WO2018221226A1 - 位置制御装置 - Google Patents

位置制御装置 Download PDF

Info

Publication number
WO2018221226A1
WO2018221226A1 PCT/JP2018/018953 JP2018018953W WO2018221226A1 WO 2018221226 A1 WO2018221226 A1 WO 2018221226A1 JP 2018018953 W JP2018018953 W JP 2018018953W WO 2018221226 A1 WO2018221226 A1 WO 2018221226A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
value
oil temperature
control
control device
Prior art date
Application number
PCT/JP2018/018953
Other languages
English (en)
French (fr)
Inventor
宗馬 小林
吉平 松田
智史 大月
中島 健一
秀幸 今井
晃士 阿部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP22199058.3A priority Critical patent/EP4134775B1/en
Priority to US16/617,594 priority patent/US11131380B2/en
Priority to EP18808789.4A priority patent/EP3633484B1/en
Publication of WO2018221226A1 publication Critical patent/WO2018221226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6648Friction gearings controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/065Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions hydraulic actuating means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/108Friction gearings
    • B60W10/109Friction gearings of the toroïd type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • F16H2015/383Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/704Monitoring gear ratio in CVT's
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0078Linear control, e.g. PID, state feedback or Kalman
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Definitions

  • the present invention relates to a position control device that performs position control by outputting a drive signal to a control valve of a hydraulic actuator.
  • the power roller In a toroidal continuously variable transmission, the power roller is displaced by a hydraulic mechanism in order to change the gear ratio.
  • response to the operation of the power roller is delayed due to a decrease in fluidity of the oil.
  • warm-up operation is required.
  • the piston in the warm-up operation at the time of low temperature startup, the piston is vibrated by reciprocating the spool of the control valve of the hydraulic mechanism within a range in which the transmission is maintained in a deceleration state. Then, low temperature control is performed to promote warm-up by flowing oil.
  • the oil temperature reaches the reference temperature
  • normal control for controlling the control valve so that the gear ratio approaches the command value by closed loop control is started.
  • an object of the present invention is to prevent the instability of the closed-loop control after switching from the warm-up operation to the normal operation while shortening the warm-up operation at the time of low temperature startup.
  • a position control apparatus is a position control apparatus that performs position control by outputting a drive signal to a control valve of a hydraulic actuator that changes an operation position of an object, and relates to an oil temperature of the hydraulic actuator.
  • An oil temperature acquisition unit for acquiring information, a position acquisition unit for acquiring the actual value of the operation position of the object, and closed loop control so as to reduce a deviation between the target value of the operation position of the object and the actual value.
  • a position controller that calculates an operation command value for the control valve; and a gain setter that changes at least one gain of the closed-loop control so that the sensitivity of the closed-loop control increases as the oil temperature decreases.
  • the object may be a speed change element that changes the speed ratio of the continuously variable transmission by changing its position.
  • the gain of the closed loop control for calculating the operation command value for the control valve so as to reduce the deviation between the target value and the actual value of the operation position of the object is the sensitivity of the closed loop control as the oil temperature decreases. Therefore, the response delay due to the decrease in fluidity of the oil at low temperatures can be compensated. Therefore, it is possible to prevent the instability of the closed-loop control after switching from the warm-up operation to the normal operation while shortening the warm-up operation at the time of low temperature startup.
  • the at least one gain may include a first gain used to obtain the operation command value from the deviation, and the gain setting device may increase the first gain as the oil temperature decreases.
  • the first gain may be a calculated gain of the position controller.
  • the response of the operation command value to the deviation between the target value and the actual value increases. Therefore, it is possible to suitably compensate for a response delay due to a decrease in oil fluidity at low temperatures. it can.
  • the position subtractor for obtaining the deviation is further provided, wherein the at least one gain includes a second gain used for obtaining the actual value input to the position subtractor, and the gain setter includes the oil temperature.
  • the second gain may be decreased as becomes lower.
  • the position acquirer may be a position estimator that estimates an actual value of the motion position of the object, and the second gain may include sensitivity of an internal model of the position estimator.
  • the actual value input to the position subtractor is adjusted to increase the deviation, thereby increasing the sensitivity of the closed loop control. It is possible to compensate for a response delay due to a decrease in fluidity.
  • the object may be a speed change element that changes the speed ratio of the continuously variable transmission by changing its position.
  • the closed-loop control of the gear ratio using the hydraulic actuator can be started stably and quickly when the transmission is started at a low temperature.
  • a position control device performs position control by outputting a drive signal to a control valve of a hydraulic actuator that changes an operating position of a speed change element so as to change a gear ratio of a continuously variable transmission.
  • a control device for obtaining oil temperature information of the hydraulic actuator, an actual gear ratio obtaining device for obtaining the actual gear ratio, and obtaining an actual value of the operating position of the gear element
  • a target position calculator for calculating a target value of the operating position of the speed change element by a first closed loop control so as to reduce a deviation between the command value of the speed ratio and the actual value of the speed ratio;
  • a position controller that calculates an operation command value for the control valve by a second closed loop control so as to reduce a deviation between the target value of the operation position of the transmission element and the actual value of the operation position of the transmission element;
  • the temperature goes down Accompanied by, and a gain setting device for varying the gain of said first closed loop control tends to sensitivity of the first closed-loop control is lowered.
  • the first closed loop control (major closed loop control) that calculates the target value of the operating position of the speed change element so as to reduce the deviation between the command value and the actual value of the speed ratio, and the target of the operating position of the speed change element
  • the second closed loop control (minor closed loop control) for calculating the operation command value for the control valve is performed so as to reduce the deviation between the actual value and the actual value
  • the gain of the first closed loop control increases with a decrease in the oil temperature. Therefore, the sensitivity of the closed-loop control is adjusted so as to change.
  • the responsiveness of the major closed-loop control is reduced in accordance with the responsiveness of the minor closed-loop control due to a decrease in fluidity of oil, and continuous vibration of the gear ratio can be prevented. Therefore, it is possible to prevent the instability of the closed-loop control after switching from the warm-up operation to the normal operation while shortening the warm-up operation at the time of low temperature startup.
  • the continuously variable transmission may be a toroidal continuously variable transmission that changes the speed ratio according to a tilt angle of a power roller, and the transmission element may be the power roller.
  • the closed-loop control of the gear ratio can be started stably and quickly when the toroidal continuously variable transmission is started at a low temperature.
  • the power output from the continuously variable transmission is input to a generator, and the generator may start a power generation operation with a delay from the start of the closed loop control, and the gain adjustment is performed at least in the closed loop. It may be performed after the start of control and before the start of the power generation operation of the generator.
  • the power generation operation can be stably started early after the closed loop control is started.
  • the present invention it is possible to prevent the instability of the closed loop control after switching from the warm-up operation to the normal operation while shortening the warm-up operation at the time of low temperature startup.
  • FIG. 2 is a hydraulic circuit diagram of the drive mechanism integrated power generator shown in FIG. 1. It is sectional drawing of the control valve shown in FIG.
  • FIG. 2 is a block diagram of a transmission control device of the drive mechanism-integrated power generator shown in FIG. 1. It is a block diagram of the internal model of the position estimator shown in FIG. It is a graph which shows the test result of the relationship between the command value (drive current) of a control valve, and an oil flow rate.
  • (A) is a graph showing the relationship between the calculated gain of the position controller and the oil temperature shown in FIG.
  • FIG. 4 is the correction coefficient of the calculated gain of the position controller and the operation command value (drive current) of the control valve. It is a graph which shows a relationship.
  • 5A is a graph showing the relationship between the internal gain of the position estimator and the oil temperature shown in FIG. 5
  • FIG. 5B is a graph showing the relationship between the correction coefficient of the internal gain of the position estimator and the operation command value (drive current) of the control valve. It is a graph which shows a relationship.
  • FIG. 5 is a timing chart showing an example of oil temperature at startup and other changes over time by the transmission control device shown in FIG. 4.
  • FIG. It is a block diagram of the transmission control apparatus which concerns on 2nd Embodiment.
  • FIG. 9A is a graph showing the relationship between the calculated gain of the target position calculator and the oil temperature shown in FIG. 9, and FIG. 9B is a correction coefficient of the calculated gain of the target position calculator and the command value (drive current) of the control valve. It is a graph which shows the relationship.
  • FIG. 1 is a skeleton diagram of the drive mechanism-integrated power generator 1 according to the first embodiment.
  • an integrated drive generator hereinafter referred to as “IDG”) 1 is used as an AC power supply for an aircraft.
  • IDG integrated drive generator
  • the electrical components in the aircraft have an auxiliary power source different from the IDG1 (for example, an external generator)
  • the power supply of the electrical component is switched from the auxiliary power supply to the IDG1. Since IDG1 is used as the main power supply of the aircraft, the power supply switching from the auxiliary power supply to IDG1 is performed before takeoff.
  • the IDG 1 includes a casing 2 attached to an engine of an aircraft, and a generator 3 is accommodated in the casing 2 together with a constant speed drive (hereinafter referred to as “CSD”) 4.
  • the CSD 4 forms a power transmission path for transmitting the rotational power of an aircraft engine rotation shaft (not shown) to the generator 3, and the toroidal continuously variable transmission 10 (hereinafter “toroidal CVT”) constitutes a part thereof.
  • the rotational power of the engine rotation shaft is input to the toroidal CVT 10 through the input path 5 of the CSD 4, is shifted by the toroidal CVT 10, and is output to the generator shaft 7 through the output path 6 of the CSD 4.
  • the generator 3 When the generator shaft 7 rotates, the generator 3 generates AC power at a frequency proportional to the rotational speed of the generator shaft 7.
  • the speed change ratio SR of the toroidal CVT 10 is continuous so as to keep the rotation speed of the generator shaft 7 at an appropriate value (a value corresponding to the frequency at which the electrical components in the aircraft operate stably) regardless of fluctuations in the rotation speed of the engine rotation shaft. Changed to As a result, the frequency of the AC power generated by the generator 3 is maintained at an appropriate value, and the electrical components in the aircraft operate stably.
  • the CVT input shaft 11 and the CVT output shaft 12 are coaxially arranged on the CVT axis A1.
  • An input disk 13 is provided on the CVT input shaft 11 so as to be integrally rotatable, and an output disk 14 is provided on the CVT output shaft 12 so as to be integrally rotatable.
  • the input disk 13 and the output disk 14 form an annular cavity 15 facing each other.
  • the toroidal CVT 10 is a double cavity type, and includes two sets of input disks 13A and 13B and output disks 14A and 14B having the same structure, and the two cavities 15A and 15B are arranged in the direction of the CVT axis A1.
  • Each power roller 16 is supported by a trunnion 17 so as to be rotatable around a rolling axis A3.
  • the trunnion 17 has a one-to-one correspondence with the power roller 16 and is supported by the casing 2 so as to be displaceable in the extending direction of the tilt axis A2 and to be rotatable around the tilt axis A2.
  • the power roller 16 is supplied with traction oil and is pressed against the disks 13 and 14 by the clamping force generated by the clamping mechanism 18.
  • the clamp mechanism 18 may be a cam type (sometimes referred to as a loading cam mechanism) or a hydraulic type. Thereby, a high-viscosity oil film is formed in the input side contact portion (contact interface between the power roller 16 and the input disk 13) and the output side contact portion (contact interface between the power roller 16 and the output disk 14).
  • the CVT input shaft 11 is rotationally driven by the rotational power input from the input path 5. When the CVT input shaft 11 rotates, the input disk 13 rotates integrally, and the power roller 16 is rotationally driven around the rolling axis A3 by the oil film shear resistance generated at the input side contact portion.
  • the speed ratio SR is continuously changed according to the roller position X (the position in the extending direction of the tilt axis A2 of the power roller 16).
  • the radius ratio is a ratio of the input side contact radius r in (distance from the CVT axis A1 to the input side contact portion) to the output side contact radius r out (distance from the CVT axis A1 to the output side contact portion).
  • the power roller 16 rotates around the tilt axis A2 until the side slip is eliminated, and the tilt angle ⁇ (the rotation angle of the power roller 16 around the tilt axis A2) is changed.
  • the tilt angle ⁇ is changed, the input side contact portion and the output side contact portion are displaced, whereby the input side contact radius r in and the output side contact radius r out are continuously changed. Therefore, the radius ratio, that is, the gear ratio SR is continuously changed.
  • FIG. 2 is a hydraulic circuit diagram of the drive mechanism integrated power generator 1 shown in FIG. As shown in FIG. 2, the roller position X is changed by the hydraulic actuator 20.
  • the hydraulic actuator 20 includes a plurality of hydraulic cylinders 21.
  • the hydraulic cylinder 21 has a one-to-one correspondence with the power roller 16 and the trunnion 17.
  • the hydraulic cylinder 21 includes a body 21a, a piston 21b, and a rod 21c.
  • the hydraulic cylinder 21 is a double-acting type, and the inside of the body 21a is partitioned into a speed increasing chamber 22 and a speed reducing chamber 23 by a piston 21b.
  • the rod 21c is arranged coaxially with the tilt axis A2, connects the piston 21b to the trunnion 17, and moves in the extending direction of the tilt axis A2 together with the trunnion 17 and the power roller 16 supported by the trunnion 17.
  • the roller position X When oil is supplied to the speed increasing chamber 22 and discharged from the speed reducing chamber 23, the roller position X is changed to the speed increasing side in the extending direction of the tilt axis A2. When oil flows in the opposite direction, the roller position X is changed to the deceleration side that is the opposite side to the acceleration side in the extending direction of the tilt axis A2.
  • the two power rollers 16 disposed in one cavity 15 are displaced in opposite directions in the extending direction of the tilt axis A2 in order to keep the radius ratios equal to each other when the roller position X is changed.
  • the tilt angle ⁇ increases and the speed ratio SR increases.
  • the tilt angle ⁇ decreases and the speed ratio SR decreases.
  • the roller position X reaches the upper limit point X max , the tilt angle ⁇ becomes the maximum tilt angle ⁇ max and the speed ratio SR exceeds the maximum speed ratio SR max .
  • the tilt angle ⁇ becomes the minimum tilt angle ⁇ min and the speed ratio SR becomes a minimum speed ratio SR min less than 1.
  • the allowable tilting range of the power roller 16 is mechanically determined by a stopper (not shown) provided on the trunnion 17 to prevent excessive tilting. If the roller position X is the neutral point X n , the tilt angle ⁇ becomes the neutral angle ⁇ n and the speed ratio SR becomes 1. The neutral angle ⁇ n is approximately equal to the median value of the allowable tilt range, and the minimum speed ratio SR min is approximately equal to the reciprocal of the maximum speed ratio SR max .
  • the hydraulic actuator 20 further includes a control valve 25.
  • the hydraulic cylinder 21 corresponds to the power roller 16 on a one-to-one basis, whereas the control valve 25 is single for the plurality of power rollers 16, for example.
  • the control valve 25 is a four-way switching valve and has a supply port PS, a return port PT, a speed increasing control port CA, and a speed reducing control port CB.
  • the hydraulic pump 27 that sucks oil from the oil tank 26 is connected to the supply port PS, and the return port PT is connected to the oil tank 26.
  • the acceleration control port CA is connected to the acceleration chamber 22, and the deceleration chamber 23 is connected to the deceleration control port CB.
  • the control valve 25 is a spool valve, and the connection state of the port is switched according to the position of the spool 28.
  • the control valve 25 is a three-position switching valve, and the spool 28 is positioned in a shut-off area (center position in FIG. 2), an acceleration area (left position in FIG. 2) or a deceleration area (right position in FIG. 2).
  • the control ports CA and CB are blocked from the supply port PS and the return port PT.
  • the supply / discharge of oil to / from the speed increasing chamber 22 and the speed reducing chamber 23 is stopped, and the gear ratio is maintained.
  • the speed increasing control port CA is connected to the supply port PS, and the speed reducing control port CB is connected to the return port PT.
  • oil is supplied to the speed increasing chamber 22 and discharged from the speed reducing chamber 23, and the gear ratio increases.
  • the acceleration control port CA is connected to the return port PT, and the deceleration control port CB is connected to the supply port PS.
  • the opening degree of the supply port PS and the return port PT is variably set according to the spool position in the region.
  • the control valve 25 has a drive unit 29 that drives the spool 28 to control the spool position and opening.
  • the flow rate and pressure of oil supplied to and discharged from the acceleration chamber 22 and the deceleration chamber 23 are adjusted by the drive unit 29.
  • the control valve 25 is an electric valve, and the drive unit 29 receives a drive signal from the shift control device 40 (position control device) and controls the spool position and opening according to the output value I (current value) of the drive signal. To do.
  • the IDG 2 is provided with an oil temperature sensor 35 (oil temperature acquisition device) that detects the temperature of the hydraulic oil of the hydraulic actuator 20.
  • the oil temperature sensor 35 may be arranged anywhere as long as it can detect the temperature of the oil flowing through the hydraulic circuit of the hydraulic actuator 20, but as an example, the oil temperature sensor 35 is arranged at a position for detecting the temperature of the oil stored in the oil tank 26. .
  • FIG. 3 is a cross-sectional view of the control valve 25 shown in FIG.
  • the control valve 25 is a nozzle flapper type servo valve.
  • the drive unit 29 includes a motor unit 31 that generates torque when a drive signal is input, a nozzle flapper unit 32 that displaces the spool 28 according to the torque generated by the motor unit 31, and the motor unit 31 according to the displacement of the spool 28. And a feedback unit 33 for operating the nozzle flapper unit 32.
  • the feedback unit 33 is configured by, for example, a spring 33a supported by the spool 28 and the armature 31d.
  • the hydraulic actuator 20 includes a bias mechanism (not shown) that forcibly holds the roller position X at a predetermined position when the drive signal satisfies a predetermined condition.
  • the bias mechanism forcibly returns the roller position X to the lower limit point X min when the condition that the output value I is the zero value I z is satisfied, and the speed ratio SR is the minimum speed ratio SR min on the safe side. Hold. Even when the condition that the output value I is a negative value is satisfied, the roller position X is forcibly returned to the lower limit point Xmin .
  • the bias mechanism is realized by mechanically giving the armature 31d a constant initial inclination with respect to its neutral position.
  • the output value I is zero value I z next spool 28 is maintained at a bias position, the roller position X, the tilting angle phi and the speed change ratio SR, the lower limit point X min, respectively, the minimum tilting angle phi min and the minimum speed ratio SR min is reached and held there.
  • the output value I of the drive signal is set so that the torque required for canceling the initial inclination is generated in the armature 31d.
  • neutral value I n the output value I to obtain a neutral position SP n.
  • FIG. 4 is a block diagram of the shift control device 40 of the drive mechanism-integrated power generator 1 shown in FIG.
  • the shift control device 40 includes a tilt angle estimator 41 that obtains an estimated value ⁇ est that is a value obtained by estimating the actual value of the tilt angle, and an estimate that is a value obtained by estimating the actual value of the roller position.
  • Position estimator 42 position acquisition unit
  • position control for obtaining the operation command value I ref of the hydraulic actuator 20 so as to eliminate the deviation ⁇ X between the target value X ref of the roller position and the estimated value X est
  • a container 43 is provided.
  • the tilt angle estimator 41 obtains an estimated value ⁇ est of the tilt angle by calculation without relying on a sensor that directly detects the tilt angle.
  • the operation command value I ref is, for example, an output value (current value) of a drive signal given to the control valve 25 of the hydraulic actuator 20.
  • the tilt angle estimator 41 includes an actual gear ratio computing unit 44 (actual gear ratio acquisition unit) that calculates the actual gear ratio SR, and a converter 45 that converts the actual gear ratio SR into an estimated value ⁇ est of the tilt angle. .
  • the actual gear ratio calculator 44 calculates the actual gear ratio SR according to the ratio between the input rotational speed N1 of the toroidal CVT 10 (the rotational speed of the engine E) and the output rotational speed N2 of the toroidal CVT 10.
  • the input rotation speed N1 and the output rotation speed N2 are detected by an input rotation speed sensor and an output rotation speed sensor, respectively.
  • the converter 45 may actually perform an arithmetic operation on the inverse function, a table according to the inverse function is created in advance to reduce the calculation load, and this is stored in the shift control device 40 and estimated by table processing.
  • the value ⁇ est may be obtained.
  • the speed change control device 40 includes a target speed change ratio calculator 46 for obtaining a command value SR ref of the speed change ratio.
  • the target gear ratio calculator 46 calculates the gear ratio command value SR ref according to the ratio between the input rotational speed N1 detected by the input rotational speed sensor and the output rotational speed command value N2 ref stored in advance.
  • the output rotation speed command value N2 ref is set to a constant value corresponding to a frequency suitable for the operation of the electrical components in the aircraft. For example, when the target frequency f ref is 400 Hz, the number of poles of the generator 3 is 2, and the detection target of the output rotation speed sensor is the rotation speed of the generator shaft 7, the command value N2 ref is a constant value of 24,000 rpm.
  • Shift control device 40 includes a target position calculator 48 for calculating a target value X ref roller position so as to reduce the deviation ⁇ SR gear ratio. That is, the target position calculator 48 calculates the target value X ref of the roller position with the predetermined calculation gain G 1 so that the deviation ⁇ SR approaches zero by the major closed loop control LP1 (first closed loop control; feedback control). In the present embodiment, the calculated gain G 1 is constant.
  • the position controller 43 calculates the operation command value I ref of the hydraulic actuator 20 so as to reduce the deviation ⁇ X. That is, the position controller 43 calculates the operation command value I ref with a predetermined calculation gain G 2 so that the deviation ⁇ X approaches zero by the minor closed loop control LP2 (second closed loop control; feedback control). The calculated gain G 2 will be described later.
  • the minor closed loop control LP2 that feeds back to the position subtractor 49 is a loop that is included in the major closed loop control LP1 that feeds back to the gear ratio subtractor 47.
  • the control valve 25 of the hydraulic actuator 20 is given a drive signal indicated by the operation command value I ref .
  • the actual roller position is brought close to the target value X ref .
  • the actual speed ratio SR is brought closer to the command value SR ref
  • the output rotation speed N2 is brought closer to the command value N2 ref .
  • the sensitivity of the minor closed loop control LP2 (roller position control) is higher than the sensitivity of the major closed loop control LP1 (speed ratio control).
  • the ratio ( ⁇ I ref / ⁇ X ref ) of the change rate of the output (operation command value I ref ) to the change rate of the input (target value X ref ) of the minor closed loop control LP2 is the input (command value SR) of the major closed loop control LP1.
  • the position controller 43 performs gain adjustment for increasing the calculation gain G 2 of the operation command value I ref at a predetermined change rate as the oil temperature detected by the oil temperature sensor 35 becomes lower. Specifically, the position controller 43 calculates the operation command value I ref based on the calculated gain G 2 determined by the gain setting device 60 according to the oil temperature T detected by the oil temperature sensor 35.
  • the transmission control device 40 includes the tilt angle estimator 41, the position estimator 42, the position controller 43, the target transmission ratio calculator 46, the transmission ratio subtractor 47, the target position calculator 48, and the position.
  • the subtractor 49 implements a feedback control function for normal control
  • the shift control device 40 further includes a low-temperature controller 38 that implements a feed-forward control function for low-temperature control at startup. The control by the low temperature controller 38 and the control by the position controller 43 are switched to each other according to the oil temperature detected by the oil temperature sensor 35.
  • FIG. 5 is a block diagram of an internal model of the position estimator 42 shown in FIG.
  • the position estimator 42 is an observer created using the model of the tilt angle ⁇ and the model of the hydraulic actuator 20, and estimates the roller position X.
  • the model of the tilt angle ⁇ is expressed by the formula (1)
  • the model of the hydraulic actuator 20 is expressed by the formula (2).
  • K 1 is a first proportional gain
  • K 2 is a second proportional gain
  • T 2 is a time constant
  • s is a Laplace operator
  • Equation (3) The model for designing the observer is expressed by Equation (3) by Equations (1) and (2).
  • K K 1 K 2 and T 2 ⁇ 0.
  • Equation (9) the determinant design parameter L is introduced as shown in Equation (9), and the observer pole (the eigenvalue of the estimated matrix ⁇ A) is adjusted to be stable.
  • the minimum dimension observer represented by the equations (14) and (15) is obtained from the model of the tilt angle ⁇ (see equation (1)) and the model of the hydraulic actuator 20 (see equation (2)).
  • is the state of the minimum dimension observer.
  • the position estimator 42 calculates a roller position estimated value X est (refer to Expression (15)) by performing calculations according to Expressions (14) and (15).
  • the estimated tilt angle value ⁇ est is supplied from the tilt angle estimator 41 to the arithmetic circuit 51 having the matrix G, and G ⁇ est (see equation (14)) is added from the arithmetic circuit 51.
  • the operation command value I ref of the hydraulic actuator 20 is given from the position controller 43 to the calculation circuit 53 of the estimation matrix ⁇ B, and ⁇ BI ref (see the equation (14)) is given from the calculation circuit 53 to the adder 52. .
  • the output of the adder 52 is given to an integration circuit 54 having a transfer function 1 / s, and the state ⁇ is output from the integration circuit 54.
  • the state ⁇ is given to the arithmetic circuit 55 having the estimation matrix ⁇ A, and ⁇ A ⁇ (see equation (14)) is given from the arithmetic circuit 55 to the adder 52.
  • the adder 52, ⁇ Aw, ⁇ BI ref and G Faiest derive a differential value d [omega / dt state ⁇ by adding the (see Equation (14)), giving it to the integrating circuit 54.
  • the state ⁇ is also given to the calculation circuit 56 of the estimation matrix ⁇ C, and ⁇ C ⁇ (see equation (15)) is given from the calculation circuit 56 to the adder 57.
  • the estimated tilt angle value ⁇ est is also supplied from the tilt angle estimator 41 to the calculation circuit 58 of the estimation matrix ⁇ D, and ⁇ D ⁇ est (see equation (15)) is supplied from the calculation circuit 58 to the adder 57. It is done.
  • the adder 57 derives an estimated value X est of the roller position by adding ⁇ circumflex over (C) ⁇ and ⁇ circumflex over (D) ⁇ ⁇ est (see Expression (15)), and outputs this to the position subtractor 49.
  • Computing circuit 53 of the estimation matrix ⁇ B derives based matrix ⁇ B to the internal gain K B which is determined by the gain setting device 61 in accordance with the oil temperature T detected by the oil temperature sensor 35.
  • the position estimator 42 obtains the estimated value X est of the roller position based on the estimated value ⁇ est of the tilt angle, the operation command value I ref of the hydraulic actuator 20 and the oil temperature T of the hydraulic actuator.
  • FIG. 6 is a graph showing the test results of the relationship between the command value (drive current) of the control valve 25 and the oil flow rate.
  • FIG. 6 shows the relationship between the command value of the control valve 25 and the oil flow rate for each of different oil temperatures T1 to T4 (T1>T2>T3> T4), and the oil flow rate decreases as the oil temperature decreases. I understand that. That is, as the oil temperature decreases, the viscosity of the oil increases and the oil flow rate in the control valve 25 decreases.
  • the oil flow rate decreases as the drive current of the control valve 25 approaches the value corresponding to zero valve opening, and the rate of change of the oil flow accompanying the change in the valve opening is higher than the low opening region LD.
  • the opening degree region HD has different nonlinearity. That is, the absolute value of the rate of decrease of the oil flow rate accompanying the decrease in the valve opening is smaller in the low opening region LD than in the high opening region HD.
  • the calculated gain G 2 of the position controller 43 and its correction coefficient C G2 are set as follows.
  • FIG. 7A is a graph showing the relationship between the calculated gain G 2 and the oil temperature T of the position controller 43 shown in FIG.
  • FIG. 7B is a graph showing the relationship between the correction coefficient C G2 of the calculated gain G 2 of the position controller 43 and the operation command value I ref (drive current) of the control valve 25.
  • the gain setting device 60 is calculated gain G 2 of the position controller 43, calculates the gain G 2 is previously set to increase as the oil temperature T is low.
  • the relationship between the calculated gain G 2 and the oil temperature T is similar to the relationship between the viscosity of the oil used in the hydraulic actuator 20 and the oil temperature T.
  • the increase rate of the calculated gain G 2 per unit temperature decrease is set to increase as the oil temperature T decreases.
  • the correspondence relationship between the calculated gain G 2 and the oil temperature T is defined by the gain setting unit 60 using, for example, a two-dimensional map, a table, or an arithmetic expression.
  • the minor closed loop control in which the position controller 43 calculates the operation command value I ref for the control valve 25 so as to reduce the deviation ⁇ X between the target value X ref of the roller position and the estimated value X est (actual value).
  • the configuration LP2 for calculating the gain G 2 of operational command value I ref as the oil temperature T decreases increases, the sensitivity of the closed loop control with a decrease in the oil temperature T ( ⁇ I ref / ⁇ X ref) is Adjusted to the upward trend. Therefore, response delay due to the flow resistance reduction of the oil at low temperature is compensated by an increase in calculation gain G 2.
  • the calculated gain G 2 of the position controller 43 is multiplied by a correction coefficient C G2 that changes in accordance with the operation command value I ref (drive current) of the control valve 25.
  • the correction coefficient C G2 is a low opening degree region LD in which the opening degree of the control valve 25 is smaller than that in the high opening degree region than when the opening degree of the control valve 25 is in the high opening degree region HD (first opening degree region).
  • the absolute value of the rate of change of the calculated gain G 2 per unit temperature change is set to increase.
  • the low opening region LD is, for example, a region including at least 0% ⁇ ⁇ 20%.
  • the high opening degree region HD is a region including at least 80% ⁇ ⁇ 100%, for example.
  • the calculated gain G 2 after correction takes a large value when the oil temperature T is low and the opening degree of the control valve 25 is small, while it takes a small value when the oil temperature T is high and the opening degree of the control valve 25 is large. I will take it.
  • the relationship between the correction coefficient C G2 and the operation command value I ref (drive current) is inversely correlated with the relationship between the absolute value of the oil flow rate change rate and the operation command value I ref (drive current) in FIG. In this way, even if the viscosity resistance of the flow path is relatively large in the region where the opening degree of the control valve 25 is small, the absolute value of the rate of change of the calculated gain G 2 in the region where the opening degree of the control valve 25 is small. As the value increases, the influence of the viscosity is relieved, and the non-linearity between the valve opening and the oil flow rate is relieved.
  • Figure 8 (A) is a graph showing the relationship between the internal gain K B and the oil temperature T of the position estimator 42 shown in FIG. Figure 8 (B) is a graph showing the relationship between the internal gain K B and the control valve of the operational command value I ref position estimator 42 (current value).
  • the gain setting device 61, the internal gain K B of the arithmetic circuit 53 of the position estimator 42 are set in advance so as to decrease the gain K B as the oil temperature T is lower Yes. Relationship between the internal gain K B and the oil temperature T is related inversely correlated with the viscosity and the oil temperature T of the oil used in the hydraulic actuator 20.
  • the reduction rate of the internal gain K B per unit temperature reduction is set so as also increased. Also correspondence between the internal gain K B and the oil temperature T, for example, two-dimensional map is defined by the gain setting device 61 a table or calculation formula.
  • the minor closed loop control in which the position controller 43 calculates the operation command value I ref for the control valve 25 so as to reduce the deviation ⁇ X between the target value X ref of the roller position and the estimated value X est (actual value).
  • the sensitivity ( ⁇ X est / ⁇ I ref ) of the internal model of the position estimator 42 decreases as the oil temperature T decreases. Therefore, the position estimator 42 can perform accurate position estimation in consideration of the oil temperature, and the response delay due to the decrease in the fluidity of the oil at a low temperature is further compensated.
  • the internal gain K B of position estimator 42, the correction coefficient C KB vary multiplied in accordance with the operation command value I ref of the control valve 25 (current value).
  • the correction coefficient C KB is also a low opening region in which the opening degree of the control valve 25 is smaller than that in the high opening region as compared to when the opening degree of the control valve 25 is in the high opening region (first opening region).
  • the absolute value of the change rate of the internal gain K B per unit temperature change is set so as to decrease.
  • the relationship between the correction coefficient C KB and the operation command value I ref (drive current) is similar to the relationship between the absolute value of the oil flow rate change rate and the operation command value I ref (drive current) in FIG.
  • FIG. 9 is a timing chart showing an example of the oil temperature T at the time of start-up by the shift control device 40 shown in FIG. 4 and other changes with time.
  • the oil temperature T detected by the oil temperature sensor 35 is lower than the reference temperature T1 when the IDG 1 is started, the warm-up in which the control valve 25 is open-loop controlled by the low temperature controller 38. Operation is carried out.
  • the reference temperature T1 is, for example, a value within a range of ⁇ 20 to ⁇ 10 ° C.
  • the low temperature controller 38 outputs the operation command value I so as to reciprocate the spool 28.
  • Operation Waveform command value I for example, the maximum value I high value greater than the neutral value I n, the minimum value I low is set to a value smaller than the neutral value I n.
  • the control valve 25 oil flows alternately on the acceleration side and the deceleration side, and the piston 21b also vibrates slightly.
  • the oil temperature T is increased by forcibly causing the oil flow by reciprocating the spool 28.
  • a difference with respect to the neutral value I n of the maximum value I high is less than the difference with respect to the neutral value I n of the minimum value I low.
  • the spool 28 cannot respond sensitively to the operation command value I. Therefore, the piston 21b reciprocates the deceleration side with respect to the neutral position PS n, excessive increase in the output rotation speed N2 is prevented.
  • the drive signal is output as follows. Until the waiting time elapses, the operation command value I is fixed at the bias mechanism operating value (zero value I z ). When the standby time has elapsed (t2), the warm-up operation is terminated and the normal operation is started.
  • the position controller 43 obtains the operation command value I ref by closed loop control. That is, when the position controller 43 outputs the operation command value I ref corresponding to the deviation ⁇ X, the roller position X is brought close to the command value X ref , and the speed ratio SR is brought close to the command value SR ref .
  • the warm-up operation is shortened by setting the reference temperature T1 low, the control immediately after the start of the normal control may become unstable. Therefore, in the present embodiment, as described above, the calculated gain G 2 and the position of the position controller 43 in the initial stage of the closed loop control after the start of the closed loop control in the normal operation and before the start of power generation by the generator 3.
  • the value of the after starting power generation computed gain G 2 and the gain K B is stable, this is because no low fluid temperature T, in fact, also descending start power generation in a closed loop control adjustment function of the oil temperature T and the valve opening (operation command value I ref) calculated gain G 2 and the internal gain K B in accordance with the working.
  • the time lag from the start of closed loop control to the start of power generation operation can also be stably reduced.
  • the gain of the position controller 43 is indirectly adjusted by adding a gain to the signal between the position subtractor 49 and the position controller 43. It is good also as what to do.
  • the gain of the signal between the position estimator 42 and the position subtractor 49 is added to indirectly increase the sensitivity of the internal model of the position estimator 42. It is good also as what adjusts automatically.
  • FIG. 10 is a block diagram of the shift control device 140 according to the second embodiment.
  • FIG. 11A is a graph showing the relationship between the calculated gain of the target position calculator shown in FIG. 9 and the oil temperature.
  • FIG. 11B is a graph showing the relationship between the calculated gain of the target position calculator and the command value (current value) of the control valve.
  • symbol is attached
  • the target position calculator 48 is based on the calculated gain G 1 determined by the gain setter 160 according to the oil temperature T detected by the oil temperature sensor 35.
  • the value X ref is calculated. Note that the calculated gain G 2 of the position controller 43 is, for example, constant.
  • the gain setting device 160 calculates the gain G 1 of the target position calculator 48, in advance as calculated gain G 1 as the oil temperature T is lower is reduced at a predetermined rate of change Is set.
  • the relationship between the calculated gain G 1 and the oil temperature T is inversely correlated with the relationship between the viscosity of the oil used in the hydraulic actuator 20 and the oil temperature T.
  • the oil temperature T is lower, and is set to be smaller absolute value of the rate of decrease calculated gain G 1 per unit temperature drop.
  • the roller position target value X ref is estimated together with the major closed loop control LP1 that calculates the roller position target value X ref so as to reduce the deviation ⁇ SR between the gear ratio command value SR ref and the actual gear ratio SR.
  • the minor closed loop control LP2 for calculating the operation command value I ref for the control valve 25 is executed so as to reduce the deviation ⁇ X from the value X est .
  • the calculation gain G 1 for the target value X ref is a decrease in the oil temperature T. Therefore, the sensitivity ( ⁇ X ref / ⁇ SR ref ) of the major closed-loop control LP1 is adjusted to decrease as the oil temperature T decreases. Therefore, the responsiveness of the major closed-loop control LP1 is reduced in accordance with the responsiveness of the minor closed-loop control LP2 due to oil fluidity reduction, and continuous vibration of the gear ratio can be prevented.
  • the calculation gain G 1 of the target position calculator 48 is multiplied by a correction coefficient C G1 that changes according to the operation command value I ref (drive current) of the control valve 25.
  • the correction coefficient C G1 is a low opening region LD in which the opening degree of the control valve 25 is smaller than that in the high opening region than when the opening amount of the control valve 25 is in the high opening region HD (first opening region).
  • the absolute value of the rate of change of the calculated gain G 1 per unit temperature change is set to decrease.
  • the corrected calculated gain G 1 takes a small value when the oil temperature T is low and the opening degree of the control valve 25 is small, while it is large when the oil temperature T is high and the opening degree of the control valve 25 is large. Will take the value.
  • the relationship between the correction coefficient C G1 and the operation command value I ref (drive current) is similar to the relationship between the absolute value of the oil flow rate change rate and the operation command value I ref (drive current) in FIG.
  • the gain of the target position calculator 48 is increased by adding a gain to the signal between the gear ratio subtractor 47 and the target position calculator 48. It may be adjusted indirectly.
  • the present invention is not limited to the above-described embodiments, and the configuration can be changed, added, or deleted. Some configurations or methods in one embodiment may be applied to other embodiments, and some configurations in the embodiment can be arbitrarily extracted separately from other configurations in the embodiment. It is.
  • the calculated gain G 2 by the gain setting unit 60, and the adjustment calculating gain G 1 by the gain setting unit 160, the adjustment of the internal gain K B by the gain setter 61 may optionally in combination, for example, their Only one of them may be implemented, or all of them may be implemented.
  • a device for example, a sensor that detects a pipe temperature
  • information related to the oil temperature for example, a temperature proportional to the oil temperature
  • a sensor that detects the roller position may be used as the position acquirer. That is, as long as the position acquisition unit acquires the actual value of the roller position, the position acquisition unit may estimate the actual value of the roller, or may receive the sensor value detected by the roller position sensor.
  • the control target of the hydraulic actuator 20 may be a continuously variable transmission of another form instead of the toroidal continuously variable transmission, or may be an apparatus that requires position control other than the transmission. The continuously variable transmission may drive another one without driving the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

位置制御装置は、油圧アクチュエータの油温に関する情報を取得する油温取得器と、対象物の動作位置の実値を取得する位置取得器と、前記対象物の動作位置の目標値と前記実値との偏差を減らすように閉ループ制御により油圧アクチュエータの制御弁に対する動作指令値を算出する位置制御器と、前記油温が低くなるにつれて、前記閉ループ制御の少なくとも1つのゲインを前記閉ループ制御の感度が上がる傾向に変化させるゲイン設定器と、を備える。

Description

位置制御装置
 本発明は、油圧アクチュエータの制御弁に駆動信号を出力して位置制御を行う位置制御装置に関する。
 トロイダル無段変速機では、変速比の変更のために油圧機構によりパワーローラを変位させるが、寒冷地での起動時には油の流動性の低下によりパワーローラの動作に応答遅れが生じるため、低温起動時には暖機運転が必要となる。暖機運転の一例として、特許文献1では、低温起動時の暖機運転において、変速機が減速状態に維持される範囲で油圧機構の制御弁のスプールを往復動させてピストンを振動させることで、油を流動させて暖機を促進する低温制御が行われる。そして、油温が基準温度に到達すると、閉ループ制御により変速比を指令値に近づくように制御弁を制御する通常制御が開始される。
特許第4495117号公報
 ところで、近年は変速機の早期起動のために暖機運転の更なる短縮化が望まれるが、暖機運転から通常運転に切り替わる基準温度を下げて通常制御を早く開始させると、油の流動性が不十分であるために、通常制御の初期段階において閉ループ制御が暫く不安定になることがある。そのため、暖機運転の短縮化には限界があるのが現状である。
 そこで本発明は、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止することを目的とする。
 本発明の一態様に係る位置制御装置は、対象物の動作位置を変化させる油圧アクチュエータの制御弁に駆動信号を出力して位置制御を行う位置制御装置であって、前記油圧アクチュエータの油温に関する情報を取得する油温取得器と、前記対象物の動作位置の実値を取得する位置取得器と、前記対象物の動作位置の目標値と前記実値との偏差を減らすように閉ループ制御により前記制御弁に対する動作指令値を算出する位置制御器と、前記油温が低くなるにつれて前記閉ループ制御の少なくとも1つのゲインを前記閉ループ制御の感度が上がる傾向に変化させるゲイン設定器と、を備える。なお、前記対象物は、その位置変化により無段変速機の変速比を変化させる変速要素であってもよい。
 前記構成によれば、対象物の動作位置の目標値と実値との偏差を減らすように制御弁に対する動作指令値を算出する閉ループ制御のゲインが、油温の低下に伴って閉ループ制御の感度が上がる傾向に変化するように調整されるため、低温時における油の流動性低下による応答遅れを補うことができる。よって、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止できる。
 前記少なくとも1つのゲインは、前記偏差から前記動作指令値を求めるのに用いられる第1ゲインを含み、前記ゲイン設定器は、前記油温が低くなるにつれて前記第1ゲインを増加させてもよい。例えば、前記第1ゲインは、前記位置制御器の算出ゲインであってもよい。
 前記構成によれば、油温の低下に伴って、目標値と実値との偏差に対する動作指令値の応答性が高まるため、低温時における油の流動性低下による応答遅れを好適に補うことができる。
 前記偏差を求める位置減算器を更に備え、前記少なくとも1つのゲインは、前記位置減算器に入力される前記実値を求めるのに用いられる第2ゲインを含み、前記ゲイン設定器は、前記油温が低くなるにつれて前記第2ゲインを減少させてもよい。例えば、前記位置取得器は、前記対象物の動作位置の実値を推定する位置推定器であり、前記第2ゲインは、前記位置推定器の内部モデルの感度を含んでもよい。
 前記構成によれば、油温の低下に伴って、位置減算器に入力される実値が偏差の増加側に調整されることで、閉ループ制御の感度が上がる傾向となるため、低温時における油の流動性低下による応答遅れを補うことができる。
 前記対象物は、その位置変化により無段変速機の変速比を変化させる変速要素であってもよい。
 前記構成によれば、変速機の低温起動時において油圧アクチュエータを用いた変速比の閉ループ制御を安定かつ早期に開始できる。
 本発明の他の態様に係る位置制御装置は、無段変速機の変速比を変化させるように変速要素の動作位置を変化させる油圧アクチュエータの制御弁に駆動信号を出力して位置制御を行う位置制御装置であって、前記油圧アクチュエータの油温の情報を取得する油温取得器と、前記変速比の実値を取得する実変速比取得器と、前記変速要素の動作位置の実値を取得する位置取得器と、前記変速比の指令値と前記変速比の前記実値との偏差を減らすように第1閉ループ制御により前記変速要素の動作位置の目標値を算出する目標位置演算器と、前記変速要素の動作位置の前記目標値と前記変速要素の動作位置の前記実値との偏差を減らすように第2閉ループ制御により前記制御弁に対する動作指令値を算出する位置制御器と、前記油温が低くなるにつれて、前記第1閉ループ制御のゲインを前記第1閉ループ制御の感度が下がる傾向に変化させるゲイン設定器と、を備える。
 前記構成によれば、変速比の指令値と実値との偏差を減らすように変速要素の動作位置の目標値を算出する第1閉ループ制御(メジャー閉ループ制御)とともに、変速要素の動作位置の目標値と実値との偏差を減らすように制御弁に対する動作指令値を算出する第2閉ループ制御(マイナー閉ループ制御)が実行される構成において、第1閉ループ制御のゲインが、油温の低下に伴って閉ループ制御の感度が下がる傾向に変化するように調整される。そのため、油の流動性低下によるマイナー閉ループ制御の応答性の低下に合わせて、メジャー閉ループ制御の応答性が低下し、変速比の継続的な振動を防止できる。よって、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止できる。
 前記無段変速機は、パワーローラの傾転角に応じて前記変速比を変化させるトロイダル無段変速機であり、前記変速要素は、前記パワーローラであってもよい。
 前記構成によれば、トロイダル無段変速機の低温起動時において変速比の閉ループ制御を安定かつ早期に開始できる。
 前記無段変速機から出力される動力は、発電機に入力され、かつ、前記発電機は、前記閉ループ制御の開始から遅れて発電動作を開始してもよく、前記ゲイン調整は、少なくとも前記閉ループ制御の開始後かつ前記発電機の発電動作の開始前の期間に行われてもよい。
 前記構成によれば、閉ループ制御が開始してから早期に発電動作を安定的に開始できる。
 前記ゲイン調整では、前記制御弁の開度が第1開度領域にある場合に比べ、前記制御弁の開度が前記第1開度領域よりも小さい第2開度領域にあるときは、前記油温の変化に対する前記ゲインの変化率を絶対値が増加するように補正してもよい。
 前記構成によれば、制御弁の開度が小さい領域で流路の粘性抵抗が相対的に大きくなっても、制御弁の開度が小さい領域においてゲイン変化率の絶対値が増加することにより粘度の影響が緩和され、弁開度と油流量との間の非線形性が緩和される。よって、閉ループ制御の不安定化を更に好適に防止できる。
 本発明によれば、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止できる。
第1実施形態に係る駆動機構一体型発電装置のスケルトン図である。 図1に示す駆動機構一体型発電装置の油圧回路図である。 図2に示す制御弁の断面図である。 図1に示す駆動機構一体型発電装置の変速制御装置のブロック図である。 図4に示す位置推定器の内部モデルのブロック図である。 制御弁の指令値(駆動電流)と油流量との関係の試験結果を示すグラフである。 (A)が図4に示す位置制御器の算出ゲインと油温との関係を示すグラフ、(B)が位置制御器の算出ゲインの補正係数と制御弁の動作指令値(駆動電流)との関係を示すグラフである。 (A)が図5に示す位置推定器の内部ゲインと油温との関係を示すグラフ、(B)が位置推定器の内部ゲインの補正係数と制御弁の動作指令値(駆動電流)との関係を示すグラフである。 図4に示す変速制御装置による起動時の油温及びその他の経時変化の一例を示すタイミングチャートである。 第2実施形態に係る変速制御装置のブロック図である。 (A)が図9に示す目標位置演算器の算出ゲインと油温との関係を示すグラフ、(B)が目標位置演算器の算出ゲインの補正係数と制御弁の指令値(駆動電流)との関係を示すグラフである。
 以下、図面を参照して実施形態を説明する。
 (第1実施形態)
 図1は、第1実施形態に係る駆動機構一体型発電装置1のスケルトン図である。図1に示すように、駆動機構一体型発電装置1(Integrated Drive Generator,以下「IDG」)は、航空機の交流電源として用いられる。IDG1の起動時は、航空機のエンジン回転軸の回転動力がIDG1に伝達開始されても、IDG1が安定動作できるまでは、航空機内の電装品はIDG1とは異なる補助電源(例えば、機外発電機又は補助発電機)によって駆動され、IDG1が安定動作できるようになれば、電装品の電源が補助電源からIDG1に切り換わる。IDG1は航空機の主電源として用いられるため、補助電源からIDG1への電源切換えは、離陸前に行われる。
 IDG1は、航空機のエンジンに取り付けられるケーシング2を備え、ケーシング2には、発電機3が定速駆動装置(Constant Speed Drive,以下「CSD」)4と共に収容される。CSD4は、航空機のエンジン回転軸(図示せず)の回転動力を発電機3に伝達する動力伝達経路を形成し、トロイダル無段変速機10(以下「トロイダルCVT」)がその一部を構成する。エンジン回転軸の回転動力は、CSD4の入力経路5を介してトロイダルCVT10に入力され、トロイダルCVT10で変速され、CSD4の出力経路6を介して発電機軸7に出力される。発電機軸7が回転すると、発電機3は発電機軸7の回転速度に比例した周波数で交流電力を発生する。トロイダルCVT10の変速比SRは、エンジン回転軸の回転速度の変動に関わらず発電機軸7の回転速度を適値(航空機内の電装品が安定動作する周波数と対応する値)に保つように連続的に変更される。これにより、発電機3で発生される交流電力の周波数が適値に保たれ、航空機内の電装品が安定動作する。
 トロイダルCVT10では、CVT入力軸11及びCVT出力軸12がCVT軸線A1上で同軸状に配置される。入力ディスク13がCVT入力軸11上に一体回転可能に設けられ、出力ディスク14がCVT出力軸12上に一体回転可能に設けられる。入力ディスク13及び出力ディスク14は、互いに対向して円環状のキャビティ15を形成する。本実施形態では、トロイダルCVT10は、ダブルキャビティ型であり、同構造の2組の入力ディスク13A,13B及び出力ディスク14A,14Bを備え、2つのキャビティ15A,15BがCVT軸線A1方向に並ぶ。2つのパワーローラ16(対象物)が1つのキャビティ15内に配置され、各パワーローラ16が転動軸線A3周りに回転可能にトラニオン17に支持される。トラニオン17は、パワーローラ16と一対一で対応し、傾転軸線A2の延在方向に変位可能且つ傾転軸線A2周りに回転可能にケーシング2に支持される。
 パワーローラ16は、トラクションオイルの供給を受け、且つクランプ機構18により発生されるクランプ力でディスク13,14に押し付けられる。クランプ機構18は、カム式(ローディングカム機構と称される場合もある)でも油圧式でもよい。これにより、高粘度油膜が入力側接触部(パワーローラ16と入力ディスク13との接触界面)と出力側接触部(パワーローラ16と出力ディスク14との接触界面)とに形成される。CVT入力軸11は入力経路5から入力された回転動力で回転駆動される。CVT入力軸11が回転すると、入力ディスク13が一体回転し、パワーローラ16が入力側接触部で生じる油膜の剪断抵抗で転動軸線A3周りに回転駆動される。パワーローラ16が転動軸線A3周りに回転すると、出力ディスク14が出力側接触部で生じる油膜の剪断抵抗で回転駆動され、CVT出力軸12が一体回転する。CVT出力軸12の回転動力は出力経路6に出力される。
 変速比SRはローラ位置X(パワーローラ16の傾転軸線A2の延在方向における位置)に応じて連続的に変更される。変速比SRは、トロイダルCVT10の入力回転速度(CVT入力軸11の回転速度)N1に対する出力回転速度(CVT出力軸12の回転速度)N2の比として定義され、半径比と等しい(SR=N2/N1=rin/rout)。半径比は、出力側接触半径rout(CVT軸線A1から出力側接触部までの距離)に対する入力側接触半径rin(CVT軸線A1から入力側接触部までの距離)の比である。ローラ位置Xが変更されると、パワーローラ16がサイドスリップを解消するまで傾転軸線A2周りに回転し、傾転角φ(パワーローラ16の傾転軸線A2周りの回転角)が変更される。傾転角φが変化すると、入力側接触部及び出力側接触部が変位し、それにより入力側接触半径rin及び出力側接触半径routが連続的に変更される。したがって、半径比すなわち変速比SRが連続的に変更される。
 図2は、図1に示す駆動機構一体型発電装置1の油圧回路図である。図2に示すように、ローラ位置Xは油圧アクチュエータ20によって変更される。油圧アクチュエータ20は複数の油圧シリンダ21を含む。油圧シリンダ21は、パワーローラ16及びトラニオン17と一対一で対応する。油圧シリンダ21は、ボディ21a、ピストン21b及びロッド21cを含む。油圧シリンダ21は複動式であり、ボディ21aの内部はピストン21bで増速室22と減速室23とに仕切られる。ロッド21cは、傾転軸線A2と同軸状に配置され、ピストン21bをトラニオン17に連結し、トラニオン17及びこれに支持されたパワーローラ16と共に傾転軸線A2の延在方向に移動する。
 増速室22に油が供給され減速室23から油が排出されると、ローラ位置Xが、傾転軸線A2の延在方向における増速側へ変更される。油がその逆に流れると、ローラ位置Xが、傾転軸線A2の延在方向における増速側とは反対側である減速側へ変更される。1つのキャビティ15内に配置された2つのパワーローラ16は、ローラ位置Xの変更時に半径比を互いに同値で保つため、傾転軸線A2の延在方向において互いに逆向きに変位する。
 ローラ位置Xが増速側へ変更されると、傾転角φが大きくなり変速比SRが上昇する。ローラ位置Xが減速側へ変更されると、傾転角φが小さくなり変速比SRが低下する。ローラ位置Xが上限点Xmaxに達すると、傾転角φが最大傾転角φmaxとなって変速比SRが1を超える最大変速比SRmaxとなる。ローラ位置Xが下限点Xminに達すると、傾転角φが最小傾転角φminとなって変速比SRが1未満の最小変速比SRminとなる。パワーローラ16の傾転許容範囲は、過傾転防止のためにトラニオン17に設けられたストッパ(図示せず)により機械的に定められている。ローラ位置Xが中立点Xnであれば、傾転角φが中立角φnとなって変速比SRが1となる。中立角φnは傾転許容範囲の中央値と概略等しく、最小変速比SRminは最大変速比SRmaxの逆数と概略等しい。
 油圧アクチュエータ20は、制御弁25を更に含む。油圧シリンダ21がパワーローラ16に一対一で対応するのに対し、制御弁25は例えば複数のパワーローラ16に対して単一である。制御弁25は4方向切換弁であり、供給ポートPS、戻りポートPT、増速用制御ポートCA及び減速用制御ポートCBを有する。油タンク26から油を吸い出す油圧ポンプ27は、供給ポートPSに接続され、戻りポートPTは、油タンク26に接続されている。増速用制御ポートCAは、増速室22に接続され、減速室23は、減速用制御ポートCBに接続されている。制御弁25はスプール弁であり、ポートの接続状態がスプール28の位置に応じて切り換わる。制御弁25は3位置切換弁であり、スプール28は遮断領域(図2で中央位置)、増速領域(図2で左位置)又は減速領域(図2で右位置)に位置付けられる。
 遮断領域では、制御ポートCA,CBが供給ポートPS及び戻りポートPTから遮断される。このとき、増速室22及び減速室23に対する油の給排が止まり、変速比が維持される。増速領域では、増速用制御ポートCAが供給ポートPSと接続されて減速用制御ポートCBが戻りポートPTと接続される。このとき、油が増速室22に供給されて減速室23から排出され、変速比が上昇する。減速領域では、増速用制御ポートCAが戻りポートPTと接続されて減速用制御ポートCBが供給ポートPSと接続される。このとき、油が減速室23に供給されて増速室22から排出され、変速比が低下する。スプール28が増速領域又は減速領域に位置する際、供給ポートPS及び戻りポートPTの開度は当該領域内でのスプール位置に応じて可変的に設定される。
 制御弁25は、スプール28を駆動してスプール位置及び開度を制御する駆動部29を有する。駆動部29により増速室22及び減速室23に対して給排される油の流量及び圧力が調整される。制御弁25は電動弁であり、駆動部29は、変速制御装置40(位置制御装置)から駆動信号が入力され、駆動信号の出力値I(電流値)に応じてスプール位置及び開度を制御する。
 IDG2には、油圧アクチュエータ20の作動油の温度を検出する油温センサ35(油温取得器)が設けられている。油温センサ35は、油圧アクチュエータ20の油圧回路を流れる油の温度を検出できれば何処に配置されてもよいが、一例として、油タンク26に貯留された油の温度を検出する位置に配置される。
 図3は、図2に示す制御弁25の断面図である。図3に示すように、制御弁25はノズルフラッパ型サーボ弁である。駆動部29は、駆動信号が入力されてトルクを発生するモータ部31、モータ部31により発生されるトルクに応じてスプール28を変位させるノズルフラッパ部32、及びスプール28の変位に応じてモータ部31及びノズルフラッパ部32を動作させるフィードバック部33を備える。
 モータ部31では、駆動信号がコイル31aに入力されると、上下の磁極31b,31cとアーマチャ31dとの間で働く磁気力に基づき、駆動信号の極性及び大きさに応じたトルクがアーマチャ31dに発生する。これにより、アーマチャ31dが上下の磁極31b,31cに対して傾斜する。ノズルフラッパ部32では、アーマチャ31dと一体化されたフラッパ32aが、アーマチャ31dの傾斜に連動して変位する。そうすると、フラッパ32aと左ノズル32bとの間のオリフィス絞り量、及びフラッパ32aと右ノズル32cとの間のオリフィス絞り量が変化し、ノズル背圧の均衡が破れる(フラッパ32aが近づく方のノズル背圧は上昇し、遠ざかる方のノズル背圧は下降する)。スプール28の両端面は、左ノズル背圧及び右ノズル背圧をそれぞれ受圧しており、ノズル背圧の不均衡発生に伴ってスプール28が変位を開始する。フィードバック部33は、例えばスプール28とアーマチャ31dとに支持されたスプリング33aにより構成される。スプール28が変位すると、磁気力に基づくトルクと正反対のトルクがスプリング33aに発生し、フラッパ32a及びアーマチャ31dはそのトルクで中立位置に戻される。それにより、ノズル背圧の均衡が得られてスプール28が停止する。以上の原理により、駆動信号の極性及び大きさに応じたスプール位置及び開度が得られる。
 油圧アクチュエータ20は、駆動信号が所定条件を満たすとローラ位置Xを所定位置で強制的に保持するバイアス機構(図示せず)を備える。例えば、当該バイアス機構は、出力値Iが零値Izであるという条件を満たせばローラ位置Xを下限点Xminに強制的に戻し、変速比SRを安全側となる最小変速比SRminで保持する。なお、出力値Iが負値であるという条件を満たしたときも、ローラ位置Xが下限点Xminに強制的に戻される。バイアス機構は、アーマチャ31dにその中立位置に対して一定の初期傾斜を機械的に与えることで実現される。出力値Iが零値Izであれば、左右ノズル背圧間で初期傾斜に応じた差圧が生じる。それにより、スプール28は、遮断領域内の中立位置SPnではなく、減速領域内のバイアス位置に位置付けられる。
 出力値Iが零値Izとなりスプール28がバイアス位置で維持されれば、ローラ位置X、傾転角φ及び変速比SRは、それぞれ下限点Xmin、最小傾転角φmin及び最小変速比SRminに達し、そこで保持される。逆に、スプール28を遮断領域内の中立位置SPnに位置付けてローラ位置Xを維持するためには、初期傾斜の相殺に必要なトルクがアーマチャ31dに生じるように駆動信号の出力値Iを設定し、その駆動信号をコイル31aに通電させ続ける必要がある。以下、中立位置SPnを得るための出力値Iを「中立値In」と称す。
 図4は、図1に示す駆動機構一体型発電装置1の変速制御装置40のブロック図である。図4に示すように、変速制御装置40は、傾転角の実値を推定した値である推定値φestを求める傾転角推定器41、ローラ位置の実値を推定した値である推定値Xestを求める位置推定器42(位置取得器)、及び、ローラ位置の目標値Xrefと推定値Xestの偏差ΔXを解消するように油圧アクチュエータ20の動作指令値Irefを求める位置制御器43を備える。傾転角推定器41は、傾転角を直接的に検出するセンサに依らずに、演算によって傾転角の推定値φestを求める。動作指令値Irefは、例えば、油圧アクチュエータ20の制御弁25に与えられる駆動信号の出力値(電流値)である。
 傾転角推定器41は、実変速比SRを求める実変速比演算器44(実変速比取得器)、及び実変速比SRを傾転角の推定値φestに換算する換算器45を備える。実変速比演算器44は、トロイダルCVT10の入力回転速度N1(エンジンEの回転速度)とトロイダルCVT10の出力回転速度N2との比に応じて実変速比SRを求める。なお、入力回転速度N1及び出力回転速度N2は、それぞれ入力回転速度センサ及び出力回転速度センサにより検出される。
 換算器45は、傾転角φの実変速比SRに対する関数の逆関数(φ=f-1(SR))に従い、実変速比SRに応じて傾転角を推定した値である推定値φestを求める。換算器45は、実際に逆関数を算術演算してもよいが、演算負荷軽減のため逆関数に従ったテーブルを予め作成してこれを変速制御装置40に記憶させておき、テーブル処理によって推定値φestを求めてもよい。
 変速制御装置40は、変速比の指令値SRrefを求める目標変速比演算器46を備える。目標変速比演算器46は、入力回転速度センサで検出された入力回転速度N1と予め記憶されている出力回転速度の指令値N2refとの比に応じて変速比の指令値SRrefを算出する。本実施形態では、出力回転速度の指令値N2refは、航空機内の電装品の作動に適した周波数と対応する一定値に設定される。例えば、目標周波数frefを400Hz、発電機3の極数を2、出力回転速度センサの検出対象を発電機軸7の回転速度とする場合、指令値N2refは24,000rpmの一定値である。
 変速制御装置40は、変速比の指令値SRrefと実変速比SRとの偏差ΔSRを求める変速比減算器47を備える(ΔSR=SRref-SR)。変速制御装置40は、変速比の偏差ΔSRを減らすようにローラ位置の目標値Xrefを算出する目標位置演算器48を備える。即ち、目標位置演算器48は、メジャー閉ループ制御LP1(第1閉ループ制御;フィードバック制御)により、偏差ΔSRをゼロに近づけるようにローラ位置の目標値Xrefを所定の算出ゲインG1で算出する。本実施形態では、算出ゲインG1は一定である。
 変速制御装置40は、ローラ位置の目標値Xrefと推定値Xestとの偏差ΔXを求める位置減算器49を備える(ΔX=Xref-Xest)。位置制御器43は、偏差ΔXを減らすように油圧アクチュエータ20の動作指令値Irefを算出する。即ち、位置制御器43は、マイナー閉ループ制御LP2(第2閉ループ制御;フィードバック制御)により、偏差ΔXをゼロに近づけるように動作指令値Irefを所定の算出ゲインG2で算出する。算出ゲインG2については、後述する。
 位置減算器49に帰還するマイナー閉ループ制御LP2は、変速比減算器47に帰還するメジャー閉ループ制御LP1に包含されたループである。油圧アクチュエータ20の制御弁25が動作指令値Irefで示される駆動信号を与えられることで、実ローラ位置は目標値Xrefに近づけられる。そして、実変速比SRが指令値SRrefに近づけられ、出力回転速度N2が指令値N2refに近づけられる。制御安定性のためには、マイナー閉ループ制御LP2(ローラ位置制御)の感度が、メジャー閉ループ制御LP1(変速比制御)の感度よりも高いことが望まれる。即ち、マイナー閉ループ制御LP2の入力(目標値Xref)の変化率に対する出力(動作指令値Iref)の変化率の割合(ΔIref/ΔXref)が、メジャー閉ループ制御LP1の入力(指令値SRref)の変化率に対する出力(目標値Xref)の変化率の割合(ΔXref/ΔSRref)よりも高いことが望まれる。
 位置制御器43は、油温センサ35で検出される油温が低くなるにつれて、動作指令値Irefの算出ゲインG2を予め決められた変化率で増加させるゲイン調整を行う。具体的には、位置制御器43は、油温センサ35で検出された油温Tに応じてゲイン設定器60で決定される算出ゲインG2に基づいて動作指令値Irefを算出する。
 変速制御装置40は、前述のように、傾転角推定器41、位置推定器42、位置制御器43、目標変速比演算器46、変速比減算器47、目標位置演算器48、及び、位置減算器49により、通常制御用のフィードバック制御機能を実現するが、変速制御装置40は、起動時の低温制御用のフィードフォワード制御機能を実現する低温制御器38を更に備える。低温制御器38による制御と位置制御器43による制御とは、油温センサ35で検出される油温に応じて互いに切り替えられる。
 図5は、図4に示す位置推定器42の内部モデルのブロック図である。図5に示すように、位置推定器42は、傾転角φのモデルと油圧アクチュエータ20のモデルとを用いて作成されたオブザーバであり、ローラ位置Xを推定する。傾転角φのモデルは数式(1)で表され、油圧アクチュエータ20のモデルは数式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 
 ここで、K1は第1比例ゲイン、K2は第2比例ゲイン、T2は時定数、sはラプラス演算子である。
 数式(1)(2)により、オブザーバを設計するためのモデルが数式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 
 ここで、K=K12、T2≒0である。
 次に、状態空間表現された行列A,Bが、数式(4)~(6)のとおり分割される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 
 ここで、xは状態変数である。このとき、数式(7)(8)が成り立つ。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 
 したがって、A11=A21=A22=B1=0、A12=K1、B2=K2が成り立つ。
 次に、行列式の設計パラメータLが数式(9)のとおり導入され、オブザーバの極(推定行列^Aの固有値)が安定になるように調整される。
Figure JPOXMLDOC01-appb-M000009
 
 他のパラメータ(推定行列^B、行列G、推定行列^C及び推定行列^D)は、設計パラメータLを用いて数式(10)~(13)に従って求められる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 
 以上から、傾転角φのモデル(数式(1)参照)及び油圧アクチュエータ20のモデル(数式(2)参照)から、数式(14)(15)で示される最小次元オブザーバが得られる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 
 ここで、ωは最小次元オブザーバの状態である。
 位置推定器42は、数式(14)(15)に従った演算を行うことで、ローラ位置の推定値Xest(数式(15)参照)を求める。位置推定器42では、傾転角の推定値φestが、傾転角推定器41から行列Gを有する演算回路51に与えられ、Gφest(数式(14)を参照)が演算回路51から加算器52に与えられる。油圧アクチュエータ20の動作指令値Irefが、位置制御器43から推定行列^Bの演算回路53に与えられ、^BIref(数式(14)を参照)が演算回路53から加算器52に与えられる。加算器52の出力は、伝達関数1/sを有する積分回路54に与えられ、状態ωが積分回路54から出力される。状態ωは、推定行列^Aを有する演算回路55に与えられ、^Aω(数式(14)参照)が演算回路55から加算器52に与えられる。加算器52は、^Aω、^BIref及びGφestを加算することで状態ωの微分値dω/dtを導出し(数式(14)参照)、これを積分回路54に与えている。
 状態ωは、推定行列^Cの演算回路56にも与えられ、^Cω(数式(15)参照)が演算回路56から加算器57に与えられる。傾転角の推定値φestは、傾転角推定器41から推定行列^Dの演算回路58にも与えられ、^Dφest(数式(15)参照)が演算回路58から加算器57に与えられる。加算器57は、^Cω及び^Dφestを加算することでローラ位置の推定値Xestを導出し(数式(15)参照)、これを位置減算器49に出力する。
 推定行列^Bの演算回路53は、油温センサ35で検出された油温Tに応じてゲイン設定器61で決定される内部ゲインKBに基づき行列^Bを導出する。このようにして、位置推定器42は、傾転角の推定値φestと油圧アクチュエータ20の動作指令値Irefと油圧アクチュエータの油温Tとに基づいてローラ位置の推定値Xestを求める。
 図6は、制御弁25の指令値(駆動電流)と油流量との関係の試験結果を示すグラフである。図6では、異なる油温T1~T4(T1>T2>T3>T4)ごとに制御弁25の指令値と油流量との関係が示されており、油温が低くなるにつれて油流量が少なくなることが分かる。即ち、油温が低くなるにつれて、油の粘度が増加して制御弁25における油流量が低下している。また図6では、制御弁25の駆動電流が弁開度ゼロに対応する値に近づくにつれて油流量が少なくなると共に、弁開度変化に伴う油流量の変化率が、低開度領域LDと高開度領域HDとで異なる非線形性を有することが示されている。即ち、弁開度減少に伴う油流量の減少率の絶対値は、高開度領域HDよりも低開度領域LDの方が小さい。このような油流量に対する油温及び弁開度の影響を修正すべく、以下のように位置制御器43の算出ゲインG2及びその補正係数CG2が設定されている。
 図7(A)は、図4に示す位置制御器43の算出ゲインG2と油温Tとの関係を示すグラフである。図7(B)は、位置制御器43の算出ゲインG2の補正係数CG2と制御弁25の動作指令値Iref(駆動電流)との関係を示すグラフである。図7(A)に示すように、ゲイン設定器60では、位置制御器43の算出ゲインG2が、油温Tが低くなるにつれて算出ゲインG2が増加するように予め設定されている。算出ゲインG2と油温Tとの関係は、油圧アクチュエータ20に用いられる油の粘度と油温Tとの関係に相似している。本実施形態では、油温Tが低くなるほど、単位温度低下あたりの算出ゲインG2の増加率も大きくなるように設定されている。この算出ゲインG2と油温Tとの対応関係は、例えば、二次元マップ、テーブル又は演算式によりゲイン設定器60にて定義されている。
 このようにすれば、位置制御器43においてローラ位置の目標値Xrefと推定値Xest(実値)との偏差ΔXを減らすように制御弁25に対する動作指令値Irefを算出するマイナー閉ループ制御LP2が実行される構成において、油温Tが低くなるにつれて動作指令値Irefの算出ゲインG2が増加するため、油温Tの低下に伴って閉ループ制御の感度(ΔIref/ΔXref)が上がる傾向に調整される。そのため、低温時における油の流動性低下による応答遅れが、算出ゲインG2の増加により補われる。
 図7(B)に示すように、位置制御器43の算出ゲインG2には、制御弁25の動作指令値Iref(駆動電流)に応じて変化する補正係数CG2が乗じられる。補正係数CG2は、制御弁25の開度が高開度領域HD(第1開度領域)にあるときよりも、制御弁25の開度が高開度領域よりも小さい低開度領域LD(第2開度領域)にあるときに、単位温度変化あたりの算出ゲインG2の変化率の絶対値が増加するように設定される。本実施形態では、制御弁25の開度αについて全開を100%とし全閉を0%とした場合において、低開度領域LDは、例えば少なくとも0%<α<20%を含む領域であり、高開度領域HDは、例えば少なくとも80%<α<100%を含む領域である。
 補正後の算出ゲインG2は、油温Tが低く且つ制御弁25の開度が小さいときに大きい値をとる一方、油温Tが高く且つ制御弁25の開度が大きいときに小さい値をとることになる。補正係数CG2と動作指令値Iref(駆動電流)との関係は、図6の油流量の変化率の絶対値と動作指令値Iref(駆動電流)との関係と逆相関している。このようにすれば、制御弁25の開度が小さい領域で流路の粘性抵抗が相対的に大きくなっても、制御弁25の開度が小さい領域において算出ゲインG2の変化率の絶対値が増加することにより粘度の影響が緩和され、弁開度と油流量との間の非線形性が緩和されることになる。
 図8(A)は、図5に示す位置推定器42の内部ゲインKBと油温Tとの関係を示すグラフである。図8(B)は、位置推定器42の内部ゲインKBと制御弁の動作指令値Iref(電流値)との関係を示すグラフである。図8(A)に示すように、ゲイン設定器61では、位置推定器42の演算回路53の内部ゲインKBが、油温Tが低くなるにつれてゲインKBが減少するように予め設定されている。内部ゲインKBと油温Tとの関係は、油圧アクチュエータ20に用いられる油の粘度と油温Tとの関係と逆相関している。本実施形態では、油温Tが低くなるほど、単位温度低下あたりの内部ゲインKBの減少率も大きくなるように設定されている。この内部ゲインKBと油温Tとの対応関係も、例えば、二次元マップ、テーブル又は演算式によりゲイン設定器61にて定義されている。
 このようにすれば、位置制御器43においてローラ位置の目標値Xrefと推定値Xest(実値)との偏差ΔXを減らすように制御弁25に対する動作指令値Irefを算出するマイナー閉ループ制御が実行される構成において、油温Tの低下に伴って位置推定器42の内部モデルの感度(ΔXest/ΔIref)が低下する。そのため、位置推定器42が油温を考慮した正確な位置推定を行うことができ、低温時における油の流動性低下による応答遅れが更に補われることになる。
 図8(B)に示すように、位置推定器42の内部ゲインKBには、制御弁25の動作指令値Iref(電流値)に応じて変化する補正係数CKBが乗じられる。補正係数CKBも同様に、制御弁25の開度が高開度領域(第1開度領域)にあるときに比べ、制御弁25の開度が高開度領域よりも小さい低開度領域(第2開度領域)にあるときには、単位温度変化あたりの内部ゲインKBの変化率の絶対値が減少するように設定される。即ち、油温Tが低く且つ制御弁25の開度が小さいときに、内部ゲインKBが小さい値をとる一方、油温Tが高く且つ制御弁25の開度が大きいときに、内部ゲインKBが大きい値をとる。補正係数CKBと動作指令値Iref(駆動電流)との関係は、図6の油流量の変化率の絶対値と動作指令値Iref(駆動電流)との関係に相似している。
 このようにすれば、制御弁25の開度が小さい領域で流路の粘性抵抗が相対的に大きくなっても、制御弁25の開度が小さい領域において内部ゲインKBの変化率の絶対値が増加することにより粘度の影響が更に緩和され、弁開度と油流量との間の非線形性が更に緩和されることになる。
 図9は、図4に示す変速制御装置40による起動時の油温T及びその他の経時変化の一例を示すタイミングチャートである。図4及び9に示すように、IDG1の起動時、油温センサ35で検出される油温Tが基準温度T1未満であれば、低温制御器38により制御弁25が開ループ制御される暖機運転が実施される。基準温度T1は、例えば-20~-10℃の範囲内の値である。暖機運転が終了すれば、位置制御器43により制御弁25が閉ループ制御される通常運転が実施される。
 暖機運転では、低温制御器38がスプール28を往復動させるように動作指令値Iを出力する。動作指令値Iの波形は、例えば、極大値Ihighが中立値Inよりも大きい値、極小値Ilowが中立値Inよりも小さい値に設定される。これにより、制御弁25において増速側と減速側とに交互に油の流動が発生し、ピストン21bも微小振動する。このようにスプール28を往復動させて強制的に油の流動を生じさせることで、油温Tの上昇が促進される。また、動作指令値Iの波形において、極大値Ihighの中立値Inに対する差は、極小値Ilowの中立値Inに対する差よりも小さい。スプール28は動作指令値Iに対して敏感に応答できない。そのため、ピストン21bは、中立位置PSnに対して減速側で往復動し、出力回転速度N2の過上昇が防止される。
 油温Tが基準温度T1に達すれば(t1)、スプール28及びピストン21bの往復動を止め、前記したバイアス機構の作用でローラ位置Xを所定位置(最大減速位置)で所定の待機時間保持するように駆動信号を出力する。当該待機時間経過するまでは、動作指令値Iはバイアス機構作動値(零値Iz)で固定される。当該待機時間が経過すると(t2)、暖機運転を終了して通常運転に移行する。
 通常運転では、位置制御器43が、閉ループ制御により動作指令値Irefを求める。即ち、位置制御器43が偏差ΔXに応じた動作指令値Irefを出力することで、ローラ位置Xが指令値Xrefに近づけられ、変速比SRが指令値SRrefに近づけられる。但し、基準温度T1を低く設定して暖機運転の短縮化を図った場合には、通常制御の開始直後の制御が不安定になる場合がある。そのため、本実施形態では、通常運転の閉ループ制御の開始後かつ発電機3による発電の開始前の期間である閉ループ制御初期段階において、前述したように、位置制御器43の算出ゲインG2と位置推定器42の内部ゲインKBとが、油温T及び弁開度(動作指令値Iref)に応じて調整される。よって、閉ループ制御初期段階において出力回転速度N2が指令値N2refに近づいていく際の制御が安定する。そして、出力回転速度N2が指令値N2refに収束したと判定されると(t3)、発電機3による発電が開始され、発電機3で発生される交流電力の周波数が目標周波数に保たれる。
 なお図9では、発電開始後は算出ゲインG2及びゲインKBの値が安定しているが、これは油温Tが低くないからであり、実際には、閉ループ制御においては発電開始降も油温T及び弁開度(動作指令値Iref)に応じた算出ゲインG2及び内部ゲインKBの調整機能は働いている。
 以上のように、パワーローラ16の動作位置の目標値Xrefと推定値Xestとの偏差ΔXを減らすように制御弁25に対する動作指令値Irefを算出する閉ループ制御が実行される構成において、算出ゲインG2と位置推定器42の内部ゲインKBとが、油温T及び弁開度(動作指令値Iref)に応じて調整されるため、低温時における油の流動性低下による応答遅れがゲイン調整によって補われる。よって、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止できる。閉ループ制御の開始から発電動作の開始までのタイムラグも安定的に短縮できる。なお、位置制御器43のゲインを直接的に調整する代わりに、例えば位置減算器49と位置制御器43との間の信号にゲインを付与することで位置制御器43のゲインを間接的に調整するものとしてもよい。また、位置推定器42のゲインを直接的に調整する代わりに、例えば位置推定器42と位置減算器49との間の信号にゲインを付与することで位置推定器42の内部モデルの感度を間接的に調整するものとしてもよい。
 (第2実施形態)
 図10は、第2実施形態に係る変速制御装置140のブロック図である。図11(A)は、図9に示す目標位置演算器の算出ゲインと油温との関係を示すグラフである。図11(B)は、目標位置演算器の算出ゲインと制御弁の指令値(電流値)との関係を示すグラフである。なお、第1実施形態と共通する構成については同一符号を付して説明を省略する。図10に示すように、変速制御装置140では、目標位置演算器48は、油温センサ35で検出された油温Tに応じてゲイン設定器160で決定される算出ゲインG1に基づいて目標値Xrefを算出する。なお、位置制御器43の算出ゲインG2は、例えば一定である。
 図11(A)に示すように、ゲイン設定器160では、目標位置演算器48の算出ゲインG1が、油温Tが低くなるにつれて算出ゲインG1が所定の変化率で減少するように予め設定されている。算出ゲインG1と油温Tとの関係は、油圧アクチュエータ20に用いられる油の粘度と油温Tとの関係と逆相関している。本実施形態では、油温Tが低くなるほど、単位温度低下あたりの算出ゲインG1の減少率の絶対値も小さくなるように設定されている。
 このようにすれば、変速比の指令値SRrefと実変速比SRとの偏差ΔSRを減らすようにローラ位置の目標値Xrefを算出するメジャー閉ループ制御LP1とともに、ローラ位置目標値Xrefと推定値Xestとの偏差ΔXを減らすように制御弁25に対する動作指令値Irefを算出するマイナー閉ループ制御LP2が実行される構成において、当該目標値Xrefの算出ゲインG1が油温Tの低下に伴って減少するため、油温Tの低下に伴ってメジャー閉ループ制御LP1の感度(ΔXref/ΔSRref)が下がる傾向に調整される。そのため、油の流動性低下によるマイナー閉ループ制御LP2の応答性の低下に合わせて、メジャー閉ループ制御LP1の応答性が低下し、変速比の継続的な振動を防止できる。
 図11(B)に示すように、目標位置演算器48の算出ゲインG1には、制御弁25の動作指令値Iref(駆動電流)に応じて変化する補正係数CG1が乗じられる。補正係数CG1は、制御弁25の開度が高開度領域HD(第1開度領域)にあるときよりも、制御弁25の開度が高開度領域よりも小さい低開度領域LD(第2開度領域)にあるときに、単位温度変化あたりの算出ゲインG1の変化率の絶対値が減少するように設定される。即ち、補正後の算出ゲインG1は、油温Tが低く且つ制御弁25の開度が小さいときに小さい値をとる一方、油温Tが高く且つ制御弁25の開度が大きいときに大きい値をとることになる。補正係数CG1と動作指令値Iref(駆動電流)との関係は、図6の油流量の変化率の絶対値と動作指令値Iref(駆動電流)との関係に相似している。
 このようにすれば、制御弁25の開度が小さい領域で流路の粘性抵抗が相対的に大きくなっても、制御弁25の開度が小さい領域において算出ゲインG1の変化率の絶対値が増加することにより粘度の影響が緩和され、弁開度と油流量との間の非線形性が緩和されることになる。なお、目標位置演算器48のゲインを直接的に調整する代わりに、例えば変速比減算器47と目標位置演算器48との間の信号にゲインを付与することで目標位置演算器48のゲインを間接的に調整するものとしてもよい。
 以上により、低温起動時において、暖機運転の短縮化を図りながらも、暖機運転から通常運転に切り替わった後の閉ループ制御の不安定化を防止できる。その結果、閉ループ制御の開始から発電動作の開始までのタイムラグも安定的に短縮できる。なお、他の構成は前述した第1実施形態と同様であるため説明を省略する。
 本発明は前述した各実施形態に限定されるものではなく、その構成を変更、追加、又は削除することができる。1つの実施形態中の一部の構成又は方法を他の実施形態に適用してもよく、実施形態中の一部の構成は、その実施形態中の他の構成から分離して任意に抽出可能である。例えば、ゲイン設定器60による算出ゲインG2と、ゲイン設定器160による算出ゲインG1の調整と、ゲイン設定器61による内部ゲインKBの調整とは、任意に組み合わせてよく、例えば、それらの何れか1つのみを実施してもよいし、それら全てを実施してもよい。
 油温取得器として、油温センサ35の代わりに、油温と関連する情報(例えば、油温と比例関係にある温度)を取得する機器(例えば、配管温度を検出するセンサ)を用いてもよい。位置取得器として、位置推定器42の代わりに、ローラ位置を検出するセンサを用いてもよい。即ち、位置取得器は、ローラ位置の実値を取得するものであれば、ローラの実値を推定してもよいし、ローラ位置センサで検出されたセンサ値を受信するものでもよい。油圧アクチュエータ20の制御対象は、トロイダル無段変速機の代わりに、他の形態の無段変速機であってもよいし、変速機以外の位置制御を要する装置であってもよい。無段変速機は、発電機を駆動せずに別のものを駆動してもよい。
 1 駆動機構一体型発電装置(IDG)
 3 発電機
 10 トロイダル無段変速機
 16 パワーローラ(変速要素)
 20 油圧アクチュエータ
 25 制御弁
 28 スプール
 35 油温センサ(油温取得器)
 40,140 変速制御装置(位置制御装置)
 42 位置推定器(位置取得器)
 43 位置制御器
 44 実変速比演算器(実変速比取得器)
 48 目標位置演算器
 G1,G2 算出ゲイン(第1ゲイン)
 KB 内部ゲイン(第2ゲイン)
 T 油温
 HD 高開度領域(第1開度領域)
 LD 低開度領域(第2開度領域)
 Iref 動作指令値
 Xref 目標値
 LP1 メジャー閉ループ制御
 LP2 マイナー閉ループ制御

Claims (10)

  1.  対象物の動作位置を変化させる油圧アクチュエータの制御弁に駆動信号を出力して位置制御を行う位置制御装置であって、
     前記油圧アクチュエータの油温に関する情報を取得する油温取得器と、
     前記対象物の動作位置の実値を取得する位置取得器と、
     前記対象物の動作位置の目標値と前記実値との偏差を減らすように閉ループ制御により前記制御弁に対する動作指令値を算出する位置制御器と、
     前記油温が低くなるにつれて、前記閉ループ制御の少なくとも1つのゲインを前記閉ループ制御の感度が上がる傾向に変化させるゲイン設定器と、を備える、位置制御装置。
  2.  前記少なくとも1つのゲインは、前記偏差から前記動作指令値を求めるのに用いられる第1ゲインを含み、
     前記ゲイン設定器は、前記油温が低くなるにつれて前記第1ゲインを増加させる、請求項1に記載の位置制御装置。
  3.  前記第1ゲインは、前記位置制御器の算出ゲインである、請求項2に記載の位置制御装置。
  4.  前記偏差を求める位置減算器を更に備え、
     前記少なくとも1つのゲインは、前記位置減算器に入力される前記実値を求めるのに用いられる第2ゲインを含み、
     前記ゲイン設定器は、前記油温が低くなるにつれて前記第2ゲインを減少させる、請求項1乃至3のいずれか1項に記載の位置制御装置。
  5.  前記位置取得器は、前記対象物の動作位置の実値を推定する位置推定器であり、
     前記第2ゲインは、前記位置推定器の内部モデルの感度を含む、請求項4に記載の位置制御装置。
  6.  前記対象物は、その位置変化により無段変速機の変速比を変化させる変速要素である、請求項1乃至5のいずれか1項に記載の位置制御装置。
  7.  無段変速機の変速比を変化させるように変速要素の動作位置を変化させる油圧アクチュエータの制御弁に駆動信号を出力して位置制御を行う位置制御装置であって、
     前記油圧アクチュエータの油温の情報を取得する油温取得器と、
     前記変速比の実値を取得する実変速比取得器と、
     前記変速要素の動作位置の実値を取得する位置取得器と、
     前記変速比の指令値と前記変速比の前記実値との偏差を減らすように第1閉ループ制御により前記変速要素の動作位置の目標値を算出する目標位置演算器と、
     前記変速要素の動作位置の前記目標値と前記変速要素の動作位置の前記実値との偏差を減らすように第2閉ループ制御により前記制御弁に対する動作指令値を算出する位置制御器と、
     前記油温が低くなるにつれて、前記第1閉ループ制御のゲインを前記第1閉ループ制御の感度が下がる傾向に変化させるゲイン設定器と、を備える、位置制御装置。
  8.  前記無段変速機は、パワーローラの傾転角に応じて前記変速比を変化させるトロイダル無段変速機であり、前記変速要素は、前記パワーローラである、請求項6又は7に記載の位置制御装置。
  9.  前記無段変速機から出力される動力は、発電機に入力され、かつ、前記発電機は、前記閉ループ制御の開始から遅れて発電動作を開始し、
     前記ゲイン調整は、少なくとも前記閉ループ制御の開始後かつ前記発電機の発電動作の開始前の期間に行われる、請求項7又は8に記載の位置制御装置。
  10.  前記ゲイン設定器は、前記制御弁の開度が第1開度領域にあるときに比べ、前記制御弁の開度が前記第1開度領域よりも小さい第2開度領域にあるときには、前記油温の変化に対する前記ゲインの変化率を絶対値が増加するように補正する、請求項1乃至9のいずれか1項に記載の位置制御装置。
PCT/JP2018/018953 2017-05-31 2018-05-16 位置制御装置 WO2018221226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22199058.3A EP4134775B1 (en) 2017-05-31 2018-05-16 Position controller of a continuously variable transmission
US16/617,594 US11131380B2 (en) 2017-05-31 2018-05-16 Position controller
EP18808789.4A EP3633484B1 (en) 2017-05-31 2018-05-16 Position controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108177 2017-05-31
JP2017108177A JP6952498B2 (ja) 2017-05-31 2017-05-31 位置制御装置

Publications (1)

Publication Number Publication Date
WO2018221226A1 true WO2018221226A1 (ja) 2018-12-06

Family

ID=64455912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018953 WO2018221226A1 (ja) 2017-05-31 2018-05-16 位置制御装置

Country Status (4)

Country Link
US (1) US11131380B2 (ja)
EP (2) EP4134775B1 (ja)
JP (1) JP6952498B2 (ja)
WO (1) WO2018221226A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907073B2 (ja) * 2017-08-31 2021-07-21 川崎重工業株式会社 トロイダル無段変速機の変速制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415508A (en) * 1987-07-07 1989-01-19 Mitsubishi Electric Corp Electronic controller for flow control valve
JP2000039061A (ja) * 1998-07-23 2000-02-08 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2001164953A (ja) * 1999-12-14 2001-06-19 Honda Motor Co Ltd 内燃機関の動弁装置
JP2010036694A (ja) * 2008-08-04 2010-02-18 Toyota Motor Corp 車両用駆動装置の制御装置
JP4495117B2 (ja) 2006-06-30 2010-06-30 川崎重工業株式会社 無段変速機の制御方法および制御システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374677B2 (ja) * 1996-10-31 2003-02-10 日産自動車株式会社 無段変速機の変速制御装置
JP3460547B2 (ja) * 1997-11-13 2003-10-27 日産自動車株式会社 無段変速機の変速制御装置
US6142908A (en) 1998-07-01 2000-11-07 Nissan Motor Co., Ltd. Speed ratio controller and control method of continuously variable transmission
US6312358B1 (en) * 1999-05-21 2001-11-06 Advanced Technology Institute Of Commuter-Helicopter, Ltd. Constant speed drive apparatus for aircraft generator and traction speed change apparatus
JP3680739B2 (ja) * 2001-02-06 2005-08-10 日産自動車株式会社 無段変速機の変速制御装置
JP4198937B2 (ja) * 2002-05-17 2008-12-17 株式会社豊田中央研究所 トロイダル式cvtの変速制御装置
EP3428483B1 (en) * 2016-03-08 2021-09-15 Kawasaki Jukogyo Kabushiki Kaisha Transmission controller
JP6565841B2 (ja) * 2016-09-09 2019-08-28 株式会社デンソー シフトレンジ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415508A (en) * 1987-07-07 1989-01-19 Mitsubishi Electric Corp Electronic controller for flow control valve
JP2000039061A (ja) * 1998-07-23 2000-02-08 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2001164953A (ja) * 1999-12-14 2001-06-19 Honda Motor Co Ltd 内燃機関の動弁装置
JP4495117B2 (ja) 2006-06-30 2010-06-30 川崎重工業株式会社 無段変速機の制御方法および制御システム
JP2010036694A (ja) * 2008-08-04 2010-02-18 Toyota Motor Corp 車両用駆動装置の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633484A4

Also Published As

Publication number Publication date
JP2018205902A (ja) 2018-12-27
EP3633484A1 (en) 2020-04-08
EP3633484A4 (en) 2021-03-10
EP4134775A1 (en) 2023-02-15
US20200182351A1 (en) 2020-06-11
EP3633484B1 (en) 2023-06-07
JP6952498B2 (ja) 2021-10-20
US11131380B2 (en) 2021-09-28
EP4134775B1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
EP4209686A1 (en) Pressure-compensation hydraulic pump, rotation speed control system and control method, and engineering machinery
EP1557543A2 (en) A variable capacity fluid pump for an engine
JP2008240894A (ja) 無段変速機のサーボポンプの流量制御方法および流量制御装置
WO2018221226A1 (ja) 位置制御装置
WO2018221225A1 (ja) 位置制御装置
JP6585277B2 (ja) トロイダル無段変速機の制御装置
JP2015529297A (ja) ポンプ排出圧制御のための電子油圧制御の設計
JP3927518B2 (ja) 発電装置
WO2019044587A1 (ja) トロイダル無段変速機の変速制御装置
JP6677824B2 (ja) 発電システム、及びその制御方法
JP4275119B2 (ja) 液圧供給ポンプ
JP6468449B2 (ja) エンジンの制御装置
WO2017154037A1 (ja) 変速制御装置
JP3192054B2 (ja) 油圧ポンプの傾転角制御装置
JP4720766B2 (ja) バルブタイミング可変装置及び油圧アクチュエータ制御装置
JP7240083B2 (ja) サーボ弁制御装置
JP2009007975A (ja) 油圧ポンプのインバータ駆動制御方法
CN115324758A (zh) 一种挖掘机功率控制方法
JPH08177087A (ja) 建設機械の制御装置
JP2016051401A (ja) サーボアクチュエータの制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018808789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018808789

Country of ref document: EP

Effective date: 20200102