JP2005230118A - 血糖値測定装置 - Google Patents

血糖値測定装置 Download PDF

Info

Publication number
JP2005230118A
JP2005230118A JP2004040380A JP2004040380A JP2005230118A JP 2005230118 A JP2005230118 A JP 2005230118A JP 2004040380 A JP2004040380 A JP 2004040380A JP 2004040380 A JP2004040380 A JP 2004040380A JP 2005230118 A JP2005230118 A JP 2005230118A
Authority
JP
Japan
Prior art keywords
body surface
measurement
blood
unit
blood glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040380A
Other languages
English (en)
Other versions
JP3557424B1 (ja
Inventor
Koji Nagata
浩司 永田
Hiroshi Mimaki
弘 三巻
Ok-Kyung Cho
チョウ,オク−キョング
Yoon-Ok Kim
キム,ヨン−オク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004040380A priority Critical patent/JP3557424B1/ja
Priority to EP04007359A priority patent/EP1563786A1/en
Priority to CNB2004100316509A priority patent/CN1321613C/zh
Priority to US10/813,241 priority patent/US7251515B2/en
Application granted granted Critical
Publication of JP3557424B1 publication Critical patent/JP3557424B1/ja
Publication of JP2005230118A publication Critical patent/JP2005230118A/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Abstract

【課題】 糖尿病に伴う視覚、触覚に係わる合併症を発症した患者であっても容易に操作できる無侵襲に血糖値測定装置を提供する。
【解決手段】 温度測定方式による無侵襲血糖値測定値を血中酸素飽和度と血流量で補正し、さらに血中酸素飽和度を妨害物質の影響を考慮することにより測定データの安定化を図る血中グルコース濃度測定装置において、測定制御を行うための制御ボタンの形状や色と機能を対応付けし、視覚や触覚のどちらでも識別可能とする。
【選択図】 図11

Description

本発明は、採血せずに生体中のグルコース濃度を測定する無侵襲血糖値測定装置に関する。
Hilsonらは、糖尿病患者にグルコースを静脈注射すると、その後に顔面及び舌下温度が変化することを報告している(非特許文献1)。Scottらは、糖尿病患者と体温調節の問題を論じている(非特許文献2)。これらの研究知見に基づき、Choらは、採血を伴わずに、温度測定によって血中グルコース濃度を求める方法及び装置を提案している(特許文献1,2)。
また、採血を伴わないグルコース濃度の算出に関してはさらに様々な試みがなされている。例えば、測定部位へ3つの波長の近赤外光を照射して透過光強度を検出するとともに生体温度を検出し、吸光度の2次微分値の代表値を求め、予め定めた基準温度からの生体温度のずれに対応して上記代表値を補正し、補正された代表値に相当する血糖濃度を求める方法が提案されている(特許文献3)。また、測定部位において生体温度をモニタしながら加熱もしくは冷却を行い、温度が変化する瞬間に光照射に基づく減光度を測定して、減光度の温度依存性の原因となっているグルコース濃度を測定する装置が提供されている(特許文献4)。また、参照光と試料に照射した後の透過光との出力比を取り、出力比の対数と生体の温度との1次式からグルコース濃度を算出する装置が報告されている(特許文献5)。
Diabete & Metabolisme, "Facial and sublingual temperature changes following intravenous glucose injection in diabetics" by R.M. Hilson and T.D.R. Hockaday, 1982, 8, 15-19 Can. J. Physiol. Pharmacol., "Diabetes mellitus and thermoregulation", by A.R. Scott, T. Bennett, I.A. MacDonald, 1987, 65, 1365-1376 米国特許第5,924,996号公報 米国特許第5,795,305号公報 特開2000−258343号公報 特開平10−33512号公報 特開平10−108857号公報
血液中のグルコース(血糖)は細胞内でグルコース酸化反応に使われ、生体の維持に必要なエネルギーを産生する。特に基礎代謝の状態においては、産生されたエネルギーの大部分は体温を維持するための熱エネルギーとなるのであるから、血中グルコース濃度と体温との間には何らかの関係があることは予想されるところではある。しかし、病気による発熱を考えれば明らかなように、体温は血中グルコース濃度以外の要因によっても変動する。従来、採血を伴わずに温度測定によって血中グルコース濃度を求める方法が提案されてはいたが、十分な精度を有するものとは言い難かった。
本発明は、被験者の温度データをもとに採血を伴わずに高精度で血中グルコース濃度を測定できる血糖値測定装置を提供することを目的とし、特に、装置を操作する患者、すなわち糖尿病患者が、その病状に応じて種々の合併症を発症していても、正確に且つ円滑に血中グルコース濃度を測定し得るような操作手段を備える血糖値測定装置を提供することを目的とする。
初めに本発明が係わる採血を伴わず高精度に血中グルコース濃度を求める方法、及び装置について述べる。血糖は、血管系、特に毛細血管によって全身の細胞に供給されている。ヒトの体内には複雑な代謝経路が存在するが、グルコース酸化は、根源的には血糖と酸素が反応し、水と二酸化炭素とエネルギーを産生する反応である。ここでいう酸素とは血液から細胞へ供給される酸素であり、酸素供給量は血液中のヘモグロビン濃度と、ヘモグロビン酸素飽和度と、血流量によって決まる。一方、グルコース酸化によって体内で産生した熱は、対流、熱輻射、伝導等の形で体から奪われる。我々は、体温は体内でのグルコース燃焼によるエネルギー産生量、すなわち熱産生とこれら熱放散のバランスによって決まると考え、次のようなモデルを考えた。
(1)熱産生量と熱放散量とは同等視される。
(2)熱産生量は、血中グルコース濃度と酸素供給量の関数である。
(3)酸素供給量は、血中ヘモグロビン濃度と、血中ヘモグロビン酸素飽和度と、毛細血管内の血流量によって決まる。
(4)熱放散量は、主に熱対流と熱輻射とによって決まる。
このモデルに従い、体表を熱測定し、同時に血液中の酸素濃度に関するパラメータ及び血流量に関するパラメータを測定し、これらの測定結果を用いて血糖値を高精度に求めることができることを見出し、本発明を完成した。一例として、上記パラメータを求めるための測定は、ヒトの体の一部、例えば指先を測定対象として行うことができる。対流と輻射に関するパラメータは指先を熱測定することにより求めることができる。血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度に関するパラメータは、血液中のヘモグロビンを分光学的に測定し、酸素と結合しているヘモグロビンと結合していないヘモグロビンの比率により求めることができる。なお、血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度に関するパラメータに関しては、特に測定を行わず予め記憶した定数を用いても測定精度を大きく損なうことはない。血流量に関するパラメータは、皮膚からの熱移動量を測定することにより求めることができる。
ここで、上記方法による血中グルコース濃度を測定する装置を操作する患者、すなわち糖尿病患者の特性について述べる。糖尿病患者は、その病状に応じて種々の合併症を発症することが知られている。合併症の主な例として、糖尿病性網膜症や糖尿病性神経障害が挙げられる。糖尿病性網膜障害は、高血糖状態が続くことにより網膜に対して酸素や栄養の供給が滞り、視力の低下や失明を発症している状態である。また、糖尿病性神経障害は、大きく運動神経、知覚神経、自律神経の障害に分類される。特に、運動神経や知覚神経の障害を発症すると手先の感覚が麻痺し、正確な動作が困難になってしまう。
本発明は、糖尿病に伴う合併症を発症した患者であっても、正確に且つ円滑に血中グルコース濃度を計測できるようにするため、患者の操作する操作ボタンを視覚や触覚によって簡単に判別できるようにした。また、患者が日常の測定で操作する必要のない操作ボタンは物理的に操作不可能状態にするようにした。
本発明による血糖値測定装置は、一例として、体表面に由来する複数の温度を測定し、体表面からの熱放散に関する対流伝熱量と輻射伝熱量との算出に用いる情報を得る熱量測定部と、血中酸素量に関する情報を得る酸素量測定部と、複数の温度及び血中酸素量に各々対応するパラメータと血糖値との関係を記憶した記憶部と、熱量測定部及び酸素量測定部から入力される複数の測定値を前記パラメータへ各々変換し、前記パラメータを記憶部に記憶した関係に適用して血糖値を演算する演算部と、演算部によって算出された血糖値を表示する表示部と、測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備え、血流量測定部は、体表面接触部と、体表面接触部に隣接して設けられた隣接温度検出器と、体表面接触部から離れた位置の温度を検出する間接温度検出器と、体表面接触部と間接温度検出器とをつなげる熱伝導部材を有する。
本発明による血糖値測定装置は、他の例として、環境温度を測定する環境温度測定器と、体表面が接触する体表面接触部と、体表面接触部に隣接して設けられた隣接温度検出器と、体表面からの輻射熱を測定する輻射熱検出器と、体表面接触部に接して設けられる熱伝導部材と、熱伝導部材に隣接しかつ体表面接触部から離れた位置に設けられ、体表面接触部から離れた位置の温度を検出する間接温度検出器と、体表面接触部に向けて少なくとも2つの異なる波長の光を照射する光源と、光が前記体表面で反射されて生じる反射光を検出する光検出器と、隣接温度検出器、間接温度検出器、環境温度測定器、輻射熱検出器及び光検出器各々の出力を各々パラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、演算部から出力される血糖値を表示する表示部と、測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備える。
本発明による血糖値測定装置は、さらに他の例として、環境温度を測定する環境温度測定器と、体表面が接触する体表面接触部と、体表面接触部に隣接して設けられた隣接温度検出器と、体表面からの輻射熱を測定する輻射熱検出器と、体表面接触部に接して設けられる熱伝導部材と、熱伝導部材に隣接しかつ体表面接触部から離れた位置に設けられ、体表面接触部から離れた位置の温度を検出する間接温度検出器と、血中のヘモグロビン濃度とヘモグロビン酸素飽和度に関する情報を記憶した記憶部と、隣接温度検出器、間接温度検出器、環境温度測定器、輻射熱検出器の出力を複数のパラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、演算部から出力される血糖値を表示する表示部と、測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備える。
ここで、測定開始ボタンは他の操作ボタンとは異なる形状及び/又は異なる色とするのが好ましく、他の操作ボタンより大きな形状とするのも有効である。また、測定開始ボタン以外の操作ボタンを覆う開閉自在な蓋を備えてもよい。
本発明によると、糖尿病に伴う視覚、触覚に係わる合併症を発症した患者にとっても操作が容易であって、高精度な無侵襲血糖値測定装置を提供できる。
以下、図面を参照して本発明の実施の形態を説明する。理解を容易にするため、以下の図において同じ機能部分には同一の符号を付して説明する。
最初に、前記モデルの具体化について説明する。熱放散量について考えると、その主要な要因である対流熱伝達は、環境温度(室温)と体表温の間の温度差が関係し、他の主要な要因である輻射による熱放散量はシュテファン・ボルツマンの法則より体表温の4乗に比例する。従って、人体からの熱放散量には、室温と体表温が関係していることが分かる。一方、熱産生量に関係するもう一つの要因である酸素供給量は、ヘモグロビン濃度と、ヘモグロビン酸素飽和度と、血流量の積として表される。
ここで、ヘモグロビン濃度は、酸素結合型ヘモグロビンと還元(脱酸素)型ヘモグロビンのモル吸光係数が等しくなる波長(等吸光波長)の吸光度より測定できる。ヘモグロビン酸素飽和度は、上記の等吸光波長の吸光度と、酸素結合型ヘモグロビンと還元(脱酸素)型ヘモグロビンのモル吸光係数の比が既知の最低限他の1波長の吸光度を測定し、連立方程式を解くことにより測定できる。すなわち、ヘモグロビン濃度と、ヘモグロビン酸素飽和度は、最低2波長の吸光度測定によって得ることができる。
残るのは血液の流量である。血流量は種々の方法で測定することが可能であるが、その測定方法の一例について以下に説明する。
図1は、ある程度の熱容量を有する固体ブロックを体表面に一定時間接触してから離したときの、体表面からブロックへの熱移動を説明するモデル図である。ブロックの材質はプラスチック等の樹脂、例えば塩化ビニルとすることができる。ここでは、ブロックの体表面と接触した部分の温度Tの時間変化と、ブロック上の体表面から離れた位置における温度Tの時間変化に着目する。血流量は主に温度T(ブロック上の空間的に離れた点の温度)の時間変化を追跡することで推定することができる。以下に詳細を説明する。
ブロックが体表面と接触する前には、ブロックの2点の温度T,Tは室温Tに等しい。体表温Tが室温Tより高い場合、ブロックが体表面と接触すると、温度Tは皮膚からの熱移動によって速やかに上昇し、体表面温度Tに近づく。一方、温度Tは、ブロック内を伝導してきた熱がブロック表面から放熱されるため、Tよりも減衰され、かつ穏やかに上昇する。温度T,Tの時間変化は、体表面からブロックへの熱移動量に依存する。体表面からブロックへの熱移動量は、皮膚下を流れる毛細血管中の血流量に依存する。毛細血管を熱交換器とみなせば、毛細血管から周囲の細胞組織への熱伝達係数は、血流量の関数として与えられる。従って、温度T,Tの時間変化を追跡することによって、体表面からブロックへの熱移動量を測定すれば、毛細血管から細胞組織への熱伝達量を推定でき、これから血流量を推定することが出来る。従って、T,Tの温度変化を時間的に追跡することによって、体表面からブロックへの熱移動量を測定すれば、毛細血管から細胞組織への熱伝達量を推定でき、これから血流量を推定することが出来る。
図2は、ブロックにおける体表面と接触した部分の温度T、及び体表面接触位置から離れたブロック上の位置の温度Tの測定値の時間変化を示す図である。ブロックを体表面に接触させるとT測定値は速やかに立ち上がり、離すと緩やかに立ち下がる。
図3には輻射温度検出器によって測定した温度Tの測定値の時間変化を示す。温度Tとしては体表面からの輻射による温度を測定するので、他のセンサよりも温度変化に対して敏感に反応する。輻射熱は電磁波として伝播するものであるから、瞬時に温度変化を伝えることができるものである。そこで、例えば、後述する図12に示すように、輻射温度検出器を体表面からの輻射熱を検出するべくブロックと体表面接触位置の近傍に設定すれば、温度Tの変化からブロックと体表面との接触開始時刻tstart及び接触終了時刻tendを検出することができる。例えば、図3に示すように温度しきい値を設定し、温度しきい値を超えたときを接触開始時刻tstart、温度しきい値から下がったときを接触終了時刻tendとする。温度しきい値は、例えば32℃等の温度に設定する。
つづいて、時刻tstartと時刻tendの間のT測定値をS字曲線、例えばロジスティック曲線で近似する。ロジスティック曲線は温度をT、時刻をtとして、下記の式で表される。
Figure 2005230118
非線形最小二乗法により係数a,b,c,dを求めることで測定値を近似することができる。求めた近似式に対して、Tを時刻tstartから時刻tendで積分した値をSとする。
同様にして、T測定値から積分値Sを算出する。このとき、(S−S)が小さいほど、指表面からTの位置への熱移動量が大きいことを意味する。また、(S−S)は指接触時間tCONT(=tend−tstart)が長いほど大きくなる。そこで、aを比例係数として、a/(tCONT×(S−S))を血流量を示唆するパラメータXとする。
以上の説明から、前記モデルによって血中グルコース濃度を求めるために必要な測定量は、室温(環境温度)、体表面温度、体表面に接触されるブロックの温度変化、体表面からの輻射による温度及び最低限2波長の吸光度であることが分かる。
図4は、各種センサによる測定値と、それから導出されるパラメータとの関係を図示した説明図である。体表面と接触するブロックを用意し、その2箇所に設置した2個の温度センサよって2種類の温度TとTの時間変化を測定する。別途、体表面の輻射温度Tと室温Tを測定する。また、ヘモグロビンの吸収に関係する少なくとも2種類の波長で吸光度A,Aを測定する。温度T,T,T,Tから血流量に関するパラメータが得られる。温度Tから輻射伝熱量に関するパラメータが得られ、温度Tと温度Tから対流伝熱量に関するパラメータが得られる。また吸光度Aからヘモグロビン濃度に関するパラメータが得られ、吸光度AとAからヘモグロビン酸素飽和度に関するパラメータが得られる。
次に、本発明の原理に従って無侵襲血糖値測定を実現する具体的な装置構成について説明する。
図5は、本発明による無侵襲血糖値測定装置の上面図である。この装置では、体表面として指先の腹の皮膚を使うが、他の体表面を使うことも可能である。
装置上面には、操作部11、測定対象となる指が置かれる測定部12、測定結果の表示、装置の状態や測定値などを表示する表示部13が設けられている。操作部11には、装置の操作を行うための4個の押しボタン11a〜11dが配置されている。ここでボタン11dは、測定開始ボタンであり、患者が電源投入から血糖値計を測完了するために操作するボタンである。また、ボタン11a,b,cは血糖測定装置の設定や状態制御を行うための操作ボタンである。操作ボタン11a,b,cの具体的な機能としては、測定装置に日時情報を設定する機能、機器の認識番号を設定する機能、ICカードなどのデータ処理を行う機能、電源状態を管理する機能などが挙げられる。測定部12にはカバー14が設けられ、カバー14を開けると(図はカバーを開けた状態を示す)、指置きガイド36の中に楕円型の周縁を持つ指置き部15がある。指置き部15の中には、輻射温度センサ部の開口端16と接触温度センサ部17と光学センサ部18がある。
図6に、装置の操作手順を示す。操作部の測定開始ボタン11dを押して装置の電源を入れると、液晶表示器に「ウォーミングアップ」が表示され、装置内の電子回路がウォーミングアップされる。同時に、チェックプログラムが作動し、電子回路を自動的にチェックする。「ウォーミングアップ」が終了すると、液晶表示部に「測定を開始してください」が表示される。患者は、操作部の測定開始ボタン11d押して測定を開始する。その後「指を置いてください」と表示されるので、指置き部に指を置くと、液晶表示部にカウントダウンが表示される。カウントダウンが終了すると、液晶表示部に「指を離してください」と表示される。指置き部から指を離すと、液晶表示部に「データ処理中」が表示される。その後、液晶表示部に血糖値が表示される。この時点で、表示された血糖値は、日時・時間とともにICカードに記憶される。表示された血糖値を読み取ったら、操作部のボタン11dを押す。装置は、約1分後に次の測定を待つ「指を置いてください」が液晶表示部に表示された状態になる。
以上説明した通り、本発明が係わる採血を伴わず高精度に血中グルコース濃度を求める方法、及び装置よって使用者が血中グルコース濃度を測定するには、測定開始のための制御、本実施例では設けられた4つの制御ボタンの中から1つを選択して押す動作、を行わなければならない。先に述べたように、使用者である糖尿病患者は病気の進行状態に応じて種々の合併症を発症している可能性がある。例えば糖尿病性網膜障害を発症している場合、視力の低下が考えられるため測定開始ボタンを選択して押すと言う簡単な動作であっても、正確にボタンを選択することが困難である。そのため、本実施例では図7に示すように、測定開始ボタン11dに、視覚によらなくてもその機能が判別できるように他の操作ボタン11a〜11cとは異なる形状を与えるようにしている。また、図8に示すように、全ての操作ボタンを異なる形状としても、その効果は同様である。さらに、本例の場合、全ての操作ボタンが異なる形状を有するため、操作ボタンの機能と形状の対応を予め明らかにしておけば、視覚に障害を持つ使用者であっても全ての機能を操作ボタンの形状から理解し、使用することが可能になる。
一方、糖尿病性神経障害により運動神経に障害が発生しているため、たとえ視力に障害が無くても意図した場所に指先を位置決めすることが難しい場合も考えられる。このような使用者に対しても上記形状による操作ボタンの差別化が有効である。例えば、図9に示すように、使用頻度が高いボタン、例えば測定開始ボタン11dは他のボタンよりも大きくしておくことが考えられる。これにより指先を位置決めするための目標が大きくなるため容易にボタン操作が可能である。
また、糖尿病性神経障害により知覚神経に障害が発生している場合は、図10に示すように操作ボタンの機能と色を対応付ける方法が有効である。この場合、使用頻度が高いボタン、例えば測定開始ボタン11dには他の操作ボタン11a〜11cと異なる色を与えている。また、全てのボタンが異なる色を持つようにしても効果は同様である。さらに、全ての制御ボタンに異なる色と形を与えるようにしても効果は同様である。
また、図11に示すように、操作ボタンのうち使用者が操作する必要のある測定開始ボタン11d以外のボタン11a〜11cを開閉自在なボタンカバー20で覆い隠す構成も有効である。この場合、測定開始ボタン11d以外のボタンを物理的に機能しないようにできるので、上記症状を持つ患者であっても誤操作を引き起こす可能性を低減できる。
図12は測定部の詳細を示す図であり、(a)は上面図、(b)はそのXX断面図、(c)はそのYY断面図である。
最初に、本発明の無侵襲血糖値測定装置による温度測定について説明する。被検部(指の腹)が接触する部分には熱伝導率の高い材料、例えば金でできた薄いプレート21が配置され、そのプレート21に熱的に接続されたプレート21より熱伝導率の低い材料、例えばポリ塩化ビニルからなる棒状の熱伝導部材22が装置内部に伸びている。温度センサとしては、プレート21の温度を測定し、被検部に対して隣接的な温度検出器であるサーミスタ23と、プレート21から一定距離だけ離れた熱伝導部材の部分の温度を測定し、被検部に対して間接的な温度検出器であるサーミスタ24とが設けられている。指置き部15に置かれた被検部(指の腹)を見通せる装置内部の位置に赤外線レンズ25が配され、赤外線レンズ25の下方に赤外線透過窓26を介して焦電検出器27が配置されている。また、焦電検出器27に近接して別のサーミスタ28が設置されている。
このように測定部の温度センサ部は4個の温度センサを有し、次の4種類の温度を測定する。
(1) 指表面の温度(サーミスタ23):T
(2) 熱伝導部材の温度(サーミスタ24):T
(3) 指の輻射温度(焦電検出器27):T
(4) 室温(サーミスタ28):T
次に、光学センサ部18について説明する。光学センサ部は、酸素供給量を求めるために必要なヘモグロビン濃度とヘモグロビン酸素飽和度とを測定するためのものである。ヘモグロビン濃度とヘモグロビン酸素飽和度を測定するには最低2波長での吸光度測定が必要であり、図12(c)は2個の光源33,34と1個の検出器35によって2波長測定を行うための構成例を示している。
光学センサ部18には、2個の光ファイバー31,32の端部が位置する。光ファイバー31は光照射用の光ファイバーであり、光ファイバー32は受光用の光ファイバーである。図12(c)に示すように、光ファイバー31は支線となるファイバー31a,31bにつながり、それらの末端には2つの波長の発光ダイオード33,34が配されている。受光用光ファイバー32の末端には、フォトダイオード35が配されている。発光ダイオード33は波長810nmの光を出射し、発光ダイオード34は波長950nmの光を出射する。波長810nmは、酸素結合型ヘモグロビンと還元型(脱酸素)型ヘモグロビンのモル吸光係数が等しくなる等吸光波長であり、波長950nmは酸素結合型ヘモグロビンと還元型ヘモグロビンのモル吸光係数の差が大きい波長である。
2個の発光ダイオード33,34は時分割的に発光し、発光ダイオード33,34から発生された光は光照射用光ファイバー31から被検者の指に照射される。指に照射された光は、指の皮膚で反射し、受光用光ファイバー32に入射してフォトダイオード35によって検出される。指に照射された光が指の皮膚で反射されるとき、一部の光は皮膚を通して組織内部に侵入し、毛細血管を流れる血液中のヘモグロビンによる吸収を受ける。フォトダイオード35による測定データは反射率Rであり、吸光度は近似的にlog(1/R)で計算される。波長810nmと波長950nmの光について各々照射を行い、各々につきRを測定し、かつlog(1/R)を求めることにより、波長810nmの吸光度Aと波長950nmの吸光度Aが測定される。
還元型ヘモグロビン濃度を[Hb]、酸素結合型ヘモグロビン濃度を[HbO2]とすると、吸光度Aおよび吸光度Aは次式で表される。
Figure 2005230118
AHb(810nm)とAHb(950nm)、AHbO2(810nm)とAHbO2(950nm)はそれぞれ還元型ヘモグロビン、酸素結合型ヘモグロビンのモル吸光係数であり各波長で既知である。aは比例係数である。ヘモグロビン濃度[Hb]+[HbO2]、ヘモグロビン酸素飽和度[HbO2]/([Hb]+[HbO2])は上式から次のように求められる。
Figure 2005230118
なお、ここでは2波長による吸光度測定によってヘモグロビン濃度とヘモグロビン酸素飽和度を測定する例について説明したが、3波長以上で吸光度を測定することによって、妨害成分の影響を低減し測定精度を高めることも可能である。
図13は、装置内におけるデータ処理の流れを示す概念図である。本例の装置には、サーミスタ23,サーミスタ24,焦電検出器27,サーミスタ28、フォトダイオード35からなる5個のセンサがある。フォトダイオード35では波長810nmの吸光度と波長950nmの吸光度を測定するため、装置には6種類の測定値が入力されることになる。
5種類のアナログ信号は、それぞれA1〜A5の増幅器を経由して、AD1〜AD5のアナログ・デジタル変換器によってデジタル変換される。デジタル変換された値からパラメータx(i=1,2,3,4,5)が計算される。xを具体的に表記すると以下のとおりとなる。(a〜aは比例係数)
Figure 2005230118
つづいて、実際の多数の健常者及び糖尿病患者のデータから得られたパラメータxの平均値と標準偏差から正規化パラメータを算出する。各パラメータxから正規化パラメータX(i=1,2,3,4,5)を次の式で計算する。
Figure 2005230118
前述の5つの正規化パラメータをもって、最終的な表示を行うためのグルコース濃度への変換計算が行われる。処理計算に必要なプログラムは、装置に組み込まれたマイクロプロセッサに内蔵されたROMに記憶されている。また、処理計算に必要なメモリー領域は、同様に装置に組み込まれているRAMに確保される。計算処理された結果は、液晶表示部に表示される。
ROMには処理計算に必要なプログラム構成要素として、特にグルコース濃度Cを求めるための関数が入っている。この関数は以下のように定められたものである。まず、Cは以下の式(1)で表現される。ai(i=0,1,2,3,4,5)は、複数の測定データから前もって決定されている。aiを求める手順は以下のとおり。
(1)正規化パラメータとグルコース濃度Cの関係を示す重回帰式を作成する。
(2)最小二乗法によって得られた式から正規化パラメータに関する正規方程式(連立方程式)を求める。
(3)正規方程式から係数ai(i=0,1,2,3,4,5)の値を求め、重回帰式に代入する。
初めに、グルコース濃度Cと正規化パラメータX,X,X,X,Xの関係を示す次の回帰式(1)を作る。
Figure 2005230118
つづいて、酵素電極法によるグルコース濃度測定値Cとの誤差が最小になるような重回帰式を求めるため、最小二乗法を用いる。残差の二乗和をDとすると、Dは次式(2)で表される。
Figure 2005230118
残差の二乗和Dが最小になるのは、式(2)をa,a,…,aで偏微分してゼロとなるときなので、次式が得られる。
Figure 2005230118
C、X〜Xの平均値をCmean、X1mean〜X5meanとするとXimean=0(i=1〜5)であるので、式(1)から式(4)が得られる。
Figure 2005230118
また、正規化パラメータ間の変動・共変動は、式(5)で表され、正規化パラメータX(i=1〜5)とCとの共変動は式(6)で表される。
Figure 2005230118
式(4)(5)(6)を式(3)に代入して整理すると、連立方程式(正規方程式)(7)が得られ、これを解くことでa〜aが求まる。
Figure 2005230118
定数項aは、式(4)を用いて求める。以上で求めた ai(i=0,1,2,3,4,5)は装置製造時にROMに格納されている。装置による実際の測定では、測定値から求めた正規化パラメータX〜Xを回帰式(1)に代入することで、グルコース濃度Cが算出される。
以下にグルコース濃度の算出過程の具体例を示す。予め健常者及び糖尿病患者に対して測定した多数のデータから回帰式(1)の係数が決められており、マイクロプロセッサのROMには下記のグルコース濃度の算出式が格納されている。
Figure 2005230118
〜Xはパラメータx〜xを正規化したものである。パラメータの分布が正規分布であると仮定すると、正規化パラメータの95%は−2から+2の間の値をとる。
健常者の測定値の1例として、正規化パラメータX=-0.06、X=+0.04、X=+0.05、X=-0.12、X=+0.10 を上記の式に代入するとC=96mg/dlとなる。また、糖尿病患者の測定値の1例として、正規化パラメータX=+1.15、X=-1.02、X=-0.83、X=-0.91、X=-1.24 を上記の式に代入するとC=213mg/dlとなる。
従来の測定方法である、採血によって得た血液を試薬と反応させ、この反応によって発生した電子量を測定して血糖値を測定する酵素電極法による測定結果と本発明の1実施例による測定結果について以下に述べる。健常者の測定値の1例として、酵素電極法によるグルコース濃度が89mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX=-0.06、X=+0.04、X=+0.05、X=-0.12、X=+0.10 を上記の式に代入するとC=96mg/dlとなる。また、糖尿病患者の測定値の例として、酵素電極法によるグルコース濃度が238mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX=+1.15、X=-1.02、X=-0.83、X=-0.91、X=-1.24 を上記の式に代入するとC=213mg/dlとなる。上記の結果より、本発明による方法によって、高精度でグルコース濃度を求められることが確認された。
図14は、縦軸を本法によるグルコース濃度の算出値、横軸を酵素電極法によるグルコース濃度の測定値として、複数の患者に対してそれぞれの測定値をプロットした図である。本法の様に酸素供給量・血流量を測定することで良好な相関が得られる(相関係数=0.9324)。
以上説明した実施例では、血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度に関するパラメータは、血液中のヘモグロビンを分光学的に測定することにより求めた。ところで、ヘモグロビン濃度は、貧血、出血及び赤血球増加症などの症状が無い人であれば安定していること、また、ヘモグロビン濃度は男性で13〜18g/dL、女性で12〜17g/dLが正常値であり、ヘモグロビン濃度の正常値からの変化幅の範囲は5〜6%であること、前述の血糖値算出式で血流量に関する項の重みが他の項より小さいことから、定数として扱っても測定精度を大きく損なうことがない。同様に、ヘモグロビン酸素飽和度についても、大気圧下で空気呼吸を行い、安静にし、リラックスした状態であれば97〜98%で安定していることから、定数として扱うことが可能である。よってヘモグロビン濃度及びヘモグロビン酸素飽和度は定数として扱うことができ、酸素供給量はヘモグロビン濃度定数と、ヘモグロビン酸素飽和度定数と、血流量との積から求めることができる。
ヘモグロビン濃度及びヘモグロビン酸素飽和度を定数として扱うことにより、血糖値測定に用いるセンサ構成について、光学センサ等を外して簡単化することができる。また光学的測定の時間及び光学的測定結果処理の時間を略することにより、血糖値測定一連の迅速化を図ることができる。
なお、ヘモグロビン酸素飽和度については特に安静時に安定した値となることから、ヘモグロビン濃度及びヘモグロビン酸素飽和度を定数として扱えば、特に安静時の血糖値測定において測定精度を高め、かつ血糖値測定一連の迅速化を図ることができる。ここで、安静時とは、椅子に座ったり体を横たえたりすることにより体を殆ど動かさない状態で、5分程度経過した時のことをいう。
以下、血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度を定数として扱う実施例について説明する。本実施例は、血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度を定数として扱う点以外は、上記実施例と同様であるため、ここでは主として前述の実施例と異なる点について説明する。
本実施例は、図4の説明図におけるヘモグロビン濃度とヘモグロビン酸素飽和度を測定することなく、定数として扱うものである。従って、本実施例の測定部は、図15に示すように、図12に示した前述の実施例の測定部から光源34,35、フォトダイオード35及び光ファイバー31,32を除去した構造とする。なお、操作部11に設ける操作ボタン11a〜11dは、図7から図11を用いて説明したように、測定開始ボタン11dの形状、色彩、大きさを他の操作ボタン11a〜11cとは変えて、使用者が操作する測定開始ボタン11dを他のボタンから容易に区別できるようにする。あるいは、測定開始ボタン11d以外の操作ボタン11a〜11cをカバー等で隠して、通常は測定開始ボタン11dだけを操作可能な状態としておく。
本実施例で使用するパラメータは熱輻射に比例したパラメータx、熱対流に比例したパラメータx、及び酸素供給量に比例したパラメータx(以下では、酸素供給量に比例したパラメータをxと表記する)であり、これらのパラメータから前述のようにして正規化パラメータを算出し、その3個の正規化パラメータX(i=1,2,3)をもとにグルコース濃度を演算する。データ処理においては、前述の実施例では必要であった「光学計測データから正規化パラメータへの変換処理」(図13参照)を省略できる。
図16は、本実施例による装置の機能ブロック図を示す図である。この装置はバッテリー41で駆動される。温度センサで構成されるセンサ部43で測定した信号は各々の信号に対応して設置されるアナログ・デジタル変換器44(アナログ・デジタル変換器AD1〜AD4)へ入りデジタル信号へ変換される。マイクロプロセッサ45の周辺回路としては、アナログ・デジタル変換器AD1〜AD4、液晶表示器13、RAM42があり、これらは各バスライン46を介してマイクロプロセッサ45からアクセスされる。また、押しボタン11a〜11dはそれぞれマイクロプロセッサ45と接続されている。マイクロプロセッサ45はソフトウェアを格納するROMを内蔵している。またマイクロプロセッサ45は、ボタン11a〜11dを押すことによって、外部からの指令を受けることができる。
マイクロプロセッサ45に内蔵されたROM47は、処理計算に必要なプログラムを記憶する。すなわち、演算部の機能を有する。マイクロプロセッサ45はさらに、ヘモグロビン濃度の定数を格納するヘモグロビン濃度定数格納部48と、ヘモグロビン酸素飽和度の定数を格納するヘモグロビン酸素飽和度定数格納部49を内蔵している。計算プログラムは指の測定終了後、ヘモグロビン定数格納部48およびヘモグロビン酸素飽和度定数格納部49から最適定数を呼び出して計算する。また、処理計算に必要なメモリー領域は、同様に装置に組み込まれているRAM42に確保される。計算処理された結果は、液晶表示部に表示される。
ROMには処理計算に必要なプログラム構成要素として、特にグルコース濃度Cを求めるための関数が入っている。この関数は以下のように定められたものである。まず、Cは以下の式(8)で表現される。ai(i=0,1,2,3)は、複数の測定データから前もって決定されている。aiを求める手順は以下のとおり。
(1)正規化パラメータとグルコース濃度Cの関係を示す重回帰式を作成する。
(2)最小二乗法によって得られた式から正規化パラメータに関する正規方程式(連立方程式)を求める。
(3)正規方程式から係数ai(i=0,1,2,3)の値を求め、重回帰式に代入する。
初めに、グルコース濃度Cと正規化パラメータX,X,Xの関係を示す次の回帰式(8)を作る。
Figure 2005230118
つづいて、酵素電極法によるグルコース濃度測定値Cとの誤差が最小になるような重回帰式を求めるため、最小二乗法を用いる。残差の二乗和をDとすると、Dは次式(9)で表される。
Figure 2005230118
残差の二乗和Dが最小になるのは、式(9)をa〜aで偏微分してゼロとなるときなので、次式が得られる。
Figure 2005230118
C、X〜Xの平均値をそれぞれCmean、X1mean〜X3meanとするとXimean=0(i=1〜3)であるので、式(8)から式(11)が得られる。
Figure 2005230118
また、正規化パラメータ間の変動・共変動は、式(12)で表され、正規化パラメータX(i=1〜3)とCとの共変動は式(13)で表される。
Figure 2005230118
式(11)(12)(13)を式(10)に代入して整理すると、連立方程式(正規方程式)(14)が得られ、これを解くことでa〜aが求まる。
Figure 2005230118
定数項aは、式(11)を用いて求める。以上で求めた ai(i=0,1,2,3)は装置製造時にROMに格納されている。装置による実際の測定では、測定値から求めた正規化パラメータX〜Xを回帰式(8)に代入することで、グルコース濃度Cが算出される。
以下にグルコース濃度の算出過程の具体例を示す。予め健常者および糖尿病患者に対して測定した多数のデータから回帰式(8)の係数が決められており、マイクロプロセッサのROMには下記のグルコース濃度の算出式が格納されている。
Figure 2005230118
〜Xはパラメータx〜xを正規化したものである。パラメータの分布が正規分布であると仮定すると、正規化パラメータの95%は−2から+2の間の値をとる。
健常者の測定値の1例として、正規化パラメータX=-0.06、X=+0.04、X=+0.10 を上記の式に代入するとC=101mg/dlとなる。また、糖尿病患者の測定値の1例として、正規化パラメータX=+1.35、X=-1.22、X=-1.24 を上記の式に代入するとC=181mg/dlとなる。なお、上記の式ではヘモグロビン濃度を15g/dL、ヘモグロビン酸素飽和度を97%として定数化した。
従来の測定方法である、採血によって得た血液を試薬と反応させ、この反応によって発生した電子量を測定して血糖値を測定する酵素電極法による測定結果と本発明の1実施例による測定結果について以下に述べる。健常者の測定値の1例として、酵素電極法によるグルコース濃度が93mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX=-0.06、X=+0.04、X=+0.10 を上記の式に代入するとC=101mg/dlとなる。また、糖尿病患者の測定値の例として、酵素電極法によるグルコース濃度が208mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX=+1.35、X=-1.22、X=-1.24 を上記の式に代入するとC=181mg/dlとなる。この計算結果は約13%の誤差を示しているが、一般に血糖測定のための装置は通常15〜20%の誤差は許容されるものとして扱われているため、このレベルの精度であれば十分な精度と考えられる。上記の結果より、本発明による方法によって、高精度でグルコース濃度を求められることが確認された。
図17は、縦軸を本法によるグルコース濃度の算出値、横軸を酵素電極法によるグルコース濃度の測定値として、複数の患者に対してそれぞれの測定値をプロットした図である。本法の様に測定することで良好な相関が得られる(相関係数=0.8932)。
体表面からブロックへの熱移動を説明するモデル図。 温度T及び温度Tの測定値の時間変化を示す図。 温度Tの時間変化の測定例。 各種センサによる測定値と、それから導出されるパラメータとの関係を図示した説明図。 本発明による無侵襲血糖値測定装置の上面図。 装置の操作手順を示す図。 本発明による無侵襲血糖値測定装置の他の例を示す上面図。 本発明による無侵襲血糖値測定装置の他の例を示す上面図。 本発明による無侵襲血糖値測定装置の他の例を示す上面図。 本発明による無侵襲血糖値測定装置の他の例を示す上面図。 本発明による無侵襲血糖値測定装置の他の例を示す上面図。 測定部の詳細図。 装置内におけるデータ処理の流れを示す概念図。 本発明によるグルコース濃度算出値及び酵素電極法によるグルコース濃度測定値のプロット図。 測定部の他の例を示す詳細図。 装置内におけるデータ保管場所を示す概念図。 本発明によるグルコース濃度算出値と酵素電極法によるグルコース濃度測定値のプロット図。
符号の説明
11…操作部、11d…測定開始ボタン、12…測定部、13…表示部、15…指置き部、16…輻射温度センサ部の開口端、17…接触温度センサ部、18…光学センサ部、21…プレート、22…熱伝導部材、23…サーミスタ、24…サーミスタ、25…赤外線レンズ、26…赤外線透過窓、27…焦電検出器、28…サーミスタ、31,32…光ファイバー、33,34…光源、35…フォトダイオード

Claims (15)

  1. 体表面に由来する複数の温度を測定し、前記体表面からの熱放散に関する対流伝熱量と輻射伝熱量との算出に用いる情報を得る熱量測定部と、
    血中酸素量に関する情報を得る酸素量測定部と、
    前記複数の温度及び前記血中酸素量に各々対応するパラメータと血糖値との関係を記憶した記憶部と、
    前記熱量測定部及び前記酸素量測定部から入力される複数の測定値を前記パラメータへ各々変換し、前記パラメータを前記記憶部に記憶した前記関係に適用して血糖値を演算する演算部と、
    前記演算部によって算出された血糖値を表示する表示部と、
    測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備え、
    前記血流量測定部は、体表面接触部と、前記体表面接触部に隣接して設けられた隣接温度検出器と、前記体表面接触部から離れた位置の温度を検出する間接温度検出器と、前記体表面接触部と前記間接温度検出器とをつなげる熱伝導部材を有することを特徴とする血糖値測定装置。
  2. 請求項1記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる形状を有することを特徴とする血糖値測定装置。
  3. 請求項1記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる色を有することを特徴とする血糖値測定装置。
  4. 請求項1記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンより大きな形状を有することを特徴とする血糖値測定装置。
  5. 請求項1記載の血糖値測定装置において、前記測定開始ボタン以外の操作ボタンを覆う開閉自在な蓋を備えることを特徴とする血糖値測定装置。
  6. 環境温度を測定する環境温度測定器と、
    体表面が接触する体表面接触部と、
    前記体表面接触部に隣接して設けられた隣接温度検出器と、
    前記体表面からの輻射熱を測定する輻射熱検出器と、
    前記体表面接触部に接して設けられる熱伝導部材と、
    前記熱伝導部材に隣接しかつ前記体表面接触部から離れた位置に設けられ、前記体表面接触部から離れた位置の温度を検出する間接温度検出器と、
    前記体表面接触部に向けて少なくとも2つの異なる波長の光を照射する光源と、
    前記光が前記体表面で反射されて生じる反射光を検出する光検出器と、
    前記隣接温度検出器、前記間接温度検出器、前記環境温度測定器、前記輻射熱検出器及び前記光検出器各々の出力を各々パラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、
    前記演算部から出力される血糖値を表示する表示部と、
    測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備えることを特徴とする血糖値測定装置。
  7. 請求項6記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる形状を有することを特徴とする血糖値測定装置。
  8. 請求項6記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる色を有することを特徴とする血糖値測定装置。
  9. 請求項6記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンより大きな形状を有することを特徴とする血糖値測定装置。
  10. 請求項6記載の血糖値測定装置において、前記測定開始ボタン以外の操作ボタンを覆う開閉自在な蓋を備えることを特徴とする血糖値測定装置。
  11. 環境温度を測定する環境温度測定器と、
    体表面が接触する体表面接触部と、
    前記体表面接触部に隣接して設けられた隣接温度検出器と、
    前記体表面からの輻射熱を測定する輻射熱検出器と、
    前記体表面接触部に接して設けられる熱伝導部材と、
    前記熱伝導部材に隣接しかつ前記体表面接触部から離れた位置に設けられ、前記体表面接触部から離れた位置の温度を検出する間接温度検出器と、
    血中のヘモグロビン濃度とヘモグロビン酸素飽和度に関する情報を記憶した記憶部と、
    前記隣接温度検出器、前記間接温度検出器、前記環境温度測定器、前記輻射熱検出器の出力を複数のパラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、
    前記演算部から出力される血糖値を表示する表示部と、
    測定の開始を指示する測定開始ボタンと測定開始の指示以外の制御を行う制御ボタンとからなる複数の操作ボタンとを備えることを特徴とする血糖値測定装置。
  12. 請求項11記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる形状を有することを特徴とする血糖値測定装置。
  13. 請求項11記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンとは異なる色を有することを特徴とする血糖値測定装置。
  14. 請求項11記載の血糖値測定装置において、前記測定開始ボタンは他の操作ボタンより大きな形状を有することを特徴とする血糖値測定装置。
  15. 請求項11記載の血糖値測定装置において、前記測定開始ボタン以外の操作ボタンを覆う開閉自在な蓋を備えることを特徴とする血糖値測定装置。
JP2004040380A 2004-02-17 2004-02-17 血糖値測定装置 Expired - Fee Related JP3557424B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004040380A JP3557424B1 (ja) 2004-02-17 2004-02-17 血糖値測定装置
EP04007359A EP1563786A1 (en) 2004-02-17 2004-03-26 Blood sugar level measuring apparatus
CNB2004100316509A CN1321613C (zh) 2004-02-17 2004-03-31 血糖值测定装置
US10/813,241 US7251515B2 (en) 2004-02-17 2004-03-31 Blood sugar level measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040380A JP3557424B1 (ja) 2004-02-17 2004-02-17 血糖値測定装置

Publications (2)

Publication Number Publication Date
JP3557424B1 JP3557424B1 (ja) 2004-08-25
JP2005230118A true JP2005230118A (ja) 2005-09-02

Family

ID=32959782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040380A Expired - Fee Related JP3557424B1 (ja) 2004-02-17 2004-02-17 血糖値測定装置

Country Status (4)

Country Link
US (1) US7251515B2 (ja)
EP (1) EP1563786A1 (ja)
JP (1) JP3557424B1 (ja)
CN (1) CN1321613C (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
DE602004028463D1 (de) 2003-05-30 2010-09-16 Pelikan Technologies Inc Verfahren und vorrichtung zur injektion von flüssigkeit
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc METHOD AND APPARATUS PROVIDING A VARIABLE USER INTERFACE
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
JP3590053B1 (ja) * 2004-02-24 2004-11-17 株式会社日立製作所 血糖値測定装置
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
JP2006115947A (ja) * 2004-10-19 2006-05-11 Hitachi Ltd 血糖値測定装置
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8044772B1 (en) 2005-06-10 2011-10-25 Kevin Roe Expert system assistance for persons in danger
CN100399987C (zh) * 2006-04-03 2008-07-09 何宗彦 动态检测机体参数的医用检测分析仪
EP2088425B1 (en) * 2006-11-30 2019-10-16 PHC Holdings Corporation Blood test device
IL197532A0 (en) * 2008-03-21 2009-12-24 Lifescan Scotland Ltd Analyte testing method and system
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20120253147A1 (en) * 2011-03-31 2012-10-04 General Electric Company Calibration method and arrangement and sensor for non-invasively measuring blood characteristics of a subject
KR102335739B1 (ko) 2014-12-19 2021-12-06 삼성전자주식회사 비 침습적 혈당 측정 방법 및 이를 위한 장치
CN108354614A (zh) * 2017-01-26 2018-08-03 李韦辰 血糖检测方法、血糖检测校正方法及血糖检测装置
WO2020017028A1 (ja) * 2018-07-20 2020-01-23 桐生電子開発合同会社 非破壊検査装置
CN109692009A (zh) * 2018-12-29 2019-04-30 佛山科学技术学院 人眼毛细血管血氧测量装置及方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306569A (en) * 1979-10-10 1981-12-22 Institute Of Critical Care Medicine Apparatus and method for assessing the condition of critically ill patients
US4333803A (en) * 1980-10-03 1982-06-08 Aluminum Company Of America Method and apparatus for controlling the heat balance in aluminum reduction cells
US4750140A (en) * 1984-11-30 1988-06-07 Kawasaki Steel Corporation Method of and apparatus for determining glossiness of surface of a body
IL79541A (en) * 1986-07-29 1991-01-31 Jerusalem College Tech Method for carrying out blood flow measurements and a probe therefor
CA2010165A1 (en) * 1989-03-13 1990-09-13 Richard L. Hurtle Compact semi-programmable device for reading reagent test strips and method relating thereto
CA2028261C (en) * 1989-10-28 1995-01-17 Won Suck Yang Non-invasive method and apparatus for measuring blood glucose concentration
JPH0771945A (ja) 1992-08-07 1995-03-17 Kao Corp 表面性状測定方法及びその装置
IL107396A (en) * 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
JPH06317566A (ja) 1993-05-06 1994-11-15 Hitachi Ltd 光音響分析方法および装置並びにこれを利用した血液成分測定装置
DE4342105A1 (de) * 1993-12-12 1995-06-14 Cho Ok Kyung Verfahren und Vorrichtung zur noninvasiven Bestimmung der Konzentration der Glucose in Teilen des menschlichen Körpers, inbesondere im menschlichen Blut, unter Durchführung höchstgenauer Temperaturmessungen des menschlichen Körpers
DE4423663A1 (de) * 1994-07-06 1996-01-11 Med Science Gmbh Verfahren und Vorrichtung zur Erfassung von Wärmewechselwirkungen zwischen dem menschlichen Körper und der erfindungsgemäßen Vorrichtung und deren Korrelation mit der Glucosekonzentration im menschlichen Blut
JP3859746B2 (ja) 1995-05-31 2006-12-20 株式会社島津製作所 光吸収体の光学的測定装置
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US6240306B1 (en) * 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US5769784A (en) * 1995-11-27 1998-06-23 Hill-Rom, Inc. Skin perfusion evaluation apparatus and method
US5803915A (en) 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US5725480A (en) 1996-03-06 1998-03-10 Abbott Laboratories Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds
JPH1033512A (ja) 1996-07-26 1998-02-10 Hitachi Ltd 無侵襲生化学計測装置
US5732711A (en) * 1996-08-27 1998-03-31 Air-Shields, Inc. Body function measuring apparatus
JPH10108857A (ja) 1996-10-04 1998-04-28 Hitachi Ltd 生化学計測装置
US6269314B1 (en) * 1997-08-19 2001-07-31 Omron Corporation Blood sugar measuring device
MXPA00004120A (es) * 1997-10-31 2004-12-02 Technical Chemicals & Products Reflectometro.
JPH11155840A (ja) 1997-11-27 1999-06-15 Matsushita Electric Ind Co Ltd 血糖計
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
JPH11230901A (ja) 1998-02-09 1999-08-27 Shimadzu Corp 光反射計測装置
JPH11318872A (ja) 1998-05-18 1999-11-24 Matsushita Electric Ind Co Ltd 糖尿病判断機能付き血糖計
JP2000037355A (ja) * 1998-07-24 2000-02-08 Fuji Photo Film Co Ltd グルコース濃度測定方法および装置
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
JP2000074829A (ja) 1998-09-02 2000-03-14 Mitsui Chemicals Inc グルコースセンサー
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
US6353226B1 (en) * 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US6280381B1 (en) * 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
JP2002535023A (ja) 1999-01-22 2002-10-22 インストルメンテーション メトリックス インコーポレイテッド 非侵襲的血液分析測定のためのシステムおよび方法
JP2000258343A (ja) 1999-03-12 2000-09-22 Mitsui Mining & Smelting Co Ltd 血糖値測定方法及びその装置
EP1223854A1 (en) 1999-10-15 2002-07-24 Abbott Laboratories Method for modulating light penetration depth in tissue and diagnostic applications using same
WO2001028414A2 (de) * 1999-10-20 2001-04-26 Kaufmann-Kim, Yun-Oak Vorrichtung zur noninvasiven bestimmung der konzentration von bestandteilen im blut
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
AU2002355272A1 (en) 2001-07-25 2003-02-17 Argose, Inc. Adjunct quantitative system and method for non-invasive measurement of in vivo analytes
US6923571B2 (en) 2002-02-08 2005-08-02 Compliance Laboratories, L.L.C. Temperature-based sensing device for detecting presence of body part
JP3566276B1 (ja) * 2003-05-07 2004-09-15 株式会社日立製作所 血糖値測定装置

Also Published As

Publication number Publication date
EP1563786A1 (en) 2005-08-17
CN1321613C (zh) 2007-06-20
US20050182310A1 (en) 2005-08-18
JP3557424B1 (ja) 2004-08-25
CN1657005A (zh) 2005-08-24
US7251515B2 (en) 2007-07-31

Similar Documents

Publication Publication Date Title
JP3557424B1 (ja) 血糖値測定装置
JP3590054B1 (ja) 血糖値測定装置
JP3590053B1 (ja) 血糖値測定装置
JP3566276B1 (ja) 血糖値測定装置
JP3557425B1 (ja) 血糖値測定装置
JP3612324B1 (ja) 血糖値表示方法及び装置
JP3566277B1 (ja) 血糖値測定装置
US7156810B2 (en) Blood sugar level measuring method and apparatus
US7215983B2 (en) Blood sugar level measuring apparatus
US20060015022A1 (en) Blood sugar level measuring apparatus
JP2006115948A (ja) 血糖値測定装置
JP3884036B2 (ja) 血糖値測定装置
JP3868963B2 (ja) 血糖値測定装置
JP2006094992A (ja) 血糖値測定装置及び血糖値測定方法
JP3590049B1 (ja) 血糖値測定装置
JP3874743B2 (ja) 温度測定装置
EP1649808A1 (en) Blood sugar level measuring apparatus
JP3623498B6 (ja) 血糖値測定装置
JP3623500B6 (ja) 血糖値測定システム及び血糖値測定装置
JP3623500B1 (ja) 血糖値測定システム及び血糖値測定装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees