JP3874743B2 - 温度測定装置 - Google Patents

温度測定装置 Download PDF

Info

Publication number
JP3874743B2
JP3874743B2 JP2003182142A JP2003182142A JP3874743B2 JP 3874743 B2 JP3874743 B2 JP 3874743B2 JP 2003182142 A JP2003182142 A JP 2003182142A JP 2003182142 A JP2003182142 A JP 2003182142A JP 3874743 B2 JP3874743 B2 JP 3874743B2
Authority
JP
Japan
Prior art keywords
temperature
body surface
blood
measurement
hemoglobin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003182142A
Other languages
English (en)
Other versions
JP2004329854A (ja
Inventor
チョウ,オク−キョング
キム,ヨン−オク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003182142A priority Critical patent/JP3874743B2/ja
Publication of JP2004329854A publication Critical patent/JP2004329854A/ja
Application granted granted Critical
Publication of JP3874743B2 publication Critical patent/JP3874743B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、採血せずに生体中のグルコース濃度を測定する無侵襲血糖値測定方法及び装置に関する。
【0002】
【従来の技術】
Hilsonらは、糖尿病患者にグルコースを静脈注射すると、その後に顔面及び舌下温度が変化することを報告している(非特許文献1)。Scottらは、糖尿病患者と体温調節の問題を論じている(非特許文献2)。これらの研究知見に基づき、Choらは、採血を伴わずに、温度測定によって血中グルコース濃度を求める方法及び装置を提案している(特許文献1,2)。
【0003】
また、採血を伴わないグルコース濃度の算出に関してはさらに様々な試みがなされている。例えば、測定部位へ3つの波長の近赤外光を照射して透過光強度を検出するとともに生体温度を検出し、吸光度の2次微分値の代表値を求め、予め定めた基準温度からの生体温度のずれに対応して上記代表値を補正し、補正された代表値に相当する血糖濃度を求める方法が提案されている(特許文献3)。また、測定部位において生体温度をモニタしながら加熱もしくは冷却を行い、温度が変化する瞬間に光照射に基づく減光度を測定して、減光度の温度依存性の原因となっているグルコース濃度を測定する装置が提供されている(特許文献4)。また、参照光と試料に照射した後の透過光との出力比を取り、出力比の対数と生体の温度との1次式からグルコース濃度を算出する装置が報告されている(特許文献5)。
【0004】
【非特許文献1】
Diabete & Metabolisme, "Facial and sublingual temperature changes following intravenous glucose injection in diabetics" by R.M. Hilson and T.D.R. Hockaday, 1982, 8, 15-19
【非特許文献2】
Can. J. Physiol. Pharmacol., "Diabetes mellitus and thermoregulation", by A.R. Scott, T. Bennett, I.A. MacDonald, 1987, 65, 1365-1376
【特許文献1】
米国特許第5,924,996号公報
【特許文献2】
米国特許第5,795,305号公報
【特許文献3】
特開2000−258343号公報
【特許文献4】
特開平10−33512号公報
【特許文献5】
特開平10−108857号公報
【0005】
【発明が解決しようとする課題】
血液中のグルコース(血糖)は細胞内でグルコース酸化反応に使われ、生体の維持に必要なエネルギーを産生する。特に基礎代謝の状態においては、産生されたエネルギーの大部分は体温を維持するための熱エネルギーとなるのであるから、血中グルコース濃度と体温との間には何らかの関係があることは予想されるところではある。しかし、病気による発熱を考えれば明らかなように、体温は血中グルコース濃度以外の要因によっても変動する。従来、採血を伴わずに温度測定によって血中グルコース濃度を求める方法が提案されてはいたが、十分な精度を有するものとは言い難かった。
【0006】
本発明は、被験者の温度データをもとに採血を伴わずに高精度で血中グルコース濃度を求める方法及び装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
血糖は、血管系、特に毛細血管によって全身の細胞に供給されている。ヒトの体内には複雑な代謝経路が存在するが、グルコース酸化は、根源的には血糖と酸素が反応し、水と二酸化酸素とエネルギーを産生する反応である。ここでいう酸素とは血液から細胞へ供給される酸素であり、酸素供給量は血液中のヘモグロビン濃度と、ヘモグロビン酸素飽和度と、血流量によって決まる。一方、グルコース酸化によって体内で産生した熱は、対流、熱輻射、伝導等の形で体から奪われる。我々は、体温は体内でのグルコース燃焼によるエネルギー産生量、すなわち熱産生とこれら熱放散のバランスによって決まると考え、次のようなモデルを考えた。
(1) 熱産生量と熱放散量とは同等視される。
(2) 熱産生量は、血中グルコース濃度と酸素供給量の関数である。
(3) 酸素供給量は、血中ヘモグロビン濃度と、血中ヘモグロビン酸素飽和度と、毛細血管内の血流量によって決まる。
(4) 熱放散量は、主に熱対流と熱輻射とによって決まる。
【0008】
このモデルに従い、体表を熱測定し、同時に血液中の酸素濃度に関するパラメータ及び血流量に関するパラメータを測定し、これらの測定結果を用いて血糖値を高精度に求めることができることを見出し、本発明を完成した。一例として、上記パラメータを求めるための測定は、ヒトの体の一部、例えば指先を測定対象として行うことができる。対流と輻射に関するパラメータは指先を熱測定することにより求めることができる。血中ヘモグロビン濃度および血中ヘモグロビン酸素飽和度に関するパラメータは、血液中のヘモグロビンを分光学的に測定し、酸素と結合しているヘモグロビンと結合していないヘモグロビンの比率により求めることができる。血流量に関するパラメータは、皮膚からの熱移動量を測定することにより求めることができる。
【0009】
本発明による血糖値測定装置は、一例として、体表面に由来する複数の温度を測定し、体表面からの熱放散に関する対流伝熱量と輻射伝熱量との算出に用いる情報を得る熱量測定部と、血中酸素量に関する情報を得る酸素量測定部と、前記複数の温度及び前記血中酸素量に各々対応するパラメータと血糖値との関係を記憶した記憶部と、熱量測定部及び酸素量測定部から入力される複数の測定値を前記パラメータへ各々変換し、それを記憶部に記憶した関係に適用して血糖値を演算する演算部と、演算部によって算出された血糖値を表示する表示部とを備える。ここで、熱量測定部は、環境温度を測定する環境温度検出器と体表面からの輻射熱を測定する輻射温度検出器とを有するものであってもよい。また、酸素量測定部は、血流量に関する情報を得る血流量測定部と、血中のヘモグロビン濃度、ヘモグロビン酸素飽和度を得る光学測定部とを有するものであってもよい。
【0010】
本発明による血糖値測定装置の他の構成例では、体表面から複数の温度を測定する温度測定部と、温度測定部での測定結果を用いて血流量に関する情報を得る血流量測定部と、血流量測定部での測定結果を用いて血中酸素量を求める酸素量測定部と、前記複数の温度、血中酸素量、及び血流量に各々対応するパラメータと、血糖値との関係を記憶した記憶部と、温度測定部、血流量測定部及び酸素量測定部から入力される測定値を前記パラメータに変換し、それを記憶部に記憶した関係に適用して血糖値を演算する演算部と、演算部によって演算された血糖値を表示する表示部とを備える。
【0011】
本発明による血糖値測定装置は、他の構成例として、環境温度を測定する環境温度測定器と、体表面が接触する体表面接触部と、体表面からの輻射熱を測定する輻射熱検出器と、体表面接触部に接して設けられる熱伝導部材と、熱伝導部材に隣接しかつ体表面接触部から離れた位置に設けられ、体表面接触部から離れた位置の温度を検出する間接温度検出器と、体表面接触部に向けて少なくとも2つの異なる波長の光を照射する光源と、前記光が前記体表面で反射されて生じる反射光を検出する光検出器と、間接温度検出器、環境温度測定器、輻射熱検出器及び光検出器各々の出力を各々パラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、演算部から出力される血糖値を表示する表示部とを備える。
【0012】
本発明による血糖値測定装置の更に他の構成例では、環境温度を測定する環境温度測定器と、体表面が接触する体表面接触部と、体表面接触部の第1の領域に接して設けられる熱伝導部材と、熱伝導部材に隣接しかつ体表面接触部から離れた位置に設けられ、体表面接触部から離れた位置の温度を検出する間接温度検出器と、体表面接触部の第2の領域に接し、かつ一端が開口する筒状部材と、筒状部材の他端の近傍に設けられ、体表面からの輻射熱を測定する輻射熱検出器と、筒状部材の前記一端に向けて、少なくとも2つの異なる波長の光を照射する光源と、前記光が体表面で反射されて生じる反射光を検出する光検出器と、間接温度検出器、環境温度測定器、輻射熱検出器及び光検出器各々の出力を各々パラメータに変換する変換部と、前記パラメータと血糖値との関係を予め記憶し、前記パラメータを前記関係に適用して血糖値を算出する処理部とを有する演算部と、演算部から出力される血糖値を表示する表示部とを備える。
【0013】
本発明によると、無侵襲測定でありながら従来の侵襲法と変わらない精度で血糖値を求めることが可能になる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0015】
最初に、前記モデルの具体化について説明する。熱放散量について考えると、その主要な要因である対流熱伝達は、環境温度(室温)と体表温の間の温度差が関係し、他の主要な要因である輻射による熱放散量はシュテファン・ボルツマンの法則より体表温の4乗に比例する。従って、人体からの熱放散量には、室温と体表温が関係していることが分かる。一方、熱産生量に関係するもう一つの要因である酸素供給量は、ヘモグロビン濃度と、ヘモグロビン酸素飽和度と、血流量の積として表される。
【0016】
ここで、ヘモグロビン濃度は、酸素結合型ヘモグロビンと還元(脱酸素)型ヘモグロビンのモル吸光係数が等しくなる波長(等吸光波長)の吸光度より測定できる。ヘモグロビン酸素飽和度は、上記の等吸光波長の吸光度と、酸素結合型ヘモグロビンと還元(脱酸素)型ヘモグロビンのモル吸光係数の比が既知の最低限他の1波長の吸光度を測定し、連立方程式を解くことにより測定できる。すなわち、ヘモグロビン濃度と、ヘモグロビン酸素飽和度は、最低2波長の吸光度測定によって得ることができる。
【0017】
残るのは血液の流量である。血流量は種々の方法で測定することが可能であるが、その測定方法の一例について以下に説明する。
【0018】
図1は、ある程度の熱容量を有する固体ブロックを体表面に一定時間接触してから離したときの、体表面からブロックへの熱移動を説明するモデル図である。ブロックの材質はプラスチック等の樹脂、例えば塩化ビニルとすることができる。ここでは、ブロックの体表面と接触した部分の温度T1の時間変化と、ブロック上の体表面から離れた位置における温度T2の時間変化に着目する。血流量は主に温度T2(ブロック上の空間的に離れた点の温度)の時間変化を追跡することで推定することができる。以下に詳細を説明する。
【0019】
ブロックが体表面と接触する前には、ブロックの2点の温度T1,T2は室温Trに等しい。体表温Tsが室温Trより高い場合、ブロックが体表面と接触すると、温度T1は皮膚からの熱移動によって速やかに上昇し、体表面温度Tsに近づく。一方、温度T2は、ブロック内を伝導してきた熱がブロック表面から放熱されるため、T1よりも減衰され、かつ穏やかに上昇する。温度T1,T2の時間変化は、体表面からブロックへの熱移動量に依存する。体表面からブロックへの熱移動量は、皮膚下を流れる毛細血管中の血流量に依存する。毛細血管を熱交換器とみなせば、毛細血管から周囲の細胞組織への熱伝達係数は、血流量の関数として与えられる。従って、温度T1,T2の時間変化を追跡することによって、体表面からブロックへの熱移動量を測定すれば、毛細血管から細胞組織への熱伝達量を推定でき、これから血流量を推定することが出来る。従って、T1,T2の温度変化を時間的に追跡することによって、体表面からブロックへの熱移動量を測定すれば、毛細血管から細胞組織への熱伝達量を推定でき、これから血流量を推定することが出来る。
【0020】
図2は、ブロックにおける体表面と接触した部分の温度T1、および体表面接触位置から離れたブロック上の位置の温度T2の測定値の時間変化を示す図である。ブロックを体表面に接触させるとT1測定値は速やかに立ち上がり、離すと緩やかに立ち下がる。
【0021】
図3には輻射温度検出器によって測定した温度T3の測定値の時間変化を示す。温度T3としては体表面からの輻射による温度を測定するので、他のセンサよりも温度変化に対して敏感に反応する。輻射熱は電磁波として伝播するものであるから、瞬時に温度変化を伝えることができるものである。そこで、例えば、後述する図7に示すように、輻射温度検出器を体表面からの輻射熱を検出するべくブロックと体表面接触位置の近傍に設定すれば、温度T3の変化からブロックと体表面との接触開始時刻tstartおよび接触終了時刻tendを検出することができる。例えば、図3に示すように温度しきい値を設定し、温度しきい値を超えたときを接触開始時刻tstart、温度しきい値から下がったときを接触終了時刻tendとする。温度しきい値は、例えば32℃等の温度に設定する。
【0022】
つづいて、時刻tstartと時刻tendの間のT1測定値をS字曲線、例えばロジスティック曲線で近似する。ロジスティック曲線は温度をT、時刻をtとして、下記の式で表される。
【0023】
【数1】
Figure 0003874743
【0024】
非線形最小二乗法により係数a,b,c,dを求めることで測定値を近似することができる。求めた近似式に対して、Tを時刻tstartから時刻tendで積分した値をS1とする。
【0025】
同様にして、T2測定値から積分値S2を算出する。このとき、(S1−S2)が小さいほど、指表面からT2の位置への熱移動量が大きいことを意味する。また、(S1−S2)は指接触時間tCONT(=tend−tstart)が長いほど大きくなる。そこで、a5を比例係数として、a5/(tCONT×(S1−S2))を血流量を示唆するパラメータX5とする。
【0026】
以上の説明から、前記モデルによって血中グルコース濃度を求めるために必要な測定量は、室温(環境温度)、体表面温度、体表面に接触されるブロックの温度変化、体表面からの輻射による温度及び最低限2波長の吸光度であることが分かる。
【0027】
図4は、各種センサによる測定値と、それから導出されるパラメータとの関係を図示した説明図である。体表面と接触するブロックを用意し、その2箇所に設置した2個の温度センサよって2種類の温度T1とT2の時間変化を測定する。別途、体表面の輻射温度T3と室温T4を測定する。また、ヘモグロビンの吸収に関係する少なくとも2種類の波長で吸光度A1,A2を測定する。温度T1,T2,T3,T4から血流量に関するパラメータが得られる。温度T3から輻射伝熱量に関するパラメータが得られ、温度T3と温度T4から対流伝熱量に関するパラメータが得られる。また吸光度A1からヘモグロビン濃度に関するパラメータが得られ、吸光度A1とA2からヘモグロビン酸素飽和度に関するパラメータが得られる。
【0028】
次に、本発明の原理に従って無侵襲血糖値測定を実現する具体的な装置構成について説明する。
【0029】
図5は、本発明による無侵襲血糖値測定装置の上面図である。この装置では、体表面として指先の腹の皮膚を使うが、他の体表面を使うことも可能である。
【0030】
装置上面には、操作部11、測定対象となる指が置かれる測定部12、測定結果の表示、装置の状態や測定値などを表示する表示部13が設けられている。操作部11には、装置の操作を行うための4個の押しボタン11a〜11dが配置されている。測定部12にはカバー14が設けられ、カバー14を開けると(図はカバーを開けた状態を示す)、楕円型の周縁を持つ指置き部15がある。指置き部15の中には、輻射温度センサ部の開口端 16と接触温度センサ部17と光学センサ部18がある。
【0031】
図6に、装置の操作手順を示す。操作部のボタンを押し装置の電源を入れると、液晶表示器に「ウォーミングアップ」が表示され、装置内の電子回路がウォーミングアップされる。同時に、チェックプログラムが作動し、電子回路を自動的にチェックする。「ウォーミングアップ」が終了すると、液晶表示部に「指を置いてください」と表示される。指置き部に指を置くと、液晶表示部にカウントダウンが表示される。カウントダウンが終了すると、液晶表示部に「指を離してください」と表示される。指置き部から指を離すと、液晶表示部に「データ処理中」が表示される。その後、液晶表示部に血糖値が表示される。この時点で、表示された血糖値は、日時・時間とともにICカードに記憶される。表示された血糖値を読み取ったら、操作部のボタンを押す。装置は、約1分後に次の測定を待つ「指を置いてください」が液晶表示部に表示された状態になる。
【0032】
図7は測定部の詳細を示す図であり、(a)は上面図、(b)はそのXX断面図、(c)はそのYY断面図である。
【0033】
最初に、本発明の無侵襲血糖値測定装置による温度測定について説明する。被検部(指の腹)が接触する部分には熱伝導率の高い材料、例えば金でできた薄いプレート21が配置され、そのプレート21に熱的に接続されたプレート21より熱伝導率の低い材料、例えばポリ塩化ビニルからなる棒状の熱伝導部材22が装置内部に伸びている。温度センサとしては、プレート21の温度を測定し、被検部に対して隣接的な温度検出器であるサーミスタ23と、プレート21から一定距離だけ離れた熱伝導部材の部分の温度を測定し、被検部に対して間接的な温度検出器であるサーミスタ24とが設けられている。指置き部15に置かれた被検部(指の腹)を見通せる装置内部の位置に赤外線レンズ25が配され、赤外線レンズ25の下方に赤外線透過窓26を介して焦電検出器27が配置されている。また、焦電検出器27に近接して別のサーミスタ28が設置されている。
【0034】
このように測定部の温度センサ部は4個の温度センサを有し、次の4種類の温度を測定する。
(1) 指表面の温度(サーミスタ23):T1
(2) 熱伝導部材の温度(サーミスタ24):T2
(3) 指の輻射温度(焦電検出器27):T3
(4) 室温(サーミスタ28):T4
【0035】
次に、光学センサ部18について説明する。光学センサ部は、酸素供給量を求めるために必要なヘモグロビン濃度とヘモグロビン酸素飽和度とを測定するためのものである。ヘモグロビン濃度とヘモグロビン酸素飽和度を測定するには最低2波長での吸光度測定が必要であり、図7(c)は2個の光源33,34と1個の検出器35によって2波長測定を行うための構成例を示している。
【0036】
光学センサ部18には、2個の光ファイバー31,32の端部が位置する。光ファイバー31は光照射用の光ファイバーであり、光ファイバー32は受光用の光ファイバーである。図7(c)に示すように、光ファイバー31は支線となるファイバー31a,31bにつながり、それらの末端には2つの波長の発光ダイオード33,34が配されている。受光用光ファイバー32の末端には、フォトダイオード35が配されている。発光ダイオード33は波長810nmの光を出射し、発光ダイオード34は波長950nmの光を出射する。波長810nmは、酸素結合型ヘモグロビンと還元型(脱酸素)型ヘモグロビンのモル吸光係数が等しくなる等吸光波長であり、波長950nmは酸素結合型ヘモグロビンと還元型ヘモグロビンのモル吸光係数の差が大きい波長である。
【0037】
2個の発光ダイオード33,34は時分割的に発光し、発光ダイオード33,34から発生された光は光照射用光ファイバー31から被検者の指に照射される。指に照射された光は、指の皮膚で反射し、受光用光ファイバー32に入射してフォトダイオード35によって検出される。指に照射された光が指の皮膚で反射されるとき、一部の光は皮膚を通して組織内部に侵入し、毛細血管を流れる血液中のヘモグロビンによる吸収を受ける。フォトダイオード35による測定データは反射率Rであり、吸光度は近似的にlog(1/R)で計算される。波長810nmと波長950nmの光について各々照射を行い、各々につきRを測定し、かつlog(1/R)を求めることにより、波長810nmの吸光度A1と波長950nmの吸光度A2が測定される。
【0038】
還元型ヘモグロビン濃度を[Hb]、酸素結合型ヘモグロビン濃度を[HbO2]とすると、吸光度A1および吸光度A2は次式で表される。
【0039】
【数2】
Figure 0003874743
【0040】
AHb(810nm)とAHb(950nm)、AHbO2(810nm)とAHbO2(950nm)はそれぞれ還元型ヘモグロビン、酸素結合型ヘモグロビンのモル吸光係数であり各波長で既知である。aは比例係数である。ヘモグロビン濃度[Hb]+[HbO2]、ヘモグロビン酸素飽和度[HbO2]/([Hb]+[HbO2])は上式から次のように求められる。
【0041】
【数3】
Figure 0003874743
【0042】
なお、ここでは2波長による吸光度測定によってヘモグロビン濃度とヘモグロビン酸素飽和度を測定する例について説明したが、3波長以上で吸光度を測定することによって、妨害成分の影響を低減し測定精度を高めることも可能である。
【0043】
図8は、装置内におけるデータ処理の流れを示す概念図である。本例の装置には、サーミスタ23,サーミスタ24,焦電検出器27,サーミスタ28、フォトダイオード35からなる5個のセンサがある。フォトダイオード35では波長810nmの吸光度と波長950nmの吸光度を測定するため、装置には6種類の測定値が入力されることになる。
【0044】
5種類のアナログ信号は、それぞれA1〜A5の増幅器を経由して、AD1〜AD5のアナログ・デジタル変換器によってデジタル変換される。デジタル変換された値からパラメータxi(i=1,2,3,4,5)が計算される。xiを具体的に表記すると以下のとおりとなる。(a1〜a5は比例係数)
【0045】
【数4】
Figure 0003874743
【0046】
つづいて、実際の多数の健常者および糖尿病患者のデータから得られたパラメータxiの平均値と標準偏差から正規化パラメータを算出する。各パラメータxiから正規化パラメータXi(i=1,2,3,4,5)を次の式で計算する。
【0047】
【数5】
Figure 0003874743
【0048】
前述の5つの正規化パラメータをもって、最終的な表示を行うためのグルコース濃度への変換計算が行われる。処理計算に必要なプログラムは、装置に組み込まれたマイクロプロセッサに内蔵されたROMに記憶されている。また、処理計算に必要なメモリー領域は、同様に装置に組み込まれているRAMに確保される。計算処理された結果は、液晶表示部に表示される。
【0049】
ROMには処理計算に必要なプログラム構成要素として、特にグルコース濃度Cを求めるための関数が入っている。この関数は以下のように定められたものである。まず、Cは以下の式(1)で表現される。ai(i=0,1,2,3,4,5)は、複数の測定データから前もって決定されている。aiを求める手順は以下のとおり。
(1)正規化パラメータとグルコース濃度Cの関係を示す重回帰式を作成する。(2)最小二乗法によって得られた式から正規化パラメータに関する正規方程式(連立方程式)を求める。
(3)正規方程式から係数ai(i=0,1,2,3,4,5)の値を求め、重回帰式に代入する。
【0050】
初めに、グルコース濃度Cと正規化パラメータX1,X2,X3,X4,X5の関係を示す次の回帰式(1)を作る。
【0051】
【数6】
Figure 0003874743
【0052】
つづいて、酵素電極法によるグルコース濃度測定値Ciとの誤差が最小になるような重回帰式を求めるため、最小二乗法を用いる。残差の二乗和をDとすると、Dは次式(2)で表される。
【0053】
【数7】
Figure 0003874743
【0054】
残差の二乗和Dが最小になるのは、式(2)をa0,a2,…,a5で偏微分してゼロとなるときなので、次式が得られる。
【0055】
【数8】
Figure 0003874743
【0056】
C、X1〜X5の平均値をCmean、X1mean〜X5meanとするとXimean=0(i=1〜5)であるので、式(1)から式(4)が得られる。
【0057】
【数9】
Figure 0003874743
【0058】
また、正規化パラメータ間の変動・共変動は、式(5)で表され、正規化パラメータXi(i=1〜5)とCとの共変動は式(6)で表される。
【0059】
【数10】
Figure 0003874743
【0060】
式(4)(5)(6)を式(3)に代入して整理すると、連立方程式(正規方程式)(7)が得られ、これを解くことでa1〜a5が求まる。
【0061】
【数11】
Figure 0003874743
【0062】
定数項a0は、式(4)を用いて求める。以上で求めた ai(i=0,1,2,3,4,5)は装置製造時にROMに格納されている。装置による実際の測定では、測定値から求めた正規化パラメータX1〜X5を回帰式(1)に代入することで、グルコース濃度Cが算出される。
【0063】
以下にグルコース濃度の算出過程の具体例を示す。予め健常者および糖尿病患者に対して測定した多数のデータから回帰式(1)の係数が決められており、マイクロプロセッサのROMには下記のグルコース濃度の算出式が格納されている。
【0064】
【数12】
Figure 0003874743
【0065】
1〜X5はパラメータx1〜x5を正規化したものである。パラメータの分布が正規分布であると仮定すると、正規化パラメータの95%は−2から+2の間の値をとる。
【0066】
健常者の測定値の1例として、正規化パラメータX1=-0.06、X2=+0.04、X3=+0.05、X4=-0.12、X5=+0.10 を上記の式に代入するとC=96mg/dlとなる。また、糖尿病患者の測定値の1例として、正規化パラメータX1=+1.15、X2=-1.02、X3=-0.83、X4=-0.91、X5=-1.24 を上記の式に代入するとC=213mg/dlとなる。
【0067】
従来の測定方法である、採血によって得た血液を試薬と反応させ、この反応によって発生した電子量を測定して血糖値を測定する酵素電極法による測定結果と本発明の1実施例による測定結果について以下に述べる。健常者の測定値の1例として、酵素電極法によるグルコース濃度が89mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX1=-0.06、X2=+0.04、X3=+0.05、X4=-0.12、X5=+0.10 を上記の式に代入するとC=96mg/dlとなる。また、糖尿病患者の測定値の例として、酵素電極法によるグルコース濃度が238mg/dlのとき、同時刻に本法による測定から得た正規化パラメータX1=+1.15、X2=-1.02、X3=-0.83、X4=-0.91、X5=-1.24 を上記の式に代入するとC=213mg/dlとなる。上記の結果より、本発明による方法によって、高精度でグルコース濃度を求められることが確認された。
【0068】
図9は、縦軸を本法によるグルコース濃度の算出値、横軸を酵素電極法によるグルコース濃度の測定値として、複数の患者に対してそれぞれの測定値をプロットした図である。本法の様に酸素供給量・血流量を測定することで良好な相関が得られる(相関係数=0.9324)。
【0069】
【発明の効果】
本発明によれば、高精度な無侵襲血糖値測定装置及び測定方法を提供できる。
【図面の簡単な説明】
【図1】体表面からブロックへの熱移動を説明するモデル図。
【図2】温度T1および温度T2の測定値の時間変化を示す図。
【図3】温度T3の時間変化の測定例。
【図4】各種センサによる測定値と、それから導出されるパラメータとの関係を図示した説明図。
【図5】本発明による無侵襲血糖値測定装置の上面図。
【図6】装置の操作手順を示す図。
【図7】測定部の詳細図。
【図8】装置内におけるデータ処理の流れを示す概念図。
【図9】本発明によるグルコース濃度算出値および酵素電極法によるグルコース濃度測定値のプロット図
【符号の説明】
11…操作部、12…測定部、13…表示部、15…指置き部、16…輻射温度センサ部の開口端、17…接触温度センサ部、18…光学センサ部、21…プレート、22…熱伝導部材、23…サーミスタ、24…サーミスタ、25…赤外線レンズ、26…赤外線透過窓、27…焦電検出器、28…サーミスタ、31,32…光ファイバー、33,34…光源、35…フォトダイオード

Claims (7)

  1. 体表面を接触させるプレートと、
    前記プレートの温度を測る第1の温度センサと、
    前記プレートに接続された部材と、
    前記プレートから離れた位置の前記部材の部分の温度を測る第2の温度センサとを有することを特徴とする温度測定装置。
  2. 前記部材は、前記プレートから熱が伝わるように接続されていることを特徴とする請求項1に記載の温度測定装置。
  3. 前記部材は前記プレートよりも熱伝導率が低いことを特徴とする請求項1に記載の温度測定装置。
  4. 前記部材はポリ塩化ビニルからなることを特徴とする請求項1に記載の温度測定装置。
  5. 前記プレートは金からなることを特徴とする請求項1に記載の温度測定装置。
  6. 前記第2の温度センサは前記部材を伝導した熱を検出するものであることを特徴とする請求項1に記載の温度測定装置。
  7. 血液の流量を推定するために用いられることを特徴とする請求項1に記載の温度測定装置。
JP2003182142A 2003-06-26 2003-06-26 温度測定装置 Expired - Fee Related JP3874743B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182142A JP3874743B2 (ja) 2003-06-26 2003-06-26 温度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182142A JP3874743B2 (ja) 2003-06-26 2003-06-26 温度測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003129020A Division JP3566276B1 (ja) 2003-05-07 2003-05-07 血糖値測定装置

Publications (2)

Publication Number Publication Date
JP2004329854A JP2004329854A (ja) 2004-11-25
JP3874743B2 true JP3874743B2 (ja) 2007-01-31

Family

ID=33509170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182142A Expired - Fee Related JP3874743B2 (ja) 2003-06-26 2003-06-26 温度測定装置

Country Status (1)

Country Link
JP (1) JP3874743B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679269B2 (ja) * 2010-08-05 2015-03-04 矢部川電気工業株式会社 検量線生成装置、検量線生成システム、検量線生成方法及びプログラム
JP2021131334A (ja) * 2020-02-20 2021-09-09 株式会社リコー 測定装置、及び生体情報測定装置

Also Published As

Publication number Publication date
JP2004329854A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
JP3566276B1 (ja) 血糖値測定装置
JP3590054B1 (ja) 血糖値測定装置
JP3557425B1 (ja) 血糖値測定装置
JP3612324B1 (ja) 血糖値表示方法及び装置
JP3590053B1 (ja) 血糖値測定装置
JP3566277B1 (ja) 血糖値測定装置
US7215983B2 (en) Blood sugar level measuring apparatus
US7156810B2 (en) Blood sugar level measuring method and apparatus
EP1649803A1 (en) Blood sugar level measuring apparatus
JP2005230118A (ja) 血糖値測定装置
US20060015022A1 (en) Blood sugar level measuring apparatus
JP2006198321A (ja) 血糖値測定装置
JP3566278B1 (ja) 血糖値測定装置
JP3884036B2 (ja) 血糖値測定装置
JP3868963B2 (ja) 血糖値測定装置
JP2006094992A (ja) 血糖値測定装置及び血糖値測定方法
JP3590049B1 (ja) 血糖値測定装置
JP3874743B2 (ja) 温度測定装置
US20060084853A1 (en) Blood sugar level measuring apparatus
JP3623498B6 (ja) 血糖値測定装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

LAPS Cancellation because of no payment of annual fees