされずに、SiO膜が選択的にエッチングされる(例えば、特許文献1参照。)。
SiO膜をエッチングする方法としては、この他に、構成元素としてイオウ及びフッ素を有する化合物とOとを含むエッチングガスに光を照射し、生成した化学種を用いてSiO膜をエッチングする方法が知られている。
この方法では、以下のようにして、SiO膜をエッチングする。まず、不純物拡散領域が形成された単結晶シリコン基板上にさらにSiO膜が形成されてなるウエハを高真空排気機構と光照射機構とを有する反応セル内にセットする。反応セル内を、エッチングガス雰囲気とする。エッチングガスとして、S/O混合ガスを用いる場合、ウエハにArFエキシマレーザ光を照射することで、Sから分解生成したSFがOと反応し、中間生成物であるSFOが生成する。また、エッチングガスとして、SF/O混合ガスを用いる場合、ウエハにArFエキシマレーザ光を照射することにより、SFから段階的にFが解離されながら、生成したSFがOと反応し、中間生成物であるSFOが生成される。
SFOは、レーザ光を照射した後もエッチング反応系内に滞留するため、SiO膜との間で次のような反応が進行する。
4SFO+SiO+O→SiF↑+4SO
SFOはSiとは反応しないため、SiO膜のエッチングが進行し、不純物拡散領域が露出すると、エッチングは停止する。SF/O混合ガスを用いる場合、上述のようにFが生成されるため、不純物拡散領域が露出するまで光照射を行うことで、SFOとFとにより、エッチングが高速に進行する(例えば、特許文献2参照。)。
特開平5−275392号公報(段落0008〜段落0036、図1〜図5) 特開平5−21397号公報(段落0010〜段落0014)
しかしながら、特許文献1に記載の技術のように、プラズマを用いてSiO膜をエッチングする方法では、プラズマ中のイオンにより、シリコンが損傷され易いという問題がある。また、特許文献2に記載の技術のように、イオウ及びフッ素を構成元素として有する化合物とOとを含むエッチングガスを用いてSiO膜をエッチングする方法では、シリコン中に不純物としてイオウが混入してしまうおそれがある。
本発明は、このような事情にもとづいてなされたもので、イオン損傷が少なく、しかも、シリコン部材中に不純物が混入するのを抑制しながら、シリコン部材に形成されている酸化シリコンをエッチングすることができる酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置を提供することを目的とする。
本発明の一形態に係る酸化シリコンのエッチング方法は、酸化シリコンが形成されているシリコン部材を、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に配置し、前記酸化シリコン及び前記フッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、前記酸化シリコンをエッチングする。
本発明の他の一形態に係る酸化シリコンのエッチング方法は、処理容器内に設けられたシリコン部材に形成されている酸化シリコンに、シリコン−酸素間の結合エネルギー以上のエネルギーを有する光を照射することにより、前記酸化シリコンをシリコン原子と酸素原子とに分解し、前記酸素原子を前記処理容器外に排出するとともに、前記処理容器内に、構成元素にイオウを含まないフッ素化合物ガスを導入し、該フッ素化合物ガスに、このフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、前記処理容器内にフッ素原子活性種を生じさせ、前記シリコン原子に起因して前記シリコン部材上に残留するシリコン残渣を前記フッ素原子活性種によりフッ化シリコンガスとして気化させるとともに、このフッ化シリコンガスを前記処理容器外に排出して、前記酸化シリコンをエッチングする。
本発明の一形態に係る酸化シリコンのエッチング方法及び本発明の他の一形態に係る酸化シリコンのエッチング方法では、いずれも、酸化シリコン及びイオウを含まないフッ素化合物を光によって分解し、フッ素化合物が分解されて生じるフッ素原子活性種により、酸化シリコンが分解されて残るシリコン残渣をフッ化シリコンとして気化させることで、酸化シリコンをエッチングする。
つまり、本発明の一形態に係る酸化シリコンのエッチング方法及び本発明の他の一形態に係る酸化シリコンのエッチング方法では、プラズマを用いることなく、シリコン部材から酸化シリコンをエッチングすることができるため、シリコン部材に与えるイオン損傷が無い。しかも、構成元素にイオウを含まないフッ素化合物ガスをエッチングガスとして用いているため、エッチングガスに由来してイオウ原子活性種が生じることがない。したがって、シリコン部材中に不純物としてイオウが混入するのを抑止できる。
シリコン部材としては、例えば、単結晶シリコン、多結晶シリコン、微結晶シリコン、又はアモルファスシリコン等からなるシリコンウエハ等が挙げられるが、これらに限定されるものではない。また、シリコン部材としては、ガラス等のシリコン単体以外の材料からなる基体上に単結晶シリコン層、多結晶シリコン層、微結晶シリコン層、又はアモルファスシリコン層といったシリコン層が形成されてなるもの等を用いることもできる。
フッ素化合物ガスとしては、構成元素として、イオウだけでなく、シリコン部材に対する不純物となり易い元素を極力含まないものを選択するのが好ましい。そのため、フッ素化合物ガスとしては、SiF等のフッ化シリコン、フッ化水素(HF)、又は、NF等のフッ化窒素等を用いるのが好ましい。
光としては、シリコン−酸素間の結合エネルギー以上であって、且つ、選択したフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を用いればよい。このような光としては、例えば、キセノンエキシマランプから照射された光、クリプトンエキシマランプから照射された光、又はアルゴンエキシマランプから照射された光等が、多くの場合において好適に用いることができる。
本発明の一形態に係る基板処理方法は、酸化シリコンが形成されているシリコン基板を、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に配置し、前記酸化シリコン及び前記フッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、前記酸化シリコンをエッチングした後、気密状態を破らずに前記シリコン基板上に絶縁膜を形成する。
この基板処理方法は、シリコン基板に形成されている自然酸化膜のような酸化シリコン膜をエッチングし、その後、このシリコン基板上にあらためて絶縁膜を形成する場合等に好適である。このようにすることにより、酸化シリコン膜をエッチング除去したシリコン基板を空気中に晒すことなく、このシリコン基板上に絶縁膜を形成することができる。したがって、シリコン基板上に不純物の少ない絶縁膜を形成することができる。
シリコン基板としては、例えば、単結晶シリコン、多結晶シリコン、微結晶シリコン、又はアモルファスシリコン等からなるシリコンウエハ等が挙げられるが、これらに限定されるものではない。また、シリコン基板としては、ガラス基板等のシリコン単体以外の材料からなる基体上に単結晶シリコン層、多結晶シリコン層、微結晶シリコン層、又はアモルファスシリコン層といったシリコン層が形成されてなるもの等を用いることもできる。
また、この基板処理方法においても、フッ素化合物ガスとしては、構成元素として、イオウだけでなく、シリコン部材に対する不純物となり易い元素を極力含まないものを選択するのが好ましい。そのため、フッ素化合物ガスとしては、SiF等のフッ化シリコン、フッ化水素(HF)、又は、NF等のフッ化窒素等を用いるのが好ましい。
光としては、シリコン−酸素間の結合エネルギー以上であって、且つ、選択したフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を用いればよい。このような光としては、例えば、キセノンエキシマランプから照射された光、クリプトンエキシマランプから照射された光、又はアルゴンエキシマランプから照射された光等が、多くの場合において好適に用いることができる。
本発明の一形態に係るエッチング装置は、処理容器と、シリコン部材を支持する支持面を有し、前記処理容器内に設けられた支持台と、前記処理容器に設けられ、フッ素化合物ガスを前記処理容器内に導入させるフッ素化合物ガス導入口と、前記処理容器に設けられ、前記処理容器内の気体を排出させる排気口と、前記処理容器が有する壁のうちの前記支持面に対向する部分に前記処理容器の壁の一部として設けられた透光性部材からなる光透過窓と、前記処理容器外に設けられ、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を、前記光透過窓を介して前記処理容器内に照射可能な光源とを具備している。
本発明の一形態に係るエッチング装置によれば、シリコン部材を処理容器内に設けられた支持台で支持させ、フッ素化合物ガス導入口を介して処理容器内にフッ素化合物ガスを供給することで、フッ素化合物を含む雰囲気中にシリコン部材を配置することができる。しかも、本発明の一形態に係るエッチング装置によれば、光源をON・OFFさせるだけで、光透過窓を介して処理容器内のシリコン部材及びフッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を所望の時に所望の時間だけ照射することができる。
したがって、本発明の一形態に係るエッチング装置によれば、支持台にシリコン部材を支持させるとともに、処理容器内をフッ素化合物ガスを含む雰囲気とし、光源から発せられる光を光透過窓を介して処理容器内に照射することによって、シリコン部材に不純物が混入したりイオン損傷が生じたりするのを抑制しながら、シリコン部材に形成されている酸化シリコンをエッチングすることができる。
以下、本発明の第1の実施形態について説明する。この実施形態では、本発明の酸化シリコンのエッチング方法の一実施形態、及び、本発明のエッチング装置の一実施形態について説明する。
まず、本発明のエッチング装置の一実施形態を、図1を参照して説明する。図1に示すように、エッチング装置1は、処理容器としての真空反応室2と、真空反応室2内に設けられ、シリコン部材を支持する支持面5aを有する支持台5と、真空反応室2の例えば側壁面(周壁11cの外面)に設けられ、フッ素化合物ガスを真空反応室2内に導入させるフッ素化合物ガス導入口19と、真空反応室2に設けられ、真空反応室内の処理済みの気体を排出させる排気口17と、真空反応室2が有する壁のうちの前記支持面5aに対向する部分例えば上壁11bに真空反応室2の壁の一部として設けられた透光性部材からなる光透過窓13と、真空反応室2外に設けられ、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を光透過窓13を介して真空反応室2に照射可能な光源21a,21bとを具備している。
真空反応室2は、気密容器であり、底壁11a、上壁11b、底壁11aの周縁と上壁11bの周縁とを繋ぐ周壁11c、及び光透過窓13を有している。底壁11a、上壁11b、周壁11c、及び、光透過窓13は、真空反応室2の内部を真空状態にまで減圧することが可能な強度に設定されている。底壁11a、上壁11b、及び、周壁11cを形成する材料としては、例えばアルミニウムを用いることができる。光透過窓13を形成する材料としては、光源装置3(光源21a,21b)から発せられる光に対して光学的に透明であり、かつ、処理圧力に対する耐圧性があり、ガスを外部に放出させない部材、例えば合成石英(石英ガラス)を用いることができる。なお、光透過窓13は、合成石英に限定されるものではなく、酸化シリコン及び所定のフッ素化合物を分解するための光(光源装置3から発せられる光)に対して光学的に透明な部材により形成すればよい。
上壁11bには、開口部12が形成されている。この開口部12は、光透過窓13により気密に閉塞されている。これにより、真空反応室2内は真空に保たれている。つまり、光透過窓13は、真空反応室2の壁(上壁11b)の一部を構成している。
詳しくは、光透過窓13は、開口部12に嵌合する第1の部分13aと、第1の部分13aの上方に設けられ、第1の部分13aよりも一回り大きく形成された第2の部分13bとが一体に形成されてなる。すなわち、光透過窓13は、断面略T字状に形成されており、第2の部分13bは、第1の部分13aの周面よりも外方に張り出す張り出し部14を有している。
一方、真空反応室2は、上壁11bと光透過窓13との間を封止する封止機構を有している。封止機構は、上壁11bの上面に設けられた溝15とOリング16とを有している。溝15は、上壁11bの上面に、開口部12を囲むように設けられている。Oリング16は、例えばゴム材料等により形成されている。この封止機構は、溝15にOリング16を設けることで構成されている。
開口部12は、光透過窓13と封止機構とによって気密に閉塞されている。すなわち、開口部12には、光透過窓13の第1の部分13aが嵌合している。また、Oリング16は、第2の部分13bの張り出し部14と上壁11bとの間に配置されて、光透過窓13と上壁11bとの間をシールしている。
真空反応室2の壁、例えば底壁11aには、排気口17が設けられている。真空反応室2の内部は、この排気口17を介して、真空ポンプ18と連通されている。したがって、真空反応室2内の気体は、真空ポンプ18を駆動させることにより、排気口17を介して真空反応室2の外部に排気することができる。
真空反応室2の壁、例えば周壁11cには、フッ素化合物ガスを真空反応室2内に供給するためのフッ素化合物ガス導入口19が設けられている。真空反応室2の内部は、このフッ素化合物ガス導入口19を介して、フッ素化合物ガスを収容するフッ素化合物ガスシリンダ(図示せず)と連通されている。したがって、フッ素化合物ガスシリンダ内のフッ素化合物ガスは、所望とするときに所望とする期間、フッ素化合物ガス導入口19を介して真空反応室2内に導入することができる。
ところで、構成元素にイオウを含むフッ素化合物ガスを用いると、被処理部材であるシリコン部材中に不純物としてイオウが混入してしまうおそれがある。そのため、フッ素化合物ガスとしては、構成元素にイオウを含まないものを用いる。構成元素にイオウを含まないフッ素化合物ガスとしては、例えば、SiFガス等のフッ化シリコンガス、フッ化水素(HF)ガス、又はNF等のフッ化窒素ガスを好適に用いることができる。なお、フッ素化合物ガスは、構成元素にイオウを含まないフッ素化合物ガスであればよく、これらに限定されるものではない。
真空反応室2の壁、例えば周壁11cには、パージガス導入口20が設けられている。なお、このエッチング装置1では、パージガス導入口20はフッ素化合物ガス導入口19と対向する位置に設けられているが、この配置に限定されるものではない。真空反応室2の内部は、このパージガス導入口20を介して、パージガスを収容するパージガスシリンダ(図示せず)と連通されている。したがって、パージガスシリンダ内のパージガスは、フッ素化合物ガスを真空反応室2内に供給する前等に、パージガス導入口20を介して真空反応室2内に導入することができる。パージガスとしては、例えば、窒素ガスや、アルゴンガス等の不活性ガスを用いることができる。
光源装置3は、酸化シリコンを分解する光であって、且つ、選択したフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光源を備えている。このような光源装置3としては、例えば、キセノンエキシマランプ、クリプトンランプ、又はアルゴンエキシマランプが挙げられる。
すなわち、酸化シリコンのSi−O間の結合エネルギーは約369kJ/mol(88.2kcal/mol≒3.68eV)であることが知られている(参考文献:Linus Pauling “The Nature of the Chemical Bond (Third Ed.)” Conell Univ. Press, New York, 1960 p.85)。
また、フッ素化合物ガスを分解してフッ素原子活性種を生じさせる光エネルギーは以下のとおりである。
すなわち、フッ素化合物ガスとしてSiFガスを用いた場合、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーとは、Si−F間の結合エネルギー以上のエネルギーである。Si−F間の結合エネルギーは約602kJ/mol(約143kcal/mol)であることが知られている。
フッ素化合物ガスとしてHFガスを用いた場合、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーとは、H−F間の結合エネルギー以上のエネルギーである。H−F間の結合エネルギーは約568kJ/mol(約135kcal/mol)であることが知られている。
フッ素化合物ガスとしてNFガスを用いた場合、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーとは、N−F間の結合エネルギー以上のエネルギーである。N−F間の結合エネルギーは約279kJ/mol(約66kcal/mol)であることが知られている。
一方、光のエネルギーEは、以下の(1)式から求められる。
E=hν=h・c/λ [J] …(1)
h:プランク定数(約6.626×10−34J・s)
ν:振動数
c:真空中の光の速さ(約2.998×10m・s−1
λ:波長
また、1molあたりのエネルギーEmは、以下の(2)式から求められる。
Em=N×E [J/mol] …(2)
:アボガドロ数(約6.022×1023mol−1
キセノンエキシマランプは、172nmにピークを有している。すなわち、キセノンエキシマランプの波長λは、172×10−9mであるため、キセノンエキシマランプの光のエネルギーEは、(1)式より、約1.155×10−18Jとなる。したがって、キセノンエキシマランプの1molあたりの光のエネルギーは、(2)式より、約696kJ/mol(約166kcal/mol)となる。
クリプトンエキシマランプは146nmにピークを有している。すなわち、クリプトンエキシマランプの波長λは、146×10−9mであるため、クリプトンエキシマランプの光のエネルギーEは、(1)式より、約1.361×10−18Jとなる。したがって、クリプトンエキシマランプの1molあたりの光のエネルギーは、(2)式より、約819kJ/mol(約196kcal/mol)となる。
アルゴンエキシマランプは、126nmにピークを有している。すなわち、アルゴンエキシマランプの波長λは、126×10−9mであるため、アルゴンエキシマランプの光のエネルギーは、(2)式より、約944kJ/mol(約225kcal/mol)となる。
したがって、キセノンエキシマランプ、クリプトンエキシマランプ、及びアルゴンエキシマランプから発せられる光は、酸化シリコンを分解する光であって、且つ、上述したようなフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光という条件を満たす。本実施形態では、光源装置3として、光源としての2本の直管状のキセノンエキシマランプ21a,21bと、リフレクタ22a,22bとを有するものを用いている。
光源装置3を収容するランプハウス4は、真空反応室2の上方に設けられている。キセノンエキシマランプ21a,21bは、このランプハウス4内において、互いに平行に配置されている。キセノンエキシマランプ21a,21bの上方には、これらキセノンエキシマランプ21a,21bを上方から覆うようにリフレクタ22a,22bが夫々設けられている。リフレクタ22a,22bは、キセノンエキシマランプ21a,21bの長手方向に沿って設けられている。リフレクタ22a,22bは、キセノンエキシマランプ21a,21bから発せられた光を後述する支持台5の方向に反射させ導く機能を有している。これにより、キセノンエキシマランプ21a,21bから発せられた光は、直接的或いはリフレクタ22a,22bにより反射されて間接的に下方に出射され、光透過窓13を透過して、真空反応室2内に照射される。
ところで、キセノンエキシマランプ21a,21bから発せられる光は、酸素分子を酸素活性種に分解することが可能である。そのため、キセノンエキシマランプ21a,21bから発せられる光は、大気圧の場合、数mmの空気層が存在するだけで、空気層中の酸素分子を分解しながらこの空気層に吸収されてしまう。したがって、エッチング装置1では、ランプハウス4を、その内部が気密となるように形成するとともに、このランプハウス4内に、キセノンエキシマランプ21a,21bから発せられる波長172nmの光を吸収しないガス、例えば窒素ガスを略大気圧となるように満たしている。図1中符号23は窒素ガス流通口23を示している。この窒素ガス流通口23を介してランプハウス4内にランプハウス4の外部から窒素ガスが供給されるとともに、この窒素ガス流通口23を介してランプハウス4内の窒素ガスがランプハウス4の外部に排出されるようになっている。
真空反応室2内には、被処理基板30を支持する支持面5aを有する支持台5が設けられている。この支持台5により、被処理基板30は、真空反応室2内の定められた位置に配置される。支持台5には、加熱装置24、例えば、例えばヒータやランプアニールが設けられている。この加熱装置24は、被処理基板30の温度を所望の温度とするためのものである。このようにして、エッチング装置1が構成されている。
次に、被処理基板30に形成された酸化シリコンの除去、例えばエッチング方法について説明する。本実施形態では、シリコン部材としてのシリコンウエハ31上に自然酸化膜32(SiO膜)が形成されてなる被処理基板30(図2参照)から、上記自然酸化膜32をエッチングする方法を例にとって説明する。シリコンウエハ31としては、例えば、(100)面の比抵抗が10〜20Ωcmの直径6インチの円板状のP導電型の単結晶シリコンウエハ31を用いている。自然酸化膜32は、シリコンウエハ31の(100)面上に形成されている。
まず、光処理(自然酸化膜32のエッチング)に先立ち、被処理基板30の洗浄を行う。すなわち、被処理基板30を1%のフッ酸で洗浄し、その後、純粋洗浄と乾燥とを行う。単結晶Siウエハ31の(100)被処理面側を上側、つまり、光源装置3側に向くように、被処理基板30を真空反応室2内の支持台5上に載置する。温度を上げた加熱装置24により、基板温度を25℃乃至400℃、例えば300℃に加熱するとともに、この基板温度を保つ。
真空ポンプ18により、真空反応室2を真空度2×10−4Paに排気する。また、窒素ガス流通口23を介してランプハウス4内に窒素を導入する。上述したように、ランプハウス4内を窒素置換することによって、キセノンエキシマランプ21a,21bの放射照度の減衰を抑制することができる。
キセノンエキシマランプ21a,21bを点灯させる。これにより、キセノンエキシマランプ21a,21bから発せられる光は、光透過窓13を透過して、真空反応室2内の被処理基板30に照射される。上述のように、キセノンエキシマランプ21a,21bから発せられる光のエネルギーは、自然酸化膜(SiO膜)32のSi−O間の結合エネルギーよりも大きい。そのため、キセノンエキシマランプ21a,21bから発せられる光により、自然酸化膜32のSi−O間の結合が切断されて、シリコン原子と酸素原子が生じる。なお、キセノンエキシマランプ21a,21bの点灯時には、真空ポンプ18を動作させておき、自然酸化膜32を分解するのと同時に、結合が切れて自由となった酸素原子を排気口17から真空反応室2の外部に排出するようにしている。シリコン原子は、シリコンウエハ31上にシリコン残渣として残留する。
フッ素化合物ガス導入口19から真空反応室2内に、構成元素にイオウを含まないフッ素化合物ガスを導入する。本実施形態では、構成元素にイオウを含まないフッ素化合物ガスとして、SiFガス、HFガス、或いはNFガスを用いる。フッ素化合物ガスを導入した後、キセノンエキシマランプ21a,21bを点灯させる。キセノンエキシマランプ21a,21bから発せられる光は、光透過窓13を透過して、真空反応室2内に照射される。上述のように、キセノンエキシマランプ21a,21bから発せられる光のエネルギーは、Si−F結合、H−F結合、N−F結合よりも大きい。そのため、キセノンエキシマランプ21a,21bから発せられる光により、SiFガス、HFガス、或いはNFガスは分解され、フッ素原子活性種が生じる。シリコンウエハ31上のシリコン残渣はフッ素原子活性種と反応し、フッ化シリコンガスとして気化する。なお、キセノンエキシマランプ21a,21bの点灯時には、真空ポンプ18を動作させておき、フッ素化合物ガスを分解するのと同時に、真空反応室2内で生じるフッ化シリコンガスを排気口17から真空反応室2の外部に排出するようにしている。以上により、自然酸化膜32のエッチング工程が終了する。
以上のように、本実施形態の酸化シリコンのエッチング方法では、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に酸化シリコン膜32が形成されたシリコンウエハ31を配置し、酸化シリコン膜32及びフッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、酸化シリコン膜32をエッチングしている。
詳しくは、本実施形態の酸化シリコンのエッチング方法は、酸化シリコン膜32が形成されたシリコンウエハ31、すなわち、被処理基板30を真空反応室2内に配置するとともに、この真空反応室2から空気を排出する工程と、酸化シリコン膜32に、Si−O間の結合エネルギー以上のエネルギーを有する光を照射することにより、酸化シリコン膜32をシリコン原子と酸素原子とに分解し、酸素原子を真空反応室2外に排出するとともに、真空反応室2内に、構成元素にイオウを含まないフッ素化合物ガスを導入し、このフッ素化合物ガスに、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、真空反応室2内にフッ素原子活性種を生じさせ、シリコン原子に起因してシリコンウエハ31上に残されるシリコン残渣をフッ素原子活性種によりフッ化シリコンガスとして気化させるとともに、このフッ化シリコンガスを真空反応室2外に排出して、酸化シリコン膜32をエッチングしている。
したがって、この酸化シリコンのエッチング方法によれば、プラズマを用いることなく、シリコンウエハ31から酸化シリコン膜32をエッチングすることができるため、シリコンウエハ31に与えるイオン損傷が無い。しかも、構成元素にイオウを含まないフッ素化合物ガスをエッチングガスとして用いているため、エッチングガスに由来してイオウ原子が生じることがない。したがって、シリコンウエハ31中に不純物としてイオウが混入するのを防止できる。
また、この実施形態の酸化シリコンのエッチング方法では、フッ素化合物ガスとして、フッ化シリコンガス、フッ化水素ガス、又はフッ化窒素ガスを用いているため、フッ素化合物ガスがシリコンウエハ31の不純物の原因となり難い。したがって、不純物の少ないシリコンウエハ31が得られる。
さらに、この実施形態の酸化シリコンのエッチング方法では、光源として、キセノンエキシマランプ21a,21bを採用している。そのため、キセノンエキシマランプ21a,21bを点灯させることにより、酸化シリコン膜32のシリコン−酸素間の結合を分解することができるとともに、フッ素化合物ガスを分解してフッ素原子活性種を生じさせることができる。なお、キセノンエキシマランプ21a,21bと置換して、クリプトンエキシマランプやアルゴンエキシマランプを用いても、同様の効果を得ることができる。
しかも、「背景技術」で述べた特許文献1及び2に記載の技術は双方とも、エッチングガスとして、混合ガスを用いている。そのため、特許文献1又は2に記載の技術を用いてエッチングを実施するにあたっては、複数のエッチングガスシリンダ及び複数のエッチングガス導入口を備えた処理装置や、ガスを混合する手段を備えた処理装置を用いる必要がある。したがって、処理装置が複雑化し、エッチング工程が複雑になり易い。
これに対し、本実施形態では、エッチングガスとして、構成元素にイオウを含まないフッ素化合物ガス、具体的には、フッ化シリコンガス、フッ化水素ガス、又はフッ化窒素ガス等を単体で用いている。したがって、簡単な構成で容易に酸化シリコン膜をエッチングすることができる。
また、本実施形態では、上記酸化シリコンのエッチング方法を実施するにあたり、上述のようなエッチング装置1を用いている。このエッチング装置1では、壁11a〜11cを有する真空反応室2内に、支持台5が設けられている。この支持台5は、被処理基板30を支持する支持面5aを有している。真空反応室2の壁11cには、真空反応室2内にフッ素化合物ガスを導入するためのフッ素化合物ガス導入口19が設けられている。真空反応室2の壁11aには、真空反応室2内の気体を排出するための排気口17が設けられている。真空反応室2の壁11a〜11cのうちの支持面5aに対向する部分、すなわち、壁11bには、真空反応室2の壁11bの一部として、透光性部材からなる光透過窓13が設けられている。真空反応室2外には、キセノンエキシマランプ21a,21bが設けられている。キセノンエキシマランプ21a,21bは、シリコン−酸素間の結合エネルギー以上であって、且つ、フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を、光透過窓13を介して真空反応室2内に照射することが可能である。
したがって、支持台5に被処理基板30を支持させ、真空反応室2内をフッ素化合物ガスを含む雰囲気とし、キセノンエキシマランプ21a,21bから発せられる光を光透過窓13を介して真空反応室2内に照射することによって、イオン損傷が無く、しかも、シリコンウエハ31中に不純物が混入するのを抑制しながら、シリコンウエハ31に形成されている酸化シリコン膜32をエッチングすることができる。つまり、本実施形態のエッチング装置1は、上述のような酸化シリコンのエッチング方法を行う際に好適に用いることができる。
なお、エッチング装置1が備える光源装置3は、キセノンエキシマランプ、クリプトンエキシマランプ、或いはアルゴンエキシマランプを有するものに限定されるものではない。光源装置3は、シリコン−酸素間の結合エネルギー以上であって、且つ、選択したフッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射可能な光源を有するものであればよい。
以下、本発明の第2の実施形態について説明する。この実施形態では、本発明の基板処理方法の一実施形態について説明する。
まず、本実施形態の基板処理方法を実施する上で好適に用いることができる基板処理装置の一実施形態を、図3を参照して説明する。図3に示すように、基板処理装置100は、第1の処理室101と、第2の処理室102と、トランスファー室103とを備えている。
第1の処理室101は、シリコンウエハ31から酸化シリコン膜32をエッチングするための部屋である。この第1の処理室101は、上述したエッチング装置1と同様に形成されているため、重複する説明は図に同符号を付して省略する。
第2の処理室102は、シリコンウエハ31上に絶縁膜、例えば酸化シリコン(SiO)膜を形成するための部屋である。この第2の処理室102は、例えば、既存のCVD(Chemical Vapor Deposition)装置と同様に形成することができる。第2の処理室102は第1の処理室101とは別に気圧を変化させる(真空雰囲気にしたり大気圧にしたりする)ことができるようになっている。また、この第2の処理室102は、高周波電源装置を稼動させ、整合器を介して一方の電極73,75に高周波電力を供給することで、真空反応室70内にプラズマが発生されるように構成されている。
詳しくは、第2の処理室102は、平行平板型のプラズマCVD(Plasma Enhanced Chemical Vapor Deposition、以下、PE−CVDという)装置とすることができる。第2の処理室102は、処理容器としての真空反応室70を備えている。
真空反応室70は、気密容器であり、底壁70a、上壁70b、及び、底壁70aの周縁と上壁70bの周縁とを繋ぐ周壁70cを有している。これらの壁70a,70b,70cは、真空反応室70の内部を真空状態にまで減圧することが可能な強度に設定されている。底壁70a、上壁70b、及び周壁70cを形成する材料としては、例えばアルムニウムを用いることができる。
真空反応室70には、ガス導入口72とガス排出口76とが設けられている。真空反応室70の内部は、ガス導入口72を介して、シリコン化合物ガスシリンダ及び酸素ガスシリンダ(夫々図示せず)と連通されている。シリコン化合物ガスとしては、例えば、TEOS(テトラエトキシシラン(Si(OCHCH)ガス等を用いることができる。
また、真空反応室70の内部は、ガス排出口76を介して、真空ポンプ77と連通されている。したがって、真空反応室70内の気体は、真空ポンプ77を駆動させることにより、ガス排出口76を介して真空反応室70の外部に排気することができる。
真空反応室70には、図示しないが、プラズマが発生されるための高周波電源装置と整合器が設けられている。高周波電源装置は、負荷を調整する整合器を介して、互いに対応する一対の電極73,75のうちの一方の電極73と高周波電力導入部78を介して電気的に接続されている。また、他方の電極75は、プラズマを発生させるための電極として使用されるものであり、アースされている。
真空反応室70内には、シリコンウエハ31を支持するための支持台が設けられている。この実施形態では、他方の電極75がステージを兼ねている。この支持台(電極)75には、シリコンウエハ31を加熱するための加熱装置74、例えばヒータやランプアニール等が設けられている。
第1の処理室101と第2の処理室102との間には、トランスファー室103が設けられている。トランスファー室103は、底壁60a、上壁60b、及び、底壁60aの周縁と上壁60bの周縁とを繋ぐ周壁60c等から構成される。トランスファー室103の内部には、シリコンウエハ31を支持するための支持台65が設けられている。トランスファー室103の内部は、開閉自在なゲートバルブ51を介して第1の処理室101の内部(真空反応室2の内部)と連通されている。また、トランスファー室103の内部は、開閉自在なゲートバルブ52を介して第2の処理室102の内部(真空反応室70の内部)と連通されている。トランスファー室103内は、窒素ガスや、アルゴンガス等の不活性ガス等により所定の圧力に保つことができるようになっている。
また、この基板処理装置100は、図示しないが、第1の処理室101が有する支持台5からトランスファー室103が有する支持台65にシリコンウエハ31を移動させるとともに、トランスファー室103が有する支持台65から第2の処理室102が有する支持台75にシリコンウエハ31を移動させることが可能な移動機構を備えている。このようにして、基板処理装置100が構成されている。
次に、基板処理方法について説明する。なお、被処理基板としては、第1の実施形態で用いた被処理基板30(図2参照)と同じものを用いることとする。すなわち、被処理基板30は、シリコン基板としてのシリコンウエハ31と、このシリコンウエハ31上に形成された自然酸化膜32とを有している。
本実施形態では、シリコンウエハ31上に自然酸化膜32(SiO膜)が形成されてなる被処理基板30から、自然酸化膜32をエッチングするとともに、その後、気密状態を破らずに、自然酸化膜32を除去したシリコンウエハ31の上面に、酸化シリコン絶縁膜33(図4参照)を形成する方法を例にとって説明する。
まず、基板処理に先立ち、被処理基板30の洗浄を行う。これは、第1の実施形態と同様にして行うことができる。次に、シリコンウエハ31の上面に形成されている自然酸化膜32をエッチングする。これもまた、第1の実施形態と同様にして行うことができる。なお、エッチング処理中は、ゲートバルブは閉状態としている。
第1の処理室101内にパージガスを導入する。第1の処理室101内の気圧をトランスファー室103内の気圧よりも高めた状態でゲートバルブ51を開状態とする。第1の処理室101内の支持台5上に配置されているシリコンウエハ31を、トランスファー室103内の支持台65上に移動させる。このように、第1の処理室101内の気圧をトランスファー室103内の気圧よりも正圧した状態でシリコンウエハ31を移動させることで、第1の処理室101内と第2の処理室102内とのクロスコンタクトを抑制することができる。
第2の処理室102内にパージガスを導入する。第2の処理室102内の気圧をトランスファー室103内の気圧よりも高めた状態でゲートバルブ51を開状態とする。トランスファー室103内の支持台65上に配置されているシリコンウエハ31を、第2の処理室102内の支持台75上に移動させる。このように、第2の処理室102内の気圧をトランスファー室103内の気圧よりも正圧した状態でシリコンウエハ31を移動させることで、第1の処理室101内と第2の処理室102内とのクロスコンタクトを抑制することができる。
真空ポンプ77を駆動させ、真空反応室70内を実質的に真空状態とする。真空反応室70内を真空排気処理した後、真空反応室70内に、TEOSガスを流量5sccm、酸素ガスを流量750sccmで導入し、内圧を230Paに保つ。加熱装置74により、シリコンウエハ31を300℃に保つ。高周波電源装置を稼動させ、整合器を介して一方の電極に高周波電力を供給する。Oガス及びTEOSガスはプラズマにて分解され、シリコンウエハ31の(100)面に酸化シリコン(SiO)分子が堆積し、酸化シリコン絶縁膜33が形成される。以上により、基板処理が完了する。
本実施形態の基板処理方法により被処理基板30を処理することによって得られたシリコンウエハ31の特性を以下のようにして検証した。シリコンウエハ31の(100)面に上述のようにしてPE−CVD膜(SiO絶縁膜)33を膜厚40nmで形成した第1の試料と、シリコンウエハの(100)面に熱酸化膜(SiO膜)を膜厚30nmで形成した第2の試料(比較例)とを用意した。第1及び第2の試料のSiO膜上に夫々、アルミニウム膜を蒸着法により成膜し、直径1mmの円形電極を形成した。さらに、窒素雰囲気中、350℃で、1時間、PMA(Post Metallization Anneal)処理を行った。
図5は、上述のようにして得られた第1及び第2の試料(MOS素子)について、電界強度と電流密度との関係の測定した結果である。図5に示すように、本実施形態の基板処理方法で処理した第1の試料のリーク電流密度は、熱酸化膜が形成された第2の試料のリーク電流密度と同程度に抑制されていることがわかった。つまり、本実施形態の基板処理方法によって形成されたSiO絶縁膜33は、熱酸化膜と同程度にリーク電流が少なく、良好な特性を有していることがわかった。
以上のように、本実施形態の基板処理方法によれば、自然酸化膜32をエッチングした後、気密状態を破らずにシリコンウエハ31上に酸化シリコン絶縁膜33を形成するようにしている。つまり、本実施形態の基板処理方法では、自然酸化膜32をエッチング除去したシリコンウエハ31を空気中に晒すことなく、このシリコンウエハ31上に酸化シリコン絶縁膜33を形成している。したがって、シリコンウエハ31上に、界面特性が良好で、かつ、再現性のよく、しかも不純物の少ない絶縁膜33を形成することができる。
なお、シリコン部材は、シリコンウエハに限定されるものではない。すなわち、被処理基板30としては、シリコンウエハ31等の上に、酸化シリコン膜32が形成されてなるものの他、ガラス基板、石英ガラス基板、セラミックス基板、或いは樹脂基板等の上に、シリコンと酸化シリコンとが積層されたもの等を用いることができる。或いは、被処理基板としては、ガラス基板、石英ガラス基板、セラミックス基板、或いは樹脂基板上に、シリコンと酸化シリコンとが積層された部分を有する回路素子や回路素子の一部を形成したものを用いてもよい。
さらに、シリコン部材は、単結晶シリコンからなるものに限定されるものではなく、レーザ結晶化や固相結晶化等により形成した多結晶シリコン、微結晶シリコン、アモルファスシリコン等を有する基板の水素化処理にも適用できる。また、絶縁膜は、酸化シリコン膜に限定されるものではなく、絶縁物からなる膜であればよい。
本発明の第1の実施形態に係るエッチング装置を示す断面図。 酸化シリコンのエッチング方法を施す前の被処理基板の一例を示す断面図。 本発明の第2の実施形態に係るエッチング装置を示す断面図。 光処理を行ったシリコンウエハにPECVD法により酸化膜を形成してなる基板を示す断面図。 光処理を行ったシリコンウエハにPECVD法により酸化膜を形成してなる基板、及び、シリコンウエハに熱酸化膜を形成してなる比較例の基板の双方における電界強度と電流密度との関係を示す図。
符号の説明
1…エッチング装置、 21a,21b…キセノンエキシマランプ(光源)、 5…支持台、 13…光透過窓、 17…排気口、 19…フッ素化合物ガス導入口、 31…シリコンウエハ(シリコン部材、シリコン基板)、 32…自然酸化膜(酸化シリコン膜)、 33…酸化シリコン絶縁膜(絶縁膜)

Claims (5)

  1. 酸化シリコンが形成されているシリコン部材を、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に配置し、前記酸化シリコン及び前記フッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、前記酸化シリコンをエッチングすることを特徴とする酸化シリコンのエッチング方法。
  2. 前記フッ素化合物ガスは、フッ化シリコンガス、フッ化水素ガス、又はフッ化窒素ガスであることを特徴とする請求項1記載の酸化シリコンのエッチング方法。
  3. 前記光は、キセノンエキシマランプから照射された光、クリプトンエキシマランプから照射された光、又はアルゴンエキシマランプから照射された光であることを特徴とする請求項1又は2記載の酸化シリコンのエッチング方法。
  4. 酸化シリコン膜が形成されているシリコン基板を、構成元素にイオウを含まないフッ素化合物ガス雰囲気中に配置し、前記酸化シリコン膜及び前記フッ素化合物ガスに、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を照射することにより、前記酸化シリコン膜をエッチングした後、気密状態を破らずに前記シリコン基板上に絶縁膜を形成することを特徴とする基板処理方法。
  5. 処理容器と、
    シリコン部材を支持する支持面を有し、前記処理容器内に設けられた支持台と、
    前記処理容器に設けられ、フッ素化合物ガスを前記処理容器内に導入させるフッ素化合物ガス導入口と、
    前記処理容器に設けられ、前記処理容器内の気体を排出させる排気口と、
    前記処理容器が有する壁のうちの前記支持面に対向する部分に前記処理容器の壁の一部として設けられた透光性部材からなる光透過窓と、
    前記処理容器外に設けられ、シリコン−酸素間の結合エネルギー以上であって、且つ、前記フッ素化合物ガスを分解してフッ素原子活性種を生じさせるエネルギーを有する光を、前記光透過窓を介して前記処理容器内に照射可能な光源とを具備していることを特徴とするエッチング装置。
JP2004058008A 2004-03-02 2004-03-02 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置 Pending JP2005251870A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058008A JP2005251870A (ja) 2004-03-02 2004-03-02 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058008A JP2005251870A (ja) 2004-03-02 2004-03-02 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置

Publications (1)

Publication Number Publication Date
JP2005251870A true JP2005251870A (ja) 2005-09-15

Family

ID=35032089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058008A Pending JP2005251870A (ja) 2004-03-02 2004-03-02 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置

Country Status (1)

Country Link
JP (1) JP2005251870A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227691A (ja) * 2006-02-24 2007-09-06 Sony Corp 基板処理方法および基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227691A (ja) * 2006-02-24 2007-09-06 Sony Corp 基板処理方法および基板処理装置

Similar Documents

Publication Publication Date Title
EP1038307B1 (en) Surface modification of semiconductors using electromagnetic radiation
KR102138158B1 (ko) 기상 화학적 노출에 의한 낮은-k 유전체 손상 리페어
JP3086719B2 (ja) 表面処理方法
WO2006088062A1 (ja) 半導体デバイスの製造方法および基板処理装置
JP2012149278A (ja) シリコン含有膜の製造方法
US20100330773A1 (en) Substrate processing method and substrate processing apparatus
JP2009141028A (ja) シャワーヘッド及びレジスト除去装置
JPWO2009054232A1 (ja) 半導体製造装置、半導体製造方法及び電子機器
US7105101B2 (en) Method of removing oxide film on a substrate with hydrogen and fluorine radicals
JPH0496226A (ja) 半導体装置の製造方法
JP2005217244A (ja) 基板処理方法、半導体装置の製造方法、及び水素化処理装置
JP2005251870A (ja) 酸化シリコンのエッチング方法、基板処理方法、及びエッチング装置
JP2003224117A (ja) 絶縁膜の製造装置
JP4921206B2 (ja) 液晶パネルの製造方法
JP2005252012A (ja) 成膜方法、半導体素子の形成方法、半導体装置、及び表示装置
JP4291193B2 (ja) 光処理装置及び処理装置
JPH0429220B2 (ja)
JP2006216774A (ja) 絶縁膜の成膜方法
JP2009260333A (ja) 酸化膜改質方法とその装置及びプロセス装置
JP2007128924A (ja) 被膜窒化方法、被膜形成基板および窒化処理装置
JP6681228B2 (ja) エッチング装置及びエッチング方法
US10332739B2 (en) UV radiation system and method for arsenic outgassing control in sub 7nm CMOS fabrication
JP2001210638A (ja) 絶縁膜の形成方法
JP3078528B2 (ja) 被処理膜の改質装置
JP2015135924A (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428