JP2005168495A - 細胞外物質の細胞内への導入方法 - Google Patents

細胞外物質の細胞内への導入方法 Download PDF

Info

Publication number
JP2005168495A
JP2005168495A JP2004332187A JP2004332187A JP2005168495A JP 2005168495 A JP2005168495 A JP 2005168495A JP 2004332187 A JP2004332187 A JP 2004332187A JP 2004332187 A JP2004332187 A JP 2004332187A JP 2005168495 A JP2005168495 A JP 2005168495A
Authority
JP
Japan
Prior art keywords
cell
cells
introduction
fine particles
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004332187A
Other languages
English (en)
Other versions
JP4681279B2 (ja
Inventor
Yoichiro Hosokawa
陽一郎 細川
Hiroshi Masuhara
宏 増原
Yuji Kai
祐司 開
Chisa Sukunami
知佐 宿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004332187A priority Critical patent/JP4681279B2/ja
Publication of JP2005168495A publication Critical patent/JP2005168495A/ja
Application granted granted Critical
Publication of JP4681279B2 publication Critical patent/JP4681279B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】 特定の標的細胞への細胞外物質の導入が簡単にできる導入方法の提供を目的とする。
【解決手段】 前記目的のために、本発明の導入方法は、細胞を導入目的物質の存在する液中、ゲル中若しくはゲル表面に配置し、前記液若しくはゲル又は前記細胞にパルスレーザーを集光させて照射し、それにより生じた衝撃波により前記細胞の細胞膜の構造を一時的に変化させ、前記物質を細胞内に導入する方法である。具体的には、例えば、図4に示すとおり、細胞4が導入目的物質の存在する液中に配置された細胞チャンバー10にパルスレーザー22を照射し、前記液中で集光させ、それにより生じた衝撃波23を細胞4に接触させて細胞膜の構造を一時的に変化させ、前記物質を細胞内に導入する。パルスレーザーの集光位置を調整することで、例えば、図4Aに示すような特定の単独細胞8への導入や、図4Bに示すような特定範囲の細胞への導入が可能である。
【選択図】 図4

Description

本発明は、細胞外物質の細胞内への導入方法に関する。
近年の再生医学を中心とする医学・生物学分野の発展にともない、細胞への遺伝子導入技術は、重要な基盤技術の一つとなっている。細胞に遺伝子を導入する技術としては、例えば、下記(a)生化学的方法、(b)パーティクルガン法、(c)エレクトロポレーション法、及び(d)マイクロインジェクション法があげられ、これらは、生物実験のプロトコルに組み込まれて使用されており、一般的な方法である。
(a)生化学的方法:脂質と遺伝子を混合し、遺伝子を内包したミセル(リポソーム)を形成させ、そのミセルを細胞に取り込ませる方法。
(b)パーティクルガン:遺伝子を金ナノ粒子等に担持させ、その粒子を細胞に打ち付けて粒子ごと遺伝子を細胞内に導入する方法。
(c)エレクトロポレーション:遺伝子と浮遊細胞を含む培養液に高電場を印加し、それにより細胞膜の結合をゆるめて遺伝子を導入する方法。
(d)マイクロインジェクション:マイクロオーダーに先鋭化したマイクロピペットを用いて、顕微鏡下で細胞に直接差し込んで遺伝子を導入する方法。
この他に、最近では、下記の(e)レーザートラップインジェクション法、(f)可視及び紫外レーザー法、ならびに(g)フェムト秒レーザー法が開発されている。
(e)レーザートラップインジェクション法:光の放射圧による光ピンセットを用い、遺伝子を担持した無機粒子を補足したまま細胞内に導入する方法(例えば、特許文献1参照)。
(f)可視及び紫外レーザーを用いた遺伝子導入方法:細胞を培養した容器の底に可視光若しくは紫外光を照射し、それによるストレス波により、細胞に遺伝子を導入する方法(例えば、非特許文献1及び2参照)。
(g)フェムト秒レーザー法:フェムト秒高強度近赤外レーザーパルスを細胞に使用して細胞膜に小さく局所的な穿孔を作ることにより、さまざまな哺乳類細胞に、細胞構造を混乱させること無く、直接DNAをトランスファーする方法(例えば、非特許文献3参照)。
特開2003‐70468号公報 Makoto Ogura, Shunichi Sato, Mitsuhiro Terakawa, Hitoshi Wakisaka, Maki Uenoyama, Tomosumi Ikeda, Hiroshi Ashida and Minoru Obara, 「単発ナノ秒レーザーパルスにより発生させたストレス波による細胞への光感応性材料の輸送(Delivery of Photosensitizer to Cells by the Stress Wave Induced by a Single NanosecondLaser Pulse)」(2003)Jpn. J. Appl. Phys Vol.42: pp.L977-L979 Daniel J. McAuliffe, Shun Lee, Thomas J. Flotte, and Apostolos G. Doukas「インビトロにおけるストレス波に付随する細胞膜間の輸送(Stress-Wave-Assisted Transport Through the Plasma Membrane In Vitro)」(1997)Lasers in Surgery and Medicine 20:216-222 Uday K. Tirlapur, Karsten Konig 「フェムト秒レーザーによるターゲットトランスフェクション (Targeted transfection by femtosecond laser)」(2003)Nature Vol.418: pp.290-291
しかしながら、従来の遺伝子導入方法は、つぎのような問題点がある。まず、前記(a)生化学的方法、(b)パーティクルガン法、(c)エレクトロポレーション法では、不特定多数の細胞への遺伝子導入が可能であるが、特定の標的細胞のみを遺伝子導入対象とすることができないという問題がある。そして、上記(d)マイクロインジェクション法は、基板上の特定の標的細胞への遺伝子導入を可能とするが、顕微鏡下でマイクロピペットや光ピンセットを取り扱うことは、非常に高度なテクニックを要するため煩雑であるという問題がある。上記(f)可視若しくは紫外レーザーを用いた遺伝子導入方法も、基板上の特定の標的細胞への遺伝子導入を可能とするが、紫外線を強く吸収するように基板を加工する必要性があり汎用性に欠ける。また、基板のレーザーアブレーションを利用するために細胞外物質導入が実現しても、その後の細胞の生育に支障をきたす可能性がある。上記(e)レーザートラップインジェクション法も、基板上の特定の標的細胞への遺伝子導入を可能とする方法であるが、導入能力が低いこと、一般には細胞膜を軟化させるための酵素処理等が必要となること等が考えられ、操作が煩雑な上、細胞の活性に悪影響を与えるという問題がある。さらに、上記(g)フェムト秒レーザー法も、基板上の特定の標的細胞への遺伝子導入を可能とする方法であるが、高周波(例えば、80MHz)のレーザー数百万発を細胞膜に直接照射し、細胞膜に小さな孔を開ける方法であるから、細胞への損傷が大きくなるおそれがある。
そこで、本発明は、細胞外物質(以下、導入目的物質ともいう。)を簡単に特定の細胞へ導入でき、細胞への損傷を少なくすることが可能な導入方法の提供を目的とする。
前記目的を達成するために、本発明の導入目的物質を細胞内に導入する方法は、前記細胞を前記導入目的物質の存在する液中、ゲル中若しくはゲル表面に配置し、前記液若しくはゲル又は前記細胞にパルスレーザーを集光させて照射し、それにより生じた衝撃波により前記細胞の細胞膜の構造を一時的に変化させ、前記導入目的物質を細胞内に導入する方法である。
このように、本発明の導入方法は、パルスレーザーの集光による衝撃波を利用するから、例えば、パルスレーザーを細胞以外の液又はゲル中に集光させ、それにより生じた衝撃波を細胞に接触させることにより、細胞への損傷がより少ない導入方法とすることができる。また、本発明の導入方法において、例えば、顕微鏡等を用いてパルスレーザーの集光部の位置やその強度を調整すれば、例えば、培養細胞や培養組織の細胞の中から、単一細胞若しくはある一定範囲内の細胞を標的として、細胞外物質の導入が可能となる。さらに、本発明において、導入対象の細胞として、例えば、あらゆる基板、培養液の種類を用いた培養条件で培養された、あらゆる種類の細胞を使用できるから、本発明の導入方法は、非常に高い汎用性を示すことができる。さらにまた、パルスレーザーの操作は簡単であるため、本発明の導入方法は、簡単に実施可能な方法である。なお、本発明の導入方法は、前述のように特定の細胞に狙いを定めて細胞外物質を導入することが可能ではあるが、本発明はこれに制限されず、不特定多数の細胞に細胞外物質を導入してもよい。
本発明において、導入目的物質の導入対象となる細胞(以下、標的細胞ともいう。)は、特に制限されず、例えば、培養容器の底や基板等に接着して培養される接着性細胞でもよく、培養液中で浮遊した状態で培養される浮遊性細胞でもよい。また、本発明における標的細胞は、導入目的物質を含む液又はゲルと直接接する細胞であれば特に制限されず、例えば、単独の細胞であってもよいし、増殖して層状となった細胞でも良いし、組織の細胞であってもよい。また、本発明における標的細胞の種類は、特に制限されず、例えば、動物細胞、植物細胞、真核細胞、原核細胞、細菌等があげられる。
本発明において、標的細胞が配置される液又はゲルは、特に制限されず、例えば、前記細胞の培養に用いる培養液や培地(ゲル)に導入目的物質が添加されたものが使用できる。
本発明の方法により細胞に導入できる導入目的物質としては、特に制限されないが、例えば、DNA、RNA、ペプチド、タンパク質、糖、脂質及びこれらの誘導体、並びに、これらを微粒子の表面に吸着させた修飾微粒子等があげられるが、これら以外の無機化合物や有機化合物も用いることができる。
微粒子又は修飾微粒子を導入目的物質として使用する場合、その微粒子を構成する物質としては、特に制限されないが、例えば、金属、無機物、有機高分子、生分解性高分子、タンパク質微結晶等があげられる。前記金属としては、例えば、金や銀等、前記無機物としては、例えば、ガラスやリン酸カルシウムの微結晶等、前記有機高分子としては、例えば、ポリスチレン、ポリメタクリル酸メチル(PMMA)、ポリメタクリルアクリルアミド、PET等、前記生分解性高分子としては、例えば、脂肪族ポリエステル、澱粉ポリエステル、酢酸セルロース、改質セルロース、ポリエステルアミド等、前記タンパク質微結晶としては、例えば、細胞内活性をつかさどるタンパク質の微結晶や多角体ウイルス由来の改変多角体等が、それぞれ、あげられる。
また、前記微粒子又は修飾微粒子の形状も、特に制限されず、例えば、球、長球、扁球、立方体、直方体等の形状があげられる。前記微粒子又は修飾微粒子の大きさとしては、特に制限されず、例えば、前記微粒子等が球形の場合、直径が、10nm〜100μmであって、好ましくは、100nm〜10μmであり、より好ましくは、100nm〜1μmである。前記修飾微粒子の修飾物質としては、特に制限されず、細胞内や核内に導入したい物質があげられ、例えば、DNA、RNA、ペプチド、タンパク質、糖、脂質及びこれらの誘導体や、これら以外の無機化合物や有機化合物があげられる。これらの修飾物質による微粒子への修飾の形態としては、例えば、前記微粒子表面への物理的吸着、化学結合、イオン結合等があげられ、その修飾方法は、特に制限されず、従来公知の方法を用いることができる。
前記導入目的物質は、前記液又はゲル中で溶解した状態でもよく、分散した状態でもよい。前記導入目的物質の前記液中又はゲル中濃度としては、例えば、1pg/μl〜1μg/μlであり、好ましくは、1ng/μl〜1μg/μlであり、より好ましくは、0.1〜1μg/μlである。また、前記導入目的物質が前記微粒子又は修飾微粒子である場合は、前記微粒子又は修飾微粒子は、分散した状態であってもよいが、標的細胞に付着するように配置した状態であってもよい。その場合、前記微粒子又は修飾微粒子は、前記濃度に関わらず、標的の1細胞あたり少なくとも1個を付着するように配置できればよい。ここで、標的細胞に微粒子又は修飾微粒子を付着するように配置するとは、前記液又はゲル中において、標的細胞上で微粒子又は修飾微粒子が静止するように配置できればよく、両者間の親和性や結合の有無は、特に制限されない。
本発明に使用するパルスレーザーは、集光させることで衝撃波を生じるものであれば特に制限されないが、例えば、ナノ秒未満の時間幅を有するパルスレーザーが好ましく、このようなレーザーとしては、例えば、フェムト秒チタンサファイアレーザー、フェムト秒ファイバーレーザー、フェムト秒イットリビウム(Ytterbium)レーザー、フェムト秒エキシマレーザー、ピコ秒YAGレーザー等があげられ、これらのなかでも、細胞に吸収のない波長で、効率的に衝撃波を発生させることができるという理由から、フェムト秒チタンサファイアレーザー、フェムト秒イットリビウムレーザー、フェムト秒ファイバーレーザーがより好ましい。ここで、衝撃波とは、前記パルスレーザーの集光部で誘起されるレーザーアブレーションにより発生する圧力波のことである。衝撃波は、集光部の周囲へ伝播するから、それによる力学的な摂動は、例えば、集光部周囲の物質の移動や振動により確認できる。例えば、集光部の大きさが1μmの場合でも、その周囲の例えば数10μmの範囲にある物質の構造を、衝撃波による力学的な摂動により一時的に変化させることができる。ここで、衝撃波による細胞膜の構造の変化が一時的であるとは、衝撃波により引き起こされた細胞膜構造の変化は、細胞の細胞膜修復メカニズムにより修復されることを意味する。
なお、前述のように、従来のフェムト秒レーザー法(非特許文献3参照)は、フェムト秒レーザーを使用し、単発辺り1nJ/pulse程度のレーザーを80MHzの高周波数で数100万発照射する遺伝子導入方法であるが、本発明の導入方法とは照射するレーザー光において異なる。すなわち、本発明の導入方法は衝撃波を利用する方法であるのに対して、前記従来法におけるレーザー照射条件では、衝撃波は発生しないのである。
パルスレーザーの集光については、特に制限されず、集光部は、点状でも良いし、一定の面積をもった円形若しくは一定の体積を持った球形であってもよい。前記集光部が円形若しくは球形の場合、その半径は、例えば、0を越え100μm以下であり、好ましくは、0を越え10μm以下であり、より好ましくは、0を越え1μm以下である。なお、集光面積若しくは集光体積の大きさは、レンズや絞り等の光学系のシステムで調整可能である。
パスルレーザーを集光させる位置(以下、集光位置ともいう)は、標的細胞が配置される液又はゲルでもよく、前記標的細胞でもよい。ここで、パルスレーザーの集光位置が前記液又はゲルであるとは、集光部中心点が前記液又はゲルに位置することをいい、パルスレーザーの集光位置が標的細胞であるとは、集光部中心点が標的細胞上に位置することをいう。ここで、前記集光位置の設定は、当業者であれば容易に行うことができる。
集光位置を液又はゲルとする場合、パルスレーザーの集光部を標的細胞と接触させず、集光部から発生した衝撃波のみを標的細胞に接触させて導入することで、標的細胞に与える損傷をより低減できる。また、衝撃波は、パルスとして伝搬するが、パルスレーザーの集光部からの距離が離れるほど衝撃波のパルス形状は緩和するので、衝撃波の力は、集光部からの距離の2乗以上の関数に比例して減少する。したがって、衝撃波の力は、パルスレーザーの集光部から遠ざかるに従い急速に低下するから、パルスレーザーの強度と集光位置を適宜選択すれば、集光位置が液中やゲル中であっても、単一又は一定範囲の標的細胞に狙いを定めて衝撃波を接触させ、前記導入目的物質を導入することができる。前記標的細胞は、1個でもよいし、2個以上の複数個(例えば、3〜10個程度)であってもよい。また、特定の細胞に狙いを定めず、不特定の複数(若しくは多数)の細胞に衝撃波を接触させることも可能である。
また、パルスレーザーの集光位置を標的細胞とする場合、集光部中心点は、標的細胞の細胞膜に位置させることが好ましい。パルスレーザーの集光位置が細胞膜であっても、衝撃波は発生する。集光位置を細胞膜とすれば、標的細胞の選択性のみならず、標的細胞における導入部位の選択性が向上する。すなわち、標的細胞のどの部位に前記導入目的物質を導入するかまで選択して導入することがより可能となる。
標的細胞とパルスレーザーの集光位置との距離としては、例えば、0以上1mm以下であって、0以上100μm以下が好ましく、より好ましくは、0以上1μm以下である。ここで、標的細胞と集光位置との距離とは、集光部中心点から、集光部に最も近接した細胞の端までの距離であり、距離が0とは、パルスレーザーの集光位置が、標的細胞の細胞膜であることを示す。標的細胞の選択性及び標的細胞における導入部位の選択性の点からは、標的細胞とパルスレーザーの集光位置との距離は、短いほど好ましい。また、標的細胞の損傷をより低減する点からは、標的細胞とパルスレーザーの集光位置との距離は、標的細胞と集光部とが接しない距離であることが好ましい。
標的細胞に付着した微粒子又は修飾微粒子を導入する場合であって、パルスレーザーの集光位置が標的細胞の細胞膜である場合、前記細胞膜におけるパルスレーザーの集光位置としては、前記微粒子又は修飾微粒子の直下又はその近傍が好ましい。前記細胞膜に集光させた場合には、集光部で発生する衝撃波に加え、さらに、細胞膜におけるレーザーアブレーションも影響して、前記微粒子又は修飾微粒子が通過する孔が、前記細胞膜に形成されると考えられる。
なお、標的細胞に付着した微粒子又は修飾微粒子を導入する場合、パルスレーザーを液若しくはゲル又は標的細胞にパルスレーザーを集光させて照射することに代えて、パルスレーザーを前記微粒子又は修飾微粒子に集光させて照射してもよい。パルスレーザーの集光位置が、前記微粒子や修飾粒子であっても、同様に、衝撃波が発生すると考えられ、前記標的細胞内への導入が可能である。
本発明において、前記パルスレーザーの光密度(光子流量:photon flux)は、例えば、5×105(watt)以上であり、好ましくは、2×109(watt)以上である。パルスレーザーの光密度の上限は、特に制限されないが、例えば、1018(watt)以下であり、好ましくは、1015(watt)以下であり、より好ましくは、1012(watt)以下である。
前記パルスレーザーの強度は、衝撃波が発生するように調整する。衝撃波の発生は、例えば、前述のとおり、例えば、集光部周囲の物質の移動や振動により確認できる。また、前記強度は、集光位置と細胞との距離の関係で、発生する衝撃波が標的細胞に接触するように調整することが好ましい。下記表1に、この関係の一例を示す。
(表1) パルスレーザー強度(nJ/pulse)
細胞と集光位置との距離 一般的強度 好ましい強度 より好ましい強度
1000μm以内 0.25〜0.25x109 0.25〜0.25x106 2.5〜0.12x106
20μm以内 10-3〜106 1〜1000 10〜500
0m(細胞膜) 10 -3 〜10 6 1〜1000 10〜500

前記パルスレーザーの波長は、例えば、190nm〜20μmのレーザーが使用でき、その中でも、直接的に強い吸収のある紫外線よりも、赤外光のほうが使用する培養器等の材料に関係なくレーザーの集光部で衝撃波を発生できることより、前記波長は、400nm〜1100nmが好ましく、より好ましくは、600nm〜1100nmである。
パルスレーザーの照射回数は、特に制限されず、例えば、1発(単発)から1000万発であり、好ましくは単発から1000発、より好ましくは単発から10発であり、さらに好ましくは単発である。また、繰り返し複数発照射する場合のレーザーの繰り返し周波数は、例えば、1Hz〜500kHzであり、好ましくは、1Hz〜1kHzであり、より好ましくは、1Hz〜20Hzである。
本発明の導入方法によれば、自然導入率が圧倒的に低い物質でも、それを超える確率で細胞に導入できる。例えば、導入目的物質がポリヌクレオチドの場合、本発明の方法による導入率は、例えば、20%以上であって、好ましくは、50%以上であって、より好ましくは、60%以上であって、さらに好ましくは90%以上である。なお、ポリヌクレオチドの自然導入率は、通常、例えば、5%以下である。
つぎに、本発明の細胞外物質の細胞内への導入方法の一例について、図面に基づき説明する。
図1に、本発明の方法に使用する細胞チャンバーの一例を示す。この細胞チャンバー10は、接着性の細胞用であり、スライドガラス1の上に基板6が配置されており、この表面は薄膜5でコートされ、この薄膜5の上に接着性の標的細胞4が配置されている。スライドガラス1の上には、スペーサー2を介してカバーガラス3が配置されており、スライドガラス1とカバーガラス3との間に一定の空間が形成されており、この空間に、導入目的物質を含む液が充填される。
前記細胞チャンバー10の内部の寸法は、特に制限されないが、例えば、全長50mm〜1mm、幅50mm〜1mm、高さ5mm〜0.1mm、容積12.5ml〜10-4mlであって、好ましくは、全長10mm〜1mm、幅10mm〜1mm、高さ1mm〜0.1mm、容積0.1ml〜10-4mlであり、より好ましくは、全長10mm、幅10mm、高さ0.2mm、容積0.02mlである。
前記スライドガラス1及びカバーガラス3の材質は、ガラスでもよく、例えば、ポリスチレン、PMMA、ポリメタクリルアクリルアミド、PET等の透明樹脂であってもよい。また、前記スライドガラス1の大きさは、特に制限されないが、例えば、全長100mm〜1mm、幅100mm〜1mm、高さ10mm〜0.1mmであって、好ましくは、全長50mm〜1mm、幅50mm〜1mm、高さ5mm〜0.1mmであり、より好ましくは、全長10mm〜1mm、幅10mm〜1mm、高さ1mm〜0.1mmである。
前記スペーサー2の材質は、特に制限されないが、例えば、シリコンゴム、天然ゴム、テフロン(登録商標)、ポリスチレン、PMMA、PET等があげられる。また、前記スペーサー2の高さは、例えば、5mm〜0.1mmであって、好ましくは1mm〜0.1mmであり、より好ましくは、0.2mmである。
前記基板6の材質は、特に制限されず、例えば、ガラス、ポリスチレン、PMMA、ポリメタクリルアクリルアミド、PET等が使用できる。また、前記基板6の大きさは、特に制限されないが、例えば、全長50mm〜1mm、幅50mm〜1mm、高さ5mm〜0.02mmであって、好ましくは、全長10mm〜1mm、幅10mm〜1mm、高さ1mm〜0.1mmであり、より好ましくは、全長10mm、幅10mm、高さ0.1mmである。なお、前記基板6の形状は、特に制限されず、例えば、矩形であってもよく、前記全長及び幅の寸法の範囲に収まる円形や不定形であってもよい。
前記薄膜5は、特に制限されず、例えば、接着性細胞の種類等に応じて適宜選択できる。前記薄膜5としては、例えば、コラーゲン薄膜、ポリスチレン薄膜、ポリメタクリルアクリルアミド薄膜、酸化チタン薄膜、ハイドロキシアパタイト薄膜等があげられる。
つぎに、本発明の導入方法を実施するための細胞外物質導入装置の一例を、図2に示す。図示のように、この装置は、正立顕微鏡11及びパルスレーザー照射装置17を主要構成要素としている。正立顕微鏡11は、ステージ12と、コンデンサーレンズ13と、対物レンズ14と、光源ランプ15と、CCDカメラ16と、ダイクロックミラー21とを備えている。前記ステージ12上には、細胞チャンバー10等が配置される。正立顕微鏡11のステージ12の下方には、コンデンサーレンズ13が配置され、その下には、光源ランプ15が配置され、この光を検出するCCDカメラ16が顕微鏡11上部に配置されている。正立顕微鏡11の外部に、パルスレーザー照射装置17が配置されており、正立顕微鏡11及びパルスレーザー照射装置17との間には、光学システムが配置されている。前記光学システムは、λ/2板18、偏光子19及びコリーメーターレンズ20からなり、この順序で、発射されたパルスレーザー22が通過する。正立顕微鏡11内に導入されたパルスレーザー22は、ダイクロイックミラー21で反射され、対物レンズ14を通して、細胞チャンバー10に照射される。この装置では、前記λ/2板18及び偏光子19により、パルスレーザー22の強度を調節でき、また、前記コリーメーターレンズ20により、パルスレーザー22を顕微鏡の結像面に集光するように調節でき、ステージ12により、パルスレーザー22の集光位置を調節できる。
この装置を使用した細胞外物質の細胞内への導入は、例えば、次のようにして行う。まず、細胞チャンバー10(図1参照)内の薄膜5上に、標的細胞4を配置し、これを正立顕微鏡11のステージ12に乗せる。そして、CCDカメラ16で、細胞チャンバー10内の様子を観察し、標的とする細胞を決定する。そして、パルスレーザーの集光位置が適当な位置になるように、ステージ12で調整する。ついで、パルスレーザー照射装置17によりパルスレーザー22を照射し、前記光学システムで強度等を調整して細胞チャンバー10にレーザーを照射する。細胞チャンバーでは、パルスレーザーの集光部で、衝撃波が生じる。この状態を図3に示す。同図において図1と同一部分には同一符号を付している。図3Aでは、標的細胞4から一定の距離の液中にパルスレーザー22を集光させて照射した状態を示し、図3Bでは、標的細胞4の細胞膜にパルスレーザー22を集光させて照射した状態を示す。パルスレーザー22が集光した部分において衝撃波23が生じ、これによって標的細胞4の細胞膜の構造が一時的に変化して細胞外の導入目的物質が中に取り込まれる。
また、層を形成している細胞や組織を形成している細胞の中から、特定の単一細胞を標的細胞として導入する場合は、例えば、図4Aのようにして行うことができる。同図において、図1及び図3と同一部分には同一符号を付している。まず、細胞チャンバー10内の薄膜5上に単一標的細胞8を含む細胞群4が配置された基板6をスライドガラス1上に配置し、前記スライドガラス1とスペーサー2とカバーガラス3とから形成される空間を導入する物質を含む液で満たす。そして、例えば、前述の細胞外導入装置(図2参照)等を用いてパルスレーザー22を照射する。同図に示すように、前記パルスレーザー22を、前記標的細胞8の上方で集光させ、それにより発生する衝撃波23を前記標的細胞8のみに接触させると、細胞膜の構造が一時的に変化して細胞外の物質が細胞8内に取り込まれる。他方、層を形成している細胞や組織を形成している細胞の中から、特定範囲の細胞を標的細胞として導入する場合は、例えば、図4Bのようにして行うことができる。同図において、図4Aと同一部分には同一符号を付している。図4Bに示すとおり、パルスレーザー22の集光位置と、それから発生する衝撃波23の大きさを調節することで、前記特定範囲の細胞に衝撃波23を接触させれば、これらの細胞にのみ細胞外物質を導入できる。
なお、これらの例では、接着性細胞の例を取り上げたが、本発明はこれらに限定されず、浮遊性細胞にも当然適用可能である。例えば、図5に示すように、浮遊性細胞用の細胞チャンバー30を用意し、これにパルスレーザー34を照射すればよい。細胞チャンバー30は、基板と薄膜を有さない他は、図1の細胞チャンバー10と同様の構成であり、材質及びサイズも同様である。図示のように、パルスレーザー照射装置33から照射されたパルスレーザー34は、集光レンズ35等の光学系を通過し、細胞チャンバー30内の液32中で集光する。すると、集光位置を中心として衝撃波36が発生し、これが細胞31に接触して細胞膜の構造が一時的に変化して細胞外物質が細胞内に取り込まれる。なお、浮遊性細胞に対しても図2に示す装置で細胞外物質を導入してもよい。その場合、図5に示すような浮遊性細胞用の細胞チャンバーを使用すればよい。
つぎに、導入目的物質として前記微粒子又は修飾微粒子を用いた場合の導入方法の一例を、図9Bの断面模式図を用いて説明する。同図において、図1及び図3と同一部分には同一符号を付している。まず、図9B-1に示すように、細胞チャンバー10(図1参照)内の薄膜5でコートされた基板6上に、接着性の標的細胞4を配置し、さらに、導入目的物質である微粒子又は修飾微粒子41を前記標的細胞4上に配置する。微粒子又は修飾微粒子41は、同図において2個記載されているが、標的とする1細胞あたり少なくとも1個あればよい。つぎに、図9B-2に示すように、標的細胞4から一定の距離の液中にパルスレーザー22を集光させて照射する。パルスレーザー22の集光位置と、それから発生する衝撃波23の大きさを調節し、微粒子又は修飾微粒子41及び標的細胞4に衝撃波23を接触させると、標的細胞4の細胞膜の構造が一時的に変化し、図9B-3及びB-4右図に示すように、微粒子又は修飾微粒子41が、標的細胞4の中に取り込まれる。
前記微粒子又は修飾微粒子の導入方法のその他の例を、図10Bの断面模式図を用いて説明する。同図において、図9Bと同一部分には同一符号を付している。図10Bに示す導入方法は、前述の図9に示す導入方法において、前記微粒子又は修飾微粒子41及び標的細胞4から離れた液中にパルスレーザー22を集光させて照射することに代えて、図10B-2に示すように、パスルレーザー22を、前記微粒子又は修飾微粒子41の直下又は近傍の細胞膜に集光させて照射する導入方法である。
従来、DNAを修飾した金微粒子(金ナノ粒子)を電圧により加速し、細胞内に導入するパーティクルガン法と呼ばれる遺伝子導入方法があるが、この方法では、特定の細胞のみに遺伝子を導入することが難しい。しかしながら、前記微粒子又は修飾微粒子を用いた本発明の導入方法であれば、DNAで修飾した金微粒子を用いて、特定の細胞に遺伝子を導入することが可能となる。
本発明の導入方法を用いれば、例えば、細胞外物質が導入された細胞を製造できる。そして、例えば、前記細胞外物質として遺伝子を用いれば、形質転換細胞を製造できる。前記遺伝子は、特に制限されないが、例えば、成長因子や分化因子等の遺伝子があげられる。
つぎに、本発明の実施例について比較例と併せて説明する。ただし、本発明は、以下の実施例には限定されない。
(細胞チャンバー)
細胞チャンバーは、図1に示す接着性細胞用のものを使用した。スペーサー2はシリコンゴム製であり、高さが200μmである。
(細胞外物質導入層装置)
細胞外物質導入装置は、図2の構成の装置を使用した。パルスレーザー照射装置17として、再生増幅付フェムト秒チタンサファイアレーザー(800nm、120fs、米国Spectra-Physics社製)を用いた。対物レンズ14は、倍率が100倍であり、開口数が1.24のもの(オリンパス株式会社製)を用いた。集光位置は、コリーメーターレンズ20を用いて、顕微鏡11の結像面に集光されるように調整した。パルスレーザー22の集光部は、半径約1μmの円形とした。前記レーザー22の強度は、λ/2板18及び偏光板19で調節した。
(標的細胞)
標的細胞は、マウス由来の繊維芽細胞NIH3T3株を使用した。この細胞を、前記細胞チャンバーの基板のコラーゲン薄膜(厚み約500μm)上で培養した。その培地として、Dulbecco's modification of Eagle's medium (DMEM)を使用した。前記基板の材質は、ポリスチレンであった。
(導入するDNA)
前記細胞に導入するDNAとして、アクチン-GFPプラスミド(pEGFP-Actin)を使用した。このプラスミドを0.1μg/μlの濃度で前記細胞チャンバーの前記培養液に添加した。前記pEGFP-ActinプラスミドはBD Biosciences Clontech(No.632348)社から購入し、その一部を大腸菌DH5α株に形質転換して単一コロニーを単離した後、プラスミドの大量調製を行った。大量調製は市販のQUIAGEN Plasmid Maxi Kit(QUIAGEN No.12163)を用い、キットに添付のプロトコールに従って実施した。得られたプラスミドのうち50μgを採取し、再度エタノール沈殿を行った後、無菌的に風乾してNuclease-Free Water(Promega No.E111B)に0.1μg/μlとなるように溶解して、これを遺伝子導入に使用した。
(マルチタイムライムラプスシステム観察)
細胞の観察は、マルチタイムライムラプスシステムにより観察した。このシステムは、顕微鏡11のステージ12上に配置された前記細胞チャンバー10内の細胞の二次元座標位置を記憶させ、前記電動ステージ12と連動させることで、一定時間の間隔で各細胞の光学的視覚情報のピックアップを可能にするシステムである。このシステムについて、図6の模式図を用いて説明する。同図において、図1及び図2と同一部分には同一符号を付している。同図に示すように、顕微鏡の電動ステージ12の上に細胞チャンバー10を配置すると、最初は、二次元座標(x、y)=(a1、b1)に位置する細胞4に対して検出光37が照射され、これによって前記細胞4が観察され(図6A)、一定時間経過後、前記電動ステージが動いて、二次元座標(x、y)=(a2、b2)に位置する細胞4に対し検出光37が照射され、これによって前記細胞4が観察される(図6B)。この一連の工程の中で、検出光37の位置は固定されており、電動ステージ12により観察対象の細胞4が移動する。このマルチタイムライムラプスシステムを用い、パルスレーザーを照射した細胞約180個を、約10分間隔で順次観察することを繰り返すことにより、時間経過による細胞の変化を観察した。
(プラスミドDNAの導入)
約180個のNIH3T3細胞を約30個ずつのグループに分け、そのグループごとの6パターンの照射条件で、細胞から20μm横方向の位置にフェムト秒チタンサファイアレーザーを照射し、集光させ、前記アクチン-GFPプラスミドの導入を行った。前記導入は、前記プラスミドが発現するGFPの蛍光を観察することで確認した。前記観察は、前記マルチタイムライムラプスシステムで、レーザー照射後12時間おこなった。その結果の一例を図7に示す。図7A−1,A−2,A−3,A−4(図7Aグループ)及び図7B−1,B−2,B−3,B−4(図7Bグループ)の各図は、レーザー強度360nJ/pulseで細胞の端から20μm横方向の位置に照射した細胞のうちの2つの細胞の観察結果の一例であって、図7Aグループ及びBグループのそれぞれにおいて、A−1,B−1はレーザー照射前の透過像を示し、A−2,B−2はレーザー照射直後の透過像を示し、A−3,B−3はレーザー照射12時間後の透過像を示し、A−4,B−4は、レーザー照射12時間後の蛍光像を示す。図7A−2,B−2のそれぞれの図に示すように、照射後の細胞は、基板に接着しており外傷は観察されなかった。また、図7A−4,B−4のそれぞれの図に示すように、強い蛍光を発する細胞と、弱い蛍光を発する細胞が観察されたが、これらは、導入した時の細胞周期の違いに起因すると考えられる。
結果として、レーザー強度が180nJ/pulseの場合に照射細胞30個に対して、導入細胞12個を得て、レーザー強度が360nJ/pulseの場合に照射細胞35個に対して、導入細胞20個を得た。したがって、導入確率は、それぞれ、40%及び57%であった。
(比較例)
レーザー照射を行わない他は、実施例1と同様にして細胞を観察した。その結果、約5%の細胞からプラスミドのGFPに起因する発光が観察された。なお、観察時間は、プラスミドDNAを含む培地を添加して細胞チャンバーを調製した時点を基準とした。観察12時間後の結果の一例を図8に示す。図8Aは、40倍の対物レンズを使用して観察した透過像を示し、図8Bは、その蛍光像を示す。図8Bにおいて発光している細胞が、DNAの自然導入が行われた細胞である。このように、自然条件では、前記プラスミドDNAが、前記細胞に導入される確率は著しく低いことが示された。
(金微粒子の導入)
細胞に付着した金微粒子(BBInternational, EM. GC50)に対して、前記金微粒子から一定距離の培養液中にパルスレーザーを集光し、集光部で発生させた衝撃波を利用して、前記金微粒子の細胞内への導入を行った。なお、前記金微粒子の直径は、50nmであり、細胞チャンバー、細胞外物質導入層装置及び標的細胞は、実施例1と同様のものを使用した。
まず、金微粒子を培養液に分散させて前記標的細胞に付着させた。つぎに、金微粒子から約5μm離れた培養液中であって、細胞にレーザーがあたらない位置に集光するように、1μJ/pulseのフェムト秒レーザーを1kHzで50shot照射した。その様子を図9に示す。
図9Aの顕微鏡写真において、実線の囲いは、標的細胞4の輪郭を示し、破線の円は、金微粒子41を示し、右下のスケールバーは、20μmを示す。図9Bは、左図の破線における断面模式図である。図9A-1は、金微粒子41が標的細胞4に付着しているレーザー照射前の顕微鏡写真の一例を示し、図9A-2及びA-3は、それぞれ、培養液中の金微粒子近傍にフェムト秒レーザーを集光させて照射し、それにより衝撃波を発生させた直後及び1秒後の顕微鏡写真の一例を示す。図9A-2及びA-3に示すとおり、前記衝撃波の発生後、顕微鏡の焦点位置(結像面)から前記金微粒子が消えた。そして、顕微鏡の焦点位置を前記標的細胞内に調節すると、図9A-4に示すように、前記金微粒子が観察された(レーザー照射後5.6秒)。前記金微粒子の大きさは直径50nmであり、通常、光の波長より小さい物体を光学顕微鏡で観察することは困難な場合が多いところ、前記金微粒子は、その散乱係数が非常に高いため検出可能であり、前述のように、顕微鏡の焦点位置を利用することで金微粒子の導入を確認した。
この結果から、金微粒子が標的細胞に付着している場合に、金微粒子近傍の培養液中にフェムト秒レーザーを集光させて衝撃波を発生させ、その衝撃波を前記金微粒子及び前記標的細胞に接触させることにより、前記金微粒子を前記標的細胞内に導入できることが確認された。
(細胞膜にレーザー集光させることによる金微粒子の導入)
フェムト秒レーザーの集光位置を、金微粒子から約5μm離れた培養液中に代えて、金微粒子直下の標的細胞の細胞膜とした以外は、実施例2と同様にして、標的細胞上に付着した金微粒子を細胞内に導入した。細胞上に付着したいくつかの金微粒子のうち、1つの金微粒子の直下の細胞膜にレーザーを集光させた。その様子を図10に示す。
図10Aの顕微鏡写真において、実線の囲いは、標的細胞4の輪郭を示し、破線の円は、金微粒子41を示し、右下のスケールバーは、20μmを示す。また、図10Bは、図10Aのそれぞれに対応する断面模式図である。図10A-1は、金微粒子41が標的細胞4に付着しているレーザー照射前の顕微鏡写真の一例を示す。同図のいくつかの金微粒子のうち、引き出し線が引かれている金微粒子41の直下の細胞膜に、フェムト秒レーザー22を集光させた。図10A-2及びA-3は、それぞれ、フェムト秒レーザー22を照射して集光させて衝撃波を発生させた直後及び3.7秒後の顕微鏡写真の一例を示す。図10A-2及びA-3が示すとおり、前記レーザー照射の直後、集光位置の細胞膜に付着していた金微粒子41が顕微鏡の焦点位置(結像面)から消えた。そして、顕微鏡の焦点位置を前記標的細胞内に調節すると、図10A-4の顕微鏡写真に示すように、前記金微粒子41が観察された(レーザー照射後5.6秒)。
この結果から、金微粒子が標的細胞に付着している場合に、前記金微粒子が付着する細胞膜にフェムト秒レーザーを集光させて衝撃波を発生させることにより、前記金微粒子を前記標的細胞内に導入できることが確認された。
以上のように、パルスレーザーの集光により生じる衝撃波を利用した本発明の導入方法は、簡便であり、かつ、細胞に与える損傷を少なくすることができる導入方法である。また、本発明の導入方法は、特定の単独若しくは一定範囲の細胞を標的細胞として設定でき、さらに、標的細胞における導入部位も選択して設定できる。したがって、本発明は、例えば、細胞の形質転換等に有用であり、例えば、培養幹細胞の特定細胞に分化因子、成長因子等を導入でき、細胞から組織構築を人工的に行う再生医療の分野に有用である。また、本発明によれば、例えば、タンパク質製剤や遺伝子製剤を特定の単独若しくは一定範囲の細胞を標的細胞に導入して、その効果を単一細胞レベル又は局所レベルで評価することができるから、本発明は創薬の分野においても有用である。さらに、本発明は、例えば、組織細胞における特定局所領域に遺伝子を導入する場合にも有用であり、次世代のバイオテクノロジーの基板技術を提供できる。
図1は、本発明に使用する細胞チャンバーの一例を示す模式図である。 図2は、本発明に使用する細胞外物質導入装置の一例を示す模式図である。 図3A及びBは、本発明におけるパルスレーザー照射の一例を説明する模式図である。 図4A及びBは、本発明におけるパルスレーザー照射のその他の例を説明する模式図である。 図5は、本発明におけるパルスレーザー照射のさらなるその他の例を説明する模式図である。 図6A及びBは、マルチタイムライムラプスシステム観察の一例を示す図である。 図7A-1〜A-4及び図7B-1〜B-4は、本発明の導入方法のその他の例の細胞の観察結果を示す写真である 図8A及びBは、プラスミドDNAの自然細胞導入の観察結果を示す写真である。 図9A-1〜A-4は、本発明の微粒子の導入方法の一例の顕微鏡写真であり、図9B-1〜B-4は、それぞれ、前記顕微鏡写真の破線における断面模式図である。 図10A-1〜A-4は、本発明の微粒子の導入方法のその他の例の顕微鏡写真であり、図10B-1〜B-4は、それぞれ、前記顕微鏡写真の断面模式図である。
符号の説明
1 スライドガラス
2 スペーサー
3 カバーガラス
4 細胞
5 薄膜
6 基板
8 標的細胞
10 細胞チャンバー
11 顕微鏡
12 ステージ
13 コンデンサーレンズ
14 対物レンズ
15 光源ランプ
16 CCDカメラ
17 パルスレーザー照射装置
18 λ/2板
19 偏光板
20 コリーメーターレンズ
21 ダイクロイックミラー
22 パルスレーザー
23 衝撃波
30 光学セル
31 細胞
32 導入する物質を含む液
33 パルスレーザー照射装置
34 パルスレーザー
35 レンズ
36 衝撃波
37 検出光
41 微粒子

Claims (18)

  1. 導入目的物質を細胞内に導入する方法であって、前記細胞を前記導入目的物質の存在する液中、ゲル中若しくはゲル表面に配置し、前記液若しくはゲル又は前記細胞にパルスレーザーを集光させて照射し、それにより生じた衝撃波により前記細胞の細胞膜の構造を一時的に変化させ、前記物質を細胞内に導入することを特徴とする導入方法。
  2. 前記細胞からの距離が1mm以内の位置にパルスレーザーを集光させる請求項1記載の導入方法。
  3. 前記パルスレーザーの集光部が、円形若しくは球形であり、前記円形若しくは球形の半径が、0を越え100μm以内である請求項1又は2記載の導入方法。
  4. 前記パルスレーザーの光密度が、5×105(watt)以上1018(watt)以下である請求項1から3のいずれかに記載の導入方法。
  5. 前記パルスレーザーの単発あたりのレーザー強度が、0.25nJ/pulse〜0.25×109nJ/pulseである請求項1から4のいずれかに記載の導入方法。
  6. 前記パルスレーザーの波長が、190nm〜20μmである請求項1から5のいずれかに記載の導入方法。
  7. 前記パルスレーザーが、フェムト秒レーザー及びピコ秒レーザーの少なくとも一方のレーザーである請求項1から6のいずれかに記載の導入方法。
  8. 前記細胞が、接着性細胞である請求項1から7のいずれかに記載の導入方法。
  9. 前記細胞が、浮遊性細胞である請求項1から7のいずれかに記載の導入方法。
  10. 前記導入目的物質が、DNA、RNA、ポリペプチド、タンパク質、脂質、糖類及びこれらの誘導体からなる群から選択される少なくとも一つである請求項1から9のいずれかに記載の導入方法。
  11. 前記導入目的物質が、微粒子又は修飾微粒子である請求項1から9のいずれかに記載の導入方法。
  12. 前記微粒子又は修飾微粒子の直径が、10nm〜100μmである請求項11に記載の導入方法。
  13. 前記微粒子が、金属、無機物、有機高分子、タンパク質微結晶からなる群から選択される少なくとも一つからなる微粒子である請求項11又は12に記載の導入方法。
  14. 請求項11から13のいずれかに記載の導入方法において、前記細胞を前記導入目的物質の存在する液中、ゲル中若しくはゲル表面に配置することに代えて、前記細胞を液中、ゲル中若しくはゲル表面に配置した後に、前記微粒子又は修飾微粒子を、前記細胞に付着するように配置し、この状態で、前記液若しくはゲル又は前記細胞にパルスレーザーを集光させて照射する導入方法。
  15. 請求項14に記載の方法において、前記液若しくはゲル又は前記細胞にパルスレーザーを集光させて照射することに代えて、前記微粒子又は修飾微粒子にパルスレーザーを集光させて照射する導入方法。
  16. 細胞外物質が導入された細胞の製造方法であって、請求項1から15のいずれかに記載の導入方法により導入目的物質である前記細胞外物質を前記細胞内に導入する工程を含む製造方法。
  17. 細胞外物質が遺伝子を含む請求項16に記載の製造方法。
  18. 形質転換細胞の製造方法であって、請求項1から15のいずれかに記載の導入方法により導入目的物質である遺伝子を宿主細胞に導入して形質転換する工程を含む製造方法。

JP2004332187A 2003-11-17 2004-11-16 細胞外物質の細胞内への導入方法 Expired - Fee Related JP4681279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332187A JP4681279B2 (ja) 2003-11-17 2004-11-16 細胞外物質の細胞内への導入方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003387113 2003-11-17
JP2004332187A JP4681279B2 (ja) 2003-11-17 2004-11-16 細胞外物質の細胞内への導入方法

Publications (2)

Publication Number Publication Date
JP2005168495A true JP2005168495A (ja) 2005-06-30
JP4681279B2 JP4681279B2 (ja) 2011-05-11

Family

ID=34741852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332187A Expired - Fee Related JP4681279B2 (ja) 2003-11-17 2004-11-16 細胞外物質の細胞内への導入方法

Country Status (1)

Country Link
JP (1) JP4681279B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129667A1 (ja) 2006-05-10 2007-11-15 National University Corporation Kyoto Institute Of Technology 粒子の検出方法、その装置、分散液中の粒子の濃度差形成方法およびその装置
JPWO2005049213A1 (ja) * 2003-11-20 2007-11-29 浜松ホトニクス株式会社 微粒子、微粒子の製造方法、及び製造装置
WO2007084228A3 (en) * 2005-12-13 2008-06-12 Univ Pennsylvania Methods for phototransfecting nucleic acid into live cells
WO2009048039A1 (ja) * 2007-10-12 2009-04-16 Konica Minolta Medical & Graphic, Inc. 分子・細胞イメージング方法及び半導体ナノ粒子
JP2010236911A (ja) * 2009-03-30 2010-10-21 Kyoto Institute Of Technology レーザー誘起衝撃波を利用した分子の分析方法
JPWO2012099180A1 (ja) * 2011-01-18 2014-06-30 国立大学法人大阪大学 目的物質移行方法、結晶製造方法、組成物製造方法、目的物質移行装置
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US10647960B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
KR20200059819A (ko) * 2018-11-22 2020-05-29 (주)엑솔런스바이오테크놀로지 체외충격파를 이용한 표적물질 전달 장치
CN111931431A (zh) * 2020-07-23 2020-11-13 中国农业大学 一种激波波阵面位置的确定方法及装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JPN6010025785, Mol. Ther., 200308, Vol.8, No.2, p.342−350 *
JPN6010025787, Jpn. J. Appl. Phys., 20030801, Vol.42, p.L977−L979 *
JPN6010025791, Lasers Surg. Med., 1997, Vol.20, p.216−222 *
JPN6010025792, 2003年光化学討論会講演要旨集, 20031115, p.285 *
JPN6010025795, レーザー研究, 2004, Vol.32, No.2, p.94−98 *
JPN6010025797, Appl. Phys. A, 2008, Vol.93, p.39−43 *
JPN6010025799, Nature, 2002, Vol.418, p.290−291 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545690B2 (ja) * 2003-11-20 2010-09-15 浜松ホトニクス株式会社 微粒子の製造方法、及び製造装置
JPWO2005049213A1 (ja) * 2003-11-20 2007-11-29 浜松ホトニクス株式会社 微粒子、微粒子の製造方法、及び製造装置
US7938344B2 (en) 2003-11-20 2011-05-10 Hamamatsu Photonics K.K. Microparticles, microparticle production method, and microparticle production apparatus
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
WO2007084228A3 (en) * 2005-12-13 2008-06-12 Univ Pennsylvania Methods for phototransfecting nucleic acid into live cells
US10883082B2 (en) 2005-12-13 2021-01-05 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US10647960B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US9845480B2 (en) 2005-12-13 2017-12-19 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US10646590B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Methods for phototransfecting nucleic acids into live cells
US8045166B2 (en) 2006-05-10 2011-10-25 National University Corporation Kyoto Institute Of Technology Method of particle detection, apparatus therefor, method of forming particle concentration difference in dispersion liquid, and apparatus therefor
WO2007129667A1 (ja) 2006-05-10 2007-11-15 National University Corporation Kyoto Institute Of Technology 粒子の検出方法、その装置、分散液中の粒子の濃度差形成方法およびその装置
WO2009048039A1 (ja) * 2007-10-12 2009-04-16 Konica Minolta Medical & Graphic, Inc. 分子・細胞イメージング方法及び半導体ナノ粒子
JP2010236911A (ja) * 2009-03-30 2010-10-21 Kyoto Institute Of Technology レーザー誘起衝撃波を利用した分子の分析方法
US9751068B2 (en) 2011-01-18 2017-09-05 Osaka University Target substance transfer method, crystal production method, composition production method, and target substance transfer device
JPWO2012099180A1 (ja) * 2011-01-18 2014-06-30 国立大学法人大阪大学 目的物質移行方法、結晶製造方法、組成物製造方法、目的物質移行装置
KR20200059819A (ko) * 2018-11-22 2020-05-29 (주)엑솔런스바이오테크놀로지 체외충격파를 이용한 표적물질 전달 장치
KR102232757B1 (ko) * 2018-11-22 2021-03-26 (주)엑솔런스바이오테크놀로지 체외충격파를 이용한 표적물질 전달 장치
JP2021533174A (ja) * 2018-11-22 2021-12-02 エクソレンス、バイオテクノロジーExollence Biotechnology 体外衝撃波を用いた標的物質伝達装置
JP7133253B2 (ja) 2018-11-22 2022-09-08 エクソレンス カンパニー リミテッド 体外衝撃波を用いた標的物質伝達装置
CN111931431A (zh) * 2020-07-23 2020-11-13 中国农业大学 一种激波波阵面位置的确定方法及装置
CN111931431B (zh) * 2020-07-23 2023-06-16 中国农业大学 一种激波波阵面位置的确定方法及装置

Also Published As

Publication number Publication date
JP4681279B2 (ja) 2011-05-11

Similar Documents

Publication Publication Date Title
AU2002232892B2 (en) Method and device for selectively targeting cells within a three -dimensional specimen
CN105132284B (zh) 用于选择性转染细胞的光热衬底
JP4681279B2 (ja) 細胞外物質の細胞内への導入方法
Greulich Manipulation of cells with laser microbeam scissors and optical tweezers: a review
EP1442112A4 (en) OPTO INJECTED
US9394535B2 (en) Plasma irradiation device for substance introduction and substance introduction method using plasma irradiation device
AU2002232892A1 (en) Method and device for selectively targeting cells within a three -dimensional specimen
KR20050062522A (ko) 홀로그래피광트랩들로 재료들을 제조, 분류 및 통합하는장치 및 방법
KR20060120178A (ko) 세포 투과화 방법 및 장치
Han et al. The XBI BioLab for life science experiments at the European XFEL
WO2018131661A1 (ja) 細胞培養基材、培養容器、細胞培養容器の製造方法、細胞の取得方法、細胞の培養方法
Schulz et al. Protein crystals IR laser ablated from aqueous solution at high speed retain their diffractive properties: applications in high-speed serial crystallography
US20200318053A1 (en) Cell culture container, method for acquiring cells, and method for culturing cells
US20130137133A1 (en) Ultrasonic dissection device and ultrasonic dissection method
JP2010022227A (ja) 目的細胞の取得方法および解析方法
US20210032580A1 (en) Cell culture container, method for manufacturing cell culture container, cell recovery system and method for acquiring cells
JP2004321065A (ja) 細胞の培養方法、細胞の培養装置、細胞組織の培養に使用される立体フレームの形成方法、細胞組織の培養に使用される立体フレームの形成装置、及び細胞組織の培養に使用される立体フレーム
Gao et al. Magnetically Manipulated Optoelectronic Hybrid Microrobots for Optically Targeted Non‐Genetic Neuromodulation
JP6981666B2 (ja) レーザーを用いた細胞内への外来物質の導入方法
Muhammad et al. Analysis of cell poration by femtosecond laser for particle insertion by optical manipulation
Greulich et al. The use of high UV photon densities for physicochemical studies in the life sciences
RU2178462C1 (ru) Способ получения клеточной монокультуры и установка для его осуществления
WO2019069979A1 (ja) 細胞培養容器、細胞回収システム、細胞の取得方法および細胞の培養方法
Gu et al. Laser-induced detachment and re-orientation of cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350