JP2005207357A - エンジンの可変容量流体ポンプ - Google Patents

エンジンの可変容量流体ポンプ Download PDF

Info

Publication number
JP2005207357A
JP2005207357A JP2004016615A JP2004016615A JP2005207357A JP 2005207357 A JP2005207357 A JP 2005207357A JP 2004016615 A JP2004016615 A JP 2004016615A JP 2004016615 A JP2004016615 A JP 2004016615A JP 2005207357 A JP2005207357 A JP 2005207357A
Authority
JP
Japan
Prior art keywords
gear
fluid pump
pump
sensor
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016615A
Other languages
English (en)
Inventor
Yuji Yasui
裕司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004016615A priority Critical patent/JP2005207357A/ja
Priority to US11/032,083 priority patent/US7503753B2/en
Priority to EP05000933A priority patent/EP1557543B1/en
Priority to DE602005000638T priority patent/DE602005000638T2/de
Publication of JP2005207357A publication Critical patent/JP2005207357A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/028Units comprising pumps and their driving means the driving means being a planetary gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0253Pressure lubrication using lubricating pumps characterised by the pump driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0253Pressure lubrication using lubricating pumps characterised by the pump driving means
    • F01M2001/0269Pressure lubrication using lubricating pumps characterised by the pump driving means driven by the crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/04Pressure

Abstract

【課題】油圧、回転数および水温などの理想特性を満たし、かつ高い信頼性と燃費向上を実現するようなポンプを提供する。
【解決手段】本発明は、エンジンの回転数から独立して制御可能である可変容量流体ポンプを提供する。このポンプは、第一のギヤ、第二のギヤ、および第三のギヤを有する遊星ギヤ機構と、第一のギヤにブレーキ力を発生するブレーキ手段と、第二のギヤと前記第三のギヤとの間に設置されるワンウェイクラッチと、を有する。また、第二のギヤはエンジンのクランク軸に連結されてクランク軸の回転力を伝達し、前記第三ギヤは流体ポンプに連結されており、第一のギヤがブレーキ手段により回転数を制御され、該制御により、流体ポンプの回転数が、エンジンの回転数から独立して制御可能である。これにより、流体ポンプの仕事量を低減可能な場合にエンジン回転数によらず仕事量を低下させることができるため燃費を向上できる。
【選択図】図5

Description

本発明は、エンジンの流体ポンプ(オイルポンプ、ウォーターポンプ)の制御に関する。
通常、エンジンの付属装置として、潤滑装置と冷却装置が設置されている。潤滑装置は、オイルによるエンジン各部の摩耗抵抗軽減装置であって、エンジンのクランク軸に連動したオイルポンプを用いて、潤滑経路にオイルを送り出す。一方、冷却装置は、冷却水をシリンダーブロックやシリンダーヘッドに設けられた通路に通すことでエンジンの過熱を吸収して、エンジンが安定して回転し続けることが可能な温度に保つための装置である。冷却装置も、エンジンに連動したウォーターポンプを用いて、冷却水を循環させている。これらの装置は、エンジンの運転状態を正常なものに維持するために必要であり、エンジンの効率、つまり燃費を向上させる効果がある。
潤滑装置と冷却装置に共通する問題点として、流体をくみ上げるための流体ポンプ(オイルポンプ、ウォーターポンプ)の駆動方法が挙げられる。これらのポンプは、エンジンのクランク軸に連結されており、エンジンの回転に伴ってポンプに駆動力が与えられる。エンジンの回転数に応じてポンプの回転数も決定されるので、エンジンの回転数の増加に伴ってポンプの吐出量も増大するが、エンジン低回転時にはポンプの吐出量も少ない。特に、自在弁機構や可変圧縮比機構などの油圧デバイスを備えるエンジンでは、低回転時にこれらの機構の応答性が充分に得られないことにより、これらの機構の燃費向上効果を減少させていた。また、エンジン低回転時に充分なポンプ出力を発生するように設定すると、エンジンが高回転で低負荷な状態では必要以上にポンプが機能してしまい、余剰仕事が増大してしまうので、エンジン全体の効率を低下させていた。
図11に示すように、オイルポンプの理想油圧特性は、従来型に比べて、エンジン低回転時には油圧システムの要求を満たす高い油圧を生成し、エンジン高回転時の低負荷状態には適切な低い油圧を生成することが望ましい。このように、エンジン回転数に依存せず、所望の出力を実現する流体ポンプが必要である。
その解決手段として、電動ポンプが挙げられる。電動ポンプは、ポンプ回転にモータの駆動力を使用してエンジン回転とは独立にポンプ回転の制御が可能である。電動ポンプにはブラシ付きモータとブラシレスモータを用いたタイプがある。
一方、エンジン制御の分野においては、スライディングモード制御が、収束追従特性を調整して無駄な仕事を削減し、燃費を向上させることが可能な制御手法として知られている(特許文献1参照)。また、ΔΣ変調アルゴリズムが、制御対象がオン/オフの制御入力に対して適切な出力を生成することができる能力を有しているならば、制御対象の特性変化に依存せず高精度な制御を実現可能な手法として知られている(特許文献2参照)。
特開2003-155938 特開2003-195908
電動ポンプはエンジン回転数に依存しないポンプ流量の制御を可能にするが、いくつかの問題点も有する。ブラシ付きモータを用いたものは、ブラシ磨耗による経年変化や故障が生じやすく、信頼性が低い。また、ブラシレスモータを用いたものは、三相線による磁界制御を行うためのPDU(電力分配ユニット)が必要となり、システム重量が増加することによって燃費向上効果が減少するので、コストが高くなる。
従って、図11に示すような理想油圧特性(オイルポンプの場合)、その他回転数や水温(ウォーターポンプの場合)などの理想特性を満たし、かつ高い信頼性と燃費向上を実現するようなポンプが提供されることが望ましい。
本発明は、エンジンの回転数から独立して制御可能である可変容量流体ポンプを提供する。このポンプは、第一のギヤ、第二のギヤ、および第三のギヤを有する遊星ギヤ機構と、第一のギヤにブレーキ力を発生するブレーキ手段と、第二のギヤと前記第三のギヤとの間に設置されるワンウェイクラッチと、を有する。また、第二のギヤはエンジンのクランク軸に連結されてクランク軸の回転力を伝達し、前記第三ギヤは流体ポンプに連結されており、第一のギヤがブレーキ手段により回転数を制御され、該制御により、流体ポンプの回転数が、エンジンの回転数から独立して制御可能である。これにより、流体ポンプの要求仕事量はエンジン回転数ではなく負荷に応じて変化することが多いが、流体ポンプの仕事量を低減可能な場合にエンジン回転数によらず仕事量を低下させることができるため燃費を向上できる。また、エンジン仕事からポンプ仕事への効率が高い(電動ではない)ためさらに燃費向上効果が大きくなる。
本発明の一実施形態では、第一のギヤがリングギヤであり、第二のギヤがプラネタリギヤであり、第三のギヤがサンギヤである。この構成により、ポンプ仕事増大要求時は、ブレーキの印加によりポンプを増速して対応できるため、ポンプの小型化と低フリクション化を実現できる。さらに、重量減少と駆動効率向上により、燃費をさらに向上することができる。
本発明の一実施形態では、ブレーキ手段が、第一のギヤと一体回転するよう設置されたヒステリシス材と、該ヒステリシス材に対して磁界を連通させる電磁石と、を有し、磁界の強弱の調整によって前記ブレーキ力を増減させる。これにより、ブレーキ力を非接触手段により生成できるため、摩耗などによる性能低下が生じない。また、ブレーキ力の発生効率が高いため、損失電力を少なくでき燃費が向上する。
本発明の一実施形態では、ブレーキ力が、前記流体ポンプに設置されたセンサによって計測されたセンサ出力を、エンジンの運転状態に応じて設定された目標値となるよう決定される。これにより、制御入力に対するブレーキ力発生特性が、バラツキ、経年変化、ブレーキ部の発熱などによって変化しても、必要なポンプ仕事を達成することができる。
本発明の一実施形態では、ブレーキ力が、2自由度応答指定型(スライディングモード)制御によって算出される。これにより、ポンプ仕事量(回転数)が目標値に対しオーバーシュートすることがなくなるため、オーバーシュートによる無駄な仕事を削減することができ、燃費を向上させることができる。
また、ブレーキ力は、ΔΣ変調アルゴリズム、ΣΔ変調アルゴリズム、およびΔ変調アルゴリズムのうちの一つにより変調された制御量によって制御される。これにより、ブレーキ生成手段がヒス特性を有したり、微小なブレーキ力生成が困難な場合でも、必要なポンプ仕事を精度良く行うことができ、無駄な仕事の発生による燃費低下やポンプ仕事の変動を防止することができる。
本発明の一実施形態では、流体ポンプがオイルポンプである。センサが油圧センサであり、センサ出力と目標値がオイルポンプの圧力である。または、センサが回転センサであり、センサ出力と目標値がオイルポンプの回転数である。エンジンの低回転時にもオイルポンプを増速することにより充分な油圧を確保できるので、油圧デバイスの応答性が充分に確保できる。エンジン運転条件の最適化ができるため、燃費が向上する。
本発明の一実施形態では、流体ポンプがウォーターポンプである。センサが水温センサであり、センサ出力と目標値がウォーターポンプの水温である。または、センサが回転センサであり、センサ出力と目標値がウォーターポンプの回転数である。エンジン冷却の必要性が小さい低負荷条件でウォーターポンプを減速してポンプ仕事を低減できるため、燃費が向上する。
1.可変容量オイルポンプ
本発明の一実施形態では、変速機構10をエンジンのクランク軸とオイルポンプとの間に挿入することにより、エンジン回転数に対してポンプ回転数を自在に制御可能な可変容量オイルポンプを提供する。変速機構は、図1に示すように、遊星ギヤ機構12、ヒステリシスブレーキ14、ワンウェイクラッチ16から構成される。
遊星ギヤ機構12はサンギヤ18、リングギヤ20、プラネタリギヤ22から構成される。サンギヤ18はオイルポンプに連結されており、プラネタリギヤ22はキャリヤ24を介してクランク軸に連結されている。また、サンギヤ18とキャリヤ24の間にはワンウェイクラッチ26が設置されている。プラネタリギヤ22は,ワンウェイクラッチ26により,サンギヤ18とキャリヤ24の相対回転方向が,キャリヤ24の回転方向,つまり,クランクの回転方向のみに限定されている。
さらに、リングギヤ20の外側にはヒステリシスブレーキ14が接続されている。ヒステリシスブレーキ14は、リングギヤ20と一体回転するようにリングギヤ20の外枠部に設置されたヒステリシス材28と、そのヒステリシス材28を囲むように設置された電磁石30から構成される。電磁石30による磁界発生でブレーキ力が発生する。リングギヤ20の回転数は、ブレーキ14により停止からキャリヤ24の回転数(クランクの回転数)まで調整できる。
ワンウェイクラッチ26は,図2に示したような構造ものが一例として挙げられる。図2(a)に示すように、外輪34(キャリヤ24に接続)が半時計回り方向に回転しようとすると,バネのスプリング作用により,コロ32が外輪カム面のかみ合い位置に進み,外輪カム面と軸36とのくさび作用で軸(サンギヤ18に接続)を駆動する.また,図2(b)に示すように、軸36(サンギヤ18)が外輪34(キャリヤ24)よりも早く回転すると,外輪34(キャリヤ24)は軸36(サンギヤ18)に対して相対的に反時計回りに回転することになり,コロ32は外輪カム面から離れ,軸36(サンギヤ18)は外輪34(キャリヤ24)に対して空転する.
このワンウェイクラッチ26とヒステリシスブレーキ14の動作を組み合わせることで、オイルポンプの回転数を制御する。ヒステリシスブレーキ14に制御されるリングギヤ回転数NR、クランク軸に連結されるキャリヤ回転数NC、およびオイルポンプに連結されるサンギヤ回転数NSの関係は図3のようになる。
ヒステリシスブレーキ14を作動させない場合、エンジンのクランク軸の回転に連動して、キャリヤ24、リングギヤ22、およびサンギヤ18が一体で回転する。図3(a)はこの場合を示しており、この状態においては,NSは,オイルポンプの駆動フリクションによりクランク軸により駆動されるNCよりも低くなろうとするが,ワンウェイクラッチ26による作動方向制限により低くなることができず,NCと同回転となる.この結果,遊星ギヤ機構12は一体回転する.すなわち,オイルポンプの回転数NOPは,エンジン回転数NEと同じになる。
ヒステリシスブレーキ14を作動させた場合、エンジンのクランク軸の回転に連動してキャリヤ24が回転するが、ヒステリシスブレーキ14によりリングギヤ20は回転抑制される。そして、リングギヤ20とキャリヤ24の回転数の差分に応じてプラネタリギヤ22が回転する。サンギヤ18はプラネタリギヤ22の回転を、キャリヤ24の回転数に加えてオイルポンプに伝達する。図2(b)はこの場合を示しており、ブレーキ力の作動により,NRがNCに対して減速された状態となっており,この状態では,NSはNCに対して反時計回りに回転するため,ワンウェイクラッチ26が空転状態になり,NSはNCよりも増速される.すなわち,オイルポンプの回転数NOPは,エンジン回転数NEに対して増速される。
このとき,ブレーキ力をヒステリシスブレーキ14によって発生しているため,摩擦クラッチを用いたときのような磨耗による経年変化/故障を生じることがない.また,必要なブレーキエネルギー(仕事)を約100分の1程度の電力で発生できるため,変速操作による燃費低下は極小であり,オイルポンプの可変容量化による燃費向上効果を十分に生かすことができる.尚,このブレーキ力をモータによって代替することも可能であるが,その場合は,効率の都合により,必要なブレーキエネルギー以上の電力を必要とし,オイルポンプの可変容量化による燃費向上効果を相殺してしまう.また,ブラシモータを使用すれば,ブラシ磨耗による故障が生じる可能性があり,ブラシレスモータを用いる場合は,PDU(電力分配ユニット)の必要性によりシステム重量が増大し,燃費効果が低下する.
次にこの可変容量オイルポンプの動作特性を図4に示す。この図は、エンジン回転数に対する油圧特性(a)、オイルポンプ回転数特性(b)、およびヒステリシスブレーキへの印加電圧特性(c)を示している。油圧特性に注目すると、このポンプでは、遊星ギヤ機構12が一体回転の場合(ブレーキ14が作動しない場合)には、低負荷時必要油圧を満たすように油圧特性を設定している。より高い油圧が必要となるエンジン低回転状態と高負荷状態の高圧要求時には、ヒステリシスブレーキ14による回転数制御によりポンプ回転数を増加して高圧化を行う。ポンプ回転数特性に注目すると、エンジン低回転時には要求されるポンプ回転数を出力しており、高負荷時にもエンジン回転数より大きな回転数を出力している。次にヒステリシスブレーキへの印可電圧特性に注目すると、高圧な油圧が要求されるエンジン低回転状態と高負荷状態では、低負荷時より高い電圧がブレーキ14へ印加されている。
このように、本発明の一実施形態による、変速機構を用いた可変容量オイルポンプは、図11に示したような理想油圧特性を実現することが可能である。
2.可変容量オイルポンプシステム
次に、可変容量オイルポンプを適用した、オイルポンプ制御システムについて説明する。基本的には、オイルポンプに設置したセンサの計測値と目標値に基づくフィードバック制御である。本発明の実施形態では、油圧制御とポンプ回転数制御を取り上げる。
2.1油圧制御
図11に示した理想油圧特性および図4(a)に示す油圧特性から、エンジン回転数に応じた油圧の目標値を設定することができる。これを利用して可変容量オイルポンプのフィードバック制御が可能である。しかし、制御器に従来のPID制御器を用いた場合、油圧はオーバーシュートしやすいので、偏差の変動も大きい。ヒステリシスブレーキは温度変化によりブレーキ特性も変化するので、ブレーキを継続的に用いるとブレーキ性能が低下し、油圧の目標値へ追従性が低下する。従って、目標値変化に対してオーバーシュート起きず、偏差の吸収が速い制御器が望ましい。
より高精度に油圧を制御して、油圧ポンプの応答性を安定化するため、本発明の一実施形態では、図5に示す油圧フィードバック型オイルポンプ制御システムを構成する。油圧センサ50により計測された油圧Poilが目標油圧Poil_cmdになるように制御される。
コントローラ46は、2自由度スライディングモード制御器(以下「2自由度SMC」とする)42とΔΣ変調器44から構成される。2自由度スライディングモード制御器は、偏差の収束性と目標値の追従性を独立して制御可能な特徴を有し、挙動を漸近特性に指定可能、つまりオーバーシュートを防ぐことができる。スライディングモード制御は、応答指定型制御の一手法である。ΔΣ変調は、制御対象がオン/オフの入力を再現する能力を持っているならば、その応答特性の優劣に関わらず、高精度に制御対象の出力を制御することができるという特徴を持っており、ブレーキ特性の応答変化に依存せずに高精度なブレーキ制御が可能となる。
次にこの実施形態の制御方法について説明する。まず、エンジンのエアフローメータにより計測されたエンジン吸気量Gcylに基づく負荷パラメータと、エンジン回転数Neが目標値算出部40に入力される。これらの入力値に基づいて油圧目標値Poil_cmdが決定される。この油圧目標値Poil_cmdは、可変容量オイルポンプ48に設置された油圧センサ50の計測値である油圧Poilとともに2自由度SMC42へ入力される。
2自由度SMC42では、油圧センサ出力Poilを油圧目標値Poil_cmdに収束するように、参照入力Ropが算出される。詳細には以下に示す演算が行われる。
2自由度SMC42では、式(1)に示されるように、まず最初に目標値追従応答指定パラメータpole_f_opを用いて、油圧目標値Poil_cmdにローパスフィルタリングを施す。この処理によりステップ状である目標値波形を平滑化して、目標値に漸近収束する曲線に変換する。
Poil_cmd_f(m) = −pole_f_op・Poil_cmd_f(m-1) + (1+pole_f_op)Poil_cmd(m) (1)
但し、フィルタ処理後の目標値をPoil_cmd_f、制御時刻をmとする。この実施形態においては、2自由度SMCの制御周期は50msecである。また、応答指定パラメータの範囲を−1 < pole_f_op < 0と設定する。
式(1)に示されるように、目標値応答指定パラメータpole_f_opにより、フィルタ処理後の目標値Poil_cmd_fの軌道が規定される。目標値をどのような軌道に設定するかにより、制御出力Poilの目標値Poil_cmdへの追従速度を指定することが可能となる。こうして設定された目標値Poil_cmd_fに油圧センサ出力Poilが収束するように、2自由度SMC42は参照入力Ropを算出する。
次に式(2)に示されるように、油圧センサ出力Poilと目標値Poil_cmd_fとの偏差E_opを求める。
E_op(m) = Poil(m) − Poil_cmd_f(m) (2)
次に式(3)に示されるように、切り替え関数σを定義する。切り替え関数σは偏差E_opの収束挙動を規定する。Pole_opは外乱抑制応答指定パラメータであり、外乱が印加された時の偏差E_opの収束速度を規定する。外乱抑制応答指定パラメータpole_opは、−1 < pole_op < 0を満たすように設定される。
σ_op(m) = E_op(m) + pole_f・E_op(m-1) (3)
次に式(4)に示されるように、参照入力Ropを算出する。Krch_op、Kadp_opはフィードバックゲインである。式(4)右辺の第一項は比例項であり、第二項は積分項である。つまり、式(4)は、入力を切り替え関数σとしたPI制御のフィードバック量を計算していることと等価である。
Figure 2005207357
続いて、参照入力Ropは、ΔΣ変調器44へ入力される。
ΔΣ変調器44は、2自由度SMCから参照入力Ropが入力され、ΔΣ変調アルゴリズムを適用して制御入力Uopを算出する。詳細には以下に示す演算が行われる。
式(5)に示されるように、参照入力Ropは、リミット関数lim_opにより下限値Rop_minから上限値Rop_maxの範囲内に制限される。本発明の一実施形態では、下限値Rop_minを2[v],上限値Rop_maxを8[v]と規定する。リミット処理後、式(6)に示されるように、Uop算出用オフセット値rop_oftが減算される。一実施形態では、オフセット値rop_oftを5[v]と規定する。また、nは制御時刻であり、この実施形態においては、ΔΣ変調器の制御周期は5msecである。
r1_op(n) = lim_op(Rop(m)) (5)
r2_op(n) = r1_op(n) − rop_oft (6)
次に式(7)に示されるように、オフセット処理された信号r2_op(n)と、前時刻n-1の変調信号Uop’(n-1)との偏差δ_op(n)を算出する。その後、式(8)に示されるように、偏差信号δ_op(n)と前時刻n-1の偏差の積分値λ_op(n-1)とを加算し、偏差積分値λ_op(n)を算出する。
δ_op(n) = r2_op(n) − Uop’(n-1) (7)
λ_op(n) = λ_op(n-1) + δ_op(n) (8)
次に式(9)に示されるように、偏差積分値λ_op(n)は、2値非線形関数Fnl_opを適用して2値化される。すなわち、偏差積分値λ_op(n)がゼロ以上ならば、2値非線形関数Fnl_opは+Rの変調信号Uop’(n)を出力し、偏差積分値λ_op(n)がゼロより小さければ、2値非線形関数Fnl_opは−Rの変調信号を出力する。ここで、Rはr2_opの絶対値の最大値より大きい所定値である。また、偏差積分値λ_op(n)がゼロのとき、0を変調信号として出力するように設定しても良い。続いて、式(10)に示されるように、変調信号Uop’(n)が再度オフセット処理されて、制御入力Uop(n)が生成される。本発明の一実施形態では、このようなΔΣ変調処理を介して生成される制御入力は、5+R[v]または5―R[v]となる。
Uop’(n) = Fnl_op(λ_op(n)) (9)
Uop(n) = Uop’(n) + rop_oft (10)
なお,上記のコントローラは,変調器としてΔΣ変調アルゴリズムを用いているが、ΣΔ変調アルゴリズムやΔ変調アルゴリズムを用いて変調器を構成しても良い。以下に示す各アルゴリズムの演算式内の変数や関数は式(5)から式(10)のものと基本的に同一である。積分をλ、偏差をδで表している。
ΣΔ変調器で行われる演算を式(11)から式(17)に示す。
r1_op(n) = lim_op(Rop(m)) (11)
r2_op(n) = r1_op(n) − rop_oft (12)
λr_op(n) = λr_op(n-1) + r2_op(n) (13)
λu_op(n) = λu_op(n-1) + Uop’(n-1) (14)
δru_op(n) =λr_op (n) −λu_op(n) (15)
Uop’(n) = Fnl_op(δru _op(n)) (16)
Uop(n) = Uop’(n) + rop_oft (17)
また、Δ変調器で行われる演算を式(18)から式(23)に示す。
r1_op(n) = lim_op(Rop(m)) (18)
r2_op(n) = r1_op(n) − rop_oft (19)
λu_op(n) = λu_op(n-1) + Uop’(n-1) (20)
δru_op(n) = r2_op(n) −λu_op(n) (21)
Uop’(n) = Fnl_op(δru _op(n)) (22)
Uop(n) = Uop’(n) + rop_oft (23)
2.2 回転数制御
本発明の別の実施形態では、ポンプ回転数センサを用いて、可変容量オイルポンプのフィードバック制御を実現することができる。図4(b)に示すポンプ回転数特性から、エンジン回転数に応じた油圧の目標値を設定する。
図6は、ポンプ回転数フィードバック型オイルポンプ制御システムの構成である。ポンプ回転数センサ52により計測されたポンプ回転数Nopが、エンジン回転数と負荷状態に応じた目標回転数Nop_cmdになるように制御される。コントローラは油圧フィードバック型オイルポンプ制御システムと同様に、2自由度SMCとΔΣ変調器から構成される。
次にこの実施形態の制御方法について説明する。ただし、制御方法の基本構成は先に説明した油圧フィードバック式オイルポンプ制御システムと同様であるので、相違点についてのみ説明する。
目標値算出部40では、エンジン負荷パラメータと回転数に基づいて、ポンプ回転数目標値Nop_cmdが決定される。このポンプ回転数目標値Nop_cmdは、可変容量オイルポンプ48に設置されたポンプ回転数センサ52の計測値であるポンプ回転数Nopとともに2自由度SMC42へ入力される。
2自由度SMC42では、ポンプ回転数センサ出力Nopをポンプ回転数目標値Nop_cmdに収束するように、参照入力Ropが算出される。詳細には以下に示す演算が行われる。演算の内容は式(1)から式(4)と同一なので省略する。式で用いられる変数や関数も式(1)から式(4)と同様であるが、同一の場合には区別のために添字ダッシュを付けている。
Nop_cmd_f(m)=−pole’_f_op・Nop _cmd_f(m-1)+(1+pole’_f_op) Nop _cmd(m) (24)
E’_op(m) = Nop (m) − Nop _cmd_f(m) (25)
σ’_op(m) = E’_op(m) + pole’_f・E’_op(m-1) (26)
Figure 2005207357
続いて、参照入力Rop’は、ΔΣ変調器44へ入力される。
ΔΣ変調器44は、2自由度SMCから参照入力Rop’が入力され、ΔΣ変調アルゴリズムを適用して制御入力Uopを算出する。演算内容は式(5)から式(10)と同様であるので、説明は省略する。なお,図3−2に示すシステムでは、変調器としてΔΣ変調アルゴリズムを用いているが、ΣΔ変調アルゴリズムやΔ変調アルゴリズムを用いて変調器を構成しても良い。ΣΔ変調アルゴリズムについては式(11)から式(17)、Δ変調アルゴリズムについては式(18)から式(23)を参照されたい。
2.3 制御フロー
図7は、これまで説明した可変容量オイルポンプ制御システムの制御フローである。このフローでは、演算周期が2段階に分けられている。ステップS100において、エンジン回転数と負荷パラメータに基づいた目標油圧、または目標ポンプ回転数を決定する。ステップS102において、2自由度スライディングモード制御の演算を行い参照入力を算出する。演算内容は式(1)から式(4)、または式(24)から式(27)である。ステップS100とステップS102の演算は本発明の一実施形態では50[msec]ごとに行われる。次に、ステップS104において、算出入力に基づいて、ΔΣ変調アルゴリズムの演算を行い、制御入力を算出する。ステップS104の演算は5[msec]ごとに行われる。
3.可変容量ウォーターポンプシステム
図1に示した可変容量ポンプのための変速機構10は、サンギヤ18に接続するポンプをオイルポンプからウォーターポンプに変更することによって、可変容量ウォーターポンプ56を実現することができる。制御システムに関してもオイルポンプの場合と同様である。本発明の実施形態では、水温制御とポンプ回転数制御を取り上げる。
図8は、水温フィードバック型ウォーターポンプシステムである。コントローラ46はオイルポンプシステムと同様に、2自由度スライディングモードコントローラ42とΔΣ変調器44である。ポンプに設置されたセンサは水温センサ54であり、このセンサの出力である冷却水温度Twと、目標値算出部40で決定された水温目標値Tw_cmdがコントローラへの入力値となる。参照入力Rwpを算出する2自由度スライディングモードコントローラの演算内容は、添字を除き式(1)から式(4)と同様なので省略する。また、参照入力Rwpから制御入力Uwpを算出するΔΣ変調器の演算も式(5)から式(10)と同様なので省略する。
図9は、ポンプ回転数フィードバック型ウォーターポンプシステムである。ポンプに設置されたセンサはポンプ回転数センサ52であり、このセンサの出力であるウォーターポンプ回転数Nwpと、目標値算出部40で決定された目標回転数Nwp_cmdがコントローラへの入力値となる。コントローラの演算は、水温フィードバック型と同様である。
図10は、これまで説明した可変容量ウォーターポンプ制御システムの制御フローである。このフローでは、演算周期が2段階に分けられている。ステップS200において、エンジン回転数と負荷パラメータに基づいた目標水温、または目標ポンプ回転数を決定する。ステップS202において、2自由度スライディングモード制御の演算を行い参照入力を算出する。演算内容は式(1)から式(4)、または式(24)から式(27)である。ステップS200とステップS202の演算は本発明の一実施形態では50[msec]ごとに行われる。次に、ステップS204において、算出入力に基づいて、ΔΣ変調アルゴリズムの演算を行い、制御入力を算出する。ステップS204の演算は5[msec]ごとに行われる。
以上、本発明について、具体的な実施形態を記述したが、本発明はこのような実施形態に限定されるものではない。
本発明の一実施形態による、可変容量オイルポンプの変速機構の概略図である。 ワンウェイクラッチの構造の一例である。 本発明の一実施形態による、変速機構の変速動作を示す図である。 可変容量オイルポンプの動作特性を示す図である。 本発明の一実施形態による、油圧フィードバック型オイルポンプシステムのブロック線図である。 本発明の一実施形態による、ポンプ回転数フィードバック型オイルポンプシステムのブロック線図である。 本発明の一実施形態による、可変容量オイルポンプシステムの制御フローである。 本発明の一実施形態による、水温フィードバック型ウォーターポンプシステムのブロック線図である。 本発明の一実施形態による、ポンプ回転数フィードバック型ウォーターポンプシステムのブロック線図である。 本発明の一実施形態による、可変容量ウォーターポンプシステムの制御フローである。 オイルポンプの理想油圧特性を示す図である。
符号の説明
10 変速機構
12 遊星ギヤ機構
14 ヒステリシスブレーキ
16 ワンウェイクラッチ
18 サンギヤ
20 リングギヤ
22 プラネタリギヤ
24 キャリヤ
26 ワンウェイクラッチ
28 ヒステリシス材
30 電磁石
32 コロ
34 外輪
36 軸
40 目標値算出部
42 2自由度スライディングモード制御器
44 ΔΣ変調器
46 コントローラ
48 可変容量オイルポンプ
50 油圧センサ
52 ポンプ回転数センサ
54 水温センサ
56 可変容量ウォーターポンプ

Claims (12)

  1. エンジンの可変容量流体ポンプであって、
    第一のギヤ、第二のギヤ、および第三のギヤを有する遊星ギヤ機構と、
    前記第一のギヤにブレーキ力を発生するブレーキ手段と、
    前記第二のギヤと前記第三のギヤとの間に設置されるワンウェイクラッチと、
    を有し、
    前記第二のギヤはエンジンのクランク軸に連結されてクランク軸の回転力を伝達し、前記第三ギヤは流体ポンプに連結されており、
    前記第一のギヤが前記ブレーキ手段により回転数を制御され、該制御により、前記流体ポンプの回転数が、前記エンジンの回転数から独立して制御可能である、
    可変容量流体ポンプ。
  2. 前記第一のギヤがリングギヤであり、前記第二のギヤがプラネタリギヤであり、前記第三のギヤがサンギヤである、請求項1に記載の可変容量流体ポンプ。
  3. 前記ブレーキ手段が、
    前記第一のギヤと一体回転するよう設置されたヒステリシス材と、
    該ヒステリシス材に対して磁界を連通させる電磁石と、
    を有し、
    磁界の強弱の調整によって前記ブレーキ力を増減させる
    請求項1に記載の可変容量流体ポンプ。
  4. 前記ブレーキ力が、前記流体ポンプに設置されたセンサによって計測されたセンサ出力を、エンジンの運転状態に応じて設定された目標値となるよう決定される、請求項1に記載の可変容量流体ポンプ。
  5. 前記ブレーキ力が、2自由度応答指定型(スライディングモード)制御によって算出される、請求項1記載の可変容量流体ポンプ。
  6. 前記ブレーキ力が、ΔΣ変調アルゴリズム、ΣΔ変調アルゴリズム、およびΔ変調アルゴリズムのうちの一つにより変調された制御量によって制御される、請求項1記載の可変容量流体ポンプ。
  7. 前記流体ポンプがオイルポンプである、請求項4に記載の可変容量流体ポンプ。
  8. 前記センサが油圧センサであり、前記センサ出力と前記目標値が前記オイルポンプの圧力である、請求項7に記載の可変容量流体ポンプ。
  9. 前記センサが回転センサであり、前記センサ出力と前記目標値が前記オイルポンプの回転数である、請求項7に記載の可変容量流体ポンプ。
  10. 前記流体ポンプがウォーターポンプである、請求項4に記載の可変容量流体ポンプ。
  11. 前記センサが水温センサであり、前記センサ出力と前記目標値が前記ウォーターポンプの水温である、請求項10に記載の可変容量流体ポンプ。
  12. 前記センサが回転センサであり、前記センサ出力と前記目標値が前記ウォーターポンプの回転数である、請求項10に記載の可変容量流体ポンプ。
JP2004016615A 2004-01-26 2004-01-26 エンジンの可変容量流体ポンプ Pending JP2005207357A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004016615A JP2005207357A (ja) 2004-01-26 2004-01-26 エンジンの可変容量流体ポンプ
US11/032,083 US7503753B2 (en) 2004-01-26 2005-01-11 Variable capacity fluid pump for an engine
EP05000933A EP1557543B1 (en) 2004-01-26 2005-01-18 A variable capacity fluid pump for an engine
DE602005000638T DE602005000638T2 (de) 2004-01-26 2005-01-18 Eine Flüssigkeitspumpe verändbaren Fördervolumens für einen Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016615A JP2005207357A (ja) 2004-01-26 2004-01-26 エンジンの可変容量流体ポンプ

Publications (1)

Publication Number Publication Date
JP2005207357A true JP2005207357A (ja) 2005-08-04

Family

ID=34631968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016615A Pending JP2005207357A (ja) 2004-01-26 2004-01-26 エンジンの可変容量流体ポンプ

Country Status (4)

Country Link
US (1) US7503753B2 (ja)
EP (1) EP1557543B1 (ja)
JP (1) JP2005207357A (ja)
DE (1) DE602005000638T2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151101A (ja) * 2006-12-14 2008-07-03 Hyundai Motor Co Ltd 車両用オイルポンプ
KR101063496B1 (ko) 2009-08-28 2011-09-07 기아자동차주식회사 클러치 워터펌프와 그것의 제어장치 및 방법
US8740595B2 (en) 2009-04-10 2014-06-03 Honda Motor Co., Ltd Gear pump
CN103883864A (zh) * 2012-04-20 2014-06-25 吴小平 行星奇异齿齿轮泵液压马达及奇异齿变容技术
JP2016023610A (ja) * 2014-07-23 2016-02-08 富士重工業株式会社 オイルポンプ装置
JP2016529440A (ja) * 2013-08-29 2016-09-23 プロミネント ゲーエムベーハーProminent Gmbh 容積式ポンプの定量プロファイルの改善方法
US9671008B2 (en) 2013-04-12 2017-06-06 Honda Motor Co., Ltd. Oil suction device for vehicle

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431217A (en) * 2005-10-11 2007-04-18 Ford Global Tech Llc Piston oil spray cooling system with two nozzles
US8801393B2 (en) * 2007-10-12 2014-08-12 Pierce Manufacturing Inc. Pressure control system and method
US20090297363A1 (en) * 2008-05-30 2009-12-03 Killion David L Variable output fluid pump system
DE102010001259B4 (de) * 2009-07-30 2013-01-31 Zf Friedrichshafen Ag Getriebeölpumpe für ein Automatgetriebe
GB2478716B (en) * 2010-03-15 2016-07-13 Gm Global Tech Operations Llc Coolant pump for internal combustion engines
CN101907098B (zh) * 2010-08-17 2012-01-04 胡大伦 低水头聚能抽水机
GB2486195A (en) * 2010-12-06 2012-06-13 Gm Global Tech Operations Inc Method of Operating an I.C. Engine Variable Displacement Oil Pump by Measurement of Metal Temperature
DE102011015102A1 (de) 2011-03-25 2012-09-27 Audi Ag Getriebeanordnung für ein Nebenaggregat einer Brennkraftmaschine
DE102011115065B3 (de) * 2011-10-07 2012-10-04 Audi Ag Kühlmittelfördereinrichtung sowie Verfahren zum Betreiben einer Kühlmittelfördereinrichtung
DE102012200279A1 (de) * 2012-01-11 2013-07-11 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Betreiben eines Schmiersystems einesVerbrennungsmotors
DE102013000894A1 (de) * 2013-01-18 2014-07-24 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regelung eines Öldrucks eines Motors für ein Fahrzeug
WO2015035006A2 (en) * 2013-09-05 2015-03-12 Eaton Corporation Variable output centrifugal pump
DE102014002868A1 (de) * 2014-02-24 2015-08-27 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Ölpumpenanordnung für einen Druckschmierölkreislauf
DE102015005344A1 (de) * 2015-04-28 2016-11-03 Volkswagen Aktiengesellschaft Nebenaggregatsantriebsvorrichtung
DE102016203549B4 (de) * 2016-03-03 2021-08-12 Audi Ag Verfahren zum Ermitteln eines Verhaltens eines in einem Fahrzeug verbauten Ventils, sowie ein Fahrzeug
CN110529217B (zh) * 2018-05-25 2021-07-20 宝沃汽车(中国)有限公司 机油泵驱动装置、发动机以及车辆
DE102018214661B4 (de) 2018-08-29 2023-11-02 Ford Global Technologies, Llc Flüssigkeitspumpe und Kraftfahrzeug mit einer Flüssigkeitspumpe
US11378474B2 (en) * 2019-12-31 2022-07-05 Halliburton Energy Services, Inc. Predict brake horsepower for a pump for viscous applications
JP2024517799A (ja) * 2021-05-04 2024-04-23 カミンズ インコーポレーテッド エンジン潤滑システム、潤滑流体循環システム、及び流圧を調整するための方法
CN114412607B (zh) * 2021-12-14 2023-10-20 东风汽车集团股份有限公司 一种发动机的润滑系统
CN115234339A (zh) * 2022-08-22 2022-10-25 潍柴动力股份有限公司 发动机的机油泵组件、发动机和发动机的机油泵转速控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1653599A1 (de) * 1967-06-03 1970-11-12 Rheinstahl Huettenwerke Ag Antrieb fuer Pumpen zum Erzeugen von Presswasser fuer die Entzunderung,z.B. in Walzwerken
US3944253A (en) * 1974-05-07 1976-03-16 Ripley Iii George Infinitely variable transmission for pedal-driven vehicles
DE2757300C2 (de) * 1977-12-22 1982-08-12 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Leistungsverzweigtes hydrostatisch-mechanisches Verbundgetriebe
JPS5814583B2 (ja) * 1978-05-19 1983-03-19 トヨタ自動車株式会社 自動車用駆動装置
DE3440428A1 (de) * 1983-11-17 1985-05-30 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Temperaturgesteuerter luefterantrieb fuer maschinen grosser leistung
DE3622335C2 (de) * 1985-07-31 1995-11-23 Volkswagen Ag Antriebseinrichtung für Nebenaggregate einer Brennkraftmaschine
DE4041158C1 (ja) * 1990-12-21 1992-08-20 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4128543A1 (de) * 1991-08-28 1993-03-18 Daimler Benz Ag Antriebsvorrichtung fuer mindestens ein nebenaggregat einer kraftmaschine
US5512022A (en) * 1993-10-26 1996-04-30 Suzuki; Naruhito Motor mechanism
US5512021A (en) * 1994-02-10 1996-04-30 Shash; Joseph L. Variable ratio transmission
US5575735A (en) * 1995-04-06 1996-11-19 Caterpillar Inc. Integrated power transmitting system
US5860884A (en) * 1996-10-28 1999-01-19 Tecumseh Products Company Variable speed transmission and transaxle
JP3904923B2 (ja) * 2001-12-28 2007-04-11 本田技研工業株式会社 制御装置
JP4145520B2 (ja) 2001-11-19 2008-09-03 本田技研工業株式会社 内燃機関のカム位相制御装置
US20030119620A1 (en) * 2001-12-21 2003-06-26 Caterpillar Inc. Variable and differential output drive system
DE10318711A1 (de) * 2003-04-25 2004-11-25 Volkswagen Ag Vorrichtung zum Antrieb der Kühlmittelpumpe einer Brennkraftmaschine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151101A (ja) * 2006-12-14 2008-07-03 Hyundai Motor Co Ltd 車両用オイルポンプ
US8740595B2 (en) 2009-04-10 2014-06-03 Honda Motor Co., Ltd Gear pump
KR101063496B1 (ko) 2009-08-28 2011-09-07 기아자동차주식회사 클러치 워터펌프와 그것의 제어장치 및 방법
CN103883864A (zh) * 2012-04-20 2014-06-25 吴小平 行星奇异齿齿轮泵液压马达及奇异齿变容技术
US9671008B2 (en) 2013-04-12 2017-06-06 Honda Motor Co., Ltd. Oil suction device for vehicle
JP2016529440A (ja) * 2013-08-29 2016-09-23 プロミネント ゲーエムベーハーProminent Gmbh 容積式ポンプの定量プロファイルの改善方法
JP2016023610A (ja) * 2014-07-23 2016-02-08 富士重工業株式会社 オイルポンプ装置

Also Published As

Publication number Publication date
US7503753B2 (en) 2009-03-17
US20050175484A1 (en) 2005-08-11
DE602005000638T2 (de) 2007-11-15
EP1557543A3 (en) 2005-08-24
EP1557543B1 (en) 2007-03-07
DE602005000638D1 (de) 2007-04-19
EP1557543A2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP2005207357A (ja) エンジンの可変容量流体ポンプ
US20220025910A1 (en) Self-contained energy efficient hydraulic actuator system
US6219608B1 (en) Electronic transmission control system for automotive vehicle with continuously variable automatic transmission
CN107787421B (zh) 一种用于无级变速器的控制系统
US7322903B2 (en) Control method for cooling a launch clutch and an electric motor in a hybrid electric vehicle powertrain
US6243638B1 (en) Electronic transmission control system for automotive vehicle with continuously variable automatic transmission
US4062329A (en) Fan drive system
CN103321884B (zh) 电动泵的控制装置
JP5564541B2 (ja) アクチュエータ
CN113090600B (zh) 可变压差多模式负载敏感液压控制系统及方法及工程机械
CN111828622B (zh) 静液式轴向活塞泵、静液式行驶驱动器以及控制方法
CN103187909A (zh) 电机控制装置以及电动泵单元
CN113007055A (zh) 用于运行转速可变的调节泵的方法
JP2015529297A (ja) ポンプ排出圧制御のための電子油圧制御の設計
US8935439B2 (en) Oil pressure control system of automatic transmission for vehicle
JP2019507857A (ja) 液圧流体動力伝達装置
WO2015097637A1 (en) Variable displacement pump for fluids with modulated regulation, and method for regulating its displacement
US20220120297A1 (en) Method for Operating a Hydraulic Drive
CN115822554A (zh) 一种旋挖钻机节能控制方法
JP2006029366A (ja) 油圧閉回路の位置制御方法および装置
CN104660149B (zh) 油压控制装置
CN113454338B (zh) 具有过压补偿的液压致动器
RU2815567C1 (ru) Способ управления электрогидравлическим следящим приводом с машинно-дроссельным управлением
WO2018221226A1 (ja) 位置制御装置
Drumea et al. Energy loss reduction in hydraulic systems with fixed pump in agricultural machinery