JP2005141929A - 発電要素の起動方法および二次電池 - Google Patents

発電要素の起動方法および二次電池 Download PDF

Info

Publication number
JP2005141929A
JP2005141929A JP2003374377A JP2003374377A JP2005141929A JP 2005141929 A JP2005141929 A JP 2005141929A JP 2003374377 A JP2003374377 A JP 2003374377A JP 2003374377 A JP2003374377 A JP 2003374377A JP 2005141929 A JP2005141929 A JP 2005141929A
Authority
JP
Japan
Prior art keywords
substance
secondary battery
power generation
generation element
phase transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003374377A
Other languages
English (en)
Inventor
Shin Nagayama
森 長山
Koichi Nemoto
好一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003374377A priority Critical patent/JP2005141929A/ja
Publication of JP2005141929A publication Critical patent/JP2005141929A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 低温時における発電要素を常温時と同様に使用できるようにする。
【解決手段】 発電要素の少なくとも一部を取り囲んでいる過冷却の物質を液体から固体に相転移させて発電要素を加熱する。過冷却の物質が液体から固体に相転移するときには潜熱が発生する。その物質は発電要素を取り囲んでいるのでその潜熱が発電要素を加熱する。
【選択図】 なし

Description

本発明は、過冷却状態になっている液体を凝固させることによってその液体から発生される潜熱を発電要素に与え、低温時における発電要素をその潜熱によって高速起動(急速加熱)するようにした発電要素の起動方法および二次電池に関する。
一般的に、二次電池を構成する発電要素の内部には、イオン導電性に依存する部分と電子導電性に依存する部分とが存在しており、発電要素はイオンと電子の両者が動くことによって電流を発生する。イオン導電性は温度に依存することからイオンは低温になるほど動きにくくなる。液体電解質を使用した発電要素の場合、液体粘度の上昇、液体自身の凝固によって低温ではきわめて抵抗が大きくなり、ほとんど放電できなくなる。このため、低温時に二次電池を使用するときには発電要素を暖めなければならないが、通常の方法では暖めるのに燃料が必要であり、また急速に暖めることができないなどの問題がある。
この問題を解消するための従来の技術としては、下記特許文献1および下記特許文献2に記載されている技術がある。特許文献1に記載されている技術は、燃料を外部に持たずに電池内部のエネルギーを用いて電池を加熱するようにしている。特許文献2に記載されている発明は、電池の電気二重層容量が電池放電容量当たり3F/Ah以上となるようにして電池容量を向上させるようにしている。
特開平11−26032号公報 特開2002−184458号公報
引用文献1および引用文献2に記載されている技術によれば、電池の内部エネルギーを利用して電池を加熱したり、電池容量を大きくできる構造を採ったりすることによって、低温起動時における電池容量をある程度までは増加させることができる。しかしながら、いずれの技術を適用したとしても、低温時に電池を高速起動(常温時と同じ特性で使用できるようにする)することは困難である。
つまり、引用文献1に記載の技術によれば、燃料を外部に持たずに電池内部のエネルギーを用いて電池を加熱することが可能であるが、ごく低温の場合には電池を加熱させるための電流がほとんど流れないという状態になるため、その電池を加熱させるための電流をもってその電池を高速起動させることは困難である。また、引用文献2に記載の技術によれば、電池容量を増加させることはできるものの、その増加量は電池容量に対して0.3%程度の非常に微小な容量であるので、その電池容量の増加をもってその電池の低温時の性能低下をカバーすることは困難である。
本発明は以上のような従来の技術の問題点に鑑みて成されたものであり、過冷却状態になっている液体を凝固させることによってその液体から発生される潜熱を発電要素に与え、低温時における発電要素をその潜熱によって高速起動するようにした発電要素の起動方法および二次電池の提供を目的とする。
上記目的を達成するための本発明にかかる発電要素の起動方法は、所定の温度以下で発電要素を起動するための発電要素の起動方法であって、発電要素の少なくとも一部を取り囲んでいる過冷却の物質を液体から固体に相転移させることによって発電要素を加熱するものである。
過冷却の物質が液体から固体に相転移するときには潜熱が発生する。その物質は発電要素を取り囲んでいるのでその潜熱は発電要素を加熱することになる。したがって、発電要素の温度がある温度まで急激に上昇することになり、低温時であっても常温時と同じように発電要素から電力を取り出すことができるようになる。
また、上記目的を達成するための本発明にかかる二次電池は、負荷に電力を供給する発電要素と、発電要素の少なくとも一部を取り囲む過冷却可能な物質と、過冷却状態にある物質を液体から固体に相転移させる第1相転移手段と、を有することを特徴とする。
過冷却状態にある物質を液体から固体に相転移させると潜熱が発生する。その物質は発電要素を取り囲んでいるのでその潜熱は発電要素を加熱することになる。したがって、第1相転移手段によって過冷却状態にある物質を液体から固体に相転移させると、発電要素の温度はある温度まで急激に上昇し、低温時であっても常温時と同じように発電要素から電力を取り出すことができるようになる。
本発明にかかる発電要素の起動方法によれば、潜熱を利用して発電要素の温度をある温度まで急激に上昇させることができるので、発電要素を高速起動させることができる。
本発明にかかる二次電池によれば、潜熱によって発電要素の温度をある温度まで急激に上昇させることができるので、発電要素を高速起動させることができる。
以下、本発明の実施の形態を「実施の形態1」から「実施の形態4」に分けて詳細に説明する。本発明では、発電要素の周囲に過冷却可能な液体を配置しさらにその液体に対して固体への凝固を促進させるような機構を設けている。電池の性能を十分に発揮することができない低温ではその液体が過冷却を起こすようにし、電池使用時には過冷却となっている液体に対して何らかの凝固のきっかけを与えることによって液体に蓄えられていた凝固潜熱を放出させるようしている。これにより、液体の温度は一気に融点まで上昇することになるので、電池の温度も上昇し、大出力を取り出すことができるようになる。
「実施の形態1」
図1は、実施の形態1にかかる二次電池の概略構成を示す図であり、図2は、図1に示した二次電池の動作手順を示すフローチャートである。
図1に示すように、本実施の形態にかかる二次電池10は、図示しない負荷に電力を供給する発電要素20、発電要素20の少なくとも一部を取り囲む過冷却可能な物質30、過冷却状態にある物質30を液体から固体に相転移させる第1相転移手段または超音波付与手段としての超音波ホーン40、物質30が固体であるか液体であるかを判断する判断手段としての温度センサ50と音波検知センサ60、物質30が固体であると判断されたときに物質30を加熱して物質30を固体から液体に相転移させる第2相転移手段としてのヒーター70、超音波ホーン40、温度センサ50、音波検知センサ60、ヒーター70を接続して超音波ホーン40およびヒーター70の動作を制御するコントローラ80を備えている。
本実施の形態では発電要素20にリチウムイオン電池を使用している。発電要素20は容器90に収容されている過冷却可能な物質30に浸漬されている。リチウムイオン電池は電池電解液にリチウムを用いている電池であるが、通常電池電解液の伝導度は絶対温度の逆数に対して指数関数的に変化する。したがって、低温域では電池容量が極端に低下してしまうという特性を持っている。発電要素20の一方の辺からは図示しない負荷に電力を供給するための負極端子22と正極端子24とが引き出されている。負極端子22と正極端子24とは、図示しない負荷の負極端子102と正極端子104が接続されている。
物質30は温度が凝固点以下になっても液体のままの状態を保つことができる凝固点が常温付近の温度の物質である。つまり物質30は過冷却可能なものである。物質30の凝固点が常温付近であれば、常温近くまで発電要素20を加熱でき、発電要素20の十分な性能を引き出すことができる。この物質30としては塩化カルシウム、ヨウ化カルシウム、硫酸ナトリウム、チオ硫酸ナトリウム、酢酸ナトリウム、ヨウ化マグネシウムのいずれかまたはこれらのいずれかの混合物であることが好ましいが、これらの物質に限定されるものではない。
過冷却状態の液体は凝固して固体に相転移する際に凝固潜熱を放出する。この凝固潜熱を発電要素20の温度上昇に用いれば低温の状態からでも発電要素20から十分な電流を取り出すことができる。物質30に上記のどれを用いるかによって発電要素20の加熱範囲が変わる。特に有効に発電要素20を加熱することができる範囲は物質30の融点よりも1℃から50℃程度下の温度範囲である。この温度範囲が望ましいのは、物質30の融点と同じかそれよりも高い温度では結晶化が起こらず、凝固潜熱が発生しないからであり、物質30の融点より50℃以上下の温度範囲では物質30が過冷却状態を保つことができず固化してしまうため、凝固潜熱を必要なときに取り出すことができないからである。
また物質30の必要量は次のように計算できる。たとえば物質30に硫酸ナトリウムを用いた場合、硫酸ナトリウムの凝固潜熱は251J/gであり、硫酸ナトリウムの比熱は2J/℃・g程度であり、発電要素20の比熱は1J/℃・g程度であるので、発電要素20の温度を20℃上昇させるためには2×20J/g+1×20J/g=60J/gの熱量があればよい。つまり、硫酸ナトリウムの凝固潜熱は251J/gもあるので、容器90の吸熱を考慮したとしても発電要素20の重量の1/4程度の重量の硫酸ナトリウムを用意すればよい。物質30の適量は以上のようにして計算できる。ただ、物質30の量が多すぎたとしても物質30の融点以上に発電要素20の温度が上昇してしまうことはないため異常な温度上昇を起こすことはない。
なお、硫酸ナトリウム以外の上記の物質のいずれもが200J/g程度の凝固潜熱を発生するので、上記のように20℃程度の温度上昇を望むのであれば、発電要素20の重量の1/4程度の重量を用意すればよい。本発明は物質30の液相‐固相の相転移による凝固潜熱を利用するものであり、相転移を起こす温度は、要求される二次電池の特性によって適宜設定する。また、必要な温度上昇の値は二次電池の設計によって異なるので、物質30の量は発電要素20の重量と上昇させたい温度に応じて適宜設定すればよい。
超音波ホーン40は、過冷却状態になっている物質30に超音波を付与することによって、過冷却となっている物質30の結晶化を促す。過冷却を起こした物質30は結晶核を生じさせるための活性化エネルギーが与えられることによって結晶化が起こる。活性化エネルギーを与える方法には種々のものがあるが、本実施の形態では超音波によって活性化エネルギーを与えている。超音波は発電要素20の外部から付与することができるので、物質30にたとえば電極のような不純物を接触させる必要はなく、発電要素20を含めた容器90の開口部をポリオレフィンなどの薄膜で封止することによって容器90内への不純物の混入が防止でき、長期にわたって同じ性能を発揮させることができるようになる。
温度センサ50は、物質30が完全に液化した状態になっているか否かを判断するために物質30の温度を検出するものであり、一般的に用いられている小型の温度センサである。物質30の温度がその物質の融点以上である場合、温度を検出することによって固相部分が存在しないと判断できる。物質30の温度が検出できるものであれば一般的に用いられているどのような種類の温度センサを用いても良い。本実施の形態で小型の温度センサ50を用いているのは、それが一般的に安価で構造がシンプルであるため二次電池をシンプルに構成できるからである。
音波検知センサ60は、超音波ホーン40から物質30が結晶化を起こさない程度のエネルギーで出力された超音波を受信して超音波ホーン40と音波検知センサ60と間の音速を測定することによって、物質30が液体であるのか、固体であるのかを判断するために設けられている。物質30を超音波によって結晶化させた後には、次回の使用を考慮してもう一度物質30を液体に戻しておく必要がある。このため、物質30が固体になっていることを検知できるセンサが必要になるのである。本実施の形態ではそのセンサとして音波検知センサ60を使用している。物質30が固体になっていることを検知できるセンサの種類としては、これ以外に、物質30の光透過率を検出するセンサ、物質30の光屈折率を検出するセンサを用いることもできる。
ヒーター70は一般的に用いられている電気ヒーターであり、凝固化して固体になっている物質30を加熱して、物質30を固体から液体に相転移させるために用いられる。発電要素20を起動させた際に周辺温度が低いままであると固体になった物質30が液体に戻らない。このような場合には、物質30を加熱して液体に戻しておく必要がある。このためにヒーター70が設けられている。
コントローラ80は温度センサ50からの信号、音波検知センサ60からの信号に基づいて超音波ホーン40、ヒーター70の動作を制御する。
以上のように構成されている本実施の形態にかかる二次電池10は図2に示したフローチャートの手順に従って次のように動作する。なお、このフローチャートはコントローラ80によって処理される。
コントローラ80は温度センサ50からの信号に基づいて物質30の温度を検出する(S1)。コントローラ80は検出した物質30の温度がその物質30の凝固点以下の温度であるか否かを判断する(S2)。物質30の温度が凝固点以下の温度であれば(S2:Yes)、コントローラ80は超音波ホーン40を作動させ、物質30に向けて超音波を出力する。この超音波によって過冷却状態となっていた物質30に活性化エネルギーが与えられ、生成された結晶核からきわめて高速に結晶化が進み、物質30が液体から固体に相転移する。物質30は過冷却状態の液体から通常の結晶化状態に移行する際、つまり相転移する際に、物質から発生する凝固潜熱が発電要素20を暖めることになる。相転移はほぼ瞬時に起こるため、発電要素20の外装面の温度は結晶化開始直後からすぐに物質30の融点まで上昇する(S3)。一方、物質30の温度が凝固点よりも高い温度であるとき(S2:No)、または、S3の処理が終了した後には、コントローラ80は、音波検知センサ60が受信した超音波に基づいて物質30内を伝達した超音波の音速を測定し、その音速に基づいて物質30が固体であるか否かを判断する(S4)。物質30が固体であれば(S4:Yes)、コントローラ80はヒーター70を作動させ、固体になっている物質30を液体に相転移させる(S5)。そしてコントローラ80は温度センサ50からの信号に基づいて物質30の温度を検出する(S6)。コントローラ80は検出された温度が物質30の融点以上の温度であるか否かを判断する(S7)。検出された温度が物質30の融点以上の温度であれば(S7:Yes)、コントローラ80はヒーター70の作動を停止する(S8)。検出された温度が物質30の融点以上の温度でなければ(S7:No)、S5からS7の処理を繰り返す。コントローラ80は二次電池10の使用を継続するか否かを判断する(S9)。二次電池10の使用を継続するのであれば(S9:Yes)、S4からS9の処理を繰り返し、二次電池10の使用をしないのであれば以上の処理を終了する(S9:No)。
以上のフローチャートは、本発明にかかる発電要素の起動方法の手順にも対応している。すなわち、物質の温度を検出する段階はS1の処理に対応し、物質の温度が所定温度以下の場合にこの物質を液体から固体に相転移する段階はS2およびS3の処理に対応し、液体が固体に相転移するときに生じた潜熱によって発電要素を加熱する段階はS3の処理に対応している。また、物質が固体であるか液体であるかを判断する段階はS4の処理に対応し、物質が固体であると判断されたときにこの物質を加熱する段階はS5の処理に対応している。
なお、発電要素の少なくとも一部を取り囲んでいる過冷却の物質を液体から固体に相転移させることによって発電要素を加熱する段階はS1からS3の処理に対応し、相転移後の物質を加熱してこの物質を固体から液体に相転移させる段階はS4からS8の処理に対応している。
以上のように、本実施の形態では、ある一定の温度以下の環境で二次電池10を使用する場合、物質30が液体から固体に相転移する際の凝固潜熱を利用して発電要素20を暖めるようにしているので、発電要素20の温度を急速に上昇させることができ、発電要素20の高速起動が可能になる。このため、低温時における発電要素20を常温で使用している場合と同様の性能で使用できるようになる。
なお、本実施の形態では発電要素20の外装面の一部を物質30に浸漬させたものを例示したが、これに限らず、その外装面の全部を浸漬させるようにしても良い。
「実施の形態2」
図3は、実施の形態2にかかる二次電池の概略構成を示す図である。本実施の形態にかかる二次電池の構成を実施の形態1にかかる二次電池の構成と比較すると、相転移手段である電圧印加手段として、および、判断手段としてそれぞれ機能する結晶化用電圧印加電極110A、110Bを設けている点で相違する。その他の構成は実施の形態1と同一であるのでその説明は省略する。
結晶化用電圧印加電極110A、110Bは、物質30に接触するように設けられコントローラ80に接続されている。結晶化用電圧印加電極110A、110Bは過冷却状態になっている物質30に電場をかけることによって過冷却となっている物質30の結晶化を促す。結晶化用電圧印加電極110A、110B間に電圧が印加されると物質30に電場がかかり、結晶化用電圧印加電極110A、110B近傍の液体の分子配列が乱される。その結果、過冷却を起こした物質30に結晶核を生じさせるための活性化エネルギーが与えられることになり結晶化が起こる。
結晶化用電圧印加電極110A、110B間に電圧を与えることはきわめて容易である。単にスイッチをオン、オフさせるだけで良いからである。この場合、結晶化用電圧印加電極110A、110B間には大きな電流を流す必要はないので、低温状態であっても十分に動作させることができる。
結晶化用電圧印加電極110A、110Bは、物質30が固体であるか液体であるかを判断する判断手段としてインピーダンス測定手段としても機能する。コントローラ80は結晶化用電圧印加電極110A、110B間に物質30が結晶化を起こさない程度の電圧を印加し、結晶化用電圧印加電極110A、110B間を流れる電流を検出することによって物質30のインピーダンスが測定できる。物質30が液体であるときと固体であるときにはインピーダンスが相違することを利用している。なお、インピーダンスの測定に代えて誘電率を測定することによっても物質30が液体であるか固体であるかが判断できる。
このように、結晶化用電圧印加電極110A、110Bは、相転移手段および判断手段の両方を兼ね備えているので、二次電池の構成はシンプルなものとなる。
また、本実施の形態の二次電池の動作は図2のフローチャートの手順とまったく同一である。したがって、動作の説明も省略する。
「実施の形態3」
図4は、実施の形態3にかかる二次電池の概略構成を示す図である。本実施の形態にかかる二次電池の構成を実施の形態1にかかる二次電池の構成と比較すると、相転移手段として、物質30に物理的な衝撃を付与する衝撃付与手段である攪拌水車120を設けている点と、判断手段として、物質30を通過する光の屈折率を測定する屈折率測定手段を構成する光源130および屈折率測定センサ140とを設けている点で相違する。その他の構成は実施の形態1と同一であるのでその説明は省略する。
攪拌水車120は図示しないモータによって回転するものであり、そのモータはコントローラ80に接続されている。攪拌水車120は回転したときに物質30に与える衝撃によって過冷却となっている物質30の結晶化を促す。攪拌水車120が回転すると、物質30の表面が攪拌されることになり、その攪拌によって物質30に結晶核を生じさせるための活性化エネルギーが与えられることになり結晶化が起こる。
光源130および屈折率測定センサ140は物質30が固体であるか液体であるかを判断するための屈折率測定手段として機能する。光源130からは屈折率測定センサ140に向けて光が照射される。物質30は液体である場合と固体である場合とでは屈折率が変わる。屈折率が変わると屈折率測定センサ140の受光量が変わる。コントローラ80はこの受光量から物質30が液体であるのか固体であるのかが判断できる。
なお、本実施の形態では相転移を生じさせるために攪拌水車120を設けたが、これに代えて、たとえば種結晶を物質30内に投入する手段を設けても良い。この場合、物質30に種結晶が投入されたときの物理的な衝撃によって物質30を結晶化させることができる。種結晶を投入する手法は大きな活性化エネルギーを与えることができるため最も確実に相転移を生じさせることができる。ただし、この手法を用いる場合にはあらかじめ種結晶を準備しておく必要がある。
また、本実施の形態の二次電池の動作は図2のフローチャートの手順とまったく同一である。したがって、動作の説明も省略する。
「実施の形態4」
図5は、実施の形態4にかかる二次電池の概略構成を示す図である。本実施の形態にかかる二次電池の構成は実施の形態2で説明した図3の二次電池の構成に、冷却手段として機能するポンプ150とラジエータ160を付加したものである。二次電池10を構成する、ポンプ150とラジエータ160以外の構成要素の機能は、実施の形態1および2で説明したとおりであるので、ここでの説明は省略する。
ポンプ150はコントローラ80に接続され、コントローラ80は温度センサ50によって物質30の温度が所定の温度以上であることが検出されたときにポンプ150を作動する。ポンプ150が作動すると容器90内の物質30がラジエータ160内に導入され、冷却された後に容器90に戻される。このようにすることによって、発電要素20から大電力を取り出しているときの発電要素20の発熱を抑えることができる。本発明は二次電池の低温時の始動性を改善するものであるが、発電要素20の周囲には液状の物質30が存在しているので、その物質30を利用し必要に応じて発電要素20を冷却できるようにしている。この冷却手段の追加によって、二次電池の始動性の改善と高負荷時の二次電池の冷却の両方を行うことができる。
本発明では、上記の二次電池10を、少なくとも2以上直列に、並列に、または直列と並列とを組み合わせて接続して組電池モジュールを構成することができる。二次電池10を任意の個数直並列に接続することによって、所望の電流、電圧、容量に対応できる組電池モジュールを提供することができる。
本発明にかかる二次電池10、または上記の組電池モジュールを、電気自動車に搭載する場合には、電気自動車の車体中央部の座席下に搭載する。座席下に搭載すれば、車内空間およびトランクルームを広く取ることができるからである。なお、電池を搭載する場所は、座席下に限らず、後部トランクルームの下部でもよいし、車両前方のエンジンルームでも良い。本発明にかかる二次電池10、または上記の組電池モジュールを用いた電気自動車は高い耐久性を有し、長期間使用しても十分な出力を提供しうる。さらに、燃費、走行性能に優れた電気自動車、ハイブリッド自動車を提供できる。
電気自動車のように大出力を要求される用途において本発明の効果はきわめて大きい。これは、自動車が一般の電池用途の中でも最も厳しい温度範囲で動作を保証しなくてはならないためであり、かつ非動作時には通常振動が加わらないという利用形態のためである。また、ハイブリッド車や、燃料電池車の場合は、エンジンもしくは燃料電池という熱源があるので、液相から固相への相変化をした後も、容易に液相に戻すことができる。
実施例1
図6は実施例1における二次電池の概略構成を示す図である。図に示す発電要素20は35mm×62mm×3.8mmの大きさの直方体状のリチウムイオンアルミラミネート電池を用いた。この電池は0.8Ahの電池容量を有しており、満充電状態4.2Vで電極端子部分22、24が上になるように設置した。そして発電要素20の積層体部分を40℃で融解した1kgの硫酸ナトリウム水和物30中に漬けた。その後、硫酸ナトリウム水和物30をゆっくりと0℃まで冷却し0℃のまま8時間放置して硫酸ナトリウム水和物30を過冷却の状態にした。この後硫酸ナトリウム水和物30の容器90に超音波ホーン40で超音波を与え、その30秒後に発電要素20から2.4Ahを流し、3Vまで放電した。このときの容量を測定した。−10℃でも同様の測定を行なった。
実施例2
図7は実施例2における二次電池の概略構成を示す図である。実施例1と同様に発電要素20の積層体部分を40℃で融解した1kgの硫酸ナトリウム水和物30中に漬けた。その後、硫酸ナトリウム水和物30をゆっくりと0℃まで冷却し0℃のまま8時間放置して硫酸ナトリウム水和物30を過冷却の状態にした。この後硫酸ナトリウム水和物30の容器90に電極AとB間に直流100V5秒を印加し、その30秒後に発電要素20から2.4Ahを流し、3Vまで放電した。このときの容量を測定した。−10℃でも同様の測定を行なった。
比較例1
図8は比較例における二次電池の概略構成を示す図である。硫酸ナトリウム水和物30は使用せずに、実施例1と同様のリチウムイオンアルミラミネート電池を用い、この電池を空の容器90に設置した。その後、硫酸ナトリウム水和物30をゆっくりと0℃まで冷却し0℃のまま8時間放置した。この後発電要素20から2.4Ahを流し3Vまで放電した。このときの容量を測定した。−10℃でも同様に測定を行なった。
測定結果
上記実施例1と比較例との測定結果は下記の通りである。
25℃ 0℃ −10℃
実施例1 762mAh 745mAh 701mAh
実施例2 764mAh 740mAh 702mAh
比較例1 766mAh 250mAh 97mAh
以上の測定結果を見ると、発電要素20の温度が低くなるほど、本発明を適用した場合の効果が大きいことがわかる。
本発明は電気自動車を駆動する二次電池に使用することができる。
実施の形態1にかかる二次電池の概略構成を示す図である。 図1に示した二次電池の動作手順を示すフローチャートである。 実施の形態2にかかる二次電池の概略構成を示す図である。 実施の形態3にかかる二次電池の概略構成を示す図である。 実施の形態4にかかる二次電池の概略構成を示す図である。 実施例1における二次電池の概略構成を示す図である。 実施例2における二次電池の概略構成を示す図である。 比較例における二次電池の概略構成を示す図である。
符号の説明
10…二次電池、
20…発電要素、
22…負極端子、
24…正極端子、
30…物質、
40…超音波ホーン、
50…温度センサ、
60…音波検知センサ、
70…ヒーター、
80…コントローラ、
90…容器、
102…負極端子、
104…正極端子、
110A、110B…結晶化用電圧印加電極、
120…攪拌水車、
130…光源、
140…屈折率測定センサ、
150…ポンプ、
160…ラジエータ。

Claims (19)

  1. 所定の温度以下で発電要素を起動するための発電要素の起動方法であって、
    当該発電要素の少なくとも一部を取り囲んでいる過冷却の物質を液体から固体に相転移させることによって前記発電要素を加熱する段階を含むことを特徴とする発電要素の起動方法。
  2. 前記発電要素を加熱する段階は、
    前記物質の温度を検出する段階と、
    前記物質の温度が所定の温度以下の場合に前記物質を液体から固体に相転移させる段階と、
    前記液体が固体に相転移するときに生じた潜熱によって前記発電要素を加熱する段階と、
    を含むことを特徴とする請求項1記載の発電要素の起動方法。
  3. 前記発電要素を加熱する段階の後に、
    相転移後の物質を加熱して当該物質を固体から液体に相転移させる段階を含むことを特徴とする請求項1記載の発電要素の起動方法。
  4. 前記相転移後の物質を加熱して当該物質を固体から液体に相転移させる段階は、
    前記物質が固体であるか液体であるかを判断する段階と、
    前記物質が固体であると判断されたときに前記物質を加熱する段階と、
    を含むことを特徴とする請求項3記載の発電要素の起動方法。
  5. 負荷に電力を供給する発電要素と、
    当該発電要素の少なくとも一部を取り囲む過冷却可能な物質と、
    過冷却状態にある物質を液体から固体に相転移させる第1相転移手段と、
    を有することを特徴とする二次電池。
  6. 前記相転移手段は前記物質に超音波を付与する超音波付与手段であることを特徴とする請求項5記載の二次電池。
  7. 前記相転移手段は前記物質に電圧を印加する電圧印加手段であることを特徴とする請求項5記載の二次電池。
  8. 前記相転移手段は前記物質に物理的な衝撃を付与する衝撃付与手段であることを特徴とする請求項5記載の二次電池。
  9. 前記相転移手段は前記物質に結晶を投入する結晶投入手段であることを特徴とする請求項5記載の二次電池。
  10. さらに、前記物質が固体であるか液体であるかを判断する判断手段と、
    前記物質が固体であると判断されたときに前記物質を加熱して固体から液体に相転移させる第2相転移手段を有することを特徴とする請求項5記載の二次電池。
  11. 前記判断手段は前記物質の温度を検出する温度検出手段であることを特徴とする請求項10記載の二次電池。
  12. 前記判断手段は前記物質を通過する音波の音速を検知する音波検知センサであることを特徴とする請求項10記載の二次電池。
  13. 前記判断手段は前記物質のインピーダンスを測定するインピーダンス測定手段であることを特徴とする請求項10記載の二次電池。
  14. 前記判断手段は前記物質を通過する光の屈折率を測定する屈折率測定手段であることを特徴とする請求項10記載の二次電池。
  15. 前記第2相転移手段はヒーターであることを特徴とする請求項10記載の二次電池。
  16. 前記温度検出手段によって前記物質の温度が所定の温度以上であることが検出されたときには、前記物質を冷却する冷却手段をさらに有することを特徴とする請求項11記載の二次電池。
  17. 前記物質は、塩化カルシウム、ヨウ化カルシウム、硫酸ナトリウム、チオ硫酸ナトリウム、酢酸ナトリウム、ヨウ化マグネシウムのいずれかまたはこれらのいずれかの混合物であることを特徴とする請求項5記載の二次電池。
  18. 請求項5から17のいずれか記載の二次電池を直列に、並列に、または直列と並列とを組み合わせて接続されてなる二次電池モジュール。
  19. 請求項5から17のいずれか記載の二次電池または請求項18記載の二次電池モジュールを搭載した電気自動車。
JP2003374377A 2003-11-04 2003-11-04 発電要素の起動方法および二次電池 Withdrawn JP2005141929A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374377A JP2005141929A (ja) 2003-11-04 2003-11-04 発電要素の起動方法および二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374377A JP2005141929A (ja) 2003-11-04 2003-11-04 発電要素の起動方法および二次電池

Publications (1)

Publication Number Publication Date
JP2005141929A true JP2005141929A (ja) 2005-06-02

Family

ID=34686111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374377A Withdrawn JP2005141929A (ja) 2003-11-04 2003-11-04 発電要素の起動方法および二次電池

Country Status (1)

Country Link
JP (1) JP2005141929A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192382A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 電源装置
JP2009004164A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 蓄熱システム及びこれを備えた車両
US20090317698A1 (en) * 2007-02-01 2009-12-24 Takashi Murata Power supply device
WO2010050066A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 蓄電装置
WO2012095337A1 (de) * 2011-01-12 2012-07-19 Robert Bosch Gmbh Batterietemperierung durch aggregatzustandswechselmaterial
JP2015115098A (ja) * 2013-12-09 2015-06-22 日産自動車株式会社 電池システム
JP2016506021A (ja) * 2012-11-22 2016-02-25 コリア オートモーティブ テクノロジー インスティテュート バッテリー温度調節装置
JP2016119266A (ja) * 2014-12-23 2016-06-30 トヨタ自動車株式会社 非水電解液二次電池システム
JP2019021589A (ja) * 2017-07-21 2019-02-07 矢崎総業株式会社 電池パック
CN112673512A (zh) * 2019-05-15 2021-04-16 株式会社Lg化学 具有能够快速预热的结构的电池模块、包括该电池模块的电池组以及包括该电池模块的车辆
JP2021089835A (ja) * 2019-12-04 2021-06-10 マツダ株式会社 温度調整装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192382A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 電源装置
US20090317698A1 (en) * 2007-02-01 2009-12-24 Takashi Murata Power supply device
JP4636032B2 (ja) * 2007-02-01 2011-02-23 トヨタ自動車株式会社 電源装置
JP2009004164A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 蓄熱システム及びこれを備えた車両
WO2010050066A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 蓄電装置
WO2012095337A1 (de) * 2011-01-12 2012-07-19 Robert Bosch Gmbh Batterietemperierung durch aggregatzustandswechselmaterial
JP2014503973A (ja) * 2011-01-12 2014-02-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 凝集状態変化材料によるバッテリの温度調整
JP2016506021A (ja) * 2012-11-22 2016-02-25 コリア オートモーティブ テクノロジー インスティテュート バッテリー温度調節装置
JP2015115098A (ja) * 2013-12-09 2015-06-22 日産自動車株式会社 電池システム
JP2016119266A (ja) * 2014-12-23 2016-06-30 トヨタ自動車株式会社 非水電解液二次電池システム
JP2019021589A (ja) * 2017-07-21 2019-02-07 矢崎総業株式会社 電池パック
CN112673512A (zh) * 2019-05-15 2021-04-16 株式会社Lg化学 具有能够快速预热的结构的电池模块、包括该电池模块的电池组以及包括该电池模块的车辆
JP2022501764A (ja) * 2019-05-15 2022-01-06 エルジー エナジー ソリューション リミテッド 迅速に予熱可能な構造を有するバッテリーモジュール、それを含むバッテリーパック及び自動車
EP3886238A4 (en) * 2019-05-15 2022-03-16 Lg Energy Solution, Ltd. BATTERY MODULE WITH RAPID PREHEATING STRUCTURE, BATTERY PACK COMMITMENT AND VEHICLE CONTAINING THEM
JP7138775B2 (ja) 2019-05-15 2022-09-16 エルジー エナジー ソリューション リミテッド 迅速に予熱可能な構造を有するバッテリーモジュール、それを含むバッテリーパック及び自動車
JP2021089835A (ja) * 2019-12-04 2021-06-10 マツダ株式会社 温度調整装置
JP7298460B2 (ja) 2019-12-04 2023-06-27 マツダ株式会社 温度調整装置

Similar Documents

Publication Publication Date Title
JP5076378B2 (ja) バッテリの温度制御装置
JP2005141929A (ja) 発電要素の起動方法および二次電池
JP5060026B2 (ja) 車両バッテリー温度の制御方法及びシステム
WO2012124477A1 (ja) バッテリ温度制御装置
JP2004007954A (ja) 電気自動車の蓄電池容量不足警告装置
JP2016105672A (ja) 蓄電システムおよびその制御方法
JP2008016229A (ja) 車両用バッテリの制御装置
JP2014503973A (ja) 凝集状態変化材料によるバッテリの温度調整
US10749229B2 (en) Arrangement for tempering a battery, vehicle, and methods for heating and cooling a battery
JP6011800B2 (ja) 電動車両の冷却制御装置
EP2685549B1 (en) Battery temperature control device
US20120148886A1 (en) Battery system for a motor vehicle having at least one electrochemical cell and at least one latent heat accumulator
JP2006179198A (ja) 燃料電池システム
JP6520633B2 (ja) 車両制御システム
JP2002365347A (ja) バッテリ容量判定方法及びバッテリ容量判定装置
JP2015015208A (ja) 電池モジュール、電池モジュールを有する電源装置、及び電池モジュールの温度管理方法
JP2009012729A (ja) 車両用電源装置
JP2010277948A (ja) 組電池装置
JP2004327101A (ja) 燃料電池を搭載した移動体
JPH09102331A (ja) バッテリ冷却装置
JP2016129103A (ja) 蓄電システム
JP2017084552A (ja) 二次電池システム
JP2004239591A (ja) 過冷却蓄熱装置および車両用過冷却蓄熱システム
JPH1182259A (ja) ハイブリッド自動車のエンジン始動装置
JP2006151091A (ja) 車両用動力源およびこれを搭載した車両

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109