JP2005177771A - 鋼管端部の肉厚制御方法 - Google Patents

鋼管端部の肉厚制御方法 Download PDF

Info

Publication number
JP2005177771A
JP2005177771A JP2003418845A JP2003418845A JP2005177771A JP 2005177771 A JP2005177771 A JP 2005177771A JP 2003418845 A JP2003418845 A JP 2003418845A JP 2003418845 A JP2003418845 A JP 2003418845A JP 2005177771 A JP2005177771 A JP 2005177771A
Authority
JP
Japan
Prior art keywords
steel pipe
thickness
mill
pipe
thickness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003418845A
Other languages
English (en)
Inventor
Tomomitsu Kimura
智充 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003418845A priority Critical patent/JP2005177771A/ja
Publication of JP2005177771A publication Critical patent/JP2005177771A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

【課題】本発明は、絞り圧延機で生じる管端部の厚肉化を予め延伸圧延機で圧下、相殺するに際して、その圧下量を理論的に定め、従来より製管歩留りを向上させる鋼管端部の肉厚制御方法を提供することを目的としている。
【解決手段】穿孔圧延機、延伸圧延機及び絞り圧延機を順次配列した継目無鋼管の製造工程で、該絞り圧延機で得られる鋼管の長手方向の肉厚分布がほぼ均一になるように、前記延伸圧延機の各スタンドに、上ロールと下ロールとが被圧延材の素鋼管に対して同時に同量だけ対称作動して上下ロール間の開度を調整自在な油圧圧下手段を設け、該油圧圧下手段の圧下量を調整して前記素鋼管の肉厚分布を予め適正化する技術を改良した。すなわち、前記延伸圧延機の各スタンドで前記素鋼管を圧延するに際して、該素鋼管の肉厚分布を理論的に決定するようにした。
【選択図】 図1

Description

本発明は、鋼管端部の肉厚制御方法に係わり、詳しくは、鋼管製造の最終圧延工程である絞り圧延機で素鋼管(シェル)の径を絞り、製品鋼管(チューブ)を製造するに際し、該製品鋼管の長手方向における肉厚分布をできるだけ均一にする技術に関する。
一般に、25.4〜177.8mmφの小径継目無鋼管を製造するには、図7に示すような熱間圧延ラインが使用される。そのラインでは、まず、素材である比較的短尺の鋼鋳片(例えば、丸ビレット)1を加熱炉2で所定温度(1000〜1200℃)に加熱し、ピアサーと称する穿孔圧延機3で穿孔して素管(ホローともいう)4とする。そして、該素管4をマンドレル・ミルと称するロールを多段(通常8段)に配置した延伸圧延機5で、前記素管4の中に先端が砲弾状を呈するマンドレル・バー6を挿入し、延伸圧延して素鋼管(シェルともいう)7とする。引き続き、温度の低下した該シェル7を再加熱炉8で所定温度に加熱してから、多数のロール・スタンド11(以下、単にスタンドという)を多段(通常8〜28段)に配置したホット・ストレッチ・レデューサと称する絞り圧延機9で、所望の外径になるように、引張り、縮径の加工を施して製品の鋼管(チューブともいう)10とされる。なお、この絞り圧延機では、該チューブの外径は、ロールの孔型(カリバー)の径により、肉厚は、各スタンド間でシェル7に作用する張力により決定される。ここで、張力は、隣り合うスタンドのロールの回転数を異ならせることにより変更できる。
ところで、このホット・ストレッチ・レデューサ9(以下、HSRという)での絞り圧延では、シェル7の外径を大幅に絞るので、チューブ10ではその分だけ肉厚の増加が生じる。そのため、肉厚の増加は、前記したように、各スタンド間でシェルに作用する張力を変更することで調整している。
しかしながら、シェル7の全体がHSR9の全スタンドに噛み込まれている定常状態に比較して、全スタンドに噛み込まれていない過渡状態(シェル7の先端が各スタンドに噛みこむ時、あるいは後端が各スタンドから尻抜ける時)では、図6(a)及び(b)に示すように、該シェル7に作用する引張力の大きさが半減する。そのため、圧延後のチューブ10の両端付近は、図5に示すように、中央付近より厚肉になる。この厚肉部分は、オフゲージと称され、チューブ10から所謂「クロップ」として切り捨てられるが、該クロップの長さは、通常2〜3mになるので、製管歩留りを著しく低下させることになる。そこで、このチューブ両端の厚肉化を抑制するため、従来より種々の対策技術が実施されている。
その一例として、図4(a)及び(b)に示すように、HSR9での絞り圧延で発生するチューブ端部の増肉分を予め延伸圧延機で減肉して相殺する技術がある。つまり、それは、穿孔圧延機(ピアサー)3、延伸圧延機(マンドレル・ミル)5及び絞り圧延機9(HSR)からなる一連の製管工程で、延伸圧延機の特定スタンドに上ロールと下ロールがパスラインに対して同時同量だけ対称作動してロール開度を制御する油圧圧下手段(図示せず)を設け、管の噛込み時と尻り抜け時の両時点において次工程の絞り圧延機9で生じる管端部の厚肉化を相殺するごとく、上記油圧圧下手段で圧下制御してチューブ端部に形成される厚肉部分の長さを減少させるものである(特許文献1参照)。
しかしながら、該特許文献1には、油圧圧下機構及びその作動は詳細に述べられているが、肝心の「どのような状況でどのように圧下を行うのか」という具体的な制御方法については一切記載がなく、「絞り圧延機で生じる管端部の厚肉化を相殺する」という願望が述べられているに過ぎない。つまり、当業者が実施できるように発明が開示されていない。恐らくは、延伸圧延機で多数の鋼管を用い、その各スタンドに種々の圧下量を付加して素鋼管の適切な肉厚分布、つまりその後に絞り圧延して得た製品鋼管の管端厚肉部分の長さができるだけ短くなるような素鋼管の肉厚分布を模索し(図4(b)参照)、その時の圧下量を実操業に採用すると思われる。ところが、そのような方法では、製造する鋼管の鋼種やサイズが変更される毎に、多数の試験操業を実施する必要があり、労力ばかりでなく、時間も余分にかかり、生産性を著しく低下する。
特公昭51−43825号公報
本発明は、かかる事情に鑑み、絞り圧延機で生じる管端部の厚肉化を予め延伸圧延機で圧下、相殺するに際して、その圧下量を理論的に定め、従来より製管効率ばかりでなく、歩留りをも向上させる鋼管端部の肉厚制御方法を提供することを目的としている。
発明者は、上記目的を達成するため、絞り圧延機で生じる管端部の厚肉化を予め延伸圧延機で圧下、相殺する従来技術を理論的に鋭意見直し、その成果を本発明に具現化した。
すなわち、本発明は、穿孔圧延機、延伸圧延機及び絞り圧延機を順次配列した継目無鋼管の製造工程で、該絞り圧延機で得られる鋼管の長手方向の肉厚分布がほぼ均一になるように、前記延伸圧延機の各スタンドに、上ロールと下ロールとが被圧延材の素鋼管に対して同時に同量だけ対称作動して上下ロール間の開度を調整自在な油圧圧下手段を設け、該油圧圧下手段の圧下量を調整して前記素鋼管の肉厚分布を予め適正化するに際し、前記延伸圧延機の各スタンドで前記素鋼管を下記手順にて圧延することを特徴とする鋼管端部の肉厚制御方法である。

第1段階:均一肉厚分布の素鋼管を用い、絞り圧延した後の鋼管の管端肉厚分布を予測又は算出
第2段階:第1段階の絞り圧延で付加される平均張力(XLMi)を、基本モデルを用いて算出する
(基本モデル)XLMi={(εri/εti)(2−λi)+(1−2λi)}/{(εri/εti)(1−λi)+2(λ−1i)}
ここで、iは、鋼管の長手方向の位置を表す数字であり、鋼管の長手方向の位置を微小長さ(δd)で細分化して定まる数、εriは,位置iでの鋼管の半径方向の対数歪み、εtiは、位置iでの鋼管の円周方向の対数歪み、λiは、位置iでの鋼管の肉厚(Ti)と外径(Di)の比である。
第3段階:第2段階で得た平均張力(XLMi)を用いて、鋼管の管端厚肉部分を相殺する素鋼管の肉厚分布(Tsi)を、管端肉厚モデルで収束計算する
(管端肉厚モデル)Tsi=F-1(XLMi,Dsi,Dti,Tti
ここで、Dsiは,位置iでの素鋼管の外径,Dtiは、位置iでの鋼管の外径,Ttiは、位置iでの鋼管の肉厚である
第4段階:該素鋼管の肉厚分布に基づき、延伸圧延機の各スタンドでの油圧圧下手段の圧下量を圧延荷重及びミル定数に基づき定め、その圧下量で圧延する
本発明では、絞り圧延機で生じる鋼管管端部の厚肉化を相殺するように、予め延伸圧延機で素鋼管を圧延するので、絞り圧延機出側での製品鋼管の長手方向における肉厚分布が従来より均一になる。その結果、製品鋼管の両端部より切捨てられるクロップの長さが短くなり、製管歩留りが一層向上した。また、製造する鋼管の鋼種やサイズの変更があっても、試験操業を行うことなく、直ちに操業が実施できるようになる。
以下、図面を参照して、本発明を実施する最良の形態を説明する。
本発明の要旨は、絞り圧延機で生じる鋼管管端部の厚肉化を相殺するような素鋼管の形状を予め下記の理論計算で求め、そのような形状になるように素鋼管を延伸圧延機の各スタンドのロール開度を変更して圧延してから、絞り圧延するものである。
まず、第1段階として、図1(a)に示す長手方向で肉厚が均一な素鋼管を、絞り圧延機で通常の条件で圧延した場合に得られる鋼管管端部の最終的な肉厚分布を予測する。これは、過去の操業データを鋼種及びサイズ毎に整理しておけば、容易に予測できるし、また計算でも算出できる。その予測結果は、図1(b)に示すような管端部の肉厚分布になる。
次に、第2段階として、絞り圧延機で最終的に図1(b)の肉厚分布になる際に、素鋼管に付加される平均張力(XLMi)を算出する。つまり、図6(a)及び(b)に示したように、素鋼管に付加される張力は、絞り圧延機の各スタンドにおいて先端が噛み込む時、後端が抜け出す時に応じて変化するので、先端が噛み込んだり、後端が抜け出したりする毎に張力の計算を行い、それを積算することになる。また、この素鋼管の長手方向での張力分布を求めるには、計算は、鋼管の長手方向を微小長さ(Δd)で細分化し、i個の長手方向の仮想位置を定め、該仮想の範囲毎に行うことになる。張力を表す式(基本モデルともいう)としては、本発明では、下記の(1)式を採用する。
XLMi={(εri/εti)(2−λi)+(1−2λi)}/{(εri/εti)(1−λi)+2(λ−1i)} ・・(1)
ここで、iは、鋼管の長手方向の位置を表す数字であり、鋼管の長手方向の位置を微小長さ(δd)で細分化して定まる数、εriは,位置iでの鋼管の半径方向の対数歪み、εtiは、位置iでの鋼管の円周方向の対数歪み、λiは、位置iでの鋼管の肉厚(Ti)と外径(Di)の比である。
この計算により、絞り圧延機で素鋼管に付加された平均張力は、図1(b)に示した管端部になるものであるから、定常状態の肉厚より厚い部分を相殺するには、素鋼管の肉厚分布がどのようになっていれば良いかを第3段階として計算する。
そのためには、第2段階で算出した素鋼管の各部にかかる平均張力(XLMi)を用いて逆算し、図1(c)に示すような肉厚分布を求めれば良い。つまり、上記(1)式を満たすTsiを適当な収束計算方法(例えば、ニュートン法)により求める。
その場合、εri=lnTsi/Tti=ln(Tsi)−ln(Tti) ・・(2)
εti=ln(Dsi−Tsi)/(Dti−Tti)=ln(Dsi−Tsi)−ln(Dti−Tti) ・・(3)
λi=1/2[Tsi/(Dsi−Tsi)+Tti/(Dti−Tti)] ・・(4)
であるので、
(εri+2εti)[XLMi+λi(1−XLMi)]−2εri−εti=0・・(5)が導かれる。
そこで、この(5)の左辺をF(Tsi)と置き、Tsiで偏微分すると、(6)式になる。
∂F(Tsi)/∂Tsi=[(∂εri/∂Tsi)+2(∂εti/∂Tsi)]×[XLMi+λi(1−XLMi)]+(εri+2εti)(1−XLMi)∂λi/∂Tsi−2∂εri/∂Tsi―∂εti/∂Tsi ・・(6)
ただし、∂εri/∂Tsi=1/Tsi,∂εti/∂Tsi=−1/(Dsi−Tsi)及び∂λi/∂Tsi=1/2[Dsi/(Dsi−Tsi2
そして、かかる(6)式を図8にフローを示すニュートン法で、収束計算し、位置i毎に管端部のTsiを決定するのである。
この計算により、絞り圧延機に供給する素鋼管の形状(長手方向の肉厚分布)が求まるので、最後に第4段階として、穿孔圧延機から抜け出てきた素管(ホロー)を、延伸圧延機でこの素鋼管の形状にする必要がある。つまり、上記で計算した肉厚分布を達成するため、延伸圧延機の各スタンドでのロール開度を、圧延荷重及びミル定数から決定すれば良い。その決定は、周知のことであるので、その説明は省略する。そして、決定した各スタンドのロール開度で素管の圧延を行えば、第3段階で計算した肉厚分布の素鋼管が得られるので、該素鋼管を引き続き絞り圧延機に供給し、通常の条件で圧延すれば、管端の厚肉部分が短い鋼管が得られることになる。
以上述べたことを整理すると、本発明は、図2に示すような計算手順で行われることになる。
図7に示した継目無鋼管の製造工程を用い、一般炭素鋼からなる丸ビレット1を穿孔圧延機3で穿孔した素管4を延伸圧延機5で素鋼管7にしてから、該素鋼管7を絞り圧延機9で絞って鋼管10を製造した。その際、本発明に係る鋼管管端の肉厚制御方法を適用し、絞り圧延機9へ所望の肉厚分布を有する素鋼管7を供給した。また、比較のため、本発明を適用せずに、均一な肉厚分布を有する素鋼管7を供給する場合(比較例)も実施した。なお、鋼管10の目標サイズは、外径が44.5mm、肉厚が4.8mmである。
実施結果は、絞り圧延機9の出側で得られた鋼管10の肉厚を実測して評価した。その一例を図3に示す。図3より、本発明によれば、管端の厚肉化が比較例に対してかなり減少していることが明らかである。ちなみに、この鋼管10の肉厚の許容範囲(合格基準)は、4,8±0.2mmであるので、製品としての鋼管10からクロップとして切り捨てられる長さは、片側で450mmである。比較例では、1500mmとなるので、本発明により製管の歩留りが格段に向上することも明らかである。
本発明の内容を説明するための素鋼管及び鋼管の断面図であり、(a)は延伸圧延機で均一肉厚に圧延された素鋼管の肉厚分布、(b)は(a)の素鋼管を通常の条件で絞り圧延された後の鋼管の肉厚分布、(c)は延伸圧延で素鋼管の管端に施されるテーパ状の肉厚分布である。 本発明の内容を示すフロー図である。 絞り圧延機から得た鋼管の管端肉厚を、本発明を適用した場合と適用しなかった場合で比較した図である。 延伸圧延機で圧延された素鋼管及び絞り圧延機で圧延された鋼管の肉厚分布を示す図であり、(a)は、延伸圧延後の素鋼管が均一肉厚の場合、(b)は、該素鋼管の管端にテーパー状の肉厚分布を施した場合である。 絞り圧延機で得た鋼管から切り捨てられるクロップの長さを説明する図である。 絞り圧延機で素鋼管に付加される張力を説明する図であり、(a)は各スタンドに素鋼管の先端が順次噛み込まれる場合、(b)は各スタンドから素鋼管の後端が知り抜けする場合である。 小径の継目無鋼管の製造工程を示すフロー図である。 ニュートン法による収束計算のフローを示す図である。
符号の説明
1 鋼鋳片(丸ビレット)
2 加熱炉
3 穿孔圧延機(ピアサー)
4 素管(ホロー)
5 延伸圧延機(マンドレル・ミル)
6 マンドレル・バー
7 素鋼管(シェル)
8 再加熱炉
9 絞り圧延機(ホット・ストレッチ・レデューサー)
10 鋼管(チューブ)
11 ロール・スタンド

Claims (1)

  1. 穿孔圧延機、延伸圧延機及び絞り圧延機を順次配列した継目無鋼管の製造工程で、該絞り圧延機で得られる鋼管の長手方向の肉厚分布がほぼ均一になるように、前記延伸圧延機の各スタンドに、上ロールと下ロールとが被圧延材の素鋼管に対して同時に同量だけ対称作動して上下ロール間の開度を調整自在な油圧圧下手段を設け、該油圧圧下手段の圧下量を調整して前記素鋼管の肉厚分布を予め適正化するに際し、
    前記延伸圧延機の各スタンドで前記素鋼管を下記手順にて圧延することを特徴とする鋼管端部の肉厚制御方法。
    第1段階:均一肉厚分布の素鋼管を用い、絞り圧延した後の鋼管の管端肉厚分布を予測又は算出
    第2段階:第1段階の絞り圧延で付加される平均張力(XLMi)を、基本モデルを用いて算出する
    (基本モデル)XLMi={(εri/εti)(2−λi)+(1−2λi)}/{(εri/εti)(1−λi)+2(λ−1i)}
    ここで、iは、鋼管の長手方向の位置を表す数字であり、鋼管の長手方向の位置を微小長さ(δd)で細分化して定まる数、εriは,位置iでの鋼管の半径方向の対数歪み、εtiは、位置iでの鋼管の円周方向の対数歪み、λiは、位置iでの鋼管の肉厚(Ti)と外径(Di)の比である。
    第3段階:第2段階で得た平均張力(XLMi)を用いて、鋼管の管端厚肉部分を相殺する素鋼管の肉厚分布(Tsi)を、管端肉厚モデルで収束計算する
    (管端肉厚モデル)Tsi=F-1(XLMi,Dsi,Dti,Tti
    ここで、Dsiは,位置iでの素鋼管の外径,Dtiは、位置iでの鋼管の外径,Ttiは、位置iでの鋼管の肉厚である
    第4段階:該素鋼管の肉厚分布に基づき、延伸圧延機の各スタンドでの油圧圧下手段の圧下量を圧延荷重及びミル定数に基づき定め、その圧下量で圧延する
JP2003418845A 2003-12-17 2003-12-17 鋼管端部の肉厚制御方法 Withdrawn JP2005177771A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418845A JP2005177771A (ja) 2003-12-17 2003-12-17 鋼管端部の肉厚制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418845A JP2005177771A (ja) 2003-12-17 2003-12-17 鋼管端部の肉厚制御方法

Publications (1)

Publication Number Publication Date
JP2005177771A true JP2005177771A (ja) 2005-07-07

Family

ID=34780915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418845A Withdrawn JP2005177771A (ja) 2003-12-17 2003-12-17 鋼管端部の肉厚制御方法

Country Status (1)

Country Link
JP (1) JP2005177771A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068281A (ja) * 2006-09-13 2008-03-27 Kobe Steel Ltd 条鋼圧延材の圧延方法
CN102773258A (zh) * 2012-07-31 2012-11-14 攀钢集团攀枝花钢铁研究院有限公司 小口径厚壁无缝钢管大减径比张力减径工艺及其设计方法
CN104640644A (zh) * 2012-09-19 2015-05-20 斯姆丝因斯股份公司 辊轧设备、辊轧机及辊轧方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068281A (ja) * 2006-09-13 2008-03-27 Kobe Steel Ltd 条鋼圧延材の圧延方法
JP4658884B2 (ja) * 2006-09-13 2011-03-23 株式会社神戸製鋼所 条鋼圧延材の圧延方法
CN102773258A (zh) * 2012-07-31 2012-11-14 攀钢集团攀枝花钢铁研究院有限公司 小口径厚壁无缝钢管大减径比张力减径工艺及其设计方法
CN102773258B (zh) * 2012-07-31 2014-08-13 攀钢集团攀枝花钢铁研究院有限公司 小口径厚壁无缝钢管大减径比张力减径工艺及其设计方法
CN104640644A (zh) * 2012-09-19 2015-05-20 斯姆丝因斯股份公司 辊轧设备、辊轧机及辊轧方法

Similar Documents

Publication Publication Date Title
JP4438960B2 (ja) 継目無管の製造方法
ITMI980434A1 (it) Procedimento per la realizzazione di tubi senza saldatura
JP4315155B2 (ja) 継目無管の製造方法
JP5103387B2 (ja) 鋼から継目無中空体を製造するための方法
JP2005177771A (ja) 鋼管端部の肉厚制御方法
JP4569317B2 (ja) 超薄肉継目無金属管の製造方法
WO2011030273A2 (en) Plant for rolling tubes
JP5615938B2 (ja) 管圧延プラント
JP4103082B2 (ja) 3ロール式マンドレルミルによる継目無管の製造方法
JP5734284B2 (ja) 管圧延プラント
JP4603707B2 (ja) 継目無管の製造方法
CN101980802A (zh) 无缝管的制造方法
JPWO2004108310A1 (ja) 継目無管の製造における穿孔圧延方法
JP3004875B2 (ja) エロンゲータ圧延方法
CN103917307A (zh) 无缝金属管的制造方法
JPH0729127B2 (ja) 継目無オーステナイト系ステンレス鋼管の製造方法
JP2004082174A (ja) 継目無鋼管の製造方法
JP2002035809A (ja) 継目無鋼管の圧延方法
JP3624235B2 (ja) 鋼管の延伸圧延制御方法
JPH07290130A (ja) マンドレルミル圧延方法
GB2099346A (en) Tube rolling mill
JPH10211510A (ja) 継目無管の製造方法
JP2003230904A (ja) 高合金鋼継目無鋼管の圧延方法
CN117655110A (zh) 提高纵向壁厚均匀性的毛管穿孔控制方法
AU603650B2 (en) Method of piercing and manufacturing seamless tubes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306