JP2005229448A - 宇宙通信転送装置、衛星及び地上局 - Google Patents

宇宙通信転送装置、衛星及び地上局 Download PDF

Info

Publication number
JP2005229448A
JP2005229448A JP2004037583A JP2004037583A JP2005229448A JP 2005229448 A JP2005229448 A JP 2005229448A JP 2004037583 A JP2004037583 A JP 2004037583A JP 2004037583 A JP2004037583 A JP 2004037583A JP 2005229448 A JP2005229448 A JP 2005229448A
Authority
JP
Japan
Prior art keywords
satellite
communication
data
user
communication transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004037583A
Other languages
English (en)
Other versions
JP4494819B2 (ja
Inventor
Hiroshi Koyama
浩 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004037583A priority Critical patent/JP4494819B2/ja
Publication of JP2005229448A publication Critical patent/JP2005229448A/ja
Application granted granted Critical
Publication of JP4494819B2 publication Critical patent/JP4494819B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Abstract

【課題】 ユーザ衛星からのデータを地上局が早期に得られるようにする。
【解決手段】 通信転送衛星10に、所定範囲の内にある衛星群との間で小電力のデータ通信を行う短距離用通信部12と、前記所定範囲の外にある衛星との間で大電力のデータ通信を行う長距離用通信部15と、前記短距離用通信部と前記長距離用通信部とを用いて前記所定範囲の内にある衛星群と前記所定範囲の外にある衛星とが相互にデータ通信を行うよう通信制御する制御部13とを備えた。ユーザ衛星は小出力の通信機能のままで通信距離内の通信転送衛星10と高速転送を行い、通信転送衛星10はこのデータをデータ中継衛星に大出力高速通信で転送し、データ中継衛星が地上局と交信するようにしたので、地上局がユーザ衛星からのデータを早期に得られる。
【選択図】 図2

Description

この発明は、小型の衛星と、小型の衛星との間でデータを転送する宇宙通信転送装置と、その宇宙通信転送装置からのデータを授受する地上局に関するものである。
従来の観測衛星等の宇宙機通信装置には大型のハイゲインアンテナが搭載されている。これは宇宙機通信装置が静止軌道上のデータ中継衛星にデータ中継を依頼するためである。この場合、データ中継衛星に対し高レート(高速)のデータ伝送を実施するので、狭いビーム幅による大電力の送信を行う必要がある。このため従来の宇宙機通信装置は、大型のアンテナを装備している。また、送信電波のビーム方向を常にデータ中継衛星方向に対し自動追尾させるための大型アンテナ駆動用のジンバルシステムも装備した大規模な構成となっている。
また、データ中継衛星が通信対象となる衛星を追尾するためには、事前にデータ中継衛星に通信対象となる衛星の予測位置を時系列で与える必要がある。また、ジンバルシステムで駆動されるデータ中継衛星のアンテナの駆動方向を地上局から設定する必要がある。
ところで、近年、専用のミッションをもつ小型の衛星による観測システムが実用化されている。この場合に衛星自体が小型であるために、それに搭載するアンテナも小型になり、ハイゲインアンテナを搭載することはできない。小型衛星の航行高度は低高度である場合が多く、従って速く飛行する。このため地上局と直接交信をしようとすると、衛星と通信することができる時間が短く、例えば、約10分以下、数分しかない。この間に多量のデータを衛星から地上へ1回でダウンロード(伝送)することは、とてもできない。こうしたことから、小型のユーザ衛星でも小電力で高速に地上局と通信できる方法が待ち望まれていた。
NASDA 宇宙開発事業団ホーム、プレスリリース、2003年02月、データ中継技術衛星「こだま」と環境観測技術衛星〜、インターネット<URL:http://www.nasda.go.jp/press/2003/02>
観測衛星等により取得された大量の観測データは、通常、データ中継衛星を経由して地上局へ伝送される。データ中継を依頼する観測衛星がデータ中継衛星と通信できる時間帯は限られている。データ中継衛星へ大量のデータを伝送するためには、高速データ伝送に適したハイゲインアンテナ系を観測衛星に搭載することが必要となっている。ハイゲインアンテナ系は、大きさ、重量共に大きく、かつ高額であり、今後、活用が予想される小型宇宙機や小型衛星には搭載できないという課題がある。
このように小型の衛星に対して大型のハイゲインアンテナは搭載できず、高速のデータ通信ができないという課題がある。
また、常に小型宇宙機や小型衛星のトラッキングのために、小型宇宙機や小型衛星のデータ設定をデータ中継衛星で行う必要がある。しかし、多数の小型宇宙機や小型衛星に対してデータ設定をするためデータ中継衛星を使用することは運用負荷の観点からも難しいという課題がある。
この発明は、前記の課題を解決するためになされたもので、例えば、小型衛星とのデータ通信が制限されないようにすることを目的とする。
この発明に係る宇宙通信転送装置は、
所定範囲の内にある衛星群と通信を行う短距離用通信部と、
前記所定範囲の外にある衛星と通信を行う長距離用通信部と、
前記短距離用通信部と前記長距離用通信部との通信を制御する制御部、
とを備えたことを特徴とする。
本発明によれば、データ中継衛星と通信するためのハイゲインアンテナを持たない小型衛星も、宇宙通信転送装置を経由することで、ハイゲインアンテナを搭載していると同様の通信を地上局と行うことができる効果がある。
実施の形態1.
この実施の形態では、複数のユーザ衛星からのデータを、早期に効率よく転送する通信転送衛星について説明する。また、その通信転送衛星を利用してデータを効率よく送受信するユーザ衛星と地上局について説明する。
また、地上局からのユーザ衛星に対するコマンドを早期に効率よく転送する場合についても説明する。
ここで、ユーザ衛星は、宇宙機とも呼ばれる衛星であり、小型衛星あるいは本発明の衛星の一例である。また、通信転送衛星は、宇宙通信転送装置の一例である。
ここで、小型衛星とは、一辺が1メートル以下、あるいは、径が1メートル以下程度の衛星をいう。一例として、10センチメートルサイズのキュービック衛星やカード型衛星が挙げられる。
図1は、本実施の形態におけるデータ転送システム構成図である。
図1のデータ転送システムは、ユーザ衛星50、通信転送衛星10、データ中継衛星90及び地上局70からなる。
ユーザ衛星50は、例えば、オムニディレクショナルアンテナを搭載した小型衛星であり、所定範囲まで有効な電波を放射することができる。ここで、所定範囲とは、半径約100ないし300キロメートルの宇宙空間をいう。この所定範囲は、図1で、半径rで示される短距離領域をいう。ここで、オムニディレクショナルアンテナとは、無指向性アンテナのことをいい、約300キロメートル程度まで電波を放射するアンテナをいう。
通信転送衛星10は、例えば、ハイゲインアンテナを搭載した衛星であり、データ中継衛星90とのデータ通信が可能である。ここで、ハイゲインアンテナとは、高利得アンテナのことをいい、静止衛星との通信が可能な電波を放射するアンテナをいう。
データ中継衛星90は、例えば、遥かに高度が高い軌道を航行する赤道上の静止衛星であり、地上局70と常にデータ通信が可能である。データ中継衛星90は、所定範囲の外にあるものとする。
なお、データ中継衛星90は、後で説明するように、厳密な静止衛星のみでなくて、準天頂衛星等の仰角が高くて地上と長時間通信ができる衛星であればよい。
図1に示すように、本実施の形態においては、ユーザ衛星50が通信転送衛星10から常に所定範囲内にいるように、ユーザ衛星50を航行させる。その結果、ユーザ衛星50は通信転送衛星10と常に通信を行うことができる。
すなわち、通信転送衛星10は、所定範囲の半径約100ないし300キロメートル内にいるユーザ衛星50と常に通信を行うことができる。
一方、通信転送衛星10は、この所定範囲の外にあるデータ中継衛星90とも通信を行う。図1では、通信転送衛星10の高度を正確に表現するとユーザ衛星50との関係や地球との関係が表せないので、かなり誇張して通信転送衛星10の高度を高く描いている。しかし、例えば、地球半径を約6400キロメートルとし、通信転送衛星10の高度が500キロメートルとすると、通信転送衛星10は、地球半径(6400キロメートル)のほぼ8パーセントの距離だけ離れた地球の上空を周回している。
そして、通信転送衛星の高度が500キロメートルとすると、通信転送衛星10が地球を一周する所要時間が約90分となる。そして、通信転送衛星10が地球を周回する間に、図1のA点からデータ中継衛星側で地球を回ってB点までが、通信転送衛星10とデータ中継衛星90との通信可能範囲であり、通信転送衛星10がデータ中継衛星90と通信できる時間は約40分となる。その間、通信転送衛星10はデータ中継衛星90と通信が可能である。
[背景技術]で述べたように、ユーザ衛星50から地上局70へ直接に通信する場合は、前記周回時間約90分の10分の1以下、すなわち、数分の通信時間しか得られない。そして、次に再び周回して同じ地上局70の上空を通過するまでユーザ衛星50はデータを送信できない。
これに対して本構成によると、短距離内であればユーザ衛星50は常に通信転送衛星10と通信ができる。そして、通信転送衛星10とデータ中継衛星90との伝送期間として10倍近い通信時間が確保できる。
ユーザ衛星50と地上局70との直接通信では、通常は通信速度が数Kbps程度の低速であった。これに対し、本構成では、ユーザ衛星50は通信転送衛星10と数Mbps程度の高速通信を行うことができる。
つまり、ユーザ衛星50と通信転送衛星10との通信は、時間の制約が少なく、かつ高速の通信が可能になる。ここで、高速通信とは、Mbps程度以上の通信速度をいうものとする。また、低速通信とは、それより1桁または2桁小さな通信速度をいうものとする。
データ中継衛星90は、周波数帯域を広く取った大容量の高速通信により、短時間に地上局70と通信を終了する。従って、ユーザ衛星50は、見かけ上、高速で地上局70と通信ができる。
また、データ中継衛星90として、複数のデータ中継衛星を活用すれば、地球全体をカバーすることになり、さらに大きな効果が得られる。
本実施の形態におけるデータ転送システムは、例えば、ランデブー・ドッキング等のミッションにおいて有効である。ドッキング等の重要なイベント実施時において、常にユーザ衛星の状態を確認する必要がある。本構成によれば、データ中継衛星等を利用して、ユーザ衛星の状態を常時モニタすることが可能になる。
近年、小型衛星を使用したミッションが多数実施されているが、これらの小型衛星は、重量で分類して以下のように区分される。
1)ミッション実証衛星 1トンないし250キログラム
2)小型実証衛星 100キログラムないし250キログラム
3)マイクロ衛星 50キログラム
4)ナノ衛星 1ないし数キログラム
5)シリコン組込み衛星 1キログラム以下
前記小型実証衛星より軽い衛星の大きさは、約50センチメートル以下である。従って、ハイゲインアンテナ、あるいは、遠くにあるデータ中継衛星と通信を行う大電力通信機(トランスポンダ)は、重量、寸法、消費電力いずれから見ても搭載ができない。
しかし、通信に必要な電力は通信距離の2乗に比例して必要になる。例えば、距離が100倍になると所要電力は10,000倍が必要である。逆に、距離が1/100になれば電力は1/10,000でよい。
従って、ユーザ衛星が、例えば、100キロメートル程度の短距離で他の衛星と通信を行うのであれば、必要な通信電力は、静止衛星との距離である約36000キロメートルの間で必要な大電力の約13万分の1[(100/36000)=1/129600]でよい。
ここで、小電力とは、100ワット以下を指し、大電力とは7ないし10キロワット程度以上を指すものとする。
また、短距離とは、300キロメートル程度までの距離を指し、長距離とはそれとは1桁または2桁も長い距離を指すものとする。長距離とは、一例として、地球からデータ中継衛星90までの距離をいう。
短距離用通信であれば、通信電力は小電力で十分である。また、短距離用通信であれば、搭載の容易な、半球方向に対して無指向性特性を備えているオムニディレクショナルアンテナが有効である。オムニディレクショナルアンテナの通信速度は、数Mbps程度の高速が設定できる。オムニディレクショナルアンテナは、単に、オムニアンテナともいわれる。オムニディレクショナルアンテナは、無指向性特性を備えており、半球内にある複数のユーザ衛星50との通信が可能になるので、特に、通信転送衛星10が複数のユーザ衛星50と通信する場合に有効である。
図1の構成において、通信転送衛星10が重要な役割を持つので、以下、通信転送衛星10について説明する。
通信転送衛星10は、短距離にあるユーザ衛星50とオムニディレクショナルアンテナを用いて通信を行う。通信転送衛星10は、小電力である100ワット以下で高速の通信を行う。この小電力は、データ中継衛星との通信に必要な大電力の10キロワット程度に比べて2桁程度も小さい。
一方、通信転送衛星10は、高高度にあるデータ中継衛星90とハイゲインアンテナを用いて高速、大電力で通信を行う。
こうして、通信転送衛星10自身を中心として、半径100ないし150キロメートル内の短距離にユーザ衛星50がある間、通信転送衛星10は、ユーザ衛星50と、常時、確実に通信が可能である。
このシステムは、通信転送衛星10を新しく介在させて、通信転送衛星10が得たデータをデータ中継衛星90に送信する点が特徴である。
このようにして、ユーザ衛星50から地上局70へ、画像データ等の大量データを高速に送ることができる。
また、逆に、ユーザ衛星50に対するコマンド送信も、通信転送衛星10を介在させて転送することができる。
以下、各衛星の詳細構成について説明する。
図2は、通信転送衛星10の内部構成を示す図である。
通信転送衛星10は、所定範囲の内にあるユーザ衛星と通信を行う短距離用通信部12と、所定範囲の外にある衛星と通信を行う長距離用通信部15と、短距離用通信部12と前記長距離用通信部15との通信を制御する制御部とを備えている。
また、通信転送衛星10は、メモリ14を備え、メモリ14に前記所定範囲の内にあるユーザ衛星50と前記所定範囲の外にあるデータ中継衛星90とのいずれか一方の衛星からのデータを蓄積して、他方の衛星と通信可能になった時に、蓄積したデータを当該他方の衛星へ転送する。
また、通信転送衛星10は、通信転送衛星10自身の基準方向を検出するセンサ19と通信転送衛星10自身の位置情報を検出するGPS受信部18を備えている。
GPS受信部18は、通信転送衛星10の位置を知るためにGPS衛星からの測位信号を受信し位置情報を得るものである。GPS受信部18は、位置情報受信部の一例である。
また、通信転送衛星10は、センサ19が検出した基準方向またはGPS受信部18(位置情報受信部)が検出した位置情報に基づいて、所定範囲の内にあるユーザ衛星50及び所定範囲の外にあるデータ中継衛星90との通信方向を制御する姿勢・軌道制御部31を備えている。
また、通信転送衛星10は、ユーザ衛星50に姿勢または軌道制御を指示する軌道制御指示部32を備えている。
また、通信転送衛星10は、ユーザ衛星からのデータをデータ中継衛星へ、または、データ中継衛星からのデータをユーザ衛星へ、相互にデータ通信を行うよう通信制御する制御部13を備えている。
制御部13は、中央処理装置とファームウエアやソフトウエアなどで構成され、信号線やバスを用いて図2に示した各部を制御するものである。
図6は、ユーザ衛星50と通信転送衛星10とデータ中継衛星90との通信リンクを説明する図である。
図2と図6において、通信転送衛星10は、前記ユーザ衛星50との衛星間近傍通信リンク5を確立してユーザ衛星と通信を行う。そして通信転送衛星10は、オムニディレクショナルアンテナ11と、半径300キロメートル程度内で小電力の通信を行う短距離用通信部12とを用いてユーザ衛星50とデータを高速で送受信する。
このとき、必要があれば、電波の指向性を全球方向の指向性とするため、オムニディレクショナルアンテナを、通信転送衛星10の上面と下面とに、あるいは、左面と右面とに、複数設ける構成にしてもよい。また、オムニディレクショナルアンテナの半球周辺の利得低下を補うためにオムニディレクショナルアンテナを複数設ける構成にしてもよい。その結果、広範囲の方向をカバーする。
他方、通信転送衛星10は、データ中継衛星90とは広い周波数帯域を用い、大容量で高速(例えば、数Mbps)の衛星間通信リンク2を形成する。
通信転送衛星10は、ハイゲインアンテナ16と、大電力の通信を行う長距離用通信部15とによりデータ中継衛星90とデータの送受信を行う。
通信転送衛星10は、2系統の通信リンクを張ることができ、制御部13は、短距離用通信部12と前記長距離用通信部15との通信を制御することにより、2系統の通信リンク間のデータ転送機能を備えている。
また、通信転送衛星10は、データのバッファリング用のメモリ14を備えており、制御部13は、メモリ14を用いてデータのバッファリングする。メモリ14は、通信不可能時間に受信したデータを一時蓄積するものである。このバッファリングのおかげで、通信可能時間の制限が緩和される。
更に、センサ19は、通信転送衛星10の姿勢制御のために、または、通信転送衛星10の軌道制御のために、地球方向(基準方向)を検出する。センサ入力部17は、このセンサ19からの入力を受け、制御部13に転送する。
次に、通信転送衛星10の通信動作を説明する。
例えば、地上局からのコマンドにより、あるユーザ衛星50が大量のデータを地上へ送信する例を述べる。
ユーザ衛星50は、衛星間近傍通信リンク5を経由して、通信転送衛星10に向けて多量のデータを送ってくる。通信転送衛星10の短距離用通信部12は、制御部13の通信制御のもとに、このデータをオムニディレクショナルアンテナ11を経由して受信する。
そして、制御部13の通信制御のもとに、長距離用通信部15はこのデータをハイゲインアンテナ16に向けて出力する。この出力により、衛星間通信リンク2を経由してデータ中継衛星90にデータ伝送が行われる。
衛星間通信リンク2が確立できない間、制御部13は、ユーザ衛星からのデータをメモリ14にバッファリングする。衛星間通信リンク2が確立できない間とは、図1におけるB点からデータ中継衛星90より見て地球の裏側を経由してのA点に至る間である。そして、データ中継衛星から見て通信転送衛星10がA点に現れ衛星間通信リンク2が再び確立された場合、制御部13は、メモリ14にバッファリングされていたデータをデータ中継衛星90に向けて高速転送する。
また、地上局からのコマンドに対しても、制御部13は、逆の伝達路をたどって同様の転送動作を行う。
データ中継衛星90の高度は、通信転送衛星10の高度に比べて桁違いに高い。従ってデータ中継衛星90から見ると、通信転送衛星10が地球を半周弱周回する間、衛星間通信リンク2の確立が可能である。即ち、比較的長い期間にわたって通信が可能であり、通信転送衛星10を経由してユーザ衛星50のデータを高速で長時間中継できる。
また、制御部13は、ユーザ衛星50からのデータが、データ中継衛星90の割当て回線伝送量を上回る場合、データを通信転送衛星10のメモリ14に蓄えておく。そして、制御部13は、メモリ14に蓄えておいたデータを、他の伝送要求があまり無い時間帯に、データ中継衛星90に転送して、そこから地上局70へ伝送する。
また、制御部13は、ユーザ衛星50が通信転送衛星10と通信不可能な位置にいる場合も、地上からのコマンドを通信転送衛星10のメモリ14に蓄えておく。そしてユーザ衛星50が衛星間近傍通信リンク5を確立可能な短距離、例えば、半径150キロメートル内に入った後に、制御部13は、メモリ14に蓄えておいたデータを、通信転送衛星10からユーザ衛星50へ転送する。
ユーザ衛星50との間で衛星間近傍通信リンク5を確立するための姿勢または軌道制御用として、通信転送衛星10の位置情報が必要である。または、データ中継衛星90との間で衛星間通信リンク2を確立するためにも通信転送衛星10の位置情報が必要である。そのため、通信転送衛星10は、通信転送衛星10自身の姿勢または軌道制御用として、GPS衛星からの位置情報をGPS受信部18が得て、通信転送衛星10自身の位置を知ることができる。
更に、通信転送衛星10に搭載したセンサ19からの入力を受けるセンサ入力部17がセンサ情報を受ける。後述するユーザ衛星において詳細に説明するが、受動的制御の場合に、センサ19が地球方向を向くよう姿勢を制御する。また、能動的制御の場合は、例えば、ジャイロ、または、GPSによる姿勢検出装置が搭載されている。
前記衛星間近傍通信リンク5の確立、または、衛星間通信リンク2の確立のため通信転送衛星10自身の姿勢制御が行われる。この通信転送衛星10自身の姿勢制御は、前記の位置情報やセンサ入力に基づいて姿勢・軌道制御部31が行う。この制御は、アンテナ単独の姿勢制御のこともあるし、通信転送衛星10自体を制御してアンテナを適切な方向に向けることもある。
いずれにしても、小型のユーザ衛星には、ハイゲインアンテナを搭載する余裕がない。しかし、相対的に大型の通信転送衛星10には、データ中継衛星90の方向を自動追尾可能なジンバル機構を持てる。また、データ中継衛星に電波が届く大電力のハイゲインアンテナ16と、長距離用通信部15が搭載できる。
なお、他機関、外国ユーザによる宇宙機(ユーザ衛星)に対しても、ユーザ衛星が所定範囲内の短距離の領域へ位置を移動すれば、衛星間近傍通信リンク5を確立して同様のサービスを行うことができる。
軌道制御指示部32は、ユーザ衛星50が通信転送衛星10と通信できるように、ユーザ衛星の姿勢または軌道を制御する制御指示データを生成する。この制御指示データは、オムニディレクショナルアンテナ51を介してユーザ衛星に送られる。
次に、ユーザ衛星50の内部構成を図3により説明する。
図3において、ユーザ衛星50は、通信転送衛星10との通信用にオムニディレクショナルアンテナ51を備えている。
また、ユーザ衛星50は、所定範囲である300キロメートル程度以内にある衛星と通信を行う短距離用通信部52を備えている。ユーザ衛星50は、更に、通信制御を行う制御部53と、データのバッファリング用のメモリ54を備えている。
ユーザ衛星50は、通信転送衛星10との通信ができるよう、ユーザ衛星50自身の姿勢の基準になる地球方向(基準方向)検出用のセンサ59を搭載する。そして、ユーザ衛星50は、このセンサ59からの入力を受けるためのセンサ入力部57を備えている。
更に、ユーザ衛星50は、ユーザ衛星50自身の位置情報を得るGPS受信部58と、ユーザ衛星50自身の姿勢または軌道を制御する姿勢・軌道制御部61を備えている。
また、更に、ユーザ衛星50は、例えば、撮像装置69からの画像データを受ける観測器入力部62を備えている。
ユーザ衛星50の動作を説明する。
例えば、地上局70からのコマンドにより、撮像装置69により観測された画像データを送信する場合を考える。
先ず、撮像装置69からの画像データを観測器入力部62が入力する。この観測器入力部62が入力した撮像装置69からの画像データを、制御部53の制御のもとに、短距離用通信部52からオムニディレクショナルアンテナ51に高速送信する。このデータは先に述べたように衛星間近傍通信リンク5を経由して通信転送衛星10に送信される。
次に、ユーザ衛星50による姿勢制御または軌道制御の動作を説明する。
この場合、通信転送衛星10または地上局70からの指示により、オムニディレクショナルアンテナ51と短距離用通信部52とを経由して姿勢制御のコマンドを受ける。そして制御部53はその内容を解読して、姿勢・軌道制御部61に姿勢制御または軌道制御を指示する。これにより衛星間近傍通信リンク5が保持できる。
なお、前記の画像データ送信において、ユーザ衛星50は、観測器入力部62から得た観測データを必要があればメモリ54にバッファリングする。そして通信転送衛星10との衛星間近傍通信リンク5が確立された後、制御部53はそのバッファリングしたデータを通信転送衛星10に送る。
先に述べたように、通信に必要な電力は通信距離の2乗に比例する。そのため半径が300キロメートル程度での短距離の通信には、オムニディレクショナルアンテナによる小電力通信、かつ、高速通信が可能である。
従来のユーザ衛星は、直接に地上局へデータを送るので、地上局からの可視角度が狭いことから通信時間が数分間に制限されている。しかも、数Kbps程度の低速通信しかできない。
しかし、本構成では、短距離の衛星間近傍通信リンク5は高速であり、しかも所定範囲の短距離を保つので常時使用が可能である。
また、地上からユーザ衛星50への緊急の要求、例えば、撮影要求が発生した場合、衛星へ即時にコマンドを送る必要がある。この場合も、前記構成により、待ち時間が少なくなる。
また、ユーザ衛星50は、GPS受信部58で得た位置データを、短距離用通信部52を経由して通信転送衛星10へ送る。
制御部53は、地上局からのコマンドの受信や、地上局70への前記観測データのバッファリングと送信を制御する。
ところで、ユーザ衛星50が、例えば、通信転送衛星10から150キロメートル内に留まるためには、ユーザ衛星50自身の姿勢または軌道を制御する必要がある。即ち、通信転送衛星10からの距離を保つとともに、通信転送衛星10と衛星間近傍通信リンクが確立できる方向とを保たねばならない。
こうした小型の衛星の姿勢または軌道制御には、受動的制御、能動的制御いずれかの制御方式が採用されている。
受動的制御の場合は、原則的には地球磁場を利用して地球磁場に対してセンサが地球方向に向くよう制御される。
能動的制御の場合は、ジャイロ、GPS受信機、GPSによる姿勢検出装置が搭載されており、撮像装置69が地球を向くように、あるいは、他の所定方向を向くよう制御される。姿勢制御にはスラスタ、ホイール等が使用される。
受動的制御、能動的制御のいずれの場合でも、姿勢はランダムではなく、一定方向を向くよう制御されている。従って適切な姿勢または位置制御によって、衛星と一体となったオムニディレクショナルアンテナの電波の放射方向を、通信転送衛星10との衛星間近傍通信リンク5の確立ができる方向に制御できる。
ユーザ衛星50は、通信転送衛星10から姿勢または軌道制御の制御指示データを受ける。あるいは、地上局70から通信転送衛星10を経由して、姿勢または軌道制御の制御指示データ(コマンド)を受ける。いずれの場合も、ユーザ衛星50は、通信転送衛星10から受けた制御指示データを姿勢・軌道制御部61に送る。
姿勢・軌道制御部61は、この制御指示データに基づいて、ユーザ衛星50の軌道制御を行って、通信転送衛星10との距離が通信可能圏内にあるよう制御する。また、姿勢制御を行って電波の放射方向を制御する。
ユーザ衛星50自身がユーザ衛星50の軌道制御を行う場合や、通信転送衛星10がユーザ衛星50の軌道制御を行う場合は、相対運動をヒル方程式で表して計算して、その計算結果を利用する。
ユーザ衛星50が用いられるミッションと、前記2つの通信リンクを用いて地上局へ送る観測データとして、以下のものがある。
11)地球観測ミッション 画像データ、赤外画像データ、ステレオ画像データ
12)宇宙科学ミッション 望遠鏡観測データ、宇宙空間観測データ、
宇宙VLBIデータ
13)軌道上サービスミッション インスペクション画像データ
データ中継衛星90としては、日本のDRTS(データ中継技術衛星)や、準天頂衛星、またはアメリカのTDRS(Tracking & Data Relay Satellite)がある。ここで準天頂衛星について、簡単に説明する。
図4は準天頂衛星の軌道周回を説明する図である。
準天頂衛星900は、一例として赤道面から約45度の傾斜角になるように、また、地上35800キロメートル上空を地球の自転に合わせて1日に1周回している。
また、赤道面との交点(昇交点赤経)において120度ずつ離れるように3機の衛星が配置されている。3機の準天頂衛星900は、軌道面は異なるが、8時間ずつ交代するように切れ目無く日本上空に位置している。
その緯度と経度の関係を示す航跡は、「8の字」を描いて少し経度に関してシフトする。しかしそれでも日本においては仰角が70度以上となり、交信を遮られることが少ない角度を確保できる準天頂衛星が交代で常に存在することになる。つまり地上局は、常に通信ができることになる。
次に、地上局70の本実施の形態に関係する構成を図5により説明する。
図5において、地上局は、主な機能としてデータの高速受信とコマンドの送信の機能を備えている。また、地上局70は、通信転送衛星10や、姿勢制御または軌道制御機能を備えているユーザ衛星50に対して姿勢または位置制御も行う。
また、地上局70は、データ中継衛星90及び通信転送衛星10を経由してユーザ衛星50からのデータとGPSによる位置情報とを得る長距離用送受信部75を備えている。
また、地上局70は、この位置情報から対応するユーザ衛星50の相対位置を計測する相対位置計測部71を備えている。
更に、地上局70は、この計測したユーザ衛星50と通信転送衛星10との相対値から通信転送衛星10との妥当な姿勢または距離を求めるランデブー計画部72を備えている。また、ランデブー計画部72は、ユーザ衛星50と通信転送衛星10とのランデブーの計画を立てる。ここで、ランデブーとは、軌道上にある衛星同士を接近させ、編隊状態で飛行させることをいう。
また、地上局70は、求めた妥当な距離または姿勢を保つよう衛星に指示する位置指令部73を備えている。
地上局70の動作を説明する。
例えば、ユーザ衛星50の軌道制御が必要になったとする。ユーザ衛星の位置データは、ユーザ衛星50のGPS受信部58で受信されて、短距離用通信部52と衛星間近傍通信リンク5を経由して、通信転送衛星10に転送される。そのユーザ衛星の位置データが、通信転送衛星10の短距離用通信部12と長距離用通信部15を経由して衛星間通信リンク2でデータ中継衛星90に転送される。そして、ユーザ衛星の位置データは、データ中継衛星90を経由して、地上局70の長距離用送受信部75で受信される。ここで、通信転送衛星10のGPS受信部18で受信されたGPSデータも合わせて受信される。これらのデータに基づいて、相対位置計測部71は、そのユーザ衛星50と通信転送衛星10との相対位置を計算し、ランデブー計画部72に送る。
地上トラッキングステーション82では、ユーザ衛星50と通信転送衛星10の軌道をトラッキングしている。軌道推定部81では、地上トラッキングステーション82からのトラッキングデータにより、ユーザ衛星50と通信転送衛星10との軌道推定値を計算する。
ランデブー計画部72は、必要があれば、軌道推定部81で計算したユーザ衛星50の軌道推定値を参照する。そして、ランデブー計画部72は、ユーザ衛星50の方向と起動制御量を計算する。それに基づいて、位置指令部73で、具体的な姿勢または軌道制御の制御指示データを作成する。この作成した姿勢または軌道制御の制御指示データは、長距離用送受信部75から、受信と逆に通信転送衛星10の経路をたどって、コマンドとして、ユーザ衛星50に向けて送信される。
姿勢または軌道制御の制御指示データには、姿勢修正や軌道修正のための制御信号が含まれている。ユーザ衛星50は、この具体的な姿勢または軌道制御の制御指示データに基づいて姿勢制御を行う。
なお、地上局70は、ユーザ衛星50からのデータの受信と、ユーザ衛星50へのその他のコマンドの送信とについても、前記軌道制御と同様の方法で行う。
図5の構成では、データ受信の構成は明示していないが、データ受信の場合は、位置データと同様に長距離用送受信部75でデータを受ける。そして、受信したデータを図示されていないデータ受信部へ送る。
コマンド送信も同様に、図示されていないコマンド送信部から、データ受信と逆の経路で送られる。
以上のように、ユーザ衛星50と地上局70は、通信制約が少なくなり、かつ、高速通信ができることになる。
なお、図5に示した地上局70のランデブー計画部72の機能を、図2に示した通信転送衛星10の軌道制御指示部32に持ち、通信転送衛星10の軌道制御指示部32からランデブー計画をユーザ衛星50に指示する構成としてもよい。
ユーザ衛星50と通信転送衛星10間での通信が可能であるためには、その距離が例えば、約100ないし150キロメートルの所定範囲内にあるようにする。従って、ユーザ衛星が所定範囲内を通過すればよく、通過中に通信を行うようにすればよい。
以下、通信が可能となる3つの通信の形態を説明する。
1.第1の通信の形態
まず、ユーザ衛星50が通信転送衛星10との通信可能な短距離領域内にあるケースを説明する。
図6は、ユーザ衛星50が通信転送衛星10と常に交信可能な短距離領域に留まる場合の通信リンクを説明する図である。
図6において、ユーザ衛星50は、通信転送衛星10に対して半径100ないし150キロメートルの短距離領域でフォーメーション飛行をしている。ここで、フォーメーション飛行とは、複数のユーザ衛星50が群れをなしてグループとして編隊飛行することをいう。以下、これら複数のユーザ衛星50を、ユーザ衛星群ともいう。
複数のユーザ衛星50それぞれは、通信転送衛星10と衛星間近傍通信リンク5により百ワット以下、例えば、約10dBW(約10W)の小電力で通信を行う。また、例えば、6Mbpsの高速のレートで、通信を行う。
なお、これらのユーザ衛星50は、地上約300キロメートルないし1000キロメートルにある。
通信転送衛星10は、複数のユーザ衛星50とオムニディレクショナルアンテナ11によりデータ通信を行う。
一方、静止衛星や準天頂衛星等のデータ中継衛星90は、地上3万6千キロメートルにあり、長距離に離れている。通信転送衛星10は、このデータ中継衛星とハイゲインアンテナを用いて衛星間通信リンク2により38dBW(約7KW)から42.5dBW(約18KW)の大電力で通信を行う。また、例えば、6Mbpsの高速で通信を行う。
こうして、ユーザ衛星50は、衛星間近傍通信リンク5と、衛星間通信リンク2とを介して、地上局70との間で高速なデータ伝送路を確保したことになる。
通信転送衛星10は、通信転送衛星10自身に搭載しているGPS受信部18により得た位置データを、衛星間近傍通信リンク5を通じてユーザ衛星50に伝送する。
ユーザ衛星50は、この通信転送衛星10の位置データと各ユーザ衛星におけるGPS受信部58で受けた位置データとの差分をとることで相対距離を知る。
ユーザ衛星50は、衛星間近傍通信リンク5が常に使用できるよう自身の姿勢または軌道を制御し、短距離領域内でフォーメーションを維持する。同一軌道面を飛行する2つの衛星間の運動は、ヒル方程式により記述され、これに基づいてユーザ衛星50と通信転送衛星10との相対距離を維持する。
あるいは、ユーザ衛星50の姿勢・軌道制御部61が、前述した地上局70からの制御指示データにより、ユーザ衛星50の姿勢または軌道を制御する。
以上のように、図6では、複数の衛星がそれぞれ姿勢または軌道制御し、通信転送衛星10とフォーメーション飛行をする形態を説明した。
2.第2の通信の形態
図7は、ユーザ衛星50が、通信転送衛星10と同一軌道面で異なる高度で飛行する形態を示している。図7において、横方向の矢印は、衛星の飛行方向を示している。ユーザ衛星50が、通信転送衛星10と同じ方向に地球周回を慣性飛行する場合がある。逆に、ユーザ衛星50が、通信転送衛星10と逆の方向に慣性飛行する場合もある。
ユーザ衛星50が、通信転送衛星10との間を常に一定距離以内に保つためには燃料が必要であり、小型のユーザ衛星50の寿命に影響する。図7の形態の場合には、あえて慣性飛行をさせて、所定範囲内を維持せずに通信を行う軌道制御方式である。
図7において、ユーザ衛星50は、通信転送衛星10より高高度または低高度を周回飛行する。このため、ユーザ衛星50の高度が通信転送衛星10より低い場合は通信転送衛星を追い抜き、高度が通信転送衛星10より高い場合は通信転送衛星に追い抜かれる飛行となる。
従って、図6の場合と異なって、図7の場合は、ユーザ衛星50は、通信転送衛星10と常時通信はできないが、ユーザ衛星50が通信転送衛星10を追い抜く前後において通信可能になる。または、ユーザ衛星50が通信転送衛星10に追い抜かれる前後において通信可能になる。または、ユーザ衛星50が通信転送衛星10と交差する前後において通信可能になる。
ユーザ衛星50は、図7に円で示す短距離領域にいる間は、衛星間近傍通信リンク5を確立する。また、通信転送衛星10は、可能であれば、通信転送衛星10とデータ中継衛星90とのリンクである衛星間通信リンク2を確立する。ユーザ衛星50は、図6の場合と同様に、通信転送衛星10を経由した高速のデータ伝送が可能である。この場合は通信可能時間が図6の場合より短いので、データをいったんメモリ14を使用してバッファリングし、通信可能時に転送することが望ましい。
なお、図7の場合も、短距離領域においては、ユーザ衛星50と通信転送衛星10との相互間の運動はヒル方程式で記述され、それに基づいて、ユーザ衛星の姿勢または軌道が制御される。
以上のように、同一軌道面内を飛行する他機関のユーザ衛星に対しても、通信転送衛星との通信インタフェースを合わせ、それらが短距離領域内へ位置を移動した場合に、同様のサービスを行うことができる。
3.第3の通信の形態
図8は、ユーザ衛星50が通信転送衛星10とは全く異なる軌道面で周回する場合を説明している。
即ち、ユーザ衛星50は、通信転送衛星10とフォーメーション飛行をとるための軌道制御をしていない。また、ユーザ衛星50は、通信転送衛星10と同一軌道面を周回していない。つまり、ユーザ衛星50は、通信転送衛星10とは異なる軌道面を、通信転送衛星10よりも低高度または高高度で飛行している。
この場合も、ある期間、図に円で示す短距離領域にユーザ衛星50が入ると、図6に示す形態と同様に、衛星間近傍通信リンク5を確立できる。そして、衛星間近傍通信リンク5によりデータの高速伝送が可能である。この場合は、ユーザ衛星50が通信転送衛星10と衝突せず、しかも、ユーザ衛星50ができるだけ通信転送衛星10の近傍を通過するように、ユーザ衛星50の軌道を制御する必要がある。そのためには地球の重力、大気等の影響を含む精密モデルによる大規模な演算が必要であり、地上局70での処理が必要である。
なお、通信転送衛星10は、テレメトリデータ等の蓄積のため、メモリ14を使用する必要がある。つまり、通信転送衛星10は、通信転送衛星10がデータ中継衛星90との交信ができない場合に、または、データ中継衛星90が地上局70と交信が不可能な場合に、データをメモリ14に蓄積する。
また、地上局70からのユーザ衛星50に対するコマンドの送信の場合にもあてはまり、ユーザ衛星50が短距離領域内にいない場合に、地上局70からのコマンドをメモリ14に蓄積する。
更に、通信制御に関しては、ユーザ衛星50と通信転送衛星10との衛星間近傍通信リンク5の通信速度には、いかに高速とはいえ上限がある。即ち、通信転送衛星10は、多くのユーザ衛星50からの要求が重なって限度以上になると、これらのデータ量を抑える制御を行う。
また、姿勢制御または軌道制御に関しては、ユーザ衛星50を木目細かく制御する必要があり、地球重力、大気の影響も含めた精密モデル化を要し、大規模な演算が要求される。
図5に示す構成で、地上局70は、地上トラッキングステーション82による追跡と、そのデータによる地上での軌道推定部81を備えた詳細な軌道計算が必要となる。そして、その計算結果に基づいて位置指令部73が位置制御の指定をする。
以上のように、図8では、ユーザ衛星50が通信転送衛星10とは全く異なる軌道面を周回する形態を説明した。
こうしたユーザ衛星の具体的用途として、観測衛星がある。例えば、観測衛星による地球観測ミッションがある。
例えば、数十キログラムのクラスの小型の観測衛星により、地表観測を行い、観測データを地上に送ることができる。
ユーザの観測衛星は、小電力の通信機能のままで所定範囲の内である短距離通信の距離にいる通信転送衛星と高速転送を行う。
そして、通信転送衛星は、このデータを所定範囲の外にある長距離通信の距離内にあるデータ中継衛星に大電力で高速通信により転送する。
更にデータ中継衛星が地上局と通信を行うようにして、結果的にユーザの観測衛星からのデータを早期に得られるようになる。
以上のように、この実施の形態の通信転送衛星は、
所定範囲の内にある衛星群との間で小電力のデータ通信を行う短距離用通信部と、
前記所定範囲の外にある衛星との間で大電力のデータ通信を行う長距離用通信部と、
前記短距離用通信部と前記長距離用通信部とを用いて前記所定範囲の内にある衛星群と前記所定範囲の外にある衛星とが相互にデータ通信を行うよう通信制御する制御部とを備えたことを特徴とする。
また、この実施の形態の通信転送衛星は、
所定範囲の内にある衛星群との間のデータを送受信するオムニディレクショナルアンテナと、
前記所定範囲の外にある衛星との間のデータを送受信するハイゲインアンテナと、
前記オムニディレクショナルアンテナと前記ハイゲインアンテナとを用いて、前記所定範囲の内にある衛星群と前記所定範囲の外にある衛星とが相互にデータ通信を行うよう通信制御する制御部とを備えたことを特徴とする。
また、前記通信転送衛星は、メモリを備えて、所定範囲の内にある衛星と、所定範囲の外にある衛星とで相互にデータ通信を行うために、前記メモリに前記所定範囲の内にある衛星と前記所定範囲の外にある衛星との少なくともいずれか一方の衛星からのデータを蓄積して、前記所定範囲の内にある衛星と前記所定範囲の外にある衛星との少なくともいずれか他方の衛星と通信可能になった場合に、蓄積した一方の衛星からのデータを他方の衛星へ転送することを特徴とする。
また、前記通信転送衛星は、通信転送衛星自身の基準方向を検出するセンサまたは自身の位置情報を検出する位置情報受信部と、
該検出した方向または位置情報に基づいて所定範囲の内にある衛星または所定範囲の外にある衛星との通信方向を制御する姿勢・軌道制御部とを備えたことを特徴とする。
また、この実施の形態のユーザ衛星は、
通信距離が300キロメートル以内の短距離通信アンテナと、
前記短距離通信アンテナを用いて特定の通信転送衛星と小電力で通信する短距離用通信部とを備えたことを特徴とする。
また、この実施の形態のユーザ衛星は、
所定範囲の通信可能領域内にある特定の通信転送衛星との間でデータを送受信するオムニディレクショナルアンテナと、
前記オムニディレクショナルアンテナが送受信するデータを小電力により通信を行う短距離用通信部とを備えたことを特徴とする。
また、この実施の形態の地上局は、
データ中継衛星を経由してユーザ衛星のデータを受け、またユーザ衛星へコマンドを送信する送受信部と、
前記送受信部で受ける前記ユーザ衛星の位置情報と、前記ユーザ衛星からのデータを転送する通信転送衛星の位置情報とに基づいて位置制御のコマンドを生成する計画部と、
前記計画部で生成された前記位置制御のコマンドを前記データ中継衛星経由で前記ユーザ衛星または前記通信転送衛星に指示する位置指令部とを備えたことを特徴とする。
この実施の形態は、静止軌道上にあるデータ中継衛星とのハイゲインアンテナによるデータ伝送能力を備えてある中間的な通信転送衛星を介在させることが特徴である。
また、この実施の形態は、通信転送衛星の周囲を編隊飛行する複数のユーザ衛星、或いは、通信転送衛星の周囲を通過する複数のユーザ衛星と、通信転送衛星とが通信を行うことが特徴である。
また、この実施の形態は、データ中継衛星と通信転送衛星との2つの衛星を介して、ユーザ衛星と地上局とのデータ通信が行われることが特徴である。
この実施の形態によれば、ユーザ衛星は、オムニディレクショナルアンテナによる小電力での高速データ伝送ができるという効果がある。
また、この実施の形態によれば、ユーザ衛星は、大型のハイゲインアンテナではなく、小型のオムニディレクショナルアンテナを搭載しているので、軽量なシステム構築が可能になる効果がある。
また、オムニディレクショナルアンテナを搭載しているので、半球方向の通信が可能になるという効果もある。
この発明の実施の形態1におけるデータ転送システムの構成を示す図である。 実施の形態1における通信転送衛星の内部構成を示す図である。 実施の形態1におけるユーザ衛星の内部構成を示す図である。 準天頂衛星の軌道周回を説明する図である。 実施の形態1における地上局の内部構成を示す図である。 実施の形態1における衛星と通信転送衛星とデータ中継衛星との間の通信形態を示す図である。 他の衛星と通信転送衛星とデータ中継衛星との間の通信形態を示す図である。 他の衛星と通信転送衛星とデータ中継衛星との間の通信形態を示す図である。
符号の説明
2 衛星間通信リンク、5 衛星間近傍通信リンク、6 他機関、外国のユーザ衛星(宇宙機)群、10 通信転送衛星、11 オムニディレクショナルアンテナ、12 短距離用通信部、13 制御部、14 メモリ、15 長距離用通信部、16 ハイゲインアンテナ、17 センサ入力部、18 GPS受信部、31 姿勢・軌道制御部、32 軌道制御指示部、50 ユーザ衛星(宇宙機)、51 オムニディレクショナルアンテナ、52 短距離用通信部、53 制御部、54 メモリ、57 センサ入力部、58 GPS受信部、61 姿勢・軌道制御部、62 観測器入力部、71 相対位置計測部、72 ランデブー計画部、73 位置指令部、75 長距離用送受信部、76 アンテナ、81 軌道推定部、82 地上トラッキングステーション、90 データ中継衛星。

Claims (5)

  1. 所定範囲の内にある衛星と通信を行う短距離用通信部と、
    前記所定範囲の外にある衛星と通信を行う長距離用通信部と、
    前記短距離用通信部と前記長距離用通信部との通信を制御する制御部、とを備えたことを特徴とする宇宙通信転送装置。
  2. 前記宇宙通信転送装置は、メモリを備え、前記メモリに前記所定範囲の内にある衛星と前記所定範囲の外にある衛星とのいずれか一方の衛星からのデータを蓄積して、他方の衛星と通信可能になった時に、蓄積したデータを当該他方の衛星へ転送することを特徴とする請求項1記載の宇宙通信転送装置。
  3. 前記宇宙通信転送装置は、基準方向を検出するセンサまたは自身の位置情報を検出する位置情報受信部と、
    該検出した基準方向または位置情報に基づいて所定範囲の内にある衛星または所定範囲の外にある衛星との通信方向を制御する姿勢・軌道制御部、とを備えたことを特徴とする請求項1記載の宇宙通信転送装置。
  4. 通信距離が300キロメートル以内の短距離通信アンテナと、
    前記短距離通信アンテナを用いて特定の宇宙通信転送装置と小電力で通信する短距離用通信部、とを備えたことを特徴とする衛星。
  5. 衛星とデータを送受信する送受信部と、衛星に対して衛星の位置を制御するコマンドを生成する位置指令部とを備えた地上局において、
    前記送受信部は、宇宙通信転送装置とデータ中継衛星とを経由してユーザ衛星の位置情報を受信するとともに、データ中継衛星を経由して宇宙通信転送装置の位置情報を受信し、
    前記位置指令部は、ユーザ衛星の位置情報と宇宙通信転送装置の位置情報とに基づいて、ユーザ衛星と宇宙通信転送装置との少なくともいずれかの位置を制御するコマンドを生成して、生成したコマンドを前記送受信部からデータ中継衛星を介して受信することを特徴とする地上局。
JP2004037583A 2004-02-16 2004-02-16 宇宙通信転送衛星 Expired - Fee Related JP4494819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037583A JP4494819B2 (ja) 2004-02-16 2004-02-16 宇宙通信転送衛星

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037583A JP4494819B2 (ja) 2004-02-16 2004-02-16 宇宙通信転送衛星

Publications (2)

Publication Number Publication Date
JP2005229448A true JP2005229448A (ja) 2005-08-25
JP4494819B2 JP4494819B2 (ja) 2010-06-30

Family

ID=35003809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037583A Expired - Fee Related JP4494819B2 (ja) 2004-02-16 2004-02-16 宇宙通信転送衛星

Country Status (1)

Country Link
JP (1) JP4494819B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088612A (ja) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp 通信衛星及び地上局及び通信衛星の製造方法
JP2013511938A (ja) * 2009-11-24 2013-04-04 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート マルチユーザベースの無線通信システムにおけるフレーム送信方法
US8582489B2 (en) 2009-11-24 2013-11-12 Electronics And Telecommunications Research Institute Method for recovering a frame that failed to be transmitted in a mu-mimo based wireless communication system
US8861495B2 (en) 2009-11-24 2014-10-14 Electronics And Telecommunications Research Institute Method for protecting data in a MU-MIMO based wireless communication system
WO2018142539A1 (ja) * 2017-02-02 2018-08-09 三菱電機株式会社 制御局、衛星局、地球局、データ伝送システムおよびデータ伝送方法
JP2021151811A (ja) * 2020-03-24 2021-09-30 三菱電機株式会社 観測システム、観測衛星、通信衛星および地上設備
JP2021172157A (ja) * 2020-04-21 2021-11-01 三菱電機株式会社 観測システム、通信衛星、観測衛星および地上設備
JP6987420B1 (ja) * 2020-11-13 2022-01-05 株式会社ワープスペース 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
WO2022209149A1 (ja) * 2021-03-30 2022-10-06 日本電気株式会社 測位方法、測位装置及び衛星システム
JP7403403B2 (ja) 2020-07-22 2023-12-22 三菱電機株式会社 宇宙状況監視事業装置、監視装置、および、地上設備

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425612A (en) * 1977-07-29 1979-02-26 Hitachi Ltd Remote sensing system utilizing relay stellite
JPH0284827A (ja) * 1988-09-20 1990-03-26 Nec Corp データ中継衛星システム
JPH0752896A (ja) * 1993-08-20 1995-02-28 Nec Corp 静止衛星管制方式
JPH1168639A (ja) * 1997-08-22 1999-03-09 Toshiba Corp スペースネットワークシステム
JP2001358633A (ja) * 2000-06-15 2001-12-26 Toshiba Corp 衛星運用システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425612A (en) * 1977-07-29 1979-02-26 Hitachi Ltd Remote sensing system utilizing relay stellite
JPH0284827A (ja) * 1988-09-20 1990-03-26 Nec Corp データ中継衛星システム
JPH0752896A (ja) * 1993-08-20 1995-02-28 Nec Corp 静止衛星管制方式
JPH1168639A (ja) * 1997-08-22 1999-03-09 Toshiba Corp スペースネットワークシステム
JP2001358633A (ja) * 2000-06-15 2001-12-26 Toshiba Corp 衛星運用システム

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088612A (ja) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp 通信衛星及び地上局及び通信衛星の製造方法
US10826575B2 (en) 2009-11-24 2020-11-03 Electronics And Telecommunications Research Institute Methods for transmitting a frame in a multi-user based wireless communication system
US8582489B2 (en) 2009-11-24 2013-11-12 Electronics And Telecommunications Research Institute Method for recovering a frame that failed to be transmitted in a mu-mimo based wireless communication system
US8861495B2 (en) 2009-11-24 2014-10-14 Electronics And Telecommunications Research Institute Method for protecting data in a MU-MIMO based wireless communication system
US8989161B2 (en) 2009-11-24 2015-03-24 Electronics And Telecommunications Research Institute Methods for transmitting a frame in a multi-user based wireless communication system
US9929784B2 (en) 2009-11-24 2018-03-27 Electronics And Telecommunications Research Institute Methods for transmitting a frame in a multi-user based wireless communication system
US10230435B2 (en) 2009-11-24 2019-03-12 Electronics And Telecommunications Research Institute Method for recovering a frame that failed to be transmitted in a MU-MIMO based wireless communication system
US11362705B2 (en) 2009-11-24 2022-06-14 Electronics And Telecommunications Research Institute Method for recovering a frame that failed to be transmitted in a MU-MIMO based wireless communication system
JP2013511938A (ja) * 2009-11-24 2013-04-04 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート マルチユーザベースの無線通信システムにおけるフレーム送信方法
US11742905B2 (en) 2009-11-24 2023-08-29 Electronics And Telecommunications Research Institute Method for recovering a frame that failed to be transmitted in a MU-MIMO based wireless communication system
USRE49471E1 (en) 2009-11-24 2023-03-21 Electronics And Telecommunications Research Institute Method for protecting data in a mu-mimo based wireless communication system
WO2018142539A1 (ja) * 2017-02-02 2018-08-09 三菱電機株式会社 制御局、衛星局、地球局、データ伝送システムおよびデータ伝送方法
JPWO2018142539A1 (ja) * 2017-02-02 2019-07-11 三菱電機株式会社 制御局、衛星局、地球局、データ伝送システムおよびデータ伝送方法
JP2021151811A (ja) * 2020-03-24 2021-09-30 三菱電機株式会社 観測システム、観測衛星、通信衛星および地上設備
JP7408241B2 (ja) 2020-03-24 2024-01-05 三菱電機株式会社 観測システム、観測衛星、通信衛星および地上設備
JP2021172157A (ja) * 2020-04-21 2021-11-01 三菱電機株式会社 観測システム、通信衛星、観測衛星および地上設備
JP7382894B2 (ja) 2020-04-21 2023-11-17 三菱電機株式会社 観測システム、通信衛星および観測衛星
JP7403403B2 (ja) 2020-07-22 2023-12-22 三菱電機株式会社 宇宙状況監視事業装置、監視装置、および、地上設備
JP2022078937A (ja) * 2020-11-13 2022-05-25 株式会社ワープスペース 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
JP2022082468A (ja) * 2020-11-13 2022-06-01 株式会社ワープスペース 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
JP7074383B1 (ja) 2020-11-13 2022-05-24 株式会社ワープスペース 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
JP6987420B1 (ja) * 2020-11-13 2022-01-05 株式会社ワープスペース 通信制御装置、通信制御方法、通信制御プログラム、通信制御システム、中継衛星、及び衛星システム
WO2022209149A1 (ja) * 2021-03-30 2022-10-06 日本電気株式会社 測位方法、測位装置及び衛星システム

Also Published As

Publication number Publication date
JP4494819B2 (ja) 2010-06-30

Similar Documents

Publication Publication Date Title
KR102202626B1 (ko) 초경량 소형의 무인 이동체용 영상 레이더 장치 및 시스템
US10483629B1 (en) Antenna beam pointing system
US20160269101A1 (en) Co-orbiting laser communications relay satellite
JP4494819B2 (ja) 宇宙通信転送衛星
JP6755481B2 (ja) 追尾アンテナシステム、飛翔体および追尾アンテナ装置
TW201707277A (zh) 多波束天線系統
US10763967B2 (en) Communications relay satellite with a single-axis gimbal
JP3454783B2 (ja) オンボード光学系および他の衛星の天体暦を用いる天体暦/姿勢基準決定システム
WO2019026179A1 (ja) 飛行情報収集システム、無線通信装置、中継機、飛行情報収集方法
WO2022065256A1 (ja) 衛星見守りシステム、衛星情報伝送システム、地上設備、通信衛星、監視システム、構成衛星、人工衛星、通信衛星コンステレーション、衛星コンステレーション、および、衛星
JP2024003118A (ja) 観測システム、通信衛星、観測衛星および地上設備
Raible et al. On the physical realizability of hybrid RF and optical communications platforms for deep space applications
Triharjanto et al. LAPAN-TUBSAT: Micro-satellite platform for surveillance & remote sensing
JP2019121967A (ja) 追尾アンテナ、飛翔体、追尾アンテナ装置
JP2013107496A (ja) 情報収集システム
WO2023008145A1 (ja) クラウドコンピューティングシステム及びエッジコンピューティングシステム
JP2009103656A (ja) 観測衛星システム
US9356686B1 (en) Polar satcom system and related method
JP7410111B2 (ja) 経路決定システム、経路決定方法およびシステムプログラム
US11905045B1 (en) Deployable impactor payload
WO2023032822A1 (ja) 測位方法、月測位システム、および、測位衛星
JP7394725B2 (ja) 衛星見守りシステム、インフラストラクチャ衛星、見守り衛星、通信装置、および、見守りセンター
JP7412641B2 (ja) 通信衛星、衛星コンステレーション、衛星間通信方法、人工衛星および地上設備
WO2023062732A1 (ja) 通信衛星システム、エッジコンピューティングシステム、および主衛星
JP7349945B2 (ja) 観測システム、通信衛星および地上設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees