JP7408241B2 - 観測システム、観測衛星、通信衛星および地上設備 - Google Patents

観測システム、観測衛星、通信衛星および地上設備 Download PDF

Info

Publication number
JP7408241B2
JP7408241B2 JP2020052551A JP2020052551A JP7408241B2 JP 7408241 B2 JP7408241 B2 JP 7408241B2 JP 2020052551 A JP2020052551 A JP 2020052551A JP 2020052551 A JP2020052551 A JP 2020052551A JP 7408241 B2 JP7408241 B2 JP 7408241B2
Authority
JP
Japan
Prior art keywords
observation
communication
satellite
satellites
orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020052551A
Other languages
English (en)
Other versions
JP2021151811A (ja
Inventor
久幸 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020052551A priority Critical patent/JP7408241B2/ja
Publication of JP2021151811A publication Critical patent/JP2021151811A/ja
Application granted granted Critical
Publication of JP7408241B2 publication Critical patent/JP7408241B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Description

本開示は、人工衛星を利用した観測システムに関するものである。
静止軌道から光学観測を行う観測衛星は常時観測が行えるというメリットがある。しかし、地上との通信を許可される経度帯が限定される場合、観測される地表の経度帯が限定される。
特許文献1は、太陽光が逆光になる空間でスペースデブリを観測するための方法を開示している。
特開2011-218834号公報
本開示は、観測可能な経度帯を広域化できるようにすることを目的とする。
本開示の観測システムは、
観測装置と通信装置と推進装置とを備えて静止軌道に沿って飛翔する観測衛星と、
通信装置を備える地上設備と、
通信装置を備えて静止軌道を飛翔する通信衛星と、
を有し
前記観測衛星と前記通信衛星が、10000キロメートル未満の距離に接近して通信を行う観測システム。
本開示によれば、観測衛星は通信衛星を介して地上設備と通信することができる。これにより、観測可能な経度帯が広域化される。また、観測衛星と通信衛星が10000キロメートル未満の距離に接近して通信を行うため、安価で小型な通信装置を使用することが可能となる。
実施の形態1における観測システム100の構成図。 実施の形態1における観測衛星110の構成図。 実施の形態1における通信衛星120の構成図。 実施の形態1における地上設備130の構成図。 実施の形態2における観測システム100の構成図。 実施の形態2における観測方法の説明図。 実施の形態3における観測システム100の構成図。 実施の形態4における観測システム100の構成図。 実施の形態4における観測軌道の一例を示す図。 実施の形態4における観測軌道の一例を示す図。 実施の形態5における観測方法の説明図。
実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。
実施の形態1.
観測システム100について、図1から図4に基づいて説明する。
***構成の説明***
図1に基づいて、観測システム100の構成を説明する。
観測システム100は、観測衛星110と通信衛星120と地上設備130とを備える。
観測衛星110は、観測を行うための人工衛星である。観測衛星110から出ている黒塗り部分は、観測衛星110の視野範囲すなわち観測範囲を表している。「観測」は「監視」または「撮影」といった概念を含む。
観測衛星110は、静止軌道(破線を参照)または静止軌道の近傍(一点鎖線を参照)を飛翔して地球101を周回する。つまり、観測衛星110は、静止軌道に沿って飛翔して地球101を周回する。
通信衛星120は、衛星通信を行うための静止衛星である。静止衛星は、静止軌道を飛翔して地球101の自転周期と同じ周期で公転する人工衛星である。
通信衛星120は、地上設備130の上空に配置される。
通信衛星120は、観測衛星110から送信される観測データを受信し、観測データを地上設備130へ送信する。観測データは、観測によって得られるデータである。
通信衛星120は、地上設備130から送信される制御コマンドを受信し、制御コマンドを観測衛星110へ送信する。制御コマンドは、観測衛星110を制御するためのコマンドである。
通信衛星120を囲う円は、近傍通信範囲を表している。近傍通信範囲は、通信衛星120と観測衛星110が互いに通信を行うことが可能な範囲である。
地上設備130は、地上に設けられた設備である。
地上設備130が設けられる地域を「対象地域」と称する。
静止軌道の周囲に付加されている各時刻は、対象地域の標準時である。対象地域の具体例は日本である。
図2に基づいて、観測衛星110の構成を説明する。
観測衛星110は、観測装置111と衛星制御装置112と通信装置113と推進装置114と姿勢制御装置115と電源装置116とを備える。
観測装置111は、観測用の装置である。具体的には、観測装置111は可視光学センサである。
観測装置111は、観測対象を観測して観測データを生成する。観測データは、観測対象が映った画像を表すデータに相当する。
衛星制御装置112は、観測衛星110の各装置を制御するためのコンピュータである。
衛星制御装置112は、既定の手順、または、地上設備130から送信される制御コマンドにしたがって、観測装置111と推進装置114と姿勢制御装置115とを制御する。
通信装置113は、トランスミッタおよびレシーバである。
通信装置113は、観測データを送信する。また、通信装置113は、制御コマンドを受信する。
推進装置114は、観測衛星110に推進力を与える装置であり、観測衛星110の速度を変化させる。
具体的には、推進装置114は、化学推進機または電気推進機である。例えば、推進装置114は、2液式スラスタ、イオンエンジンまたはホールスラスタである。
姿勢制御装置115は、観測衛星110の姿勢要素を制御するための装置である。
姿勢制御装置115は、観測衛星110の姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置115は、観測衛星110の姿勢要素を所望の方向に維持する。
具体的には、観測衛星110の姿勢要素は、観測衛星110の姿勢、観測衛星110の角速度、および、観測装置111の視線方向(Line Of Sight)である。
姿勢制御装置115は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタまたは磁気センサ等である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールまたはコントロール・モーメント・ジャイロ等である。コントローラは、姿勢センサによって得られる計測データに基づいて、または、地上設備130からの制御コマンドにしたがって、制御プログラムを実行することによって、アクチュエータを制御する。
電源装置116は、太陽電池、バッテリおよび電力制御装置などを備え、観測衛星110の各装置に電力を供給する。
衛星制御装置112について補足する。
衛星制御装置112は処理回路を備える。
処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
処理回路において、衛星制御装置112の一部の機能が専用のハードウェアで実現されて、衛星制御装置112の残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
ASICは、Application Specific Integrated Circuitの略称である。
FPGAは、Field Programmable Gate Arrayの略称である。
観測衛星110のポインティング機能について補足する。
観測衛星110は、観測方向を観測対象へ向けるためのポインティング機能を有する。
例えば、観測衛星110はリアクションホイールを備える。リアクションホイールは、観測衛星110の姿勢を制御するための装置である。リアクションホイールによって観測衛星110の姿勢が制御され、ボディポインティングが実現される。
例えば、観測装置111はポインティング機構を備える。ポインティング機構は、観測衛星110の視線方向を変えるための機構である。ポインティング機構には、例えば、駆動ミラー等が利用される。
観測装置111の観測機能について補足する。
観測装置111は、分解能可変機能およびオートフォーカス機能を有する。
分解能可変機能は、観測時の分解能を変える機能である。
オートフォーカス機能は、観測対象に焦点を合わせる機能である。
図3に基づいて、通信衛星120の構成を説明する。
通信衛星120は、通信装置121と推進装置122と電源装置123とを備える。
通信装置121は、トランスミッタおよびレシーバである。
通信装置121は、観測衛星110から観測データを受信し、観測データを地上設備130へ送信する。
通信装置121は、地上設備130から制御コマンドを受信し、制御コマンドを観測衛星110へ送信する。
推進装置122は、通信衛星120に推進力を与える装置である。具体的には、推進装置122は、化学推進機または電気推進機である。例えば、推進装置122は、2液式スラスタ、イオンエンジンまたはホールスラスタである。
電源装置123は、太陽電池、バッテリおよび電力制御装置などを備え、通信衛星120の各装置に電力を供給する。
図4に基づいて、地上設備130の構成を説明する。
地上設備130は、通信装置131と衛星管制装置132とを備える。
通信装置131は、トランスミッタおよびレシーバである。
通信装置131は、観測データを受信する。また、通信装置131は、制御コマンドを送信する。
衛星管制装置132は、観測衛星110を利用して観測対象を観測するためのコンピュータである。
衛星管制装置132は、観測データを処理する。また、衛星管制装置132は、制御コマンドを生成する。
衛星管制装置132について補足する。
衛星管制装置132は処理回路を備える。
処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
処理回路において、衛星管制装置132の一部の機能が専用のハードウェアで実現されて、衛星管制装置132の残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
***動作の説明***
観測システム100の動作の手順は観測方法に相当する。
図1に基づいて、観測方法を説明する。
観測衛星110は、静止軌道(点線を参照)を飛翔する。その後、観測衛星110は、増速ないし減速して軌道高度を変更する(一点鎖線を参照)。
すると、観測衛星110の軌道高度の変化に伴って、地表に対する観測衛星110の速度(対地速度)が変化する。
そして、地球101の自転速度に対する対地速度差を利用することによって、観測衛星110が上空に滞留する経度帯が変更され、観測可能領域が広域化する。
例えば、観測衛星110は、日本が位置する経度帯で静止軌道を飛翔する。その後、観測衛星110は、飛翔方向である東方向に増速する。すると、観測衛星110の軌道高度が上昇し、観測衛星110の対地速度が減速する。そして、観測衛星110の軌道において観測衛星110の位置が地表に対して相対的に西方に移動する。これにより、観測衛星110によって観測される領域(観測領域)をアジアおよびオセアニアの全域に拡大することができる。
その後、観測衛星110は、飛翔方向である東方向に対して推進装置を逆噴射させて減速する。すると、観測衛星110の軌道高度が下降し、観測衛星110の対地速度が増速する。そして、観測衛星110の軌道において観測衛星110の位置が地表に対して相対的に東方に移動して日本の上空に復帰する。
このように、観測衛星110は、軌道高度の上昇と軌道高度の下降とを繰り返すことで、広域(例えばアジア周辺)を東西方向に往復しながら継続的に観測することができる。
観測衛星110の移動先の経度帯において、観測衛星110は、10000キロメートル未満に接近した通信衛星120と相互に通信回線を確立する。また、通信衛星120は、観測衛星110と地上設備130の通信回線を確立する。これにより、観測衛星110への制御コマンドの送信と観測衛星110からの観測データの受信が可能となる。
なお、静止軌道の近傍を飛翔する別の人工衛星に対して電波干渉などの悪影響を与えないために、観測衛星110と通信衛星120の通信で使用する波長帯を選択することが可能である。また、観測衛星110と通信衛星120の通信において、悪影響を回避する手段(例えばスペクトル拡散など)を採用することが可能である。
***実施の形態1の効果***
観測衛星110によって観測することが可能な領域(観測可能領域)を広域化することができる。
観測衛星110が観測対象が位置する経度帯に移動し、移動先において観測衛星110が赤道上空から観測対象を観測することにより、分解能が高くて画像品質が優れた観測データを得ることができる。
観測衛星110は、10000キロメートル未満の距離に位置する通信衛星120と通信する。つまり、観測衛星110と通信衛星120は近傍通信を行う。そして、近傍通信に資する通信機器は、高い指向性および高いゲイン性能を必要としない。そのため、通信装置(113、121)の費用を安価にできる。さらに、通信装置(113、121)を小型化できる。
観測衛星110と通信衛星120の通信において、難度の高い指向制御をせずに通信回線を確立することができる。
観測衛星110は観測と通信をリアルタイムに繰り返すことが可能である。また、地上設備130は、観測によって得られた観測データを即座に確認することが可能である。そして、地上設備130は、次の観測条件を決定し、次の観測条件に応じた制御コマンドを観測衛星110へ送信することが可能である。これにより、より好条件の観測が可能になる。
近傍通信に資する通信機器は高い指向性および高いゲイン性能を必要としない。そのため、通信装置121のアンテナを、無指向性アンテナまたは小型アンテナで実現することが可能である。つまり、通信装置121が安価で且つ小型に実現される。したがって、静止軌道に多数存在する通信衛星に通信装置121を付加的に搭載し、その通信衛星を通信衛星120として利用することが容易である。
無指向性アンテナおよび小型アンテナでは、通信ビームが広い。そのため、観測衛星110と通信衛星120が互いの近傍を通過する際に、難しい指向制御をしなくても容易に通信回線を確立することができる。つまり、通信衛星120として利用する通信衛星に対して特別な運用制御を行わなくても、データ中継を行うことができる。したがって、静止軌道に存在する多数の通信衛星を利用することができる。そして、赤道上空の多数の経度帯において、観測衛星110が地上設備130と通信することが可能となる。
観測衛星110の近傍を飛翔する静止衛星に対する電波干渉を回避するための調整が容易になる。
実施の形態2.
観測システム100について、主に実施の形態1と異なる点を図5から図6に基づいて説明する。
***構成の説明***
図5に基づいて、観測システム100の構成を説明する。白い星は観測衛星110を表している。記載の便宜上、観測衛星110の符号は省略されている。
観測システム100は、異なる経度帯を飛翔する複数の通信衛星120を備える。図5において、観測システム100は3つの通信衛星120を備えている。
各通信衛星120の近傍通信範囲の一部は、静止軌道の周回方向において隣り合う通信衛星120の近傍通信範囲の一部とオーバーラップする。
***動作の説明***
図5および図6に基づいて、観測方法を説明する。
図5は、観測衛星110が静止軌道の高度より低い高度を飛翔する様子を示している。観測衛星110が減速することにより、観測衛星110の軌道高度が下降する。その結果、観測衛星110の対地速度が増速し、観測衛星110の位置が地表に対して相対的に東方に移動する。
図6は、観測衛星110が静止軌道の高度より高い高度を飛翔する様子を示している。観測衛星110が増速することにより、観測衛星110の軌道高度が上昇する。その結果、観測衛星110の対地速度が減速し、観測衛星110の位置が地表に対して相対的に西方に移動する。
観測衛星110は、複数の通信衛星120のうち観測衛星110が近傍通信範囲内に位置する通信衛星120と通信回線を確立し、確立された通信回線経由で地上設備130と通信を行う。
***実施の形態2の効果***
複数の通信衛星120が利用されることにより、観測衛星110が東西方向に移動しても、観測衛星110はいずれかの通信衛星120の近傍通信範囲内に位置することができる。そのため、観測衛星110が移動先でもリアルタイム通信を行うことが可能になる。
複数の通信衛星120は、静止軌道の周回方向において隣り合う通信衛星120の近傍通信範囲同士が一部でオーバーラップするように配置される。これにより、観測衛星110の移動範囲内の全ての領域で、観測衛星110がいずれかの通信衛星120と通信回線を確立することができる。
実施の形態3.
観測システム100について、主に実施の形態1および実施の形態2と異なる点を図7に基づいて説明する。
***構成の説明***
図7に基づいて、観測システム100の構成を説明する。白い星は観測衛星110を表している。中央の網掛けは地球101を表している。記載の便宜上、地球101と観測衛星110とのそれぞれの符号は省略されている。
観測システム100は、赤道上空の全周に渡って、異なる経度帯を飛翔する複数の通信衛星120を備える。つまり、観測システム100は、静止軌道の全周において、異なる経度帯を飛翔する複数の通信衛星120を備える。
各通信衛星120の近傍通信範囲の一部は、静止軌道の周回方向において隣り合う通信衛星120の近傍通信範囲の一部とオーバーラップする。
観測システム100は、異なる経度帯に設置された複数の地上設備130を備える。複数の地上設備130は、それぞれに地上通信回線に接続され、地上通信回線を介して互いに通信を行う。
観測衛星110は観測装置111を備える。具体的には、観測装置111は赤外線撮影装置である。
***動作の説明***
観測衛星110は、近傍通信衛星と通信回線を確立する。近傍通信衛星は、観測衛星110が近傍通信範囲内に位置する通信衛星120である。
近傍通信衛星は、特定の地上設備130と通信回線を確立する。特定の地上設備130は、近傍通信衛星が通信範囲内に位置する地上設備130である。
観測衛星110は、近傍通信衛星経由で特定の地上設備130と通信する。特定の地上設備130は地上通信回線を介して他の地上設備130と通信する。また、観測衛星110は、近傍通信衛星と特定の地上設備130とを介して、特定の地上設備130以外の地上設備130と通信する。
***実施の形態3の効果***
観測装置111が赤外線撮影装置であることにより、日照条件に依存しない観測が可能となる。つまり、昼夜に関わらず観測を行うことが可能となる。
観測衛星110が静止軌道よりも高度が高い軌道を周回する運用が可能となる。また、観測衛星110が静止軌道よりも高度が低い軌道を周回する運用が可能となる。
複数の地上設備130が互いに異なる経度帯に設置される。これにより、赤道上空の全周において観測衛星110が観測および通信をリアルタイムに行うことができる。例えば、観測衛星110が日本から見て地球101の裏側を飛翔する時間帯において、観測衛星110は観測および通信をリアルタイムに行うことができる。
複数の通信衛星120は、静止軌道の周回方向において隣り合う通信衛星120の近傍通信範囲同士が一部でオーバーラップするように配置される。これにより、観測衛星110は、観測および通信を常時行うことができる。
実施の形態4.
観測システム100について、主に実施の形態1から実施の形態3と異なる点を図8から図10に基づいて説明する。
実施の形態4において、高度および時間などの値はおおよその値である。
***構成の説明***
図8に基づいて、観測システム100の構成を説明する。白い星は観測衛星110を表している。地上設備130の図示は省略されている。
観測システム100は、異なる経度帯を飛翔する複数の通信衛星120を備える。
各通信衛星120の近傍通信範囲の一部は、静止軌道の周回方向において隣り合う通信衛星120の近傍通信範囲の一部とオーバーラップする。
***動作の説明***
図8に基づいて、観測方法を説明する。
複数の通信衛星120は、静止軌道(破線を参照)を1日に1周回する。つまり、複数の通信衛星120の周回周期は24時間である。静止軌道の高度は約36000キロメートルである。
観測衛星110は、赤道上空の高度10000キロメートル以上36000キロメートル未満の軌道を周回する。
観測衛星110と各通信衛星120は、30000キロメートル未満の距離に接近して通信を行う。
観測衛星110の軌道を「観測軌道」と称する。
図8において、観測軌道(一点鎖線を参照)は、赤道上空の高度20000キロメートルの軌道である。
観測衛星110は、この観測軌道を1日に2周回する。つまり、観測衛星110の周回周期は12時間である。
図9に基づいて、観測軌道の一例を説明する。観測衛星110、通信衛星120および地上設備130の図示は省略する。
図9において、観測軌道は、赤道上空の高度14000キロメートルの軌道である。
観測衛星110は、この観測軌道を1日に3周回する。つまり、観測衛星110の周回周期は8時間である。
図10に基づいて、観測軌道の一例を説明する。観測衛星110、通信衛星120および地上設備130の図示は省略する。
図10において、観測軌道は、赤道上空の高度10000キロメートルの軌道である。
観測衛星110は、この観測軌道を1日に4周回する。つまり、観測衛星110の周回周期は6時間である。
***実施の形態4の効果***
静止軌道からの観測のように遠方からの観測では、分解能の向上が難しい。また、観測装置111が大型化してしまう。
そこで、観測衛星110は、静止軌道よりも高度が低い軌道を周回する。例えば、観測衛星110は、赤道上空の高度20000キロメートルの軌道を飛翔する。これにより、観測衛星110から地表までの距離(対地距離)が接近するため、分解能の向上が容易になる。また、観測装置111の小型化が可能になる。さらに、観測衛星110は、地球101を一日に2周回し、各周回で各通信衛星120と通信を行うことができる。そのため、赤道上空の全周において観測を行うことが可能になる。
観測衛星110が赤道上空の高度14000キロメートルの軌道を飛翔する場合、観測衛星110は地球101を一日に3周回する。観測衛星110が赤道上空の高度10000キロメートルの軌道を飛翔する場合、観測衛星110は地球101を一日に4周回する。観測衛星110の軌道高度が低くなると対地距離が短くなるため、観測装置111の小型化が可能になる。
実施の形態5.
観測システム100について、主に実施の形態1から実施の形態4と異なる点を図11に基づいて説明する。
***構成の説明***
観測システム100の構成は、実施の形態1または実施の形態2における構成と同じである。
***動作の説明***
図11に基づいて、観測方法を説明する。
観測衛星110は、静止軌道の高度と異なる高度から宇宙物体102を観測対象にして観測を行う。
宇宙物体102は、静止軌道または静止軌道の近傍を飛翔する物体である。宇宙物体102の具体例はスペースデブリである。
例えば、観測衛星110は、静止軌道の高度より低い高度を飛翔し、宇宙物体102を追い越しながら宇宙物体102を観測する。
例えば、観測衛星110は、静止軌道の高度より高い高度を飛翔し、宇宙物体102に追い抜かされながら宇宙物体102を観測する。
***実施の形態5の効果***
観測衛星110は、静止軌道の近傍を飛翔するデブリを観測することができる。その結果、地上設備130において、デブリが人工衛星に衝突する危険性を検知して回避行動を実施することが可能となる。
実施の形態6.
観測衛星110と通信衛星120と地上設備130は、データを秘匿化して通信を行ってもよい。つまり、観測システム100において、通信が秘匿化されてもよい。
これにより、以下のような効果が得られる。
静止軌道または静止軌道の近傍を飛翔する衛星の軌道上寿命が15年以上に及ぶ場合があり、軌道上寿命期間内に想定される安全保障上の脅威に対処する必要がある。また、安全保障上の脅威に対する抗堪性が求められる。そして、通信の秘匿化により、安全保障上の脅威に対する抗堪性が確保される。さらに、通信の秘匿化は、リアルタイムな対処に有効である。
***実施の形態の補足***
静止軌道から光学観測を行う観測衛星は常時観測が行えるというメリットがある。しかし、赤道上空の高度約36000キロメートルから観測が行われるため、分解能の向上が難しい。また、地上との通信を許可された特定経度領域に観測が限定される場合、高分解能で観測される地表の経度帯が限定される。
静止軌道を飛翔する観測衛星を増速させると観測衛星の軌道高度が上昇し、観測衛星の対地速度が低下する。そのため、観測衛星から直下視される地表経度を変更することができる。このため、日本上空に滞留していた観測衛星を西方に移動させてアジアおよびオセアニアに対する災害監視等の貢献が可能となる。
但し、赤道上空の広域の経度領域において地上と通信する許可を取得することは難しい。
このため、地上と通信できない領域での観測で得られたデータは、観測衛星で記録して保有しておき、観測衛星が地上設備と通信できる領域まで移動したときに地上設備に伝送する必要がある。この方法は、災害監視など即時性を要する観測には不向きである。
そこで、赤道上空の静止軌道を飛翔する通信衛星と観測衛星が通信する。これにより、観測衛星と地上設備が通信衛星経由での通信を行う観測システムが構築される。
観測システムの一例として、低軌道を周回する観測衛星へのコマンドの送信とその観測衛星からの観測データの受信が静止軌道を飛翔する通信衛星経由で実施されるデータ中継システムが考えられる。
遠距離の衛星間通信を高データ伝送レートで実施するためには、通信ビームを狭ビーム化し、指向制御を行い、通信回線を確立する必要がある。しかし、アンテナが巨大化して通信機器が高価になる。また、通信ビームの指向制御が難しい。近年、光通信によってアンテナの巨大化を回避する手段が存在する。しかし、光通信を実現するための指向制御は、電波通信における指向制御以上に難しい。
本開示において、静止軌道上の観測衛星は、増速ないし減速して軌道高度を変更するそして、観測衛星は、地球自転速度に対する対地速度差を利用して滞留する経度帯を変更する。これにより、観測可能領域が広域化する。さらに、観測衛星は、経度帯の移動時に近傍を通過する通信衛星と制御コマンドまたは観測データの通信を行う。これにより、難度が高いビーム制御が不要となる。なお、観測衛星は、通信衛星経由で地上設備との通信回線を確立する。
近傍通信に資する通信機器は高い指向性および高ゲイン性能を必要としない。つまり、近傍通信に資する通信機器は、無指向性アンテナまたは小型アンテナを使用することが可能である、また、近傍通信に資する通信機器は、安価で且つ小型である。そのため、近傍通信に資する通信機器は、静止軌道上に多数存在する通信衛星に容易に搭載することができる。
無指向性アンテナおよび小型アンテナのビームは広いので、観測衛星と通信衛星が近傍を通過する際に難しい指向制御をしなくても、容易に通信回線を確立することができる。
このため、静止軌道上に多数存在する通信衛星が特別な運用制御をしなくてもデータ中継を行うことができる。そして、多数の通信衛星を利用して赤道上空の多数の経度帯において地上との通信が可能な領域が確保される。
各実施の形態は、好ましい形態の例示であり、本開示の技術的範囲を制限することを意図するものではない。各実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。
100 観測システム、101 地球、102 宇宙物体、110 観測衛星、111 観測装置、112 衛星制御装置、113 通信装置、114 推進装置、115 姿勢制御装置、116 電源装置、120 通信衛星、121 通信装置、122 推進装置、123 電源装置、130 地上設備、131 通信装置、132 衛星管制装置。

Claims (11)

  1. 観測装置と通信装置と推進装置とを備えて静止軌道近傍を飛翔する観測衛星と、
    通信装置を備える地上設備と、
    通信装置を備えて静止軌道を飛翔する複数の通信衛星と、
    を有し
    前記観測衛星と前記複数の通信衛星のいずれかが、相互に相対距離10000キロメートル未満の距離で近傍通信を行う
    観測システムであり、
    前記複数の通信衛星は、静止軌道の周回方向において隣り合う通信衛星の近傍通信範囲同士が一部でオーバーラップするように配置され、互いに異なる経度帯を飛翔し、
    前記観測衛星は、
    前記推進装置を動作させて増速ないし減速して軌道高度を変更することによって、上空に滞留する経度帯を変更し、
    変更後の地表経度の地表画像または変更後の地表経度の上空の宇宙物体を観測し、
    前記複数の通信衛星のうちのいずれか1機の通信衛星と相対距離10000キロメートル未満に接近して近傍通信する
    観測システム。
  2. 前記観測衛星と前記通信衛星と前記地上設備がデータを秘匿化して通信を行う
    請求項1に記載の観測システム。
  3. 請求項1または請求項2に記載の観測システムで使用される観測衛星。
  4. 請求項1または請求項2に記載の観測システムで使用される通信衛星。
  5. 請求項1または請求項2に記載の観測システムで使用される地上設備。
  6. 観測装置と通信装置と推進装置とを備えて赤道上空の高度10000キロメートル以上の軌道を飛翔する観測衛星と、
    通信装置を備える地上設備と、
    通信装置を備えて静止軌道を飛翔する複数の通信衛星と、
    を有し、
    前記観測衛星と前記複数の通信衛星のいずれかが、相互に相対距離30000キロメートル未満の距離で近傍通信を行う
    観測システムであり、
    前記複数の通信衛星は、静止軌道の周回方向において隣り合う通信衛星の近傍通信範囲同士が一部でオーバーラップするように配置され、互いに異なる経度帯を飛翔し、
    前記観測衛星は、前記複数の通信衛星のうちのいずれか1機の通信衛星と相対距離30000キロメートル未満に接近して近傍通信する
    観測システム。
  7. 前記観測衛星と前記通信衛星と前記地上設備がデータを秘匿化して通信を行う
    請求項に記載の観測システム。
  8. 前記複数の通信衛星が赤道上空の全周に渡って異なる経度帯を飛翔する
    請求項または請求項に記載の観測システム。
  9. 請求項から請求項のいずれか1項に記載の観測システムで使用される観測衛星。
  10. 請求項から請求項のいずれか1項に記載の観測システムで使用される通信衛星。
  11. 請求項から請求項のいずれか1項に記載の観測システムで使用される地上設備。
JP2020052551A 2020-03-24 2020-03-24 観測システム、観測衛星、通信衛星および地上設備 Active JP7408241B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052551A JP7408241B2 (ja) 2020-03-24 2020-03-24 観測システム、観測衛星、通信衛星および地上設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052551A JP7408241B2 (ja) 2020-03-24 2020-03-24 観測システム、観測衛星、通信衛星および地上設備

Publications (2)

Publication Number Publication Date
JP2021151811A JP2021151811A (ja) 2021-09-30
JP7408241B2 true JP7408241B2 (ja) 2024-01-05

Family

ID=77887104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052551A Active JP7408241B2 (ja) 2020-03-24 2020-03-24 観測システム、観測衛星、通信衛星および地上設備

Country Status (1)

Country Link
JP (1) JP7408241B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927652A (en) 1995-07-26 1999-07-27 Alcatel Espace System for observation of geostationary satellites, use of a system of this kind and corresponding observation methods
JP2000278194A (ja) 1999-03-23 2000-10-06 Toshiba Corp 衛星通信制御システム
JP2002530004A (ja) 1998-11-09 2002-09-10 ヒューズ・エレクトロニクス・コーポレーション 衛星システム
JP2002271242A (ja) 2001-03-14 2002-09-20 Hitachi Ltd 衛星捕捉装置
JP2005229448A (ja) 2004-02-16 2005-08-25 Mitsubishi Electric Corp 宇宙通信転送装置、衛星及び地上局

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168639A (ja) * 1997-08-22 1999-03-09 Toshiba Corp スペースネットワークシステム
JP3483746B2 (ja) * 1997-11-14 2004-01-06 宇宙開発事業団 西回り赤道周回衛星及び該衛星を用いた気象衛星システム
JP2019031262A (ja) * 2017-08-09 2019-02-28 光俊 秋谷 スペースデプリ除去システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927652A (en) 1995-07-26 1999-07-27 Alcatel Espace System for observation of geostationary satellites, use of a system of this kind and corresponding observation methods
JP2002530004A (ja) 1998-11-09 2002-09-10 ヒューズ・エレクトロニクス・コーポレーション 衛星システム
JP2000278194A (ja) 1999-03-23 2000-10-06 Toshiba Corp 衛星通信制御システム
JP2002271242A (ja) 2001-03-14 2002-09-20 Hitachi Ltd 衛星捕捉装置
JP2005229448A (ja) 2004-02-16 2005-08-25 Mitsubishi Electric Corp 宇宙通信転送装置、衛星及び地上局

Also Published As

Publication number Publication date
JP2021151811A (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7086294B2 (ja) 衛星コンステレーション、地上設備および人工衛星
US11040786B2 (en) Earth observation satellite information routing system
JP2024003118A (ja) 観測システム、通信衛星、観測衛星および地上設備
WO2021172182A1 (ja) 衛星コンステレーション、地上設備および飛翔体追跡システム
WO2022064721A1 (ja) 監視システム、衛星情報伝送システム、監視衛星、通信衛星、飛翔体対応システム、データ中継衛星、赤道上空衛星群、極軌道衛星群及び傾斜軌道衛星群
JP7023389B2 (ja) 監視制御装置、人工衛星および監視システム
JPWO2022064721A5 (ja)
JP7262369B2 (ja) 衛星コンステレーション
JP7408241B2 (ja) 観測システム、観測衛星、通信衛星および地上設備
WO2020217340A1 (ja) 衛星コンステレーション、地上設備および人工衛星
JP2023091033A (ja) 観測衛星、地上設備および人工物体識別方法
JP7349945B2 (ja) 観測システム、通信衛星および地上設備
JP2009103656A (ja) 観測衛星システム
JP7412641B2 (ja) 通信衛星、衛星コンステレーション、衛星間通信方法、人工衛星および地上設備
JP7455018B2 (ja) 宇宙物体管理システム、地上設備、宇宙物体管理装置および監視衛星
JP2023018590A (ja) マルチレイヤコンステレーション
JP2022039135A (ja) 衛星見守りシステム、見守り衛星、インフラストラクチャ衛星、双方向通信端末、見守りセンタおよび衛星情報伝送システム
JP2022138046A (ja) 監視装置および監視衛星
JP2022107189A (ja) 衛星コンステレーション、地球側制御設備、人工衛星及び地上設備
JP2023099748A (ja) 監視制御装置、人工衛星、地上設備および監視システム
JP2023180776A (ja) 衛星コンステレーション、地上設備、人工衛星、ミッション衛星、通信衛星、制御方法、および制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7408241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150